2009-01-26 19:49:26 -08:00
|
|
|
/*
|
2010-05-25 15:58:33 -07:00
|
|
|
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
|
2009-01-26 19:49:26 -08:00
|
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
|
|
*
|
|
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*
|
|
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
|
|
* accompanied this code).
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License version
|
|
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
|
|
*
|
2010-05-25 15:58:33 -07:00
|
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
|
|
* questions.
|
2009-01-26 19:49:26 -08:00
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* @test
|
|
|
|
* @bug 4851638 4939441
|
|
|
|
* @summary Tests for {Math, StrictMath}.log1p
|
|
|
|
* @author Joseph D. Darcy
|
|
|
|
*/
|
|
|
|
|
|
|
|
import sun.misc.DoubleConsts;
|
|
|
|
import sun.misc.FpUtils;
|
|
|
|
|
|
|
|
public class Log1pTests {
|
|
|
|
private Log1pTests(){}
|
|
|
|
|
|
|
|
static final double infinityD = Double.POSITIVE_INFINITY;
|
|
|
|
static final double NaNd = Double.NaN;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Formulation taken from HP-15C Advanced Functions Handbook, part
|
|
|
|
* number HP 0015-90011, p 181. This is accurate to a few ulps.
|
|
|
|
*/
|
|
|
|
static double hp15cLogp(double x) {
|
|
|
|
double u = 1.0 + x;
|
|
|
|
return (u==1.0? x : StrictMath.log(u)*x/(u-1) );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The Taylor expansion of ln(1 + x) for -1 < x <= 1 is:
|
|
|
|
*
|
|
|
|
* x - x^2/2 + x^3/3 - ... -(-x^j)/j
|
|
|
|
*
|
|
|
|
* Therefore, for small values of x, log1p(x) ~= x. For large
|
|
|
|
* values of x, log1p(x) ~= log(x).
|
|
|
|
*
|
|
|
|
* Also x/(x+1) < ln(1+x) < x
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int testLog1p() {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
double [][] testCases = {
|
|
|
|
{Double.NaN, NaNd},
|
|
|
|
{Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
|
|
|
|
{Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
|
|
|
|
{Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
|
|
|
|
{Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
|
|
|
|
{Double.NEGATIVE_INFINITY, NaNd},
|
|
|
|
{-8.0, NaNd},
|
|
|
|
{-1.0, -infinityD},
|
|
|
|
{-0.0, -0.0},
|
|
|
|
{+0.0, +0.0},
|
|
|
|
{infinityD, infinityD},
|
|
|
|
};
|
|
|
|
|
|
|
|
// Test special cases
|
|
|
|
for(int i = 0; i < testCases.length; i++) {
|
|
|
|
failures += testLog1pCaseWithUlpDiff(testCases[i][0],
|
|
|
|
testCases[i][1], 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// For |x| < 2^-54 log1p(x) ~= x
|
|
|
|
for(int i = DoubleConsts.MIN_SUB_EXPONENT; i <= -54; i++) {
|
|
|
|
double d = FpUtils.scalb(2, i);
|
|
|
|
failures += testLog1pCase(d, d);
|
|
|
|
failures += testLog1pCase(-d, -d);
|
|
|
|
}
|
|
|
|
|
|
|
|
// For x > 2^53 log1p(x) ~= log(x)
|
|
|
|
for(int i = 53; i <= DoubleConsts.MAX_EXPONENT; i++) {
|
|
|
|
double d = FpUtils.scalb(2, i);
|
|
|
|
failures += testLog1pCaseWithUlpDiff(d, StrictMath.log(d), 2.001);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Construct random values with exponents ranging from -53 to
|
|
|
|
// 52 and compare against HP-15C formula.
|
|
|
|
java.util.Random rand = new java.util.Random();
|
|
|
|
for(int i = 0; i < 1000; i++) {
|
|
|
|
double d = rand.nextDouble();
|
|
|
|
|
|
|
|
d = FpUtils.scalb(d, -53 - FpUtils.ilogb(d));
|
|
|
|
|
|
|
|
for(int j = -53; j <= 52; j++) {
|
|
|
|
failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5);
|
|
|
|
|
|
|
|
d *= 2.0; // increase exponent by 1
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test for monotonicity failures near values y-1 where y ~=
|
|
|
|
// e^x. Test two numbers before and two numbers after each
|
|
|
|
// chosen value; i.e.
|
|
|
|
//
|
|
|
|
// pcNeighbors[] =
|
|
|
|
// {nextDown(nextDown(pc)),
|
|
|
|
// nextDown(pc),
|
|
|
|
// pc,
|
|
|
|
// nextUp(pc),
|
|
|
|
// nextUp(nextUp(pc))}
|
|
|
|
//
|
|
|
|
// and we test that log1p(pcNeighbors[i]) <= log1p(pcNeighbors[i+1])
|
|
|
|
{
|
|
|
|
double pcNeighbors[] = new double[5];
|
|
|
|
double pcNeighborsLog1p[] = new double[5];
|
|
|
|
double pcNeighborsStrictLog1p[] = new double[5];
|
|
|
|
|
|
|
|
for(int i = -36; i <= 36; i++) {
|
|
|
|
double pc = StrictMath.pow(Math.E, i) - 1;
|
|
|
|
|
|
|
|
pcNeighbors[2] = pc;
|
|
|
|
pcNeighbors[1] = FpUtils.nextDown(pc);
|
|
|
|
pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]);
|
|
|
|
pcNeighbors[3] = FpUtils.nextUp(pc);
|
|
|
|
pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]);
|
|
|
|
|
|
|
|
for(int j = 0; j < pcNeighbors.length; j++) {
|
|
|
|
pcNeighborsLog1p[j] = Math.log1p(pcNeighbors[j]);
|
|
|
|
pcNeighborsStrictLog1p[j] = StrictMath.log1p(pcNeighbors[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int j = 0; j < pcNeighborsLog1p.length-1; j++) {
|
|
|
|
if(pcNeighborsLog1p[j] > pcNeighborsLog1p[j+1] ) {
|
|
|
|
failures++;
|
|
|
|
System.err.println("Monotonicity failure for Math.log1p on " +
|
|
|
|
pcNeighbors[j] + " and " +
|
|
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
|
|
pcNeighborsLog1p[j] + " and " +
|
|
|
|
pcNeighborsLog1p[j+1] );
|
|
|
|
}
|
|
|
|
|
|
|
|
if(pcNeighborsStrictLog1p[j] > pcNeighborsStrictLog1p[j+1] ) {
|
|
|
|
failures++;
|
|
|
|
System.err.println("Monotonicity failure for StrictMath.log1p on " +
|
|
|
|
pcNeighbors[j] + " and " +
|
|
|
|
pcNeighbors[j+1] + "\n\treturned " +
|
|
|
|
pcNeighborsStrictLog1p[j] + " and " +
|
|
|
|
pcNeighborsStrictLog1p[j+1] );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testLog1pCase(double input,
|
|
|
|
double expected) {
|
|
|
|
return testLog1pCaseWithUlpDiff(input, expected, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
public static int testLog1pCaseWithUlpDiff(double input,
|
|
|
|
double expected,
|
|
|
|
double ulps) {
|
|
|
|
int failures = 0;
|
|
|
|
failures += Tests.testUlpDiff("Math.lop1p(double",
|
|
|
|
input, Math.log1p(input),
|
|
|
|
expected, ulps);
|
|
|
|
failures += Tests.testUlpDiff("StrictMath.log1p(double",
|
|
|
|
input, StrictMath.log1p(input),
|
|
|
|
expected, ulps);
|
|
|
|
return failures;
|
|
|
|
}
|
|
|
|
|
|
|
|
public static void main(String argv[]) {
|
|
|
|
int failures = 0;
|
|
|
|
|
|
|
|
failures += testLog1p();
|
|
|
|
|
|
|
|
if (failures > 0) {
|
|
|
|
System.err.println("Testing log1p incurred "
|
|
|
|
+ failures + " failures.");
|
|
|
|
throw new RuntimeException();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|