jdk-24/hotspot/src/share/vm/memory/universe.cpp

1404 lines
54 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_universe.cpp.incl"
// Known objects
klassOop Universe::_boolArrayKlassObj = NULL;
klassOop Universe::_byteArrayKlassObj = NULL;
klassOop Universe::_charArrayKlassObj = NULL;
klassOop Universe::_intArrayKlassObj = NULL;
klassOop Universe::_shortArrayKlassObj = NULL;
klassOop Universe::_longArrayKlassObj = NULL;
klassOop Universe::_singleArrayKlassObj = NULL;
klassOop Universe::_doubleArrayKlassObj = NULL;
klassOop Universe::_typeArrayKlassObjs[T_VOID+1] = { NULL /*, NULL...*/ };
klassOop Universe::_objectArrayKlassObj = NULL;
klassOop Universe::_symbolKlassObj = NULL;
klassOop Universe::_methodKlassObj = NULL;
klassOop Universe::_constMethodKlassObj = NULL;
klassOop Universe::_methodDataKlassObj = NULL;
klassOop Universe::_klassKlassObj = NULL;
klassOop Universe::_arrayKlassKlassObj = NULL;
klassOop Universe::_objArrayKlassKlassObj = NULL;
klassOop Universe::_typeArrayKlassKlassObj = NULL;
klassOop Universe::_instanceKlassKlassObj = NULL;
klassOop Universe::_constantPoolKlassObj = NULL;
klassOop Universe::_constantPoolCacheKlassObj = NULL;
klassOop Universe::_compiledICHolderKlassObj = NULL;
klassOop Universe::_systemObjArrayKlassObj = NULL;
oop Universe::_int_mirror = NULL;
oop Universe::_float_mirror = NULL;
oop Universe::_double_mirror = NULL;
oop Universe::_byte_mirror = NULL;
oop Universe::_bool_mirror = NULL;
oop Universe::_char_mirror = NULL;
oop Universe::_long_mirror = NULL;
oop Universe::_short_mirror = NULL;
oop Universe::_void_mirror = NULL;
oop Universe::_mirrors[T_VOID+1] = { NULL /*, NULL...*/ };
oop Universe::_main_thread_group = NULL;
oop Universe::_system_thread_group = NULL;
typeArrayOop Universe::_the_empty_byte_array = NULL;
typeArrayOop Universe::_the_empty_short_array = NULL;
typeArrayOop Universe::_the_empty_int_array = NULL;
objArrayOop Universe::_the_empty_system_obj_array = NULL;
objArrayOop Universe::_the_empty_class_klass_array = NULL;
objArrayOop Universe::_the_array_interfaces_array = NULL;
LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
LatestMethodOopCache* Universe::_loader_addClass_cache = NULL;
ActiveMethodOopsCache* Universe::_reflect_invoke_cache = NULL;
oop Universe::_out_of_memory_error_java_heap = NULL;
oop Universe::_out_of_memory_error_perm_gen = NULL;
oop Universe::_out_of_memory_error_array_size = NULL;
oop Universe::_out_of_memory_error_gc_overhead_limit = NULL;
objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
bool Universe::_verify_in_progress = false;
oop Universe::_null_ptr_exception_instance = NULL;
oop Universe::_arithmetic_exception_instance = NULL;
oop Universe::_virtual_machine_error_instance = NULL;
oop Universe::_vm_exception = NULL;
oop Universe::_emptySymbol = NULL;
// These variables are guarded by FullGCALot_lock.
debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
debug_only(int Universe::_fullgc_alot_dummy_next = 0;)
// Heap
int Universe::_verify_count = 0;
int Universe::_base_vtable_size = 0;
bool Universe::_bootstrapping = false;
bool Universe::_fully_initialized = false;
size_t Universe::_heap_capacity_at_last_gc;
size_t Universe::_heap_used_at_last_gc;
CollectedHeap* Universe::_collectedHeap = NULL;
address Universe::_heap_base = NULL;
2007-12-01 00:00:00 +00:00
void Universe::basic_type_classes_do(void f(klassOop)) {
f(boolArrayKlassObj());
f(byteArrayKlassObj());
f(charArrayKlassObj());
f(intArrayKlassObj());
f(shortArrayKlassObj());
f(longArrayKlassObj());
f(singleArrayKlassObj());
f(doubleArrayKlassObj());
}
void Universe::system_classes_do(void f(klassOop)) {
f(symbolKlassObj());
f(methodKlassObj());
f(constMethodKlassObj());
f(methodDataKlassObj());
f(klassKlassObj());
f(arrayKlassKlassObj());
f(objArrayKlassKlassObj());
f(typeArrayKlassKlassObj());
f(instanceKlassKlassObj());
f(constantPoolKlassObj());
f(systemObjArrayKlassObj());
}
void Universe::oops_do(OopClosure* f, bool do_all) {
f->do_oop((oop*) &_int_mirror);
f->do_oop((oop*) &_float_mirror);
f->do_oop((oop*) &_double_mirror);
f->do_oop((oop*) &_byte_mirror);
f->do_oop((oop*) &_bool_mirror);
f->do_oop((oop*) &_char_mirror);
f->do_oop((oop*) &_long_mirror);
f->do_oop((oop*) &_short_mirror);
f->do_oop((oop*) &_void_mirror);
// It's important to iterate over these guys even if they are null,
// since that's how shared heaps are restored.
for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
f->do_oop((oop*) &_mirrors[i]);
}
assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
// %%% Consider moving those "shared oops" over here with the others.
f->do_oop((oop*)&_boolArrayKlassObj);
f->do_oop((oop*)&_byteArrayKlassObj);
f->do_oop((oop*)&_charArrayKlassObj);
f->do_oop((oop*)&_intArrayKlassObj);
f->do_oop((oop*)&_shortArrayKlassObj);
f->do_oop((oop*)&_longArrayKlassObj);
f->do_oop((oop*)&_singleArrayKlassObj);
f->do_oop((oop*)&_doubleArrayKlassObj);
f->do_oop((oop*)&_objectArrayKlassObj);
{
for (int i = 0; i < T_VOID+1; i++) {
if (_typeArrayKlassObjs[i] != NULL) {
assert(i >= T_BOOLEAN, "checking");
f->do_oop((oop*)&_typeArrayKlassObjs[i]);
} else if (do_all) {
f->do_oop((oop*)&_typeArrayKlassObjs[i]);
}
}
}
f->do_oop((oop*)&_symbolKlassObj);
f->do_oop((oop*)&_methodKlassObj);
f->do_oop((oop*)&_constMethodKlassObj);
f->do_oop((oop*)&_methodDataKlassObj);
f->do_oop((oop*)&_klassKlassObj);
f->do_oop((oop*)&_arrayKlassKlassObj);
f->do_oop((oop*)&_objArrayKlassKlassObj);
f->do_oop((oop*)&_typeArrayKlassKlassObj);
f->do_oop((oop*)&_instanceKlassKlassObj);
f->do_oop((oop*)&_constantPoolKlassObj);
f->do_oop((oop*)&_constantPoolCacheKlassObj);
f->do_oop((oop*)&_compiledICHolderKlassObj);
f->do_oop((oop*)&_systemObjArrayKlassObj);
f->do_oop((oop*)&_the_empty_byte_array);
f->do_oop((oop*)&_the_empty_short_array);
f->do_oop((oop*)&_the_empty_int_array);
f->do_oop((oop*)&_the_empty_system_obj_array);
f->do_oop((oop*)&_the_empty_class_klass_array);
f->do_oop((oop*)&_the_array_interfaces_array);
_finalizer_register_cache->oops_do(f);
_loader_addClass_cache->oops_do(f);
_reflect_invoke_cache->oops_do(f);
f->do_oop((oop*)&_out_of_memory_error_java_heap);
f->do_oop((oop*)&_out_of_memory_error_perm_gen);
f->do_oop((oop*)&_out_of_memory_error_array_size);
f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
if (_preallocated_out_of_memory_error_array != (oop)NULL) { // NULL when DumpSharedSpaces
f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
}
f->do_oop((oop*)&_null_ptr_exception_instance);
f->do_oop((oop*)&_arithmetic_exception_instance);
f->do_oop((oop*)&_virtual_machine_error_instance);
f->do_oop((oop*)&_main_thread_group);
f->do_oop((oop*)&_system_thread_group);
f->do_oop((oop*)&_vm_exception);
f->do_oop((oop*)&_emptySymbol);
debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
}
void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
if (size < alignment || size % alignment != 0) {
ResourceMark rm;
stringStream st;
st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
char* error = st.as_string();
vm_exit_during_initialization(error);
}
}
void Universe::genesis(TRAPS) {
ResourceMark rm;
{ FlagSetting fs(_bootstrapping, true);
{ MutexLocker mc(Compile_lock);
// determine base vtable size; without that we cannot create the array klasses
compute_base_vtable_size();
if (!UseSharedSpaces) {
_klassKlassObj = klassKlass::create_klass(CHECK);
_arrayKlassKlassObj = arrayKlassKlass::create_klass(CHECK);
_objArrayKlassKlassObj = objArrayKlassKlass::create_klass(CHECK);
_instanceKlassKlassObj = instanceKlassKlass::create_klass(CHECK);
_typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
_symbolKlassObj = symbolKlass::create_klass(CHECK);
_emptySymbol = oopFactory::new_symbol("", CHECK);
_boolArrayKlassObj = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
_charArrayKlassObj = typeArrayKlass::create_klass(T_CHAR, sizeof(jchar), CHECK);
_singleArrayKlassObj = typeArrayKlass::create_klass(T_FLOAT, sizeof(jfloat), CHECK);
_doubleArrayKlassObj = typeArrayKlass::create_klass(T_DOUBLE, sizeof(jdouble), CHECK);
_byteArrayKlassObj = typeArrayKlass::create_klass(T_BYTE, sizeof(jbyte), CHECK);
_shortArrayKlassObj = typeArrayKlass::create_klass(T_SHORT, sizeof(jshort), CHECK);
_intArrayKlassObj = typeArrayKlass::create_klass(T_INT, sizeof(jint), CHECK);
_longArrayKlassObj = typeArrayKlass::create_klass(T_LONG, sizeof(jlong), CHECK);
_typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
_typeArrayKlassObjs[T_CHAR] = _charArrayKlassObj;
_typeArrayKlassObjs[T_FLOAT] = _singleArrayKlassObj;
_typeArrayKlassObjs[T_DOUBLE] = _doubleArrayKlassObj;
_typeArrayKlassObjs[T_BYTE] = _byteArrayKlassObj;
_typeArrayKlassObjs[T_SHORT] = _shortArrayKlassObj;
_typeArrayKlassObjs[T_INT] = _intArrayKlassObj;
_typeArrayKlassObjs[T_LONG] = _longArrayKlassObj;
_methodKlassObj = methodKlass::create_klass(CHECK);
_constMethodKlassObj = constMethodKlass::create_klass(CHECK);
_methodDataKlassObj = methodDataKlass::create_klass(CHECK);
_constantPoolKlassObj = constantPoolKlass::create_klass(CHECK);
_constantPoolCacheKlassObj = constantPoolCacheKlass::create_klass(CHECK);
_compiledICHolderKlassObj = compiledICHolderKlass::create_klass(CHECK);
_systemObjArrayKlassObj = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
_the_empty_byte_array = oopFactory::new_permanent_byteArray(0, CHECK);
_the_empty_short_array = oopFactory::new_permanent_shortArray(0, CHECK);
_the_empty_int_array = oopFactory::new_permanent_intArray(0, CHECK);
_the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
_the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
_vm_exception = oopFactory::new_symbol("vm exception holder", CHECK);
} else {
FileMapInfo *mapinfo = FileMapInfo::current_info();
char* buffer = mapinfo->region_base(CompactingPermGenGen::md);
void** vtbl_list = (void**)buffer;
init_self_patching_vtbl_list(vtbl_list,
CompactingPermGenGen::vtbl_list_size);
}
}
vmSymbols::initialize(CHECK);
SystemDictionary::initialize(CHECK);
klassOop ok = SystemDictionary::object_klass();
if (UseSharedSpaces) {
// Verify shared interfaces array.
assert(_the_array_interfaces_array->obj_at(0) ==
SystemDictionary::cloneable_klass(), "u3");
assert(_the_array_interfaces_array->obj_at(1) ==
SystemDictionary::serializable_klass(), "u3");
// Verify element klass for system obj array klass
assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
// Verify super class for the classes created above
assert(Klass::cast(boolArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(charArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(singleArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(doubleArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(byteArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(shortArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(intArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(longArrayKlassObj() )->super() == ok, "u3");
assert(Klass::cast(constantPoolKlassObj() )->super() == ok, "u3");
assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
} else {
// Set up shared interfaces array. (Do this before supers are set up.)
_the_array_interfaces_array->obj_at_put(0, SystemDictionary::cloneable_klass());
_the_array_interfaces_array->obj_at_put(1, SystemDictionary::serializable_klass());
// Set element klass for system obj array klass
objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
// Set super class for the classes created above
Klass::cast(boolArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(charArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(singleArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(doubleArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(byteArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(shortArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(intArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(longArrayKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(constantPoolKlassObj() )->initialize_supers(ok, CHECK);
Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
Klass::cast(boolArrayKlassObj() )->set_super(ok);
Klass::cast(charArrayKlassObj() )->set_super(ok);
Klass::cast(singleArrayKlassObj() )->set_super(ok);
Klass::cast(doubleArrayKlassObj() )->set_super(ok);
Klass::cast(byteArrayKlassObj() )->set_super(ok);
Klass::cast(shortArrayKlassObj() )->set_super(ok);
Klass::cast(intArrayKlassObj() )->set_super(ok);
Klass::cast(longArrayKlassObj() )->set_super(ok);
Klass::cast(constantPoolKlassObj() )->set_super(ok);
Klass::cast(systemObjArrayKlassObj())->set_super(ok);
}
Klass::cast(boolArrayKlassObj() )->append_to_sibling_list();
Klass::cast(charArrayKlassObj() )->append_to_sibling_list();
Klass::cast(singleArrayKlassObj() )->append_to_sibling_list();
Klass::cast(doubleArrayKlassObj() )->append_to_sibling_list();
Klass::cast(byteArrayKlassObj() )->append_to_sibling_list();
Klass::cast(shortArrayKlassObj() )->append_to_sibling_list();
Klass::cast(intArrayKlassObj() )->append_to_sibling_list();
Klass::cast(longArrayKlassObj() )->append_to_sibling_list();
Klass::cast(constantPoolKlassObj() )->append_to_sibling_list();
Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
} // end of core bootstrapping
// Initialize _objectArrayKlass after core bootstraping to make
// sure the super class is set up properly for _objectArrayKlass.
_objectArrayKlassObj = instanceKlass::
cast(SystemDictionary::object_klass())->array_klass(1, CHECK);
// Add the class to the class hierarchy manually to make sure that
// its vtable is initialized after core bootstrapping is completed.
Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
// Compute is_jdk version flags.
// Only 1.3 or later has the java.lang.Shutdown class.
// Only 1.4 or later has the java.lang.CharSequence interface.
// Only 1.5 or later has the java.lang.management.MemoryUsage class.
if (JDK_Version::is_partially_initialized()) {
uint8_t jdk_version;
klassOop k = SystemDictionary::resolve_or_null(
vmSymbolHandles::java_lang_management_MemoryUsage(), THREAD);
2007-12-01 00:00:00 +00:00
CLEAR_PENDING_EXCEPTION; // ignore exceptions
if (k == NULL) {
k = SystemDictionary::resolve_or_null(
vmSymbolHandles::java_lang_CharSequence(), THREAD);
2007-12-01 00:00:00 +00:00
CLEAR_PENDING_EXCEPTION; // ignore exceptions
if (k == NULL) {
k = SystemDictionary::resolve_or_null(
vmSymbolHandles::java_lang_Shutdown(), THREAD);
2007-12-01 00:00:00 +00:00
CLEAR_PENDING_EXCEPTION; // ignore exceptions
if (k == NULL) {
jdk_version = 2;
2007-12-01 00:00:00 +00:00
} else {
jdk_version = 3;
2007-12-01 00:00:00 +00:00
}
} else {
jdk_version = 4;
2007-12-01 00:00:00 +00:00
}
} else {
jdk_version = 5;
2007-12-01 00:00:00 +00:00
}
JDK_Version::fully_initialize(jdk_version);
2007-12-01 00:00:00 +00:00
}
#ifdef ASSERT
if (FullGCALot) {
// Allocate an array of dummy objects.
// We'd like these to be at the bottom of the old generation,
// so that when we free one and then collect,
// (almost) the whole heap moves
// and we find out if we actually update all the oops correctly.
// But we can't allocate directly in the old generation,
// so we allocate wherever, and hope that the first collection
// moves these objects to the bottom of the old generation.
// We can allocate directly in the permanent generation, so we do.
int size;
if (UseConcMarkSweepGC) {
warning("Using +FullGCALot with concurrent mark sweep gc "
"will not force all objects to relocate");
size = FullGCALotDummies;
} else {
size = FullGCALotDummies * 2;
}
objArrayOop naked_array = oopFactory::new_system_objArray(size, CHECK);
objArrayHandle dummy_array(THREAD, naked_array);
int i = 0;
while (i < size) {
if (!UseConcMarkSweepGC) {
// Allocate dummy in old generation
oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_instance(CHECK);
dummy_array->obj_at_put(i++, dummy);
}
// Allocate dummy in permanent generation
oop dummy = instanceKlass::cast(SystemDictionary::object_klass())->allocate_permanent_instance(CHECK);
dummy_array->obj_at_put(i++, dummy);
}
{
// Only modify the global variable inside the mutex.
// If we had a race to here, the other dummy_array instances
// and their elements just get dropped on the floor, which is fine.
MutexLocker ml(FullGCALot_lock);
if (_fullgc_alot_dummy_array == NULL) {
_fullgc_alot_dummy_array = dummy_array();
}
}
assert(i == _fullgc_alot_dummy_array->length(), "just checking");
}
#endif
}
static inline void add_vtable(void** list, int* n, Klass* o, int count) {
list[(*n)++] = *(void**)&o->vtbl_value();
guarantee((*n) <= count, "vtable list too small.");
}
void Universe::init_self_patching_vtbl_list(void** list, int count) {
int n = 0;
{ klassKlass o; add_vtable(list, &n, &o, count); }
{ arrayKlassKlass o; add_vtable(list, &n, &o, count); }
{ objArrayKlassKlass o; add_vtable(list, &n, &o, count); }
{ instanceKlassKlass o; add_vtable(list, &n, &o, count); }
{ instanceKlass o; add_vtable(list, &n, &o, count); }
{ instanceRefKlass o; add_vtable(list, &n, &o, count); }
{ typeArrayKlassKlass o; add_vtable(list, &n, &o, count); }
{ symbolKlass o; add_vtable(list, &n, &o, count); }
{ typeArrayKlass o; add_vtable(list, &n, &o, count); }
{ methodKlass o; add_vtable(list, &n, &o, count); }
{ constMethodKlass o; add_vtable(list, &n, &o, count); }
{ constantPoolKlass o; add_vtable(list, &n, &o, count); }
{ constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
{ objArrayKlass o; add_vtable(list, &n, &o, count); }
{ methodDataKlass o; add_vtable(list, &n, &o, count); }
{ compiledICHolderKlass o; add_vtable(list, &n, &o, count); }
}
class FixupMirrorClosure: public ObjectClosure {
public:
virtual void do_object(oop obj) {
2007-12-01 00:00:00 +00:00
if (obj->is_klass()) {
EXCEPTION_MARK;
KlassHandle k(THREAD, klassOop(obj));
// We will never reach the CATCH below since Exceptions::_throw will cause
// the VM to exit if an exception is thrown during initialization
java_lang_Class::create_mirror(k, CATCH);
// This call unconditionally creates a new mirror for k,
// and links in k's component_mirror field if k is an array.
// If k is an objArray, k's element type must already have
// a mirror. In other words, this closure must process
// the component type of an objArray k before it processes k.
// This works because the permgen iterator presents arrays
// and their component types in order of creation.
}
}
};
void Universe::initialize_basic_type_mirrors(TRAPS) {
if (UseSharedSpaces) {
assert(_int_mirror != NULL, "already loaded");
assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
} else {
assert(_int_mirror==NULL, "basic type mirrors already initialized");
_int_mirror =
java_lang_Class::create_basic_type_mirror("int", T_INT, CHECK);
_float_mirror =
java_lang_Class::create_basic_type_mirror("float", T_FLOAT, CHECK);
_double_mirror =
java_lang_Class::create_basic_type_mirror("double", T_DOUBLE, CHECK);
_byte_mirror =
java_lang_Class::create_basic_type_mirror("byte", T_BYTE, CHECK);
_bool_mirror =
java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
_char_mirror =
java_lang_Class::create_basic_type_mirror("char", T_CHAR, CHECK);
_long_mirror =
java_lang_Class::create_basic_type_mirror("long", T_LONG, CHECK);
_short_mirror =
java_lang_Class::create_basic_type_mirror("short", T_SHORT, CHECK);
_void_mirror =
java_lang_Class::create_basic_type_mirror("void", T_VOID, CHECK);
_mirrors[T_INT] = _int_mirror;
_mirrors[T_FLOAT] = _float_mirror;
_mirrors[T_DOUBLE] = _double_mirror;
_mirrors[T_BYTE] = _byte_mirror;
_mirrors[T_BOOLEAN] = _bool_mirror;
_mirrors[T_CHAR] = _char_mirror;
_mirrors[T_LONG] = _long_mirror;
_mirrors[T_SHORT] = _short_mirror;
_mirrors[T_VOID] = _void_mirror;
//_mirrors[T_OBJECT] = instanceKlass::cast(_object_klass)->java_mirror();
//_mirrors[T_ARRAY] = instanceKlass::cast(_object_klass)->java_mirror();
}
}
void Universe::fixup_mirrors(TRAPS) {
// Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
// but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
// walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
// that the number of objects allocated at this point is very small.
assert(SystemDictionary::class_klass_loaded(), "java.lang.Class should be loaded");
FixupMirrorClosure blk;
Universe::heap()->permanent_object_iterate(&blk);
}
static bool has_run_finalizers_on_exit = false;
void Universe::run_finalizers_on_exit() {
if (has_run_finalizers_on_exit) return;
has_run_finalizers_on_exit = true;
// Called on VM exit. This ought to be run in a separate thread.
if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
{
PRESERVE_EXCEPTION_MARK;
KlassHandle finalizer_klass(THREAD, SystemDictionary::finalizer_klass());
JavaValue result(T_VOID);
JavaCalls::call_static(
&result,
finalizer_klass,
vmSymbolHandles::run_finalizers_on_exit_name(),
vmSymbolHandles::void_method_signature(),
THREAD
);
// Ignore any pending exceptions
CLEAR_PENDING_EXCEPTION;
}
}
// initialize_vtable could cause gc if
// 1) we specified true to initialize_vtable and
// 2) this ran after gc was enabled
// In case those ever change we use handles for oops
void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
// init vtable of k and all subclasses
Klass* ko = k_h()->klass_part();
klassVtable* vt = ko->vtable();
if (vt) vt->initialize_vtable(false, CHECK);
if (ko->oop_is_instance()) {
instanceKlass* ik = (instanceKlass*)ko;
for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
reinitialize_vtable_of(s_h, CHECK);
}
}
}
void initialize_itable_for_klass(klassOop k, TRAPS) {
instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
}
void Universe::reinitialize_itables(TRAPS) {
SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
}
bool Universe::on_page_boundary(void* addr) {
return ((uintptr_t) addr) % os::vm_page_size() == 0;
}
bool Universe::should_fill_in_stack_trace(Handle throwable) {
// never attempt to fill in the stack trace of preallocated errors that do not have
// backtrace. These errors are kept alive forever and may be "re-used" when all
// preallocated errors with backtrace have been consumed. Also need to avoid
// a potential loop which could happen if an out of memory occurs when attempting
// to allocate the backtrace.
return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
(throwable() != Universe::_out_of_memory_error_perm_gen) &&
(throwable() != Universe::_out_of_memory_error_array_size) &&
(throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
}
oop Universe::gen_out_of_memory_error(oop default_err) {
// generate an out of memory error:
// - if there is a preallocated error with backtrace available then return it wth
// a filled in stack trace.
// - if there are no preallocated errors with backtrace available then return
// an error without backtrace.
int next;
if (_preallocated_out_of_memory_error_avail_count > 0) {
next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
} else {
next = -1;
}
if (next < 0) {
// all preallocated errors have been used.
// return default
return default_err;
} else {
// get the error object at the slot and set set it to NULL so that the
// array isn't keeping it alive anymore.
oop exc = preallocated_out_of_memory_errors()->obj_at(next);
assert(exc != NULL, "slot has been used already");
preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
// use the message from the default error
oop msg = java_lang_Throwable::message(default_err);
assert(msg != NULL, "no message");
java_lang_Throwable::set_message(exc, msg);
// populate the stack trace and return it.
java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
return exc;
}
}
static intptr_t non_oop_bits = 0;
void* Universe::non_oop_word() {
// Neither the high bits nor the low bits of this value is allowed
// to look like (respectively) the high or low bits of a real oop.
//
// High and low are CPU-specific notions, but low always includes
// the low-order bit. Since oops are always aligned at least mod 4,
// setting the low-order bit will ensure that the low half of the
// word will never look like that of a real oop.
//
// Using the OS-supplied non-memory-address word (usually 0 or -1)
// will take care of the high bits, however many there are.
if (non_oop_bits == 0) {
non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
}
return (void*)non_oop_bits;
}
jint universe_init() {
assert(!Universe::_fully_initialized, "called after initialize_vtables");
guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
"LogHeapWordSize is incorrect.");
guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
"oop size is not not a multiple of HeapWord size");
2007-12-01 00:00:00 +00:00
TraceTime timer("Genesis", TraceStartupTime);
GC_locker::lock(); // do not allow gc during bootstrapping
JavaClasses::compute_hard_coded_offsets();
// Get map info from shared archive file.
if (DumpSharedSpaces)
UseSharedSpaces = false;
FileMapInfo* mapinfo = NULL;
if (UseSharedSpaces) {
mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
memset(mapinfo, 0, sizeof(FileMapInfo));
// Open the shared archive file, read and validate the header. If
// initialization files, shared spaces [UseSharedSpaces] are
// disabled and the file is closed.
if (mapinfo->initialize()) {
FileMapInfo::set_current_info(mapinfo);
} else {
assert(!mapinfo->is_open() && !UseSharedSpaces,
"archive file not closed or shared spaces not disabled.");
}
}
jint status = Universe::initialize_heap();
if (status != JNI_OK) {
return status;
}
// We have a heap so create the methodOop caches before
// CompactingPermGenGen::initialize_oops() tries to populate them.
Universe::_finalizer_register_cache = new LatestMethodOopCache();
Universe::_loader_addClass_cache = new LatestMethodOopCache();
Universe::_reflect_invoke_cache = new ActiveMethodOopsCache();
if (UseSharedSpaces) {
// Read the data structures supporting the shared spaces (shared
// system dictionary, symbol table, etc.). After that, access to
// the file (other than the mapped regions) is no longer needed, and
// the file is closed. Closing the file does not affect the
// currently mapped regions.
CompactingPermGenGen::initialize_oops();
mapinfo->close();
} else {
SymbolTable::create_table();
StringTable::create_table();
ClassLoader::create_package_info_table();
}
return JNI_OK;
}
jint Universe::initialize_heap() {
if (UseParallelGC) {
#ifndef SERIALGC
Universe::_collectedHeap = new ParallelScavengeHeap();
#else // SERIALGC
fatal("UseParallelGC not supported in java kernel vm.");
#endif // SERIALGC
} else if (UseG1GC) {
#ifndef SERIALGC
G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst();
G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
Universe::_collectedHeap = g1h;
#else // SERIALGC
fatal("UseG1GC not supported in java kernel vm.");
#endif // SERIALGC
2007-12-01 00:00:00 +00:00
} else {
GenCollectorPolicy *gc_policy;
if (UseSerialGC) {
gc_policy = new MarkSweepPolicy();
} else if (UseConcMarkSweepGC) {
#ifndef SERIALGC
if (UseAdaptiveSizePolicy) {
gc_policy = new ASConcurrentMarkSweepPolicy();
} else {
gc_policy = new ConcurrentMarkSweepPolicy();
}
#else // SERIALGC
fatal("UseConcMarkSweepGC not supported in java kernel vm.");
#endif // SERIALGC
} else { // default old generation
gc_policy = new MarkSweepPolicy();
}
Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
}
jint status = Universe::heap()->initialize();
if (status != JNI_OK) {
return status;
}
if (UseCompressedOops) {
// Subtract a page because something can get allocated at heap base.
// This also makes implicit null checking work, because the
// memory+1 page below heap_base needs to cause a signal.
// See needs_explicit_null_check.
// Only set the heap base for compressed oops because it indicates
// compressed oops for pstack code.
Universe::_heap_base = Universe::heap()->base() - os::vm_page_size();
}
2007-12-01 00:00:00 +00:00
// We will never reach the CATCH below since Exceptions::_throw will cause
// the VM to exit if an exception is thrown during initialization
if (UseTLAB) {
assert(Universe::heap()->supports_tlab_allocation(),
"Should support thread-local allocation buffers");
ThreadLocalAllocBuffer::startup_initialization();
}
return JNI_OK;
}
// It's the caller's repsonsibility to ensure glitch-freedom
// (if required).
void Universe::update_heap_info_at_gc() {
_heap_capacity_at_last_gc = heap()->capacity();
_heap_used_at_last_gc = heap()->used();
}
void universe2_init() {
EXCEPTION_MARK;
Universe::genesis(CATCH);
// Although we'd like to verify here that the state of the heap
// is good, we can't because the main thread has not yet added
// itself to the threads list (so, using current interfaces
// we can't "fill" its TLAB), unless TLABs are disabled.
if (VerifyBeforeGC && !UseTLAB &&
Universe::heap()->total_collections() >= VerifyGCStartAt) {
Universe::heap()->prepare_for_verify();
Universe::verify(); // make sure we're starting with a clean slate
}
}
// This function is defined in JVM.cpp
extern void initialize_converter_functions();
bool universe_post_init() {
Universe::_fully_initialized = true;
EXCEPTION_MARK;
{ ResourceMark rm;
Interpreter::initialize(); // needed for interpreter entry points
if (!UseSharedSpaces) {
KlassHandle ok_h(THREAD, SystemDictionary::object_klass());
Universe::reinitialize_vtable_of(ok_h, CHECK_false);
Universe::reinitialize_itables(CHECK_false);
}
}
klassOop k;
instanceKlassHandle k_h;
if (!UseSharedSpaces) {
// Setup preallocated empty java.lang.Class array
Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::class_klass(), 0, CHECK_false);
// Setup preallocated OutOfMemoryError errors
k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_OutOfMemoryError(), true, CHECK_false);
k_h = instanceKlassHandle(THREAD, k);
Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
Universe::_out_of_memory_error_gc_overhead_limit =
k_h->allocate_permanent_instance(CHECK_false);
// Setup preallocated NullPointerException
// (this is currently used for a cheap & dirty solution in compiler exception handling)
k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_NullPointerException(), true, CHECK_false);
Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
// Setup preallocated ArithmeticException
// (this is currently used for a cheap & dirty solution in compiler exception handling)
k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ArithmeticException(), true, CHECK_false);
Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
// Virtual Machine Error for when we get into a situation we can't resolve
k = SystemDictionary::resolve_or_fail(
vmSymbolHandles::java_lang_VirtualMachineError(), true, CHECK_false);
bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
if (!linked) {
tty->print_cr("Unable to link/verify VirtualMachineError class");
return false; // initialization failed
}
Universe::_virtual_machine_error_instance =
instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
}
if (!DumpSharedSpaces) {
// These are the only Java fields that are currently set during shared space dumping.
// We prefer to not handle this generally, so we always reinitialize these detail messages.
Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
// Setup the array of errors that have preallocated backtrace
k = Universe::_out_of_memory_error_java_heap->klass();
assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
k_h = instanceKlassHandle(THREAD, k);
int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
for (int i=0; i<len; i++) {
oop err = k_h->allocate_permanent_instance(CHECK_false);
Handle err_h = Handle(THREAD, err);
java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
}
Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
}
// Setup static method for registering finalizers
// The finalizer klass must be linked before looking up the method, in
// case it needs to get rewritten.
instanceKlass::cast(SystemDictionary::finalizer_klass())->link_class(CHECK_false);
methodOop m = instanceKlass::cast(SystemDictionary::finalizer_klass())->find_method(
vmSymbols::register_method_name(),
vmSymbols::register_method_signature());
if (m == NULL || !m->is_static()) {
THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
"java.lang.ref.Finalizer.register", false);
}
Universe::_finalizer_register_cache->init(
SystemDictionary::finalizer_klass(), m, CHECK_false);
// Resolve on first use and initialize class.
// Note: No race-condition here, since a resolve will always return the same result
// Setup method for security checks
k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_reflect_Method(), true, CHECK_false);
k_h = instanceKlassHandle(THREAD, k);
k_h->link_class(CHECK_false);
m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_array_object_object_signature());
if (m == NULL || m->is_static()) {
THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
"java.lang.reflect.Method.invoke", false);
}
Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
// Setup method for registering loaded classes in class loader vector
instanceKlass::cast(SystemDictionary::classloader_klass())->link_class(CHECK_false);
m = instanceKlass::cast(SystemDictionary::classloader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
if (m == NULL || m->is_static()) {
THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
"java.lang.ClassLoader.addClass", false);
}
Universe::_loader_addClass_cache->init(
SystemDictionary::classloader_klass(), m, CHECK_false);
// The folowing is initializing converter functions for serialization in
// JVM.cpp. If we clean up the StrictMath code above we may want to find
// a better solution for this as well.
initialize_converter_functions();
// This needs to be done before the first scavenge/gc, since
// it's an input to soft ref clearing policy.
{
MutexLocker x(Heap_lock);
Universe::update_heap_info_at_gc();
}
2007-12-01 00:00:00 +00:00
// ("weak") refs processing infrastructure initialization
Universe::heap()->post_initialize();
GC_locker::unlock(); // allow gc after bootstrapping
MemoryService::set_universe_heap(Universe::_collectedHeap);
return true;
}
void Universe::compute_base_vtable_size() {
_base_vtable_size = ClassLoader::compute_Object_vtable();
}
// %%% The Universe::flush_foo methods belong in CodeCache.
// Flushes compiled methods dependent on dependee.
void Universe::flush_dependents_on(instanceKlassHandle dependee) {
assert_lock_strong(Compile_lock);
if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped dring the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
DepChange changes(dependee);
// Compute the dependent nmethods
if (CodeCache::mark_for_deoptimization(changes) > 0) {
// At least one nmethod has been marked for deoptimization
VM_Deoptimize op;
VMThread::execute(&op);
}
}
#ifdef HOTSWAP
// Flushes compiled methods dependent on dependee in the evolutionary sense
void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
// --- Compile_lock is not held. However we are at a safepoint.
assert_locked_or_safepoint(Compile_lock);
if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped dring the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
// Compute the dependent nmethods
if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
// At least one nmethod has been marked for deoptimization
// All this already happens inside a VM_Operation, so we'll do all the work here.
// Stuff copied from VM_Deoptimize and modified slightly.
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;
DeoptimizationMarker dm;
// Deoptimize all activations depending on marked nmethods
Deoptimization::deoptimize_dependents();
// Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
CodeCache::make_marked_nmethods_not_entrant();
}
}
#endif // HOTSWAP
// Flushes compiled methods dependent on dependee
void Universe::flush_dependents_on_method(methodHandle m_h) {
// --- Compile_lock is not held. However we are at a safepoint.
assert_locked_or_safepoint(Compile_lock);
// CodeCache can only be updated by a thread_in_VM and they will all be
// stopped dring the safepoint so CodeCache will be safe to update without
// holding the CodeCache_lock.
// Compute the dependent nmethods
if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
// At least one nmethod has been marked for deoptimization
// All this already happens inside a VM_Operation, so we'll do all the work here.
// Stuff copied from VM_Deoptimize and modified slightly.
// We do not want any GCs to happen while we are in the middle of this VM operation
ResourceMark rm;
DeoptimizationMarker dm;
// Deoptimize all activations depending on marked nmethods
Deoptimization::deoptimize_dependents();
// Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
CodeCache::make_marked_nmethods_not_entrant();
}
}
void Universe::print() { print_on(gclog_or_tty); }
void Universe::print_on(outputStream* st) {
st->print_cr("Heap");
heap()->print_on(st);
}
void Universe::print_heap_at_SIGBREAK() {
if (PrintHeapAtSIGBREAK) {
MutexLocker hl(Heap_lock);
print_on(tty);
tty->cr();
tty->flush();
}
}
void Universe::print_heap_before_gc(outputStream* st) {
st->print_cr("{Heap before GC invocations=%u (full %u):",
heap()->total_collections(),
heap()->total_full_collections());
heap()->print_on(st);
}
void Universe::print_heap_after_gc(outputStream* st) {
st->print_cr("Heap after GC invocations=%u (full %u):",
heap()->total_collections(),
heap()->total_full_collections());
heap()->print_on(st);
st->print_cr("}");
}
void Universe::verify(bool allow_dirty, bool silent) {
if (SharedSkipVerify) {
return;
}
// The use of _verify_in_progress is a temporary work around for
// 6320749. Don't bother with a creating a class to set and clear
// it since it is only used in this method and the control flow is
// straight forward.
_verify_in_progress = true;
COMPILER2_PRESENT(
assert(!DerivedPointerTable::is_active(),
"DPT should not be active during verification "
"(of thread stacks below)");
)
ResourceMark rm;
HandleMark hm; // Handles created during verification can be zapped
_verify_count++;
if (!silent) gclog_or_tty->print("[Verifying ");
if (!silent) gclog_or_tty->print("threads ");
Threads::verify();
heap()->verify(allow_dirty, silent);
if (!silent) gclog_or_tty->print("syms ");
SymbolTable::verify();
if (!silent) gclog_or_tty->print("strs ");
StringTable::verify();
{
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
if (!silent) gclog_or_tty->print("zone ");
CodeCache::verify();
}
if (!silent) gclog_or_tty->print("dict ");
SystemDictionary::verify();
if (!silent) gclog_or_tty->print("hand ");
JNIHandles::verify();
if (!silent) gclog_or_tty->print("C-heap ");
os::check_heap();
if (!silent) gclog_or_tty->print_cr("]");
_verify_in_progress = false;
}
// Oop verification (see MacroAssembler::verify_oop)
static uintptr_t _verify_oop_data[2] = {0, (uintptr_t)-1};
static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
static void calculate_verify_data(uintptr_t verify_data[2],
HeapWord* low_boundary,
HeapWord* high_boundary) {
assert(low_boundary < high_boundary, "bad interval");
// decide which low-order bits we require to be clear:
size_t alignSize = MinObjAlignmentInBytes;
size_t min_object_size = oopDesc::header_size();
// make an inclusive limit:
uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
uintptr_t min = (uintptr_t)low_boundary;
assert(min < max, "bad interval");
uintptr_t diff = max ^ min;
// throw away enough low-order bits to make the diff vanish
uintptr_t mask = (uintptr_t)(-1);
while ((mask & diff) != 0)
mask <<= 1;
uintptr_t bits = (min & mask);
assert(bits == (max & mask), "correct mask");
// check an intermediate value between min and max, just to make sure:
assert(bits == ((min + (max-min)/2) & mask), "correct mask");
// require address alignment, too:
mask |= (alignSize - 1);
if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
}
verify_data[0] = mask;
verify_data[1] = bits;
}
// Oop verification (see MacroAssembler::verify_oop)
#ifndef PRODUCT
uintptr_t Universe::verify_oop_mask() {
MemRegion m = heap()->reserved_region();
calculate_verify_data(_verify_oop_data,
m.start(),
m.end());
return _verify_oop_data[0];
}
uintptr_t Universe::verify_oop_bits() {
verify_oop_mask();
return _verify_oop_data[1];
}
uintptr_t Universe::verify_klass_mask() {
/* $$$
// A klass can never live in the new space. Since the new and old
// spaces can change size, we must settle for bounds-checking against
// the bottom of the world, plus the smallest possible new and old
// space sizes that may arise during execution.
size_t min_new_size = Universe::new_size(); // in bytes
size_t min_old_size = Universe::old_size(); // in bytes
calculate_verify_data(_verify_klass_data,
(HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
_perm_gen->high_boundary);
*/
// Why doesn't the above just say that klass's always live in the perm
// gen? I'll see if that seems to work...
MemRegion permanent_reserved;
switch (Universe::heap()->kind()) {
default:
// ???: What if a CollectedHeap doesn't have a permanent generation?
ShouldNotReachHere();
break;
case CollectedHeap::GenCollectedHeap:
case CollectedHeap::G1CollectedHeap: {
SharedHeap* sh = (SharedHeap*) Universe::heap();
permanent_reserved = sh->perm_gen()->reserved();
break;
2007-12-01 00:00:00 +00:00
}
#ifndef SERIALGC
case CollectedHeap::ParallelScavengeHeap: {
ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
permanent_reserved = psh->perm_gen()->reserved();
break;
}
#endif // SERIALGC
}
calculate_verify_data(_verify_klass_data,
permanent_reserved.start(),
permanent_reserved.end());
return _verify_klass_data[0];
}
uintptr_t Universe::verify_klass_bits() {
verify_klass_mask();
return _verify_klass_data[1];
}
uintptr_t Universe::verify_mark_mask() {
return markOopDesc::lock_mask_in_place;
}
uintptr_t Universe::verify_mark_bits() {
intptr_t mask = verify_mark_mask();
intptr_t bits = (intptr_t)markOopDesc::prototype();
assert((bits & ~mask) == 0, "no stray header bits");
return bits;
}
#endif // PRODUCT
void Universe::compute_verify_oop_data() {
verify_oop_mask();
verify_oop_bits();
verify_mark_mask();
verify_mark_bits();
verify_klass_mask();
verify_klass_bits();
}
void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
if (!UseSharedSpaces) {
_klass = k;
}
#ifndef PRODUCT
else {
// sharing initilization should have already set up _klass
assert(_klass != NULL, "just checking");
}
#endif
_method_idnum = m->method_idnum();
assert(_method_idnum >= 0, "sanity check");
}
ActiveMethodOopsCache::~ActiveMethodOopsCache() {
if (_prev_methods != NULL) {
for (int i = _prev_methods->length() - 1; i >= 0; i--) {
jweak method_ref = _prev_methods->at(i);
if (method_ref != NULL) {
JNIHandles::destroy_weak_global(method_ref);
}
}
delete _prev_methods;
_prev_methods = NULL;
}
}
void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
assert(Thread::current()->is_VM_thread(),
"only VMThread can add previous versions");
if (_prev_methods == NULL) {
// This is the first previous version so make some space.
// Start with 2 elements under the assumption that the class
// won't be redefined much.
_prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
}
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00000100,
("add: %s(%s): adding prev version ref for cached method @%d",
method->name()->as_C_string(), method->signature()->as_C_string(),
_prev_methods->length()));
methodHandle method_h(method);
jweak method_ref = JNIHandles::make_weak_global(method_h);
_prev_methods->append(method_ref);
// Using weak references allows previous versions of the cached
// method to be GC'ed when they are no longer needed. Since the
// caller is the VMThread and we are at a safepoint, this is a good
// time to clear out unused weak references.
for (int i = _prev_methods->length() - 1; i >= 0; i--) {
jweak method_ref = _prev_methods->at(i);
assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
if (method_ref == NULL) {
_prev_methods->remove_at(i);
// Since we are traversing the array backwards, we don't have to
// do anything special with the index.
continue; // robustness
}
methodOop m = (methodOop)JNIHandles::resolve(method_ref);
if (m == NULL) {
// this method entry has been GC'ed so remove it
JNIHandles::destroy_weak_global(method_ref);
_prev_methods->remove_at(i);
} else {
// RC_TRACE macro has an embedded ResourceMark
RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
m->name()->as_C_string(), m->signature()->as_C_string(), i));
}
}
} // end add_previous_version()
bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
instanceKlass* ik = instanceKlass::cast(klass());
methodOop check_method = ik->method_with_idnum(method_idnum());
assert(check_method != NULL, "sanity check");
if (check_method == method) {
// done with the easy case
return true;
}
if (_prev_methods != NULL) {
// The cached method has been redefined at least once so search
// the previous versions for a match.
for (int i = 0; i < _prev_methods->length(); i++) {
jweak method_ref = _prev_methods->at(i);
assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
if (method_ref == NULL) {
continue; // robustness
}
check_method = (methodOop)JNIHandles::resolve(method_ref);
if (check_method == method) {
// a previous version matches
return true;
}
}
}
// either no previous versions or no previous version matched
return false;
}
methodOop LatestMethodOopCache::get_methodOop() {
instanceKlass* ik = instanceKlass::cast(klass());
methodOop m = ik->method_with_idnum(method_idnum());
assert(m != NULL, "sanity check");
return m;
}
#ifdef ASSERT
// Release dummy object(s) at bottom of heap
bool Universe::release_fullgc_alot_dummy() {
MutexLocker ml(FullGCALot_lock);
if (_fullgc_alot_dummy_array != NULL) {
if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
// No more dummies to release, release entire array instead
_fullgc_alot_dummy_array = NULL;
return false;
}
if (!UseConcMarkSweepGC) {
// Release dummy at bottom of old generation
_fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
}
// Release dummy at bottom of permanent generation
_fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
}
return true;
}
#endif // ASSERT