370 lines
14 KiB
Java
Raw Normal View History

/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @key stress
*
* @summary converted from VM testbase nsk/stress/numeric/numeric003.
* VM testbase keywords: [stress, slow, nonconcurrent, quick]
* VM testbase readme:
* DESCRIPTION
* This test calculates the product A*A for a square matrix A of the type
* long[][]. Elements of the matrix A are initiated with random numbers,
* so that optimizing compiler could not eliminate any essential portion
* of calculations.
* That product A*A is calculated twice: in a single thread, and in N
* separate threads, where NxN is the size of square matrix A. When executing
* in N threads, each thread calculate distinct row of the resulting matrix.
* The test checks if the resulting product A*A is the same when calculated
* in single thread and in N threads.
* By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if single-thread calculation is essentially
* slower than N-threads calculation (surely, the number of CPUs installed
* on the platform executing the test is taken into account for performance
* testing). Note, that HotSpot may fail to adjust itself for better
* performance in single-thread calculation.
* COMMENTS
* The bug was filed referencing to the same numeric algorithm,
* which is used by this test:
* 4242172 (P3/S5) 2.0: poor performance in matrix calculations
*
* @run main/othervm nsk.stress.numeric.numeric003.numeric003 300 300
*/
package nsk.stress.numeric.numeric003;
import java.io.PrintStream;
/**
* This test calculates the product <b>A</b><sup>.</sup><b>A</b> for
* a square matrix <b>A</b> of the type <code>long[][]</code>.
* Elements of the matrix <b>A</b> are initiated with random numbers,
* so that optimizing compiler could not eliminate any essential portion
* of calculations.
* <p>
* <p>That product <b>A</b><sup>.</sup><b>A</b> is calculated twice: in
* a single thread, and in <i>N</i> separate threads, where <i>N</i>x<i>N</i>
* is the size of square matrix <b>A</b>. When executing in <i>N</i> threads,
* each thread calculate distinct row of the resulting matrix. The test checks
* if the resulting product <b>A</b><sup>.</sup><b>A</b> is the same when
* calculated in single thread and in <i>N</i> threads.
* <p>
* <p>By the way, the test checks JVM performance. The test is treated failed
* due to poor performance, if single-thread calculation is essentially
* slower than <i>N</i>-threads calculation (surely, the number of CPUs
* installed on the platform executing the test is taken into account for
* performance testing). Note, that HotSpot may fail to adjust itself for
* better performance in single-thread calculation.
* <p>
* <p>See the bug-report:
* <br>&nbsp;&nbsp;
* 4242172 (P3/S5) 2.0: poor performance in matrix calculations
*/
public class numeric003 {
/**
* When testing performance, single thread calculation is allowed to
* be 10% slower than multi-threads calculation (<code>TOLERANCE</code>
* is assigned to 10 now).
*/
public static final double TOLERANCE = 100; // 10;
/**
* Re-assign this value to <code>true</code> for better
* diagnostics.
*/
private static boolean verbose = false;
private static PrintStream out = null;
/**
* Print error-message to the <code>out<code>.
*/
private static void complain(Object x) {
out.println("# " + x);
}
private static void print(Object x) {
if (verbose)
out.print(x);
}
private static void println(Object x) {
print(x + "\n");
}
/**
* Re-invoke <code>run(args,out)</code> in order to simulate
* JCK-like test interface.
*/
public static void main(String args[]) {
int exitCode = run(args, System.out);
System.exit(exitCode + 95);
// JCK-like exit status
}
/**
* Parse command-line parameters stored in <code>args[]</code> and run
* the test.
* <p>
* <p>Command-line parameters are:
* <br>&nbsp;&nbsp;
* <code>java numeric003 [-verbose] [-performance] [-CPU:<i>number</i>]
* <i>matrixSize</i> [<i>threads</i>]</code>
* <p>
* <p>Here:
* <br>&nbsp;&nbsp;<code>-verbose</code> -
* keyword, which alows to print execution trace
* <br>&nbsp;&nbsp;<code>-performance</code> -
* keyword, which alows performance testing
* <br>&nbsp;&nbsp;<code><i>number</i></code> -
* number of CPU installed on the computer just executing the test
* <br>&nbsp;&nbsp;<code><i>matrixSize</i></code> -
* number of rows (and columns) in square matrix to be tested
* <br>&nbsp;&nbsp;<code><i>threads</i></code> -
* for multi-thread calculation
* (default: <code><i>matrixSize</i></code>)
*
* @param args strings array containing command-line parameters
* @param out the test log, usually <code>System.out</code>
*/
public static int run(String args[], PrintStream out) {
numeric003.out = out;
boolean testPerformance = false;
int numberOfCPU = 1;
int argsShift = 0;
for (; argsShift < args.length; argsShift++) {
String argument = args[argsShift];
if (!argument.startsWith("-"))
break;
if (argument.equals("-performance")) {
testPerformance = true;
continue;
}
if (argument.equals("-verbose")) {
verbose = true;
continue;
}
if (argument.startsWith("-CPU:")) {
String value =
argument.substring("-CPU:".length(), argument.length());
numberOfCPU = Integer.parseInt(value);
if (numberOfCPU < 1) {
complain("Illegal number of CPU: " + argument);
return 2; // failure
}
continue;
}
complain("Cannot recognize argument: args[" + argsShift + "]: " + argument);
return 2; // failure
}
if ((args.length < argsShift + 1) || (args.length > argsShift + 2)) {
complain("Illegal argument(s). Execute:");
complain(
" java numeric003 [-verbose] [-performance] [-CPU:number] " +
"matrixSize [threads]");
return 2; // failure
}
int size = Integer.parseInt(args[argsShift]);
if ((size < 100) || (size > 10000)) {
complain("Matrix size should be 100 to 1000 lines & columns.");
return 2; // failure
}
int threads = size;
if (args.length >= argsShift + 2)
threads = Integer.parseInt(args[argsShift + 1]);
if ((threads < 1) || (threads > size)) {
complain("Threads number should be 1 to matrix size.");
return 2; // failure
}
if ((size % threads) != 0) {
complain("Threads number should evenly divide matrix size.");
return 2; // failure
}
print("Preparing A[" + size + "," + size + "]:");
SquareMatrix A = new SquareMatrix(size);
SquareMatrix A1 = new SquareMatrix(size);
SquareMatrix Am = new SquareMatrix(size);
println(" done.");
double singleThread = elapsedTime(out, A, A1, size, 1);
double multiThreads = elapsedTime(out, A, Am, size, threads);
print("Checking accuracy:");
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
if (A1.value[line][column] != Am.value[line][column]) {
println("");
complain("Test failed:");
complain("Different results by single- and multi-threads:");
complain(" line=" + line + ", column=" + column);
complain("A1.value[line][column]=" + A1.value[line][column]);
complain("Am.value[line][column]=" + Am.value[line][column]);
return 2; // FAILED
}
println(" done.");
if (testPerformance) {
print("Checking performance: ");
double elapsed1 = singleThread;
double elapsedM = multiThreads * numberOfCPU;
if (elapsed1 > elapsedM * (1 + TOLERANCE / 100)) {
println("");
complain("Test failed:");
complain("Single-thread calculation is essentially slower:");
complain("Calculation time elapsed (seconds):");
complain(" single thread: " + singleThread);
complain(" multi-threads: " + multiThreads);
complain(" number of CPU: " + numberOfCPU);
complain(" tolerance: " + TOLERANCE + "%");
return 2; // FAILED
}
println("done.");
}
println("Test passed.");
return 0; // PASSED
}
private static double elapsedTime(PrintStream out,
SquareMatrix A, SquareMatrix AA, int size, int threads) {
print("Computing A*A with " + threads + " thread(s):");
long mark1 = System.currentTimeMillis();
AA.setSquareOf(A, threads);
long mark2 = System.currentTimeMillis();
println(" done.");
double sec = (mark2 - mark1) / 1000.0;
double perf = size * size * (size + size) / sec;
println("Elapsed time: " + sec + " seconds");
println("Performance: " + perf / 1e6 + " MFLOPS");
return sec;
}
/**
* This class computes <code>A*A</code> for square matrix <code>A</code>.
*/
private static class SquareMatrix {
volatile long value[][];
/**
* New square matrix with random elements.
*/
public SquareMatrix(int size) {
value = new long[size][size];
for (int line = 0; line < size; line++)
for (int column = 0; column < size; column++)
value[line][column] = Math.round(Math.random() * size);
}
/**
* Update <code>value[][]</code> of <code>this</code> matrix.
*
* @param threads Split computation into the given number of threads.
*/
public void setSquareOf(SquareMatrix A, int threads) {
if (this.value.length != A.value.length)
throw new IllegalArgumentException(
"this.value.length != A.value.length");
int size = value.length;
if ((size % threads) != 0)
throw new IllegalArgumentException("size%threads != 0");
int bunch = size / threads;
Thread task[] = new Thread[threads];
for (int t = 0; t < threads; t++) {
int line0 = bunch * t;
MatrixComputer computer =
new MatrixComputer(value, A.value, line0, bunch);
task[t] = new Thread(computer);
}
for (int t = 0; t < threads; t++)
task[t].start();
for (int t = 0; t < threads; t++)
if (task[t].isAlive())
try {
task[t].join();
} catch (InterruptedException exception) {
throw new RuntimeException(exception.toString());
}
}
/**
* Thread to compute a bunch of lines of matrix square.
*/
private static class MatrixComputer implements Runnable {
private long result[][];
private long source[][];
private int line0;
private int bunch;
/**
* Register a task for matrix multiplication.
*/
public MatrixComputer(
long result[][], long source[][], int line0, int bunch) {
this.result = result; // reference to resulting matrix value
this.source = source; // reference to matrix to be squared
this.line0 = line0; // compute lines from line0 to ...
this.bunch = bunch; // number of resulting lines to compute
}
/**
* Do execute the task just registered for <code>this</code> thread.
*/
public void run() {
int line1 = line0 + bunch;
int size = result.length;
for (int line = line0; line < line1; line++)
for (int column = 0; column < size; column++) {
long sum = 0;
for (int i = 0; i < size; i++)
sum += source[line][i] * source[i][column];
result[line][column] = sum;
}
}
}
}
}