jdk-24/test/hotspot/gtest/opto/test_regmask.cpp

198 lines
5.6 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "opto/opcodes.hpp"
#include "opto/regmask.hpp"
#include "unittest.hpp"
// Sanity tests for RegMask and RegMaskIterator
static void contains_expected_num_of_registers(const RegMask& rm, unsigned int expected) {
ASSERT_TRUE(rm.Size() == expected);
if (expected > 0) {
ASSERT_TRUE(rm.is_NotEmpty());
} else {
ASSERT_TRUE(!rm.is_NotEmpty());
ASSERT_TRUE(!rm.is_AllStack());
}
RegMaskIterator rmi(rm);
unsigned int count = 0;
OptoReg::Name reg = OptoReg::Bad;
while (rmi.has_next()) {
reg = rmi.next();
ASSERT_TRUE(OptoReg::is_valid(reg));
count++;
}
ASSERT_EQ(OptoReg::Bad, rmi.next());
ASSERT_TRUE(count == expected);
}
TEST_VM(RegMask, empty) {
RegMask rm;
contains_expected_num_of_registers(rm, 0);
}
TEST_VM(RegMask, iteration) {
RegMask rm;
rm.Insert(30);
rm.Insert(31);
rm.Insert(32);
rm.Insert(33);
rm.Insert(62);
rm.Insert(63);
rm.Insert(64);
rm.Insert(65);
RegMaskIterator rmi(rm);
ASSERT_TRUE(rmi.next() == OptoReg::Name(30));
ASSERT_TRUE(rmi.next() == OptoReg::Name(31));
ASSERT_TRUE(rmi.next() == OptoReg::Name(32));
ASSERT_TRUE(rmi.next() == OptoReg::Name(33));
ASSERT_TRUE(rmi.next() == OptoReg::Name(62));
ASSERT_TRUE(rmi.next() == OptoReg::Name(63));
ASSERT_TRUE(rmi.next() == OptoReg::Name(64));
ASSERT_TRUE(rmi.next() == OptoReg::Name(65));
ASSERT_FALSE(rmi.has_next());
}
TEST_VM(RegMask, Set_ALL) {
// Check that Set_All doesn't add bits outside of CHUNK_SIZE
RegMask rm;
rm.Set_All();
ASSERT_TRUE(rm.Size() == RegMask::CHUNK_SIZE);
ASSERT_TRUE(rm.is_NotEmpty());
// Set_All sets AllStack bit
ASSERT_TRUE(rm.is_AllStack());
contains_expected_num_of_registers(rm, RegMask::CHUNK_SIZE);
}
TEST_VM(RegMask, Clear) {
// Check that Clear doesn't leave any stray bits
RegMask rm;
rm.Set_All();
rm.Clear();
contains_expected_num_of_registers(rm, 0);
}
TEST_VM(RegMask, AND) {
RegMask rm1;
rm1.Insert(OptoReg::Name(1));
contains_expected_num_of_registers(rm1, 1);
ASSERT_TRUE(rm1.Member(OptoReg::Name(1)));
rm1.AND(rm1);
contains_expected_num_of_registers(rm1, 1);
RegMask rm2;
rm1.AND(rm2);
contains_expected_num_of_registers(rm1, 0);
contains_expected_num_of_registers(rm2, 0);
}
TEST_VM(RegMask, OR) {
RegMask rm1;
rm1.Insert(OptoReg::Name(1));
contains_expected_num_of_registers(rm1, 1);
ASSERT_TRUE(rm1.Member(OptoReg::Name(1)));
rm1.OR(rm1);
contains_expected_num_of_registers(rm1, 1);
RegMask rm2;
rm1.OR(rm2);
contains_expected_num_of_registers(rm1, 1);
contains_expected_num_of_registers(rm2, 0);
}
TEST_VM(RegMask, SUBTRACT) {
RegMask rm1;
RegMask rm2;
rm2.Set_All();
for (int i = 17; i < RegMask::CHUNK_SIZE; i++) {
rm1.Insert(i);
}
ASSERT_TRUE(rm1.is_AllStack());
rm2.SUBTRACT(rm1);
contains_expected_num_of_registers(rm1, RegMask::CHUNK_SIZE - 17);
contains_expected_num_of_registers(rm2, 17);
}
TEST_VM(RegMask, is_bound1) {
RegMask rm;
ASSERT_FALSE(rm.is_bound1());
for (int i = 0; i < RegMask::CHUNK_SIZE - 1; i++) {
rm.Insert(i);
ASSERT_TRUE(rm.is_bound1()) << "Index " << i;
ASSERT_TRUE(rm.is_bound(Op_RegI)) << "Index " << i;
contains_expected_num_of_registers(rm, 1);
rm.Remove(i);
}
// AllStack bit does not count as a bound register
rm.set_AllStack();
ASSERT_FALSE(rm.is_bound1());
}
TEST_VM(RegMask, is_bound_pair) {
RegMask rm;
ASSERT_TRUE(rm.is_bound_pair());
for (int i = 0; i < RegMask::CHUNK_SIZE - 2; i++) {
rm.Insert(i);
rm.Insert(i + 1);
ASSERT_TRUE(rm.is_bound_pair()) << "Index " << i;
ASSERT_TRUE(rm.is_bound_set(2)) << "Index " << i;
ASSERT_TRUE(rm.is_bound(Op_RegI)) << "Index " << i;
contains_expected_num_of_registers(rm, 2);
rm.Clear();
}
// A pair with the AllStack bit does not count as a bound pair
rm.Clear();
rm.Insert(RegMask::CHUNK_SIZE - 2);
rm.Insert(RegMask::CHUNK_SIZE - 1);
ASSERT_FALSE(rm.is_bound_pair());
}
TEST_VM(RegMask, is_bound_set) {
RegMask rm;
for (int size = 1; size <= 16; size++) {
ASSERT_TRUE(rm.is_bound_set(size));
for (int i = 0; i < RegMask::CHUNK_SIZE - size; i++) {
for (int j = i; j < i + size; j++) {
rm.Insert(j);
}
ASSERT_TRUE(rm.is_bound_set(size)) << "Size " << size << " Index " << i;
contains_expected_num_of_registers(rm, size);
rm.Clear();
}
// A set with the AllStack bit does not count as a bound set
for (int j = RegMask::CHUNK_SIZE - size; j < RegMask::CHUNK_SIZE; j++) {
rm.Insert(j);
}
ASSERT_FALSE(rm.is_bound_set(size));
rm.Clear();
}
}