jdk-24/hotspot/src/share/vm/gc_implementation/g1/g1RemSetSummary.cpp

240 lines
9.1 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/concurrentG1Refine.hpp"
#include "gc_implementation/g1/concurrentG1RefineThread.hpp"
#include "gc_implementation/g1/heapRegion.hpp"
#include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
#include "gc_implementation/g1/g1RemSet.inline.hpp"
#include "gc_implementation/g1/g1RemSetSummary.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "runtime/thread.inline.hpp"
class GetRSThreadVTimeClosure : public ThreadClosure {
private:
G1RemSetSummary* _summary;
uint _counter;
public:
GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
assert(_summary != NULL, "just checking");
}
virtual void do_thread(Thread* t) {
ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
_summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
_counter++;
}
};
void G1RemSetSummary::update() {
_num_refined_cards = remset()->conc_refine_cards();
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
_num_processed_buf_mutator = dcqs.processed_buffers_mut();
_num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
_num_coarsenings = HeapRegionRemSet::n_coarsenings();
ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
if (_rs_threads_vtimes != NULL) {
GetRSThreadVTimeClosure p(this);
cg1r->worker_threads_do(&p);
}
set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
}
void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
assert(_rs_threads_vtimes != NULL, "just checking");
assert(thread < _num_vtimes, "just checking");
_rs_threads_vtimes[thread] = value;
}
double G1RemSetSummary::rs_thread_vtime(uint thread) const {
assert(_rs_threads_vtimes != NULL, "just checking");
assert(thread < _num_vtimes, "just checking");
return _rs_threads_vtimes[thread];
}
void G1RemSetSummary::initialize(G1RemSet* remset, uint num_workers) {
assert(_rs_threads_vtimes == NULL, "just checking");
assert(remset != NULL, "just checking");
_remset = remset;
_num_vtimes = num_workers;
_rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
update();
}
void G1RemSetSummary::set(G1RemSetSummary* other) {
assert(other != NULL, "just checking");
assert(remset() == other->remset(), "just checking");
assert(_num_vtimes == other->_num_vtimes, "just checking");
_num_refined_cards = other->num_concurrent_refined_cards();
_num_processed_buf_mutator = other->num_processed_buf_mutator();
_num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
_num_coarsenings = other->_num_coarsenings;
memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
set_sampling_thread_vtime(other->sampling_thread_vtime());
}
void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
assert(other != NULL, "just checking");
assert(remset() == other->remset(), "just checking");
assert(_num_vtimes == other->_num_vtimes, "just checking");
_num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
_num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
_num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
_num_coarsenings = other->num_coarsenings() - _num_coarsenings;
for (uint i = 0; i < _num_vtimes; i++) {
set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
}
_sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
}
class HRRSStatsIter: public HeapRegionClosure {
size_t _occupied;
size_t _total_rs_mem_sz;
size_t _max_rs_mem_sz;
HeapRegion* _max_rs_mem_sz_region;
size_t _total_code_root_mem_sz;
size_t _max_code_root_mem_sz;
HeapRegion* _max_code_root_mem_sz_region;
public:
HRRSStatsIter() :
_occupied(0),
_total_rs_mem_sz(0),
_max_rs_mem_sz(0),
_max_rs_mem_sz_region(NULL),
_total_code_root_mem_sz(0),
_max_code_root_mem_sz(0),
_max_code_root_mem_sz_region(NULL)
{}
bool doHeapRegion(HeapRegion* r) {
HeapRegionRemSet* hrrs = r->rem_set();
// HeapRegionRemSet::mem_size() includes the
// size of the strong code roots
size_t rs_mem_sz = hrrs->mem_size();
if (rs_mem_sz > _max_rs_mem_sz) {
_max_rs_mem_sz = rs_mem_sz;
_max_rs_mem_sz_region = r;
}
_total_rs_mem_sz += rs_mem_sz;
size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
if (code_root_mem_sz > _max_code_root_mem_sz) {
_max_code_root_mem_sz = code_root_mem_sz;
_max_code_root_mem_sz_region = r;
}
_total_code_root_mem_sz += code_root_mem_sz;
size_t occ = hrrs->occupied();
_occupied += occ;
return false;
}
size_t total_rs_mem_sz() { return _total_rs_mem_sz; }
size_t max_rs_mem_sz() { return _max_rs_mem_sz; }
HeapRegion* max_rs_mem_sz_region() { return _max_rs_mem_sz_region; }
size_t total_code_root_mem_sz() { return _total_code_root_mem_sz; }
size_t max_code_root_mem_sz() { return _max_code_root_mem_sz; }
HeapRegion* max_code_root_mem_sz_region() { return _max_code_root_mem_sz_region; }
size_t occupied() { return _occupied; }
};
double calc_percentage(size_t numerator, size_t denominator) {
if (denominator != 0) {
return (double)numerator / denominator * 100.0;
} else {
return 0.0f;
}
}
void G1RemSetSummary::print_on(outputStream* out) {
out->print_cr("\n Concurrent RS processed "SIZE_FORMAT" cards",
num_concurrent_refined_cards());
out->print_cr(" Of %d completed buffers:", num_processed_buf_total());
out->print_cr(" %8d (%5.1f%%) by concurrent RS threads.",
num_processed_buf_total(),
calc_percentage(num_processed_buf_rs_threads(), num_processed_buf_total()));
out->print_cr(" %8d (%5.1f%%) by mutator threads.",
num_processed_buf_mutator(),
calc_percentage(num_processed_buf_mutator(), num_processed_buf_total()));
out->print_cr(" Concurrent RS threads times (s)");
out->print(" ");
for (uint i = 0; i < _num_vtimes; i++) {
out->print(" %5.2f", rs_thread_vtime(i));
}
out->cr();
out->print_cr(" Concurrent sampling threads times (s)");
out->print_cr(" %5.2f", sampling_thread_vtime());
HRRSStatsIter blk;
G1CollectedHeap::heap()->heap_region_iterate(&blk);
// RemSet stats
out->print_cr(" Total heap region rem set sizes = "SIZE_FORMAT"K."
" Max = "SIZE_FORMAT"K.",
blk.total_rs_mem_sz()/K, blk.max_rs_mem_sz()/K);
out->print_cr(" Static structures = "SIZE_FORMAT"K,"
" free_lists = "SIZE_FORMAT"K.",
HeapRegionRemSet::static_mem_size() / K,
HeapRegionRemSet::fl_mem_size() / K);
out->print_cr(" "SIZE_FORMAT" occupied cards represented.",
blk.occupied());
HeapRegion* max_rs_mem_sz_region = blk.max_rs_mem_sz_region();
HeapRegionRemSet* max_rs_rem_set = max_rs_mem_sz_region->rem_set();
out->print_cr(" Max size region = "HR_FORMAT", "
"size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.",
HR_FORMAT_PARAMS(max_rs_mem_sz_region),
(max_rs_rem_set->mem_size() + K - 1)/K,
(max_rs_rem_set->occupied() + K - 1)/K);
out->print_cr(" Did %d coarsenings.", num_coarsenings());
// Strong code root stats
out->print_cr(" Total heap region code-root set sizes = "SIZE_FORMAT"K."
" Max = "SIZE_FORMAT"K.",
blk.total_code_root_mem_sz()/K, blk.max_code_root_mem_sz()/K);
HeapRegion* max_code_root_mem_sz_region = blk.max_code_root_mem_sz_region();
HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region->rem_set();
out->print_cr(" Max size region = "HR_FORMAT", "
"size = "SIZE_FORMAT "K, num_elems = "SIZE_FORMAT".",
HR_FORMAT_PARAMS(max_code_root_mem_sz_region),
(max_code_root_rem_set->strong_code_roots_mem_size() + K - 1)/K,
(max_code_root_rem_set->strong_code_roots_list_length()));
}