3003 lines
106 KiB
C++
3003 lines
106 KiB
C++
|
/*
|
||
|
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
||
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||
|
*
|
||
|
* This code is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 only, as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
|
* version 2 for more details (a copy is included in the LICENSE file that
|
||
|
* accompanied this code).
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License version
|
||
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
||
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
|
*
|
||
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
||
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
||
|
* have any questions.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "incls/_precompiled.incl"
|
||
|
#include "incls/_stubGenerator_sparc.cpp.incl"
|
||
|
|
||
|
// Declaration and definition of StubGenerator (no .hpp file).
|
||
|
// For a more detailed description of the stub routine structure
|
||
|
// see the comment in stubRoutines.hpp.
|
||
|
|
||
|
#define __ _masm->
|
||
|
|
||
|
#ifdef PRODUCT
|
||
|
#define BLOCK_COMMENT(str) /* nothing */
|
||
|
#else
|
||
|
#define BLOCK_COMMENT(str) __ block_comment(str)
|
||
|
#endif
|
||
|
|
||
|
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
||
|
|
||
|
// Note: The register L7 is used as L7_thread_cache, and may not be used
|
||
|
// any other way within this module.
|
||
|
|
||
|
|
||
|
static const Register& Lstub_temp = L2;
|
||
|
|
||
|
// -------------------------------------------------------------------------------------------------------------------------
|
||
|
// Stub Code definitions
|
||
|
|
||
|
static address handle_unsafe_access() {
|
||
|
JavaThread* thread = JavaThread::current();
|
||
|
address pc = thread->saved_exception_pc();
|
||
|
address npc = thread->saved_exception_npc();
|
||
|
// pc is the instruction which we must emulate
|
||
|
// doing a no-op is fine: return garbage from the load
|
||
|
|
||
|
// request an async exception
|
||
|
thread->set_pending_unsafe_access_error();
|
||
|
|
||
|
// return address of next instruction to execute
|
||
|
return npc;
|
||
|
}
|
||
|
|
||
|
class StubGenerator: public StubCodeGenerator {
|
||
|
private:
|
||
|
|
||
|
#ifdef PRODUCT
|
||
|
#define inc_counter_np(a,b,c) (0)
|
||
|
#else
|
||
|
void inc_counter_np_(int& counter, Register t1, Register t2) {
|
||
|
Address counter_addr(t2, (address) &counter);
|
||
|
__ sethi(counter_addr);
|
||
|
__ ld(counter_addr, t1);
|
||
|
__ inc(t1);
|
||
|
__ st(t1, counter_addr);
|
||
|
}
|
||
|
#define inc_counter_np(counter, t1, t2) \
|
||
|
BLOCK_COMMENT("inc_counter " #counter); \
|
||
|
inc_counter_np_(counter, t1, t2);
|
||
|
#endif
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------------
|
||
|
// Call stubs are used to call Java from C
|
||
|
|
||
|
address generate_call_stub(address& return_pc) {
|
||
|
StubCodeMark mark(this, "StubRoutines", "call_stub");
|
||
|
address start = __ pc();
|
||
|
|
||
|
// Incoming arguments:
|
||
|
//
|
||
|
// o0 : call wrapper address
|
||
|
// o1 : result (address)
|
||
|
// o2 : result type
|
||
|
// o3 : method
|
||
|
// o4 : (interpreter) entry point
|
||
|
// o5 : parameters (address)
|
||
|
// [sp + 0x5c]: parameter size (in words)
|
||
|
// [sp + 0x60]: thread
|
||
|
//
|
||
|
// +---------------+ <--- sp + 0
|
||
|
// | |
|
||
|
// . reg save area .
|
||
|
// | |
|
||
|
// +---------------+ <--- sp + 0x40
|
||
|
// | |
|
||
|
// . extra 7 slots .
|
||
|
// | |
|
||
|
// +---------------+ <--- sp + 0x5c
|
||
|
// | param. size |
|
||
|
// +---------------+ <--- sp + 0x60
|
||
|
// | thread |
|
||
|
// +---------------+
|
||
|
// | |
|
||
|
|
||
|
// note: if the link argument position changes, adjust
|
||
|
// the code in frame::entry_frame_call_wrapper()
|
||
|
|
||
|
const Argument link = Argument(0, false); // used only for GC
|
||
|
const Argument result = Argument(1, false);
|
||
|
const Argument result_type = Argument(2, false);
|
||
|
const Argument method = Argument(3, false);
|
||
|
const Argument entry_point = Argument(4, false);
|
||
|
const Argument parameters = Argument(5, false);
|
||
|
const Argument parameter_size = Argument(6, false);
|
||
|
const Argument thread = Argument(7, false);
|
||
|
|
||
|
// setup thread register
|
||
|
__ ld_ptr(thread.as_address(), G2_thread);
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// make sure we have no pending exceptions
|
||
|
{ const Register t = G3_scratch;
|
||
|
Label L;
|
||
|
__ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
|
||
|
__ br_null(t, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ stop("StubRoutines::call_stub: entered with pending exception");
|
||
|
__ bind(L);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// create activation frame & allocate space for parameters
|
||
|
{ const Register t = G3_scratch;
|
||
|
__ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
|
||
|
__ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
|
||
|
__ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
|
||
|
__ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
|
||
|
__ neg(t); // negate so it can be used with save
|
||
|
__ save(SP, t, SP); // setup new frame
|
||
|
}
|
||
|
|
||
|
// +---------------+ <--- sp + 0
|
||
|
// | |
|
||
|
// . reg save area .
|
||
|
// | |
|
||
|
// +---------------+ <--- sp + 0x40
|
||
|
// | |
|
||
|
// . extra 7 slots .
|
||
|
// | |
|
||
|
// +---------------+ <--- sp + 0x5c
|
||
|
// | empty slot | (only if parameter size is even)
|
||
|
// +---------------+
|
||
|
// | |
|
||
|
// . parameters .
|
||
|
// | |
|
||
|
// +---------------+ <--- fp + 0
|
||
|
// | |
|
||
|
// . reg save area .
|
||
|
// | |
|
||
|
// +---------------+ <--- fp + 0x40
|
||
|
// | |
|
||
|
// . extra 7 slots .
|
||
|
// | |
|
||
|
// +---------------+ <--- fp + 0x5c
|
||
|
// | param. size |
|
||
|
// +---------------+ <--- fp + 0x60
|
||
|
// | thread |
|
||
|
// +---------------+
|
||
|
// | |
|
||
|
|
||
|
// pass parameters if any
|
||
|
BLOCK_COMMENT("pass parameters if any");
|
||
|
{ const Register src = parameters.as_in().as_register();
|
||
|
const Register dst = Lentry_args;
|
||
|
const Register tmp = G3_scratch;
|
||
|
const Register cnt = G4_scratch;
|
||
|
|
||
|
// test if any parameters & setup of Lentry_args
|
||
|
Label exit;
|
||
|
__ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
|
||
|
__ add( FP, STACK_BIAS, dst );
|
||
|
__ tst(cnt);
|
||
|
__ br(Assembler::zero, false, Assembler::pn, exit);
|
||
|
__ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
|
||
|
|
||
|
// copy parameters if any
|
||
|
Label loop;
|
||
|
__ BIND(loop);
|
||
|
// Store tag first.
|
||
|
if (TaggedStackInterpreter) {
|
||
|
__ ld_ptr(src, 0, tmp);
|
||
|
__ add(src, BytesPerWord, src); // get next
|
||
|
__ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
|
||
|
}
|
||
|
// Store parameter value
|
||
|
__ ld_ptr(src, 0, tmp);
|
||
|
__ add(src, BytesPerWord, src);
|
||
|
__ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
|
||
|
__ deccc(cnt);
|
||
|
__ br(Assembler::greater, false, Assembler::pt, loop);
|
||
|
__ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
|
||
|
|
||
|
// done
|
||
|
__ BIND(exit);
|
||
|
}
|
||
|
|
||
|
// setup parameters, method & call Java function
|
||
|
#ifdef ASSERT
|
||
|
// layout_activation_impl checks it's notion of saved SP against
|
||
|
// this register, so if this changes update it as well.
|
||
|
const Register saved_SP = Lscratch;
|
||
|
__ mov(SP, saved_SP); // keep track of SP before call
|
||
|
#endif
|
||
|
|
||
|
// setup parameters
|
||
|
const Register t = G3_scratch;
|
||
|
__ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
|
||
|
__ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
|
||
|
__ sub(FP, t, Gargs); // setup parameter pointer
|
||
|
#ifdef _LP64
|
||
|
__ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
|
||
|
#endif
|
||
|
__ mov(SP, O5_savedSP);
|
||
|
|
||
|
|
||
|
// do the call
|
||
|
//
|
||
|
// the following register must be setup:
|
||
|
//
|
||
|
// G2_thread
|
||
|
// G5_method
|
||
|
// Gargs
|
||
|
BLOCK_COMMENT("call Java function");
|
||
|
__ jmpl(entry_point.as_in().as_register(), G0, O7);
|
||
|
__ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
|
||
|
|
||
|
BLOCK_COMMENT("call_stub_return_address:");
|
||
|
return_pc = __ pc();
|
||
|
|
||
|
// The callee, if it wasn't interpreted, can return with SP changed so
|
||
|
// we can no longer assert of change of SP.
|
||
|
|
||
|
// store result depending on type
|
||
|
// (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
|
||
|
// is treated as T_INT)
|
||
|
{ const Register addr = result .as_in().as_register();
|
||
|
const Register type = result_type.as_in().as_register();
|
||
|
Label is_long, is_float, is_double, is_object, exit;
|
||
|
__ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
|
||
|
__ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
|
||
|
__ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
|
||
|
__ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
// store int result
|
||
|
__ st(O0, addr, G0);
|
||
|
|
||
|
__ BIND(exit);
|
||
|
__ ret();
|
||
|
__ delayed()->restore();
|
||
|
|
||
|
__ BIND(is_object);
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->st_ptr(O0, addr, G0);
|
||
|
|
||
|
__ BIND(is_float);
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
|
||
|
|
||
|
__ BIND(is_double);
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
|
||
|
|
||
|
__ BIND(is_long);
|
||
|
#ifdef _LP64
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->st_long(O0, addr, G0); // store entire long
|
||
|
#else
|
||
|
#if defined(COMPILER2)
|
||
|
// All return values are where we want them, except for Longs. C2 returns
|
||
|
// longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
|
||
|
// Since the interpreter will return longs in G1 and O0/O1 in the 32bit
|
||
|
// build we simply always use G1.
|
||
|
// Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
|
||
|
// do this here. Unfortunately if we did a rethrow we'd see an machepilog node
|
||
|
// first which would move g1 -> O0/O1 and destroy the exception we were throwing.
|
||
|
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->stx(G1, addr, G0); // store entire long
|
||
|
#else
|
||
|
__ st(O1, addr, BytesPerInt);
|
||
|
__ ba(false, exit);
|
||
|
__ delayed()->st(O0, addr, G0);
|
||
|
#endif /* COMPILER2 */
|
||
|
#endif /* _LP64 */
|
||
|
}
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------------
|
||
|
// Return point for a Java call if there's an exception thrown in Java code.
|
||
|
// The exception is caught and transformed into a pending exception stored in
|
||
|
// JavaThread that can be tested from within the VM.
|
||
|
//
|
||
|
// Oexception: exception oop
|
||
|
|
||
|
address generate_catch_exception() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "catch_exception");
|
||
|
|
||
|
address start = __ pc();
|
||
|
// verify that thread corresponds
|
||
|
__ verify_thread();
|
||
|
|
||
|
const Register& temp_reg = Gtemp;
|
||
|
Address pending_exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
|
||
|
Address exception_file_offset_addr(G2_thread, 0, in_bytes(Thread::exception_file_offset ()));
|
||
|
Address exception_line_offset_addr(G2_thread, 0, in_bytes(Thread::exception_line_offset ()));
|
||
|
|
||
|
// set pending exception
|
||
|
__ verify_oop(Oexception);
|
||
|
__ st_ptr(Oexception, pending_exception_addr);
|
||
|
__ set((intptr_t)__FILE__, temp_reg);
|
||
|
__ st_ptr(temp_reg, exception_file_offset_addr);
|
||
|
__ set((intptr_t)__LINE__, temp_reg);
|
||
|
__ st(temp_reg, exception_line_offset_addr);
|
||
|
|
||
|
// complete return to VM
|
||
|
assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
|
||
|
|
||
|
Address stub_ret(temp_reg, StubRoutines::_call_stub_return_address);
|
||
|
__ jump_to(stub_ret);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
//----------------------------------------------------------------------------------------------------
|
||
|
// Continuation point for runtime calls returning with a pending exception
|
||
|
// The pending exception check happened in the runtime or native call stub
|
||
|
// The pending exception in Thread is converted into a Java-level exception
|
||
|
//
|
||
|
// Contract with Java-level exception handler: O0 = exception
|
||
|
// O1 = throwing pc
|
||
|
|
||
|
address generate_forward_exception() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "forward_exception");
|
||
|
address start = __ pc();
|
||
|
|
||
|
// Upon entry, O7 has the return address returning into Java
|
||
|
// (interpreted or compiled) code; i.e. the return address
|
||
|
// becomes the throwing pc.
|
||
|
|
||
|
const Register& handler_reg = Gtemp;
|
||
|
|
||
|
Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// make sure that this code is only executed if there is a pending exception
|
||
|
{ Label L;
|
||
|
__ ld_ptr(exception_addr, Gtemp);
|
||
|
__ br_notnull(Gtemp, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ stop("StubRoutines::forward exception: no pending exception (1)");
|
||
|
__ bind(L);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// compute exception handler into handler_reg
|
||
|
__ get_thread();
|
||
|
__ ld_ptr(exception_addr, Oexception);
|
||
|
__ verify_oop(Oexception);
|
||
|
__ save_frame(0); // compensates for compiler weakness
|
||
|
__ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
|
||
|
BLOCK_COMMENT("call exception_handler_for_return_address");
|
||
|
__ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), Lscratch);
|
||
|
__ mov(O0, handler_reg);
|
||
|
__ restore(); // compensates for compiler weakness
|
||
|
|
||
|
__ ld_ptr(exception_addr, Oexception);
|
||
|
__ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// make sure exception is set
|
||
|
{ Label L;
|
||
|
__ br_notnull(Oexception, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ stop("StubRoutines::forward exception: no pending exception (2)");
|
||
|
__ bind(L);
|
||
|
}
|
||
|
#endif
|
||
|
// jump to exception handler
|
||
|
__ jmp(handler_reg, 0);
|
||
|
// clear pending exception
|
||
|
__ delayed()->st_ptr(G0, exception_addr);
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
//------------------------------------------------------------------------------------------------------------------------
|
||
|
// Continuation point for throwing of implicit exceptions that are not handled in
|
||
|
// the current activation. Fabricates an exception oop and initiates normal
|
||
|
// exception dispatching in this frame. Only callee-saved registers are preserved
|
||
|
// (through the normal register window / RegisterMap handling).
|
||
|
// If the compiler needs all registers to be preserved between the fault
|
||
|
// point and the exception handler then it must assume responsibility for that in
|
||
|
// AbstractCompiler::continuation_for_implicit_null_exception or
|
||
|
// continuation_for_implicit_division_by_zero_exception. All other implicit
|
||
|
// exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
|
||
|
// either at call sites or otherwise assume that stack unwinding will be initiated,
|
||
|
// so caller saved registers were assumed volatile in the compiler.
|
||
|
|
||
|
// Note that we generate only this stub into a RuntimeStub, because it needs to be
|
||
|
// properly traversed and ignored during GC, so we change the meaning of the "__"
|
||
|
// macro within this method.
|
||
|
#undef __
|
||
|
#define __ masm->
|
||
|
|
||
|
address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
|
||
|
#ifdef ASSERT
|
||
|
int insts_size = VerifyThread ? 1 * K : 600;
|
||
|
#else
|
||
|
int insts_size = VerifyThread ? 1 * K : 256;
|
||
|
#endif /* ASSERT */
|
||
|
int locs_size = 32;
|
||
|
|
||
|
CodeBuffer code(name, insts_size, locs_size);
|
||
|
MacroAssembler* masm = new MacroAssembler(&code);
|
||
|
|
||
|
__ verify_thread();
|
||
|
|
||
|
// This is an inlined and slightly modified version of call_VM
|
||
|
// which has the ability to fetch the return PC out of thread-local storage
|
||
|
__ assert_not_delayed();
|
||
|
|
||
|
// Note that we always push a frame because on the SPARC
|
||
|
// architecture, for all of our implicit exception kinds at call
|
||
|
// sites, the implicit exception is taken before the callee frame
|
||
|
// is pushed.
|
||
|
__ save_frame(0);
|
||
|
|
||
|
int frame_complete = __ offset();
|
||
|
|
||
|
if (restore_saved_exception_pc) {
|
||
|
Address saved_exception_pc(G2_thread, 0, in_bytes(JavaThread::saved_exception_pc_offset()));
|
||
|
__ ld_ptr(saved_exception_pc, I7);
|
||
|
__ sub(I7, frame::pc_return_offset, I7);
|
||
|
}
|
||
|
|
||
|
// Note that we always have a runtime stub frame on the top of stack by this point
|
||
|
Register last_java_sp = SP;
|
||
|
// 64-bit last_java_sp is biased!
|
||
|
__ set_last_Java_frame(last_java_sp, G0);
|
||
|
if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
|
||
|
__ save_thread(noreg);
|
||
|
// do the call
|
||
|
BLOCK_COMMENT("call runtime_entry");
|
||
|
__ call(runtime_entry, relocInfo::runtime_call_type);
|
||
|
if (!VerifyThread)
|
||
|
__ delayed()->mov(G2_thread, O0); // pass thread as first argument
|
||
|
else
|
||
|
__ delayed()->nop(); // (thread already passed)
|
||
|
__ restore_thread(noreg);
|
||
|
__ reset_last_Java_frame();
|
||
|
|
||
|
// check for pending exceptions. use Gtemp as scratch register.
|
||
|
#ifdef ASSERT
|
||
|
Label L;
|
||
|
|
||
|
Address exception_addr(G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
|
||
|
Register scratch_reg = Gtemp;
|
||
|
__ ld_ptr(exception_addr, scratch_reg);
|
||
|
__ br_notnull(scratch_reg, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ should_not_reach_here();
|
||
|
__ bind(L);
|
||
|
#endif // ASSERT
|
||
|
BLOCK_COMMENT("call forward_exception_entry");
|
||
|
__ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
|
||
|
// we use O7 linkage so that forward_exception_entry has the issuing PC
|
||
|
__ delayed()->restore();
|
||
|
|
||
|
RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
|
||
|
return stub->entry_point();
|
||
|
}
|
||
|
|
||
|
#undef __
|
||
|
#define __ _masm->
|
||
|
|
||
|
|
||
|
// Generate a routine that sets all the registers so we
|
||
|
// can tell if the stop routine prints them correctly.
|
||
|
address generate_test_stop() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "test_stop");
|
||
|
address start = __ pc();
|
||
|
|
||
|
int i;
|
||
|
|
||
|
__ save_frame(0);
|
||
|
|
||
|
static jfloat zero = 0.0, one = 1.0;
|
||
|
|
||
|
// put addr in L0, then load through L0 to F0
|
||
|
__ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
|
||
|
__ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
|
||
|
|
||
|
// use add to put 2..18 in F2..F18
|
||
|
for ( i = 2; i <= 18; ++i ) {
|
||
|
__ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
|
||
|
}
|
||
|
|
||
|
// Now put double 2 in F16, double 18 in F18
|
||
|
__ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
|
||
|
__ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
|
||
|
|
||
|
// use add to put 20..32 in F20..F32
|
||
|
for (i = 20; i < 32; i += 2) {
|
||
|
__ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
|
||
|
}
|
||
|
|
||
|
// put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
|
||
|
for ( i = 0; i < 8; ++i ) {
|
||
|
if (i < 6) {
|
||
|
__ set( i, as_iRegister(i));
|
||
|
__ set(16 + i, as_oRegister(i));
|
||
|
__ set(24 + i, as_gRegister(i));
|
||
|
}
|
||
|
__ set( 8 + i, as_lRegister(i));
|
||
|
}
|
||
|
|
||
|
__ stop("testing stop");
|
||
|
|
||
|
|
||
|
__ ret();
|
||
|
__ delayed()->restore();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
address generate_stop_subroutine() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
|
||
|
address start = __ pc();
|
||
|
|
||
|
__ stop_subroutine();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
address generate_flush_callers_register_windows() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
|
||
|
address start = __ pc();
|
||
|
|
||
|
__ flush_windows();
|
||
|
__ retl(false);
|
||
|
__ delayed()->add( FP, STACK_BIAS, O0 );
|
||
|
// The returned value must be a stack pointer whose register save area
|
||
|
// is flushed, and will stay flushed while the caller executes.
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
// Helper functions for v8 atomic operations.
|
||
|
//
|
||
|
void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
|
||
|
if (mark_oop_reg == noreg) {
|
||
|
address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
|
||
|
__ set((intptr_t)lock_ptr, lock_ptr_reg);
|
||
|
} else {
|
||
|
assert(scratch_reg != noreg, "just checking");
|
||
|
address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
|
||
|
__ set((intptr_t)lock_ptr, lock_ptr_reg);
|
||
|
__ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
|
||
|
__ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
|
||
|
|
||
|
get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
|
||
|
__ set(StubRoutines::Sparc::locked, lock_reg);
|
||
|
// Initialize yield counter
|
||
|
__ mov(G0,yield_reg);
|
||
|
|
||
|
__ BIND(retry);
|
||
|
__ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
|
||
|
__ br(Assembler::less, false, Assembler::pt, dontyield);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
// This code can only be called from inside the VM, this
|
||
|
// stub is only invoked from Atomic::add(). We do not
|
||
|
// want to use call_VM, because _last_java_sp and such
|
||
|
// must already be set.
|
||
|
//
|
||
|
// Save the regs and make space for a C call
|
||
|
__ save(SP, -96, SP);
|
||
|
__ save_all_globals_into_locals();
|
||
|
BLOCK_COMMENT("call os::naked_sleep");
|
||
|
__ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
|
||
|
__ delayed()->nop();
|
||
|
__ restore_globals_from_locals();
|
||
|
__ restore();
|
||
|
// reset the counter
|
||
|
__ mov(G0,yield_reg);
|
||
|
|
||
|
__ BIND(dontyield);
|
||
|
|
||
|
// try to get lock
|
||
|
__ swap(lock_ptr_reg, 0, lock_reg);
|
||
|
|
||
|
// did we get the lock?
|
||
|
__ cmp(lock_reg, StubRoutines::Sparc::unlocked);
|
||
|
__ br(Assembler::notEqual, true, Assembler::pn, retry);
|
||
|
__ delayed()->add(yield_reg,1,yield_reg);
|
||
|
|
||
|
// yes, got lock. do the operation here.
|
||
|
}
|
||
|
|
||
|
void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
|
||
|
__ st(lock_reg, lock_ptr_reg, 0); // unlock
|
||
|
}
|
||
|
|
||
|
// Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
|
||
|
//
|
||
|
// Arguments :
|
||
|
//
|
||
|
// exchange_value: O0
|
||
|
// dest: O1
|
||
|
//
|
||
|
// Results:
|
||
|
//
|
||
|
// O0: the value previously stored in dest
|
||
|
//
|
||
|
address generate_atomic_xchg() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
|
||
|
address start = __ pc();
|
||
|
|
||
|
if (UseCASForSwap) {
|
||
|
// Use CAS instead of swap, just in case the MP hardware
|
||
|
// prefers to work with just one kind of synch. instruction.
|
||
|
Label retry;
|
||
|
__ BIND(retry);
|
||
|
__ mov(O0, O3); // scratch copy of exchange value
|
||
|
__ ld(O1, 0, O2); // observe the previous value
|
||
|
// try to replace O2 with O3
|
||
|
__ cas_under_lock(O1, O2, O3,
|
||
|
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
|
||
|
__ cmp(O2, O3);
|
||
|
__ br(Assembler::notEqual, false, Assembler::pn, retry);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
__ retl(false);
|
||
|
__ delayed()->mov(O2, O0); // report previous value to caller
|
||
|
|
||
|
} else {
|
||
|
if (VM_Version::v9_instructions_work()) {
|
||
|
__ retl(false);
|
||
|
__ delayed()->swap(O1, 0, O0);
|
||
|
} else {
|
||
|
const Register& lock_reg = O2;
|
||
|
const Register& lock_ptr_reg = O3;
|
||
|
const Register& yield_reg = O4;
|
||
|
|
||
|
Label retry;
|
||
|
Label dontyield;
|
||
|
|
||
|
generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
|
||
|
// got the lock, do the swap
|
||
|
__ swap(O1, 0, O0);
|
||
|
|
||
|
generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
|
||
|
__ retl(false);
|
||
|
__ delayed()->nop();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
|
||
|
//
|
||
|
// Arguments :
|
||
|
//
|
||
|
// exchange_value: O0
|
||
|
// dest: O1
|
||
|
// compare_value: O2
|
||
|
//
|
||
|
// Results:
|
||
|
//
|
||
|
// O0: the value previously stored in dest
|
||
|
//
|
||
|
// Overwrites (v8): O3,O4,O5
|
||
|
//
|
||
|
address generate_atomic_cmpxchg() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
|
||
|
address start = __ pc();
|
||
|
|
||
|
// cmpxchg(dest, compare_value, exchange_value)
|
||
|
__ cas_under_lock(O1, O2, O0,
|
||
|
(address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
|
||
|
__ retl(false);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
// Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
|
||
|
//
|
||
|
// Arguments :
|
||
|
//
|
||
|
// exchange_value: O1:O0
|
||
|
// dest: O2
|
||
|
// compare_value: O4:O3
|
||
|
//
|
||
|
// Results:
|
||
|
//
|
||
|
// O1:O0: the value previously stored in dest
|
||
|
//
|
||
|
// This only works on V9, on V8 we don't generate any
|
||
|
// code and just return NULL.
|
||
|
//
|
||
|
// Overwrites: G1,G2,G3
|
||
|
//
|
||
|
address generate_atomic_cmpxchg_long() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
|
||
|
address start = __ pc();
|
||
|
|
||
|
if (!VM_Version::supports_cx8())
|
||
|
return NULL;;
|
||
|
__ sllx(O0, 32, O0);
|
||
|
__ srl(O1, 0, O1);
|
||
|
__ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
|
||
|
__ sllx(O3, 32, O3);
|
||
|
__ srl(O4, 0, O4);
|
||
|
__ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
|
||
|
__ casx(O2, O3, O0);
|
||
|
__ srl(O0, 0, O1); // unpacked return value in O1:O0
|
||
|
__ retl(false);
|
||
|
__ delayed()->srlx(O0, 32, O0);
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for jint Atomic::add(jint add_value, volatile jint* dest).
|
||
|
//
|
||
|
// Arguments :
|
||
|
//
|
||
|
// add_value: O0 (e.g., +1 or -1)
|
||
|
// dest: O1
|
||
|
//
|
||
|
// Results:
|
||
|
//
|
||
|
// O0: the new value stored in dest
|
||
|
//
|
||
|
// Overwrites (v9): O3
|
||
|
// Overwrites (v8): O3,O4,O5
|
||
|
//
|
||
|
address generate_atomic_add() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "atomic_add");
|
||
|
address start = __ pc();
|
||
|
__ BIND(_atomic_add_stub);
|
||
|
|
||
|
if (VM_Version::v9_instructions_work()) {
|
||
|
Label(retry);
|
||
|
__ BIND(retry);
|
||
|
|
||
|
__ lduw(O1, 0, O2);
|
||
|
__ add(O0, O2, O3);
|
||
|
__ cas(O1, O2, O3);
|
||
|
__ cmp( O2, O3);
|
||
|
__ br(Assembler::notEqual, false, Assembler::pn, retry);
|
||
|
__ delayed()->nop();
|
||
|
__ retl(false);
|
||
|
__ delayed()->add(O0, O2, O0); // note that cas made O2==O3
|
||
|
} else {
|
||
|
const Register& lock_reg = O2;
|
||
|
const Register& lock_ptr_reg = O3;
|
||
|
const Register& value_reg = O4;
|
||
|
const Register& yield_reg = O5;
|
||
|
|
||
|
Label(retry);
|
||
|
Label(dontyield);
|
||
|
|
||
|
generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
|
||
|
// got lock, do the increment
|
||
|
__ ld(O1, 0, value_reg);
|
||
|
__ add(O0, value_reg, value_reg);
|
||
|
__ st(value_reg, O1, 0);
|
||
|
|
||
|
// %%% only for RMO and PSO
|
||
|
__ membar(Assembler::StoreStore);
|
||
|
|
||
|
generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
|
||
|
|
||
|
__ retl(false);
|
||
|
__ delayed()->mov(value_reg, O0);
|
||
|
}
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
Label _atomic_add_stub; // called from other stubs
|
||
|
|
||
|
|
||
|
// Support for void OrderAccess::fence().
|
||
|
//
|
||
|
address generate_fence() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "fence");
|
||
|
address start = __ pc();
|
||
|
|
||
|
__ membar(Assembler::Membar_mask_bits(Assembler::LoadLoad | Assembler::LoadStore |
|
||
|
Assembler::StoreLoad | Assembler::StoreStore));
|
||
|
__ retl(false);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
//------------------------------------------------------------------------------------------------------------------------
|
||
|
// The following routine generates a subroutine to throw an asynchronous
|
||
|
// UnknownError when an unsafe access gets a fault that could not be
|
||
|
// reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
|
||
|
//
|
||
|
// Arguments :
|
||
|
//
|
||
|
// trapping PC: O7
|
||
|
//
|
||
|
// Results:
|
||
|
// posts an asynchronous exception, skips the trapping instruction
|
||
|
//
|
||
|
|
||
|
address generate_handler_for_unsafe_access() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
|
||
|
address start = __ pc();
|
||
|
|
||
|
const int preserve_register_words = (64 * 2);
|
||
|
Address preserve_addr(FP, 0, (-preserve_register_words * wordSize) + STACK_BIAS);
|
||
|
|
||
|
Register Lthread = L7_thread_cache;
|
||
|
int i;
|
||
|
|
||
|
__ save_frame(0);
|
||
|
__ mov(G1, L1);
|
||
|
__ mov(G2, L2);
|
||
|
__ mov(G3, L3);
|
||
|
__ mov(G4, L4);
|
||
|
__ mov(G5, L5);
|
||
|
for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
|
||
|
__ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
|
||
|
}
|
||
|
|
||
|
address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
|
||
|
BLOCK_COMMENT("call handle_unsafe_access");
|
||
|
__ call(entry_point, relocInfo::runtime_call_type);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
__ mov(L1, G1);
|
||
|
__ mov(L2, G2);
|
||
|
__ mov(L3, G3);
|
||
|
__ mov(L4, G4);
|
||
|
__ mov(L5, G5);
|
||
|
for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
|
||
|
__ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
|
||
|
}
|
||
|
|
||
|
__ verify_thread();
|
||
|
|
||
|
__ jmp(O0, 0);
|
||
|
__ delayed()->restore();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
|
||
|
// Arguments :
|
||
|
//
|
||
|
// ret : O0, returned
|
||
|
// icc/xcc: set as O0 (depending on wordSize)
|
||
|
// sub : O1, argument, not changed
|
||
|
// super: O2, argument, not changed
|
||
|
// raddr: O7, blown by call
|
||
|
address generate_partial_subtype_check() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
|
||
|
address start = __ pc();
|
||
|
Label loop, miss;
|
||
|
|
||
|
// Compare super with sub directly, since super is not in its own SSA.
|
||
|
// The compiler used to emit this test, but we fold it in here,
|
||
|
// to increase overall code density, with no real loss of speed.
|
||
|
{ Label L;
|
||
|
__ cmp(O1, O2);
|
||
|
__ brx(Assembler::notEqual, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ retl();
|
||
|
__ delayed()->addcc(G0,0,O0); // set Z flags, zero result
|
||
|
__ bind(L);
|
||
|
}
|
||
|
|
||
|
#if defined(COMPILER2) && !defined(_LP64)
|
||
|
// Do not use a 'save' because it blows the 64-bit O registers.
|
||
|
__ add(SP,-4*wordSize,SP); // Make space for 4 temps
|
||
|
__ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
|
||
|
__ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
|
||
|
__ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
|
||
|
__ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
|
||
|
Register Rret = O0;
|
||
|
Register Rsub = O1;
|
||
|
Register Rsuper = O2;
|
||
|
#else
|
||
|
__ save_frame(0);
|
||
|
Register Rret = I0;
|
||
|
Register Rsub = I1;
|
||
|
Register Rsuper = I2;
|
||
|
#endif
|
||
|
|
||
|
Register L0_ary_len = L0;
|
||
|
Register L1_ary_ptr = L1;
|
||
|
Register L2_super = L2;
|
||
|
Register L3_index = L3;
|
||
|
|
||
|
inc_counter_np(SharedRuntime::_partial_subtype_ctr, L0, L1);
|
||
|
|
||
|
__ ld_ptr( Rsub, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), L3 );
|
||
|
__ lduw(L3,arrayOopDesc::length_offset_in_bytes(),L0_ary_len);
|
||
|
__ add(L3,arrayOopDesc::base_offset_in_bytes(T_OBJECT),L1_ary_ptr);
|
||
|
__ clr(L3_index); // zero index
|
||
|
// Load a little early; will load 1 off the end of the array.
|
||
|
// Ok for now; revisit if we have other uses of this routine.
|
||
|
__ ld_ptr(L1_ary_ptr,0,L2_super);// Will load a little early
|
||
|
__ align(CodeEntryAlignment);
|
||
|
|
||
|
// The scan loop
|
||
|
__ BIND(loop);
|
||
|
__ add(L1_ary_ptr,wordSize,L1_ary_ptr); // Bump by OOP size
|
||
|
__ cmp(L3_index,L0_ary_len);
|
||
|
__ br(Assembler::equal,false,Assembler::pn,miss);
|
||
|
__ delayed()->inc(L3_index); // Bump index
|
||
|
__ subcc(L2_super,Rsuper,Rret); // Check for match; zero in Rret for a hit
|
||
|
__ brx( Assembler::notEqual, false, Assembler::pt, loop );
|
||
|
__ delayed()->ld_ptr(L1_ary_ptr,0,L2_super); // Will load a little early
|
||
|
|
||
|
// Got a hit; report success; set cache. Cache load doesn't
|
||
|
// happen here; for speed it is directly emitted by the compiler.
|
||
|
__ st_ptr( Rsuper, Rsub, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
|
||
|
|
||
|
#if defined(COMPILER2) && !defined(_LP64)
|
||
|
__ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
|
||
|
__ retl(); // Result in Rret is zero; flags set to Z
|
||
|
__ delayed()->add(SP,4*wordSize,SP);
|
||
|
#else
|
||
|
__ ret(); // Result in Rret is zero; flags set to Z
|
||
|
__ delayed()->restore();
|
||
|
#endif
|
||
|
|
||
|
// Hit or miss falls through here
|
||
|
__ BIND(miss);
|
||
|
__ addcc(G0,1,Rret); // set NZ flags, NZ result
|
||
|
|
||
|
#if defined(COMPILER2) && !defined(_LP64)
|
||
|
__ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
|
||
|
__ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
|
||
|
__ retl(); // Result in Rret is != 0; flags set to NZ
|
||
|
__ delayed()->add(SP,4*wordSize,SP);
|
||
|
#else
|
||
|
__ ret(); // Result in Rret is != 0; flags set to NZ
|
||
|
__ delayed()->restore();
|
||
|
#endif
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Called from MacroAssembler::verify_oop
|
||
|
//
|
||
|
address generate_verify_oop_subroutine() {
|
||
|
StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
|
||
|
|
||
|
address start = __ pc();
|
||
|
|
||
|
__ verify_oop_subroutine();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
static address disjoint_byte_copy_entry;
|
||
|
static address disjoint_short_copy_entry;
|
||
|
static address disjoint_int_copy_entry;
|
||
|
static address disjoint_long_copy_entry;
|
||
|
static address disjoint_oop_copy_entry;
|
||
|
|
||
|
static address byte_copy_entry;
|
||
|
static address short_copy_entry;
|
||
|
static address int_copy_entry;
|
||
|
static address long_copy_entry;
|
||
|
static address oop_copy_entry;
|
||
|
|
||
|
static address checkcast_copy_entry;
|
||
|
|
||
|
//
|
||
|
// Verify that a register contains clean 32-bits positive value
|
||
|
// (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
|
||
|
//
|
||
|
// Input:
|
||
|
// Rint - 32-bits value
|
||
|
// Rtmp - scratch
|
||
|
//
|
||
|
void assert_clean_int(Register Rint, Register Rtmp) {
|
||
|
#if defined(ASSERT) && defined(_LP64)
|
||
|
__ signx(Rint, Rtmp);
|
||
|
__ cmp(Rint, Rtmp);
|
||
|
__ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate overlap test for array copy stubs
|
||
|
//
|
||
|
// Input:
|
||
|
// O0 - array1
|
||
|
// O1 - array2
|
||
|
// O2 - element count
|
||
|
//
|
||
|
// Kills temps: O3, O4
|
||
|
//
|
||
|
void array_overlap_test(address no_overlap_target, int log2_elem_size) {
|
||
|
assert(no_overlap_target != NULL, "must be generated");
|
||
|
array_overlap_test(no_overlap_target, NULL, log2_elem_size);
|
||
|
}
|
||
|
void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
|
||
|
array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
|
||
|
}
|
||
|
void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
|
||
|
const Register from = O0;
|
||
|
const Register to = O1;
|
||
|
const Register count = O2;
|
||
|
const Register to_from = O3; // to - from
|
||
|
const Register byte_count = O4; // count << log2_elem_size
|
||
|
|
||
|
__ subcc(to, from, to_from);
|
||
|
__ sll_ptr(count, log2_elem_size, byte_count);
|
||
|
if (NOLp == NULL)
|
||
|
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
|
||
|
else
|
||
|
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
|
||
|
__ delayed()->cmp(to_from, byte_count);
|
||
|
if (NOLp == NULL)
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
|
||
|
else
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
|
||
|
__ delayed()->nop();
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate pre-write barrier for array.
|
||
|
//
|
||
|
// Input:
|
||
|
// addr - register containing starting address
|
||
|
// count - register containing element count
|
||
|
// tmp - scratch register
|
||
|
//
|
||
|
// The input registers are overwritten.
|
||
|
//
|
||
|
void gen_write_ref_array_pre_barrier(Register addr, Register count) {
|
||
|
#if 0 // G1 only
|
||
|
BarrierSet* bs = Universe::heap()->barrier_set();
|
||
|
if (bs->has_write_ref_pre_barrier()) {
|
||
|
assert(bs->has_write_ref_array_pre_opt(),
|
||
|
"Else unsupported barrier set.");
|
||
|
|
||
|
assert(addr->is_global() && count->is_global(),
|
||
|
"If not, then we have to fix this code to handle more "
|
||
|
"general cases.");
|
||
|
// Get some new fresh output registers.
|
||
|
__ save_frame(0);
|
||
|
// Save the necessary global regs... will be used after.
|
||
|
__ mov(addr, L0);
|
||
|
__ mov(count, L1);
|
||
|
|
||
|
__ mov(addr, O0);
|
||
|
// Get the count into O1
|
||
|
__ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
|
||
|
__ delayed()->mov(count, O1);
|
||
|
__ mov(L0, addr);
|
||
|
__ mov(L1, count);
|
||
|
__ restore();
|
||
|
}
|
||
|
#endif // 0
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate post-write barrier for array.
|
||
|
//
|
||
|
// Input:
|
||
|
// addr - register containing starting address
|
||
|
// count - register containing element count
|
||
|
// tmp - scratch register
|
||
|
//
|
||
|
// The input registers are overwritten.
|
||
|
//
|
||
|
void gen_write_ref_array_post_barrier(Register addr, Register count,
|
||
|
Register tmp) {
|
||
|
BarrierSet* bs = Universe::heap()->barrier_set();
|
||
|
|
||
|
switch (bs->kind()) {
|
||
|
#if 0 // G1 - only
|
||
|
case BarrierSet::G1SATBCT:
|
||
|
case BarrierSet::G1SATBCTLogging:
|
||
|
{
|
||
|
assert(addr->is_global() && count->is_global(),
|
||
|
"If not, then we have to fix this code to handle more "
|
||
|
"general cases.");
|
||
|
// Get some new fresh output registers.
|
||
|
__ save_frame(0);
|
||
|
__ mov(addr, O0);
|
||
|
__ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
|
||
|
__ delayed()->mov(count, O1);
|
||
|
__ restore();
|
||
|
}
|
||
|
break;
|
||
|
#endif // 0 G1 - only
|
||
|
case BarrierSet::CardTableModRef:
|
||
|
case BarrierSet::CardTableExtension:
|
||
|
{
|
||
|
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
|
||
|
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
|
||
|
assert_different_registers(addr, count, tmp);
|
||
|
|
||
|
Label L_loop;
|
||
|
|
||
|
__ sll_ptr(count, LogBytesPerOop, count);
|
||
|
__ sub(count, BytesPerOop, count);
|
||
|
__ add(count, addr, count);
|
||
|
// Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
|
||
|
__ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
|
||
|
__ srl_ptr(count, CardTableModRefBS::card_shift, count);
|
||
|
__ sub(count, addr, count);
|
||
|
Address rs(tmp, (address)ct->byte_map_base);
|
||
|
__ load_address(rs);
|
||
|
__ BIND(L_loop);
|
||
|
__ stb(G0, rs.base(), addr);
|
||
|
__ subcc(count, 1, count);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
|
||
|
__ delayed()->add(addr, 1, addr);
|
||
|
|
||
|
}
|
||
|
break;
|
||
|
case BarrierSet::ModRef:
|
||
|
break;
|
||
|
default :
|
||
|
ShouldNotReachHere();
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
// Copy big chunks forward with shift
|
||
|
//
|
||
|
// Inputs:
|
||
|
// from - source arrays
|
||
|
// to - destination array aligned to 8-bytes
|
||
|
// count - elements count to copy >= the count equivalent to 16 bytes
|
||
|
// count_dec - elements count's decrement equivalent to 16 bytes
|
||
|
// L_copy_bytes - copy exit label
|
||
|
//
|
||
|
void copy_16_bytes_forward_with_shift(Register from, Register to,
|
||
|
Register count, int count_dec, Label& L_copy_bytes) {
|
||
|
Label L_loop, L_aligned_copy, L_copy_last_bytes;
|
||
|
|
||
|
// if both arrays have the same alignment mod 8, do 8 bytes aligned copy
|
||
|
__ andcc(from, 7, G1); // misaligned bytes
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
const Register left_shift = G1; // left shift bit counter
|
||
|
const Register right_shift = G5; // right shift bit counter
|
||
|
|
||
|
__ sll(G1, LogBitsPerByte, left_shift);
|
||
|
__ mov(64, right_shift);
|
||
|
__ sub(right_shift, left_shift, right_shift);
|
||
|
|
||
|
//
|
||
|
// Load 2 aligned 8-bytes chunks and use one from previous iteration
|
||
|
// to form 2 aligned 8-bytes chunks to store.
|
||
|
//
|
||
|
__ deccc(count, count_dec); // Pre-decrement 'count'
|
||
|
__ andn(from, 7, from); // Align address
|
||
|
__ ldx(from, 0, O3);
|
||
|
__ inc(from, 8);
|
||
|
__ align(16);
|
||
|
__ BIND(L_loop);
|
||
|
__ ldx(from, 0, O4);
|
||
|
__ deccc(count, count_dec); // Can we do next iteration after this one?
|
||
|
__ ldx(from, 8, G4);
|
||
|
__ inc(to, 16);
|
||
|
__ inc(from, 16);
|
||
|
__ sllx(O3, left_shift, O3);
|
||
|
__ srlx(O4, right_shift, G3);
|
||
|
__ bset(G3, O3);
|
||
|
__ stx(O3, to, -16);
|
||
|
__ sllx(O4, left_shift, O4);
|
||
|
__ srlx(G4, right_shift, G3);
|
||
|
__ bset(G3, O4);
|
||
|
__ stx(O4, to, -8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
|
||
|
__ delayed()->mov(G4, O3);
|
||
|
|
||
|
__ inccc(count, count_dec>>1 ); // + 8 bytes
|
||
|
__ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
|
||
|
__ delayed()->inc(count, count_dec>>1); // restore 'count'
|
||
|
|
||
|
// copy 8 bytes, part of them already loaded in O3
|
||
|
__ ldx(from, 0, O4);
|
||
|
__ inc(to, 8);
|
||
|
__ inc(from, 8);
|
||
|
__ sllx(O3, left_shift, O3);
|
||
|
__ srlx(O4, right_shift, G3);
|
||
|
__ bset(O3, G3);
|
||
|
__ stx(G3, to, -8);
|
||
|
|
||
|
__ BIND(L_copy_last_bytes);
|
||
|
__ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
|
||
|
__ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
|
||
|
__ delayed()->sub(from, right_shift, from); // restore address
|
||
|
|
||
|
__ BIND(L_aligned_copy);
|
||
|
}
|
||
|
|
||
|
// Copy big chunks backward with shift
|
||
|
//
|
||
|
// Inputs:
|
||
|
// end_from - source arrays end address
|
||
|
// end_to - destination array end address aligned to 8-bytes
|
||
|
// count - elements count to copy >= the count equivalent to 16 bytes
|
||
|
// count_dec - elements count's decrement equivalent to 16 bytes
|
||
|
// L_aligned_copy - aligned copy exit label
|
||
|
// L_copy_bytes - copy exit label
|
||
|
//
|
||
|
void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
|
||
|
Register count, int count_dec,
|
||
|
Label& L_aligned_copy, Label& L_copy_bytes) {
|
||
|
Label L_loop, L_copy_last_bytes;
|
||
|
|
||
|
// if both arrays have the same alignment mod 8, do 8 bytes aligned copy
|
||
|
__ andcc(end_from, 7, G1); // misaligned bytes
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
|
||
|
|
||
|
const Register left_shift = G1; // left shift bit counter
|
||
|
const Register right_shift = G5; // right shift bit counter
|
||
|
|
||
|
__ sll(G1, LogBitsPerByte, left_shift);
|
||
|
__ mov(64, right_shift);
|
||
|
__ sub(right_shift, left_shift, right_shift);
|
||
|
|
||
|
//
|
||
|
// Load 2 aligned 8-bytes chunks and use one from previous iteration
|
||
|
// to form 2 aligned 8-bytes chunks to store.
|
||
|
//
|
||
|
__ andn(end_from, 7, end_from); // Align address
|
||
|
__ ldx(end_from, 0, O3);
|
||
|
__ align(16);
|
||
|
__ BIND(L_loop);
|
||
|
__ ldx(end_from, -8, O4);
|
||
|
__ deccc(count, count_dec); // Can we do next iteration after this one?
|
||
|
__ ldx(end_from, -16, G4);
|
||
|
__ dec(end_to, 16);
|
||
|
__ dec(end_from, 16);
|
||
|
__ srlx(O3, right_shift, O3);
|
||
|
__ sllx(O4, left_shift, G3);
|
||
|
__ bset(G3, O3);
|
||
|
__ stx(O3, end_to, 8);
|
||
|
__ srlx(O4, right_shift, O4);
|
||
|
__ sllx(G4, left_shift, G3);
|
||
|
__ bset(G3, O4);
|
||
|
__ stx(O4, end_to, 0);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
|
||
|
__ delayed()->mov(G4, O3);
|
||
|
|
||
|
__ inccc(count, count_dec>>1 ); // + 8 bytes
|
||
|
__ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
|
||
|
__ delayed()->inc(count, count_dec>>1); // restore 'count'
|
||
|
|
||
|
// copy 8 bytes, part of them already loaded in O3
|
||
|
__ ldx(end_from, -8, O4);
|
||
|
__ dec(end_to, 8);
|
||
|
__ dec(end_from, 8);
|
||
|
__ srlx(O3, right_shift, O3);
|
||
|
__ sllx(O4, left_shift, G3);
|
||
|
__ bset(O3, G3);
|
||
|
__ stx(G3, end_to, 0);
|
||
|
|
||
|
__ BIND(L_copy_last_bytes);
|
||
|
__ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
|
||
|
__ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
|
||
|
__ delayed()->add(end_from, left_shift, end_from); // restore address
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for disjoint byte copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_disjoint_byte_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
Label L_skip_alignment, L_align;
|
||
|
Label L_copy_byte, L_copy_byte_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register offset = O5; // offset from start of arrays
|
||
|
// O3, O4, G3, G4 are used as temp registers
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) disjoint_byte_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
// for short arrays, just do single element copy
|
||
|
__ cmp(count, 23); // 16 + 7
|
||
|
__ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
|
||
|
__ delayed()->mov(G0, offset);
|
||
|
|
||
|
if (aligned) {
|
||
|
// 'aligned' == true when it is known statically during compilation
|
||
|
// of this arraycopy call site that both 'from' and 'to' addresses
|
||
|
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
|
||
|
//
|
||
|
// Aligned arrays have 4 bytes alignment in 32-bits VM
|
||
|
// and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
|
||
|
//
|
||
|
#ifndef _LP64
|
||
|
// copy a 4-bytes word if necessary to align 'to' to 8 bytes
|
||
|
__ andcc(to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
|
||
|
__ delayed()->ld(from, 0, O3);
|
||
|
__ inc(from, 4);
|
||
|
__ inc(to, 4);
|
||
|
__ dec(count, 4);
|
||
|
__ st(O3, to, -4);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
#endif
|
||
|
} else {
|
||
|
// copy bytes to align 'to' on 8 byte boundary
|
||
|
__ andcc(to, 7, G1); // misaligned bytes
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->neg(G1);
|
||
|
__ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
|
||
|
__ sub(count, G1, count);
|
||
|
__ BIND(L_align);
|
||
|
__ ldub(from, 0, O3);
|
||
|
__ deccc(G1);
|
||
|
__ inc(from);
|
||
|
__ stb(O3, to, 0);
|
||
|
__ br(Assembler::notZero, false, Assembler::pt, L_align);
|
||
|
__ delayed()->inc(to);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
}
|
||
|
#ifdef _LP64
|
||
|
if (!aligned)
|
||
|
#endif
|
||
|
{
|
||
|
// Copy with shift 16 bytes per iteration if arrays do not have
|
||
|
// the same alignment mod 8, otherwise fall through to the next
|
||
|
// code for aligned copy.
|
||
|
// The compare above (count >= 23) guarantes 'count' >= 16 bytes.
|
||
|
// Also jump over aligned copy after the copy with shift completed.
|
||
|
|
||
|
copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
|
||
|
}
|
||
|
|
||
|
// Both array are 8 bytes aligned, copy 16 bytes at a time
|
||
|
__ and3(count, 7, G4); // Save count
|
||
|
__ srl(count, 3, count);
|
||
|
generate_disjoint_long_copy_core(aligned);
|
||
|
__ mov(G4, count); // Restore count
|
||
|
|
||
|
// copy tailing bytes
|
||
|
__ BIND(L_copy_byte);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_byte_loop);
|
||
|
__ ldub(from, offset, O3);
|
||
|
__ deccc(count);
|
||
|
__ stb(O3, to, offset);
|
||
|
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
|
||
|
__ delayed()->inc(offset);
|
||
|
|
||
|
__ BIND(L_exit);
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for conjoint byte copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_conjoint_byte_copy(bool aligned, const char * name) {
|
||
|
// Do reverse copy.
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
address nooverlap_target = aligned ?
|
||
|
StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
|
||
|
disjoint_byte_copy_entry;
|
||
|
|
||
|
Label L_skip_alignment, L_align, L_aligned_copy;
|
||
|
Label L_copy_byte, L_copy_byte_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register end_from = from; // source array end address
|
||
|
const Register end_to = to; // destination array end address
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) byte_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
array_overlap_test(nooverlap_target, 0);
|
||
|
|
||
|
__ add(to, count, end_to); // offset after last copied element
|
||
|
|
||
|
// for short arrays, just do single element copy
|
||
|
__ cmp(count, 23); // 16 + 7
|
||
|
__ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
|
||
|
__ delayed()->add(from, count, end_from);
|
||
|
|
||
|
{
|
||
|
// Align end of arrays since they could be not aligned even
|
||
|
// when arrays itself are aligned.
|
||
|
|
||
|
// copy bytes to align 'end_to' on 8 byte boundary
|
||
|
__ andcc(end_to, 7, G1); // misaligned bytes
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->nop();
|
||
|
__ sub(count, G1, count);
|
||
|
__ BIND(L_align);
|
||
|
__ dec(end_from);
|
||
|
__ dec(end_to);
|
||
|
__ ldub(end_from, 0, O3);
|
||
|
__ deccc(G1);
|
||
|
__ brx(Assembler::notZero, false, Assembler::pt, L_align);
|
||
|
__ delayed()->stb(O3, end_to, 0);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
}
|
||
|
#ifdef _LP64
|
||
|
if (aligned) {
|
||
|
// Both arrays are aligned to 8-bytes in 64-bits VM.
|
||
|
// The 'count' is decremented in copy_16_bytes_backward_with_shift()
|
||
|
// in unaligned case.
|
||
|
__ dec(count, 16);
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
// Copy with shift 16 bytes per iteration if arrays do not have
|
||
|
// the same alignment mod 8, otherwise jump to the next
|
||
|
// code for aligned copy (and substracting 16 from 'count' before jump).
|
||
|
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
|
||
|
// Also jump over aligned copy after the copy with shift completed.
|
||
|
|
||
|
copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
|
||
|
L_aligned_copy, L_copy_byte);
|
||
|
}
|
||
|
// copy 4 elements (16 bytes) at a time
|
||
|
__ align(16);
|
||
|
__ BIND(L_aligned_copy);
|
||
|
__ dec(end_from, 16);
|
||
|
__ ldx(end_from, 8, O3);
|
||
|
__ ldx(end_from, 0, O4);
|
||
|
__ dec(end_to, 16);
|
||
|
__ deccc(count, 16);
|
||
|
__ stx(O3, end_to, 8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->stx(O4, end_to, 0);
|
||
|
__ inc(count, 16);
|
||
|
|
||
|
// copy 1 element (2 bytes) at a time
|
||
|
__ BIND(L_copy_byte);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_byte_loop);
|
||
|
__ dec(end_from);
|
||
|
__ dec(end_to);
|
||
|
__ ldub(end_from, 0, O4);
|
||
|
__ deccc(count);
|
||
|
__ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
|
||
|
__ delayed()->stb(O4, end_to, 0);
|
||
|
|
||
|
__ BIND(L_exit);
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for disjoint short copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_disjoint_short_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
Label L_skip_alignment, L_skip_alignment2;
|
||
|
Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register offset = O5; // offset from start of arrays
|
||
|
// O3, O4, G3, G4 are used as temp registers
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) disjoint_short_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
// for short arrays, just do single element copy
|
||
|
__ cmp(count, 11); // 8 + 3 (22 bytes)
|
||
|
__ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
|
||
|
__ delayed()->mov(G0, offset);
|
||
|
|
||
|
if (aligned) {
|
||
|
// 'aligned' == true when it is known statically during compilation
|
||
|
// of this arraycopy call site that both 'from' and 'to' addresses
|
||
|
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
|
||
|
//
|
||
|
// Aligned arrays have 4 bytes alignment in 32-bits VM
|
||
|
// and 8 bytes - in 64-bits VM.
|
||
|
//
|
||
|
#ifndef _LP64
|
||
|
// copy a 2-elements word if necessary to align 'to' to 8 bytes
|
||
|
__ andcc(to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->ld(from, 0, O3);
|
||
|
__ inc(from, 4);
|
||
|
__ inc(to, 4);
|
||
|
__ dec(count, 2);
|
||
|
__ st(O3, to, -4);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
#endif
|
||
|
} else {
|
||
|
// copy 1 element if necessary to align 'to' on an 4 bytes
|
||
|
__ andcc(to, 3, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->lduh(from, 0, O3);
|
||
|
__ inc(from, 2);
|
||
|
__ inc(to, 2);
|
||
|
__ dec(count);
|
||
|
__ sth(O3, to, -2);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
|
||
|
// copy 2 elements to align 'to' on an 8 byte boundary
|
||
|
__ andcc(to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
|
||
|
__ delayed()->lduh(from, 0, O3);
|
||
|
__ dec(count, 2);
|
||
|
__ lduh(from, 2, O4);
|
||
|
__ inc(from, 4);
|
||
|
__ inc(to, 4);
|
||
|
__ sth(O3, to, -4);
|
||
|
__ sth(O4, to, -2);
|
||
|
__ BIND(L_skip_alignment2);
|
||
|
}
|
||
|
#ifdef _LP64
|
||
|
if (!aligned)
|
||
|
#endif
|
||
|
{
|
||
|
// Copy with shift 16 bytes per iteration if arrays do not have
|
||
|
// the same alignment mod 8, otherwise fall through to the next
|
||
|
// code for aligned copy.
|
||
|
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
|
||
|
// Also jump over aligned copy after the copy with shift completed.
|
||
|
|
||
|
copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
|
||
|
}
|
||
|
|
||
|
// Both array are 8 bytes aligned, copy 16 bytes at a time
|
||
|
__ and3(count, 3, G4); // Save
|
||
|
__ srl(count, 2, count);
|
||
|
generate_disjoint_long_copy_core(aligned);
|
||
|
__ mov(G4, count); // restore
|
||
|
|
||
|
// copy 1 element at a time
|
||
|
__ BIND(L_copy_2_bytes);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_2_bytes_loop);
|
||
|
__ lduh(from, offset, O3);
|
||
|
__ deccc(count);
|
||
|
__ sth(O3, to, offset);
|
||
|
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
|
||
|
__ delayed()->inc(offset, 2);
|
||
|
|
||
|
__ BIND(L_exit);
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for conjoint short copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_conjoint_short_copy(bool aligned, const char * name) {
|
||
|
// Do reverse copy.
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
address nooverlap_target = aligned ?
|
||
|
StubRoutines::arrayof_jshort_disjoint_arraycopy() :
|
||
|
disjoint_short_copy_entry;
|
||
|
|
||
|
Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
|
||
|
Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register end_from = from; // source array end address
|
||
|
const Register end_to = to; // destination array end address
|
||
|
|
||
|
const Register byte_count = O3; // bytes count to copy
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) short_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
array_overlap_test(nooverlap_target, 1);
|
||
|
|
||
|
__ sllx(count, LogBytesPerShort, byte_count);
|
||
|
__ add(to, byte_count, end_to); // offset after last copied element
|
||
|
|
||
|
// for short arrays, just do single element copy
|
||
|
__ cmp(count, 11); // 8 + 3 (22 bytes)
|
||
|
__ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
|
||
|
__ delayed()->add(from, byte_count, end_from);
|
||
|
|
||
|
{
|
||
|
// Align end of arrays since they could be not aligned even
|
||
|
// when arrays itself are aligned.
|
||
|
|
||
|
// copy 1 element if necessary to align 'end_to' on an 4 bytes
|
||
|
__ andcc(end_to, 3, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->lduh(end_from, -2, O3);
|
||
|
__ dec(end_from, 2);
|
||
|
__ dec(end_to, 2);
|
||
|
__ dec(count);
|
||
|
__ sth(O3, end_to, 0);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
|
||
|
// copy 2 elements to align 'end_to' on an 8 byte boundary
|
||
|
__ andcc(end_to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
|
||
|
__ delayed()->lduh(end_from, -2, O3);
|
||
|
__ dec(count, 2);
|
||
|
__ lduh(end_from, -4, O4);
|
||
|
__ dec(end_from, 4);
|
||
|
__ dec(end_to, 4);
|
||
|
__ sth(O3, end_to, 2);
|
||
|
__ sth(O4, end_to, 0);
|
||
|
__ BIND(L_skip_alignment2);
|
||
|
}
|
||
|
#ifdef _LP64
|
||
|
if (aligned) {
|
||
|
// Both arrays are aligned to 8-bytes in 64-bits VM.
|
||
|
// The 'count' is decremented in copy_16_bytes_backward_with_shift()
|
||
|
// in unaligned case.
|
||
|
__ dec(count, 8);
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
// Copy with shift 16 bytes per iteration if arrays do not have
|
||
|
// the same alignment mod 8, otherwise jump to the next
|
||
|
// code for aligned copy (and substracting 8 from 'count' before jump).
|
||
|
// The compare above (count >= 11) guarantes 'count' >= 16 bytes.
|
||
|
// Also jump over aligned copy after the copy with shift completed.
|
||
|
|
||
|
copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
|
||
|
L_aligned_copy, L_copy_2_bytes);
|
||
|
}
|
||
|
// copy 4 elements (16 bytes) at a time
|
||
|
__ align(16);
|
||
|
__ BIND(L_aligned_copy);
|
||
|
__ dec(end_from, 16);
|
||
|
__ ldx(end_from, 8, O3);
|
||
|
__ ldx(end_from, 0, O4);
|
||
|
__ dec(end_to, 16);
|
||
|
__ deccc(count, 8);
|
||
|
__ stx(O3, end_to, 8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->stx(O4, end_to, 0);
|
||
|
__ inc(count, 8);
|
||
|
|
||
|
// copy 1 element (2 bytes) at a time
|
||
|
__ BIND(L_copy_2_bytes);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ BIND(L_copy_2_bytes_loop);
|
||
|
__ dec(end_from, 2);
|
||
|
__ dec(end_to, 2);
|
||
|
__ lduh(end_from, 0, O4);
|
||
|
__ deccc(count);
|
||
|
__ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
|
||
|
__ delayed()->sth(O4, end_to, 0);
|
||
|
|
||
|
__ BIND(L_exit);
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate core code for disjoint int copy (and oop copy on 32-bit).
|
||
|
// If "aligned" is true, the "from" and "to" addresses are assumed
|
||
|
// to be heapword aligned.
|
||
|
//
|
||
|
// Arguments:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
void generate_disjoint_int_copy_core(bool aligned) {
|
||
|
|
||
|
Label L_skip_alignment, L_aligned_copy;
|
||
|
Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register offset = O5; // offset from start of arrays
|
||
|
// O3, O4, G3, G4 are used as temp registers
|
||
|
|
||
|
// 'aligned' == true when it is known statically during compilation
|
||
|
// of this arraycopy call site that both 'from' and 'to' addresses
|
||
|
// are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
|
||
|
//
|
||
|
// Aligned arrays have 4 bytes alignment in 32-bits VM
|
||
|
// and 8 bytes - in 64-bits VM.
|
||
|
//
|
||
|
#ifdef _LP64
|
||
|
if (!aligned)
|
||
|
#endif
|
||
|
{
|
||
|
// The next check could be put under 'ifndef' since the code in
|
||
|
// generate_disjoint_long_copy_core() has own checks and set 'offset'.
|
||
|
|
||
|
// for short arrays, just do single element copy
|
||
|
__ cmp(count, 5); // 4 + 1 (20 bytes)
|
||
|
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
|
||
|
__ delayed()->mov(G0, offset);
|
||
|
|
||
|
// copy 1 element to align 'to' on an 8 byte boundary
|
||
|
__ andcc(to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->ld(from, 0, O3);
|
||
|
__ inc(from, 4);
|
||
|
__ inc(to, 4);
|
||
|
__ dec(count);
|
||
|
__ st(O3, to, -4);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
|
||
|
// if arrays have same alignment mod 8, do 4 elements copy
|
||
|
__ andcc(from, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->ld(from, 0, O3);
|
||
|
|
||
|
//
|
||
|
// Load 2 aligned 8-bytes chunks and use one from previous iteration
|
||
|
// to form 2 aligned 8-bytes chunks to store.
|
||
|
//
|
||
|
// copy_16_bytes_forward_with_shift() is not used here since this
|
||
|
// code is more optimal.
|
||
|
|
||
|
// copy with shift 4 elements (16 bytes) at a time
|
||
|
__ dec(count, 4); // The cmp at the beginning guaranty count >= 4
|
||
|
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_16_bytes);
|
||
|
__ ldx(from, 4, O4);
|
||
|
__ deccc(count, 4); // Can we do next iteration after this one?
|
||
|
__ ldx(from, 12, G4);
|
||
|
__ inc(to, 16);
|
||
|
__ inc(from, 16);
|
||
|
__ sllx(O3, 32, O3);
|
||
|
__ srlx(O4, 32, G3);
|
||
|
__ bset(G3, O3);
|
||
|
__ stx(O3, to, -16);
|
||
|
__ sllx(O4, 32, O4);
|
||
|
__ srlx(G4, 32, G3);
|
||
|
__ bset(G3, O4);
|
||
|
__ stx(O4, to, -8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
|
||
|
__ delayed()->mov(G4, O3);
|
||
|
|
||
|
__ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
|
||
|
__ delayed()->inc(count, 4); // restore 'count'
|
||
|
|
||
|
__ BIND(L_aligned_copy);
|
||
|
}
|
||
|
// copy 4 elements (16 bytes) at a time
|
||
|
__ and3(count, 1, G4); // Save
|
||
|
__ srl(count, 1, count);
|
||
|
generate_disjoint_long_copy_core(aligned);
|
||
|
__ mov(G4, count); // Restore
|
||
|
|
||
|
// copy 1 element at a time
|
||
|
__ BIND(L_copy_4_bytes);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ BIND(L_copy_4_bytes_loop);
|
||
|
__ ld(from, offset, O3);
|
||
|
__ deccc(count);
|
||
|
__ st(O3, to, offset);
|
||
|
__ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
|
||
|
__ delayed()->inc(offset, 4);
|
||
|
__ BIND(L_exit);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for disjoint int copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_disjoint_int_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
const Register count = O2;
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) disjoint_int_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
generate_disjoint_int_copy_core(aligned);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate core code for conjoint int copy (and oop copy on 32-bit).
|
||
|
// If "aligned" is true, the "from" and "to" addresses are assumed
|
||
|
// to be heapword aligned.
|
||
|
//
|
||
|
// Arguments:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
void generate_conjoint_int_copy_core(bool aligned) {
|
||
|
// Do reverse copy.
|
||
|
|
||
|
Label L_skip_alignment, L_aligned_copy;
|
||
|
Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register end_from = from; // source array end address
|
||
|
const Register end_to = to; // destination array end address
|
||
|
// O3, O4, O5, G3 are used as temp registers
|
||
|
|
||
|
const Register byte_count = O3; // bytes count to copy
|
||
|
|
||
|
__ sllx(count, LogBytesPerInt, byte_count);
|
||
|
__ add(to, byte_count, end_to); // offset after last copied element
|
||
|
|
||
|
__ cmp(count, 5); // for short arrays, just do single element copy
|
||
|
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
|
||
|
__ delayed()->add(from, byte_count, end_from);
|
||
|
|
||
|
// copy 1 element to align 'to' on an 8 byte boundary
|
||
|
__ andcc(end_to, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
|
||
|
__ delayed()->nop();
|
||
|
__ dec(count);
|
||
|
__ dec(end_from, 4);
|
||
|
__ dec(end_to, 4);
|
||
|
__ ld(end_from, 0, O4);
|
||
|
__ st(O4, end_to, 0);
|
||
|
__ BIND(L_skip_alignment);
|
||
|
|
||
|
// Check if 'end_from' and 'end_to' has the same alignment.
|
||
|
__ andcc(end_from, 7, G0);
|
||
|
__ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
|
||
|
|
||
|
// copy with shift 4 elements (16 bytes) at a time
|
||
|
//
|
||
|
// Load 2 aligned 8-bytes chunks and use one from previous iteration
|
||
|
// to form 2 aligned 8-bytes chunks to store.
|
||
|
//
|
||
|
__ ldx(end_from, -4, O3);
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_16_bytes);
|
||
|
__ ldx(end_from, -12, O4);
|
||
|
__ deccc(count, 4);
|
||
|
__ ldx(end_from, -20, O5);
|
||
|
__ dec(end_to, 16);
|
||
|
__ dec(end_from, 16);
|
||
|
__ srlx(O3, 32, O3);
|
||
|
__ sllx(O4, 32, G3);
|
||
|
__ bset(G3, O3);
|
||
|
__ stx(O3, end_to, 8);
|
||
|
__ srlx(O4, 32, O4);
|
||
|
__ sllx(O5, 32, G3);
|
||
|
__ bset(O4, G3);
|
||
|
__ stx(G3, end_to, 0);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
|
||
|
__ delayed()->mov(O5, O3);
|
||
|
|
||
|
__ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
|
||
|
__ delayed()->inc(count, 4);
|
||
|
|
||
|
// copy 4 elements (16 bytes) at a time
|
||
|
__ align(16);
|
||
|
__ BIND(L_aligned_copy);
|
||
|
__ dec(end_from, 16);
|
||
|
__ ldx(end_from, 8, O3);
|
||
|
__ ldx(end_from, 0, O4);
|
||
|
__ dec(end_to, 16);
|
||
|
__ deccc(count, 4);
|
||
|
__ stx(O3, end_to, 8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
|
||
|
__ delayed()->stx(O4, end_to, 0);
|
||
|
__ inc(count, 4);
|
||
|
|
||
|
// copy 1 element (4 bytes) at a time
|
||
|
__ BIND(L_copy_4_bytes);
|
||
|
__ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
|
||
|
__ delayed()->nop();
|
||
|
__ BIND(L_copy_4_bytes_loop);
|
||
|
__ dec(end_from, 4);
|
||
|
__ dec(end_to, 4);
|
||
|
__ ld(end_from, 0, O4);
|
||
|
__ deccc(count);
|
||
|
__ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
|
||
|
__ delayed()->st(O4, end_to, 0);
|
||
|
__ BIND(L_exit);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for conjoint int copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_conjoint_int_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
address nooverlap_target = aligned ?
|
||
|
StubRoutines::arrayof_jint_disjoint_arraycopy() :
|
||
|
disjoint_int_copy_entry;
|
||
|
|
||
|
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) int_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
array_overlap_test(nooverlap_target, 2);
|
||
|
|
||
|
generate_conjoint_int_copy_core(aligned);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate core code for disjoint long copy (and oop copy on 64-bit).
|
||
|
// "aligned" is ignored, because we must make the stronger
|
||
|
// assumption that both addresses are always 64-bit aligned.
|
||
|
//
|
||
|
// Arguments:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
void generate_disjoint_long_copy_core(bool aligned) {
|
||
|
Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register offset0 = O4; // element offset
|
||
|
const Register offset8 = O5; // next element offset
|
||
|
|
||
|
__ deccc(count, 2);
|
||
|
__ mov(G0, offset0); // offset from start of arrays (0)
|
||
|
__ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
|
||
|
__ delayed()->add(offset0, 8, offset8);
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_16_bytes);
|
||
|
__ ldx(from, offset0, O3);
|
||
|
__ ldx(from, offset8, G3);
|
||
|
__ deccc(count, 2);
|
||
|
__ stx(O3, to, offset0);
|
||
|
__ inc(offset0, 16);
|
||
|
__ stx(G3, to, offset8);
|
||
|
__ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
|
||
|
__ delayed()->inc(offset8, 16);
|
||
|
|
||
|
__ BIND(L_copy_8_bytes);
|
||
|
__ inccc(count, 2);
|
||
|
__ brx(Assembler::zero, true, Assembler::pn, L_exit );
|
||
|
__ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
|
||
|
__ ldx(from, offset0, O3);
|
||
|
__ stx(O3, to, offset0);
|
||
|
__ BIND(L_exit);
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate stub for disjoint long copy.
|
||
|
// "aligned" is ignored, because we must make the stronger
|
||
|
// assumption that both addresses are always 64-bit aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_disjoint_long_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) disjoint_long_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
generate_disjoint_long_copy_core(aligned);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Generate core code for conjoint long copy (and oop copy on 64-bit).
|
||
|
// "aligned" is ignored, because we must make the stronger
|
||
|
// assumption that both addresses are always 64-bit aligned.
|
||
|
//
|
||
|
// Arguments:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
void generate_conjoint_long_copy_core(bool aligned) {
|
||
|
// Do reverse copy.
|
||
|
Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
const Register offset8 = O4; // element offset
|
||
|
const Register offset0 = O5; // previous element offset
|
||
|
|
||
|
__ subcc(count, 1, count);
|
||
|
__ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
|
||
|
__ delayed()->sllx(count, LogBytesPerLong, offset8);
|
||
|
__ sub(offset8, 8, offset0);
|
||
|
__ align(16);
|
||
|
__ BIND(L_copy_16_bytes);
|
||
|
__ ldx(from, offset8, O2);
|
||
|
__ ldx(from, offset0, O3);
|
||
|
__ stx(O2, to, offset8);
|
||
|
__ deccc(offset8, 16); // use offset8 as counter
|
||
|
__ stx(O3, to, offset0);
|
||
|
__ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
|
||
|
__ delayed()->dec(offset0, 16);
|
||
|
|
||
|
__ BIND(L_copy_8_bytes);
|
||
|
__ brx(Assembler::negative, false, Assembler::pn, L_exit );
|
||
|
__ delayed()->nop();
|
||
|
__ ldx(from, 0, O3);
|
||
|
__ stx(O3, to, 0);
|
||
|
__ BIND(L_exit);
|
||
|
}
|
||
|
|
||
|
// Generate stub for conjoint long copy.
|
||
|
// "aligned" is ignored, because we must make the stronger
|
||
|
// assumption that both addresses are always 64-bit aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_conjoint_long_copy(bool aligned, const char * name) {
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
assert(!aligned, "usage");
|
||
|
address nooverlap_target = disjoint_long_copy_entry;
|
||
|
|
||
|
assert_clean_int(O2, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) long_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
array_overlap_test(nooverlap_target, 3);
|
||
|
|
||
|
generate_conjoint_long_copy_core(aligned);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
// Generate stub for disjoint oop copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_disjoint_oop_copy(bool aligned, const char * name) {
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) disjoint_oop_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
// save arguments for barrier generation
|
||
|
__ mov(to, G1);
|
||
|
__ mov(count, G5);
|
||
|
gen_write_ref_array_pre_barrier(G1, G5);
|
||
|
#ifdef _LP64
|
||
|
generate_disjoint_long_copy_core(aligned);
|
||
|
#else
|
||
|
generate_disjoint_int_copy_core(aligned);
|
||
|
#endif
|
||
|
// O0 is used as temp register
|
||
|
gen_write_ref_array_post_barrier(G1, G5, O0);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
// Generate stub for conjoint oop copy. If "aligned" is true, the
|
||
|
// "from" and "to" addresses are assumed to be heapword aligned.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
//
|
||
|
address generate_conjoint_oop_copy(bool aligned, const char * name) {
|
||
|
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
assert_clean_int(count, O3); // Make sure 'count' is clean int.
|
||
|
|
||
|
if (!aligned) oop_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here
|
||
|
if (!aligned) BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
// save arguments for barrier generation
|
||
|
__ mov(to, G1);
|
||
|
__ mov(count, G5);
|
||
|
|
||
|
gen_write_ref_array_pre_barrier(G1, G5);
|
||
|
|
||
|
address nooverlap_target = aligned ?
|
||
|
StubRoutines::arrayof_oop_disjoint_arraycopy() :
|
||
|
disjoint_oop_copy_entry;
|
||
|
|
||
|
array_overlap_test(nooverlap_target, LogBytesPerWord);
|
||
|
|
||
|
#ifdef _LP64
|
||
|
generate_conjoint_long_copy_core(aligned);
|
||
|
#else
|
||
|
generate_conjoint_int_copy_core(aligned);
|
||
|
#endif
|
||
|
|
||
|
// O0 is used as temp register
|
||
|
gen_write_ref_array_post_barrier(G1, G5, O0);
|
||
|
|
||
|
// O3, O4 are used as temp registers
|
||
|
inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->mov(G0, O0); // return 0
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Helper for generating a dynamic type check.
|
||
|
// Smashes only the given temp registers.
|
||
|
void generate_type_check(Register sub_klass,
|
||
|
Register super_check_offset,
|
||
|
Register super_klass,
|
||
|
Register temp,
|
||
|
Label& L_success,
|
||
|
Register deccc_hack = noreg) {
|
||
|
assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
|
||
|
|
||
|
BLOCK_COMMENT("type_check:");
|
||
|
|
||
|
Label L_miss;
|
||
|
|
||
|
assert_clean_int(super_check_offset, temp);
|
||
|
|
||
|
// maybe decrement caller's trip count:
|
||
|
#define DELAY_SLOT delayed(); \
|
||
|
{ if (deccc_hack == noreg) __ nop(); else __ deccc(deccc_hack); }
|
||
|
|
||
|
// if the pointers are equal, we are done (e.g., String[] elements)
|
||
|
__ cmp(sub_klass, super_klass);
|
||
|
__ brx(Assembler::equal, true, Assembler::pt, L_success);
|
||
|
__ DELAY_SLOT;
|
||
|
|
||
|
// check the supertype display:
|
||
|
__ ld_ptr(sub_klass, super_check_offset, temp); // query the super type
|
||
|
__ cmp(super_klass, temp); // test the super type
|
||
|
__ brx(Assembler::equal, true, Assembler::pt, L_success);
|
||
|
__ DELAY_SLOT;
|
||
|
|
||
|
int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
|
||
|
Klass::secondary_super_cache_offset_in_bytes());
|
||
|
__ cmp(super_klass, sc_offset);
|
||
|
__ brx(Assembler::notEqual, true, Assembler::pt, L_miss);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
__ save_frame(0);
|
||
|
__ mov(sub_klass->after_save(), O1);
|
||
|
// mov(super_klass->after_save(), O2); //fill delay slot
|
||
|
assert(StubRoutines::Sparc::_partial_subtype_check != NULL, "order of generation");
|
||
|
__ call(StubRoutines::Sparc::_partial_subtype_check);
|
||
|
__ delayed()->mov(super_klass->after_save(), O2);
|
||
|
__ restore();
|
||
|
|
||
|
// Upon return, the condition codes are already set.
|
||
|
__ brx(Assembler::equal, true, Assembler::pt, L_success);
|
||
|
__ DELAY_SLOT;
|
||
|
|
||
|
#undef DELAY_SLOT
|
||
|
|
||
|
// Fall through on failure!
|
||
|
__ BIND(L_miss);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Generate stub for checked oop copy.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 treated as signed
|
||
|
// ckoff: O3 (super_check_offset)
|
||
|
// ckval: O4 (super_klass)
|
||
|
// ret: O0 zero for success; (-1^K) where K is partial transfer count
|
||
|
//
|
||
|
address generate_checkcast_copy(const char* name) {
|
||
|
|
||
|
const Register O0_from = O0; // source array address
|
||
|
const Register O1_to = O1; // destination array address
|
||
|
const Register O2_count = O2; // elements count
|
||
|
const Register O3_ckoff = O3; // super_check_offset
|
||
|
const Register O4_ckval = O4; // super_klass
|
||
|
|
||
|
const Register O5_offset = O5; // loop var, with stride wordSize
|
||
|
const Register G1_remain = G1; // loop var, with stride -1
|
||
|
const Register G3_oop = G3; // actual oop copied
|
||
|
const Register G4_klass = G4; // oop._klass
|
||
|
const Register G5_super = G5; // oop._klass._primary_supers[ckval]
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
int klass_off = oopDesc::klass_offset_in_bytes();
|
||
|
|
||
|
gen_write_ref_array_pre_barrier(G1, G5);
|
||
|
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// We sometimes save a frame (see partial_subtype_check below).
|
||
|
// If this will cause trouble, let's fail now instead of later.
|
||
|
__ save_frame(0);
|
||
|
__ restore();
|
||
|
#endif
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// caller guarantees that the arrays really are different
|
||
|
// otherwise, we would have to make conjoint checks
|
||
|
{ Label L;
|
||
|
__ mov(O3, G1); // spill: overlap test smashes O3
|
||
|
__ mov(O4, G4); // spill: overlap test smashes O4
|
||
|
array_overlap_test(L, LogBytesPerWord);
|
||
|
__ stop("checkcast_copy within a single array");
|
||
|
__ bind(L);
|
||
|
__ mov(G1, O3);
|
||
|
__ mov(G4, O4);
|
||
|
}
|
||
|
#endif //ASSERT
|
||
|
|
||
|
assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
|
||
|
|
||
|
checkcast_copy_entry = __ pc();
|
||
|
// caller can pass a 64-bit byte count here (from generic stub)
|
||
|
BLOCK_COMMENT("Entry:");
|
||
|
|
||
|
Label load_element, store_element, do_card_marks, fail, done;
|
||
|
__ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
|
||
|
__ brx(Assembler::notZero, false, Assembler::pt, load_element);
|
||
|
__ delayed()->mov(G0, O5_offset); // offset from start of arrays
|
||
|
|
||
|
// Empty array: Nothing to do.
|
||
|
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->set(0, O0); // return 0 on (trivial) success
|
||
|
|
||
|
// ======== begin loop ========
|
||
|
// (Loop is rotated; its entry is load_element.)
|
||
|
// Loop variables:
|
||
|
// (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
|
||
|
// (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
|
||
|
// G3, G4, G5 --- current oop, oop.klass, oop.klass.super
|
||
|
__ align(16);
|
||
|
|
||
|
__ bind(store_element);
|
||
|
// deccc(G1_remain); // decrement the count (hoisted)
|
||
|
__ st_ptr(G3_oop, O1_to, O5_offset); // store the oop
|
||
|
__ inc(O5_offset, wordSize); // step to next offset
|
||
|
__ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
|
||
|
__ delayed()->set(0, O0); // return -1 on success
|
||
|
|
||
|
// ======== loop entry is here ========
|
||
|
__ bind(load_element);
|
||
|
__ ld_ptr(O0_from, O5_offset, G3_oop); // load the oop
|
||
|
__ br_null(G3_oop, true, Assembler::pt, store_element);
|
||
|
__ delayed()->deccc(G1_remain); // decrement the count
|
||
|
|
||
|
__ ld_ptr(G3_oop, klass_off, G4_klass); // query the object klass
|
||
|
|
||
|
generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
|
||
|
// branch to this on success:
|
||
|
store_element,
|
||
|
// decrement this on success:
|
||
|
G1_remain);
|
||
|
// ======== end loop ========
|
||
|
|
||
|
// It was a real error; we must depend on the caller to finish the job.
|
||
|
// Register G1 has number of *remaining* oops, O2 number of *total* oops.
|
||
|
// Emit GC store barriers for the oops we have copied (O2 minus G1),
|
||
|
// and report their number to the caller.
|
||
|
__ bind(fail);
|
||
|
__ subcc(O2_count, G1_remain, O2_count);
|
||
|
__ brx(Assembler::zero, false, Assembler::pt, done);
|
||
|
__ delayed()->not1(O2_count, O0); // report (-1^K) to caller
|
||
|
|
||
|
__ bind(do_card_marks);
|
||
|
gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
|
||
|
|
||
|
__ bind(done);
|
||
|
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
|
||
|
__ retl();
|
||
|
__ delayed()->nop(); // return value in 00
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Generate 'unsafe' array copy stub
|
||
|
// Though just as safe as the other stubs, it takes an unscaled
|
||
|
// size_t argument instead of an element count.
|
||
|
//
|
||
|
// Arguments for generated stub:
|
||
|
// from: O0
|
||
|
// to: O1
|
||
|
// count: O2 byte count, treated as ssize_t, can be zero
|
||
|
//
|
||
|
// Examines the alignment of the operands and dispatches
|
||
|
// to a long, int, short, or byte copy loop.
|
||
|
//
|
||
|
address generate_unsafe_copy(const char* name) {
|
||
|
|
||
|
const Register O0_from = O0; // source array address
|
||
|
const Register O1_to = O1; // destination array address
|
||
|
const Register O2_count = O2; // elements count
|
||
|
|
||
|
const Register G1_bits = G1; // test copy of low bits
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
// bump this on entry, not on exit:
|
||
|
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
|
||
|
|
||
|
__ or3(O0_from, O1_to, G1_bits);
|
||
|
__ or3(O2_count, G1_bits, G1_bits);
|
||
|
|
||
|
__ btst(BytesPerLong-1, G1_bits);
|
||
|
__ br(Assembler::zero, true, Assembler::pt,
|
||
|
long_copy_entry, relocInfo::runtime_call_type);
|
||
|
// scale the count on the way out:
|
||
|
__ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
|
||
|
|
||
|
__ btst(BytesPerInt-1, G1_bits);
|
||
|
__ br(Assembler::zero, true, Assembler::pt,
|
||
|
int_copy_entry, relocInfo::runtime_call_type);
|
||
|
// scale the count on the way out:
|
||
|
__ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
|
||
|
|
||
|
__ btst(BytesPerShort-1, G1_bits);
|
||
|
__ br(Assembler::zero, true, Assembler::pt,
|
||
|
short_copy_entry, relocInfo::runtime_call_type);
|
||
|
// scale the count on the way out:
|
||
|
__ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
|
||
|
|
||
|
__ br(Assembler::always, false, Assembler::pt,
|
||
|
byte_copy_entry, relocInfo::runtime_call_type);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Perform range checks on the proposed arraycopy.
|
||
|
// Kills the two temps, but nothing else.
|
||
|
// Also, clean the sign bits of src_pos and dst_pos.
|
||
|
void arraycopy_range_checks(Register src, // source array oop (O0)
|
||
|
Register src_pos, // source position (O1)
|
||
|
Register dst, // destination array oo (O2)
|
||
|
Register dst_pos, // destination position (O3)
|
||
|
Register length, // length of copy (O4)
|
||
|
Register temp1, Register temp2,
|
||
|
Label& L_failed) {
|
||
|
BLOCK_COMMENT("arraycopy_range_checks:");
|
||
|
|
||
|
// if (src_pos + length > arrayOop(src)->length() ) FAIL;
|
||
|
|
||
|
const Register array_length = temp1; // scratch
|
||
|
const Register end_pos = temp2; // scratch
|
||
|
|
||
|
// Note: This next instruction may be in the delay slot of a branch:
|
||
|
__ add(length, src_pos, end_pos); // src_pos + length
|
||
|
__ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
|
||
|
__ cmp(end_pos, array_length);
|
||
|
__ br(Assembler::greater, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
|
||
|
__ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
|
||
|
__ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
|
||
|
__ cmp(end_pos, array_length);
|
||
|
__ br(Assembler::greater, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
|
||
|
// Move with sign extension can be used since they are positive.
|
||
|
__ delayed()->signx(src_pos, src_pos);
|
||
|
__ signx(dst_pos, dst_pos);
|
||
|
|
||
|
BLOCK_COMMENT("arraycopy_range_checks done");
|
||
|
}
|
||
|
|
||
|
|
||
|
//
|
||
|
// Generate generic array copy stubs
|
||
|
//
|
||
|
// Input:
|
||
|
// O0 - src oop
|
||
|
// O1 - src_pos
|
||
|
// O2 - dst oop
|
||
|
// O3 - dst_pos
|
||
|
// O4 - element count
|
||
|
//
|
||
|
// Output:
|
||
|
// O0 == 0 - success
|
||
|
// O0 == -1 - need to call System.arraycopy
|
||
|
//
|
||
|
address generate_generic_copy(const char *name) {
|
||
|
|
||
|
Label L_failed, L_objArray;
|
||
|
|
||
|
// Input registers
|
||
|
const Register src = O0; // source array oop
|
||
|
const Register src_pos = O1; // source position
|
||
|
const Register dst = O2; // destination array oop
|
||
|
const Register dst_pos = O3; // destination position
|
||
|
const Register length = O4; // elements count
|
||
|
|
||
|
// registers used as temp
|
||
|
const Register G3_src_klass = G3; // source array klass
|
||
|
const Register G4_dst_klass = G4; // destination array klass
|
||
|
const Register G5_lh = G5; // layout handler
|
||
|
const Register O5_temp = O5;
|
||
|
|
||
|
__ align(CodeEntryAlignment);
|
||
|
StubCodeMark mark(this, "StubRoutines", name);
|
||
|
address start = __ pc();
|
||
|
|
||
|
// bump this on entry, not on exit:
|
||
|
inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
|
||
|
|
||
|
// In principle, the int arguments could be dirty.
|
||
|
//assert_clean_int(src_pos, G1);
|
||
|
//assert_clean_int(dst_pos, G1);
|
||
|
//assert_clean_int(length, G1);
|
||
|
|
||
|
//-----------------------------------------------------------------------
|
||
|
// Assembler stubs will be used for this call to arraycopy
|
||
|
// if the following conditions are met:
|
||
|
//
|
||
|
// (1) src and dst must not be null.
|
||
|
// (2) src_pos must not be negative.
|
||
|
// (3) dst_pos must not be negative.
|
||
|
// (4) length must not be negative.
|
||
|
// (5) src klass and dst klass should be the same and not NULL.
|
||
|
// (6) src and dst should be arrays.
|
||
|
// (7) src_pos + length must not exceed length of src.
|
||
|
// (8) dst_pos + length must not exceed length of dst.
|
||
|
BLOCK_COMMENT("arraycopy initial argument checks");
|
||
|
|
||
|
// if (src == NULL) return -1;
|
||
|
__ br_null(src, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// if (src_pos < 0) return -1;
|
||
|
__ delayed()->tst(src_pos);
|
||
|
__ br(Assembler::negative, false, Assembler::pn, L_failed);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
// if (dst == NULL) return -1;
|
||
|
__ br_null(dst, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// if (dst_pos < 0) return -1;
|
||
|
__ delayed()->tst(dst_pos);
|
||
|
__ br(Assembler::negative, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// if (length < 0) return -1;
|
||
|
__ delayed()->tst(length);
|
||
|
__ br(Assembler::negative, false, Assembler::pn, L_failed);
|
||
|
|
||
|
BLOCK_COMMENT("arraycopy argument klass checks");
|
||
|
// get src->klass()
|
||
|
__ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
|
||
|
|
||
|
#ifdef ASSERT
|
||
|
// assert(src->klass() != NULL);
|
||
|
BLOCK_COMMENT("assert klasses not null");
|
||
|
{ Label L_a, L_b;
|
||
|
__ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
|
||
|
__ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
|
||
|
__ bind(L_a);
|
||
|
__ stop("broken null klass");
|
||
|
__ bind(L_b);
|
||
|
__ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
|
||
|
__ delayed()->mov(G0, G4_dst_klass); // scribble the temp
|
||
|
BLOCK_COMMENT("assert done");
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// Load layout helper
|
||
|
//
|
||
|
// |array_tag| | header_size | element_type | |log2_element_size|
|
||
|
// 32 30 24 16 8 2 0
|
||
|
//
|
||
|
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
|
||
|
//
|
||
|
|
||
|
int lh_offset = klassOopDesc::header_size() * HeapWordSize +
|
||
|
Klass::layout_helper_offset_in_bytes();
|
||
|
|
||
|
// Load 32-bits signed value. Use br() instruction with it to check icc.
|
||
|
__ lduw(G3_src_klass, lh_offset, G5_lh);
|
||
|
|
||
|
// Handle objArrays completely differently...
|
||
|
juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
|
||
|
__ set(objArray_lh, O5_temp);
|
||
|
__ cmp(G5_lh, O5_temp);
|
||
|
__ br(Assembler::equal, false, Assembler::pt, L_objArray);
|
||
|
__ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
|
||
|
|
||
|
// if (src->klass() != dst->klass()) return -1;
|
||
|
__ cmp(G3_src_klass, G4_dst_klass);
|
||
|
__ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
|
||
|
__ delayed()->nop();
|
||
|
|
||
|
// if (!src->is_Array()) return -1;
|
||
|
__ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
|
||
|
__ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// At this point, it is known to be a typeArray (array_tag 0x3).
|
||
|
#ifdef ASSERT
|
||
|
__ delayed()->nop();
|
||
|
{ Label L;
|
||
|
jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
|
||
|
__ set(lh_prim_tag_in_place, O5_temp);
|
||
|
__ cmp(G5_lh, O5_temp);
|
||
|
__ br(Assembler::greaterEqual, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ stop("must be a primitive array");
|
||
|
__ bind(L);
|
||
|
}
|
||
|
#else
|
||
|
__ delayed(); // match next insn to prev branch
|
||
|
#endif
|
||
|
|
||
|
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
|
||
|
O5_temp, G4_dst_klass, L_failed);
|
||
|
|
||
|
// typeArrayKlass
|
||
|
//
|
||
|
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
|
||
|
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
|
||
|
//
|
||
|
|
||
|
const Register G4_offset = G4_dst_klass; // array offset
|
||
|
const Register G3_elsize = G3_src_klass; // log2 element size
|
||
|
|
||
|
__ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
|
||
|
__ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
|
||
|
__ add(src, G4_offset, src); // src array offset
|
||
|
__ add(dst, G4_offset, dst); // dst array offset
|
||
|
__ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
|
||
|
|
||
|
// next registers should be set before the jump to corresponding stub
|
||
|
const Register from = O0; // source array address
|
||
|
const Register to = O1; // destination array address
|
||
|
const Register count = O2; // elements count
|
||
|
|
||
|
// 'from', 'to', 'count' registers should be set in this order
|
||
|
// since they are the same as 'src', 'src_pos', 'dst'.
|
||
|
|
||
|
BLOCK_COMMENT("scale indexes to element size");
|
||
|
__ sll_ptr(src_pos, G3_elsize, src_pos);
|
||
|
__ sll_ptr(dst_pos, G3_elsize, dst_pos);
|
||
|
__ add(src, src_pos, from); // src_addr
|
||
|
__ add(dst, dst_pos, to); // dst_addr
|
||
|
|
||
|
BLOCK_COMMENT("choose copy loop based on element size");
|
||
|
__ cmp(G3_elsize, 0);
|
||
|
__ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
|
||
|
__ delayed()->signx(length, count); // length
|
||
|
|
||
|
__ cmp(G3_elsize, LogBytesPerShort);
|
||
|
__ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
|
||
|
__ delayed()->signx(length, count); // length
|
||
|
|
||
|
__ cmp(G3_elsize, LogBytesPerInt);
|
||
|
__ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
|
||
|
__ delayed()->signx(length, count); // length
|
||
|
#ifdef ASSERT
|
||
|
{ Label L;
|
||
|
__ cmp(G3_elsize, LogBytesPerLong);
|
||
|
__ br(Assembler::equal, false, Assembler::pt, L);
|
||
|
__ delayed()->nop();
|
||
|
__ stop("must be long copy, but elsize is wrong");
|
||
|
__ bind(L);
|
||
|
}
|
||
|
#endif
|
||
|
__ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
|
||
|
__ delayed()->signx(length, count); // length
|
||
|
|
||
|
// objArrayKlass
|
||
|
__ BIND(L_objArray);
|
||
|
// live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
|
||
|
|
||
|
Label L_plain_copy, L_checkcast_copy;
|
||
|
// test array classes for subtyping
|
||
|
__ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
|
||
|
__ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
|
||
|
__ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
|
||
|
|
||
|
// Identically typed arrays can be copied without element-wise checks.
|
||
|
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
|
||
|
O5_temp, G5_lh, L_failed);
|
||
|
|
||
|
__ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
|
||
|
__ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
|
||
|
__ sll_ptr(src_pos, LogBytesPerOop, src_pos);
|
||
|
__ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
|
||
|
__ add(src, src_pos, from); // src_addr
|
||
|
__ add(dst, dst_pos, to); // dst_addr
|
||
|
__ BIND(L_plain_copy);
|
||
|
__ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
|
||
|
__ delayed()->signx(length, count); // length
|
||
|
|
||
|
__ BIND(L_checkcast_copy);
|
||
|
// live at this point: G3_src_klass, G4_dst_klass
|
||
|
{
|
||
|
// Before looking at dst.length, make sure dst is also an objArray.
|
||
|
// lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
|
||
|
__ cmp(G5_lh, O5_temp);
|
||
|
__ br(Assembler::notEqual, false, Assembler::pn, L_failed);
|
||
|
|
||
|
// It is safe to examine both src.length and dst.length.
|
||
|
__ delayed(); // match next insn to prev branch
|
||
|
arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
|
||
|
O5_temp, G5_lh, L_failed);
|
||
|
|
||
|
// Marshal the base address arguments now, freeing registers.
|
||
|
__ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
|
||
|
__ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
|
||
|
__ sll_ptr(src_pos, LogBytesPerOop, src_pos);
|
||
|
__ sll_ptr(dst_pos, LogBytesPerOop, dst_pos);
|
||
|
__ add(src, src_pos, from); // src_addr
|
||
|
__ add(dst, dst_pos, to); // dst_addr
|
||
|
__ signx(length, count); // length (reloaded)
|
||
|
|
||
|
Register sco_temp = O3; // this register is free now
|
||
|
assert_different_registers(from, to, count, sco_temp,
|
||
|
G4_dst_klass, G3_src_klass);
|
||
|
|
||
|
// Generate the type check.
|
||
|
int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
|
||
|
Klass::super_check_offset_offset_in_bytes());
|
||
|
__ lduw(G4_dst_klass, sco_offset, sco_temp);
|
||
|
generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
|
||
|
O5_temp, L_plain_copy);
|
||
|
|
||
|
// Fetch destination element klass from the objArrayKlass header.
|
||
|
int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
|
||
|
objArrayKlass::element_klass_offset_in_bytes());
|
||
|
|
||
|
// the checkcast_copy loop needs two extra arguments:
|
||
|
__ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
|
||
|
// lduw(O4, sco_offset, O3); // sco of elem klass
|
||
|
|
||
|
__ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
|
||
|
__ delayed()->lduw(O4, sco_offset, O3);
|
||
|
}
|
||
|
|
||
|
__ BIND(L_failed);
|
||
|
__ retl();
|
||
|
__ delayed()->sub(G0, 1, O0); // return -1
|
||
|
return start;
|
||
|
}
|
||
|
|
||
|
void generate_arraycopy_stubs() {
|
||
|
|
||
|
// Note: the disjoint stubs must be generated first, some of
|
||
|
// the conjoint stubs use them.
|
||
|
StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
|
||
|
StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
|
||
|
StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
|
||
|
StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
|
||
|
StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
|
||
|
StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
|
||
|
StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
|
||
|
StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
|
||
|
StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
|
||
|
StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
|
||
|
|
||
|
StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
|
||
|
StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
|
||
|
StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
|
||
|
StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
|
||
|
StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
|
||
|
StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
|
||
|
StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
|
||
|
#ifdef _LP64
|
||
|
// since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
|
||
|
StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
|
||
|
#else
|
||
|
StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
|
||
|
#endif
|
||
|
StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
|
||
|
StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
|
||
|
|
||
|
StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
|
||
|
StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
|
||
|
StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
|
||
|
}
|
||
|
|
||
|
void generate_initial() {
|
||
|
// Generates all stubs and initializes the entry points
|
||
|
|
||
|
//------------------------------------------------------------------------------------------------------------------------
|
||
|
// entry points that exist in all platforms
|
||
|
// Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
|
||
|
// the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
|
||
|
StubRoutines::_forward_exception_entry = generate_forward_exception();
|
||
|
|
||
|
StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
|
||
|
StubRoutines::_catch_exception_entry = generate_catch_exception();
|
||
|
|
||
|
//------------------------------------------------------------------------------------------------------------------------
|
||
|
// entry points that are platform specific
|
||
|
StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
|
||
|
|
||
|
StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
|
||
|
StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
|
||
|
|
||
|
#if !defined(COMPILER2) && !defined(_LP64)
|
||
|
StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
|
||
|
StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
|
||
|
StubRoutines::_atomic_add_entry = generate_atomic_add();
|
||
|
StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
|
||
|
StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
|
||
|
StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
|
||
|
StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
|
||
|
StubRoutines::_fence_entry = generate_fence();
|
||
|
#endif // COMPILER2 !=> _LP64
|
||
|
|
||
|
StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
|
||
|
}
|
||
|
|
||
|
|
||
|
void generate_all() {
|
||
|
// Generates all stubs and initializes the entry points
|
||
|
|
||
|
// These entry points require SharedInfo::stack0 to be set up in non-core builds
|
||
|
StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
|
||
|
StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
|
||
|
StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
|
||
|
StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
|
||
|
StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
|
||
|
|
||
|
StubRoutines::_handler_for_unsafe_access_entry =
|
||
|
generate_handler_for_unsafe_access();
|
||
|
|
||
|
// support for verify_oop (must happen after universe_init)
|
||
|
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
|
||
|
|
||
|
// arraycopy stubs used by compilers
|
||
|
generate_arraycopy_stubs();
|
||
|
}
|
||
|
|
||
|
|
||
|
public:
|
||
|
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
|
||
|
// replace the standard masm with a special one:
|
||
|
_masm = new MacroAssembler(code);
|
||
|
|
||
|
_stub_count = !all ? 0x100 : 0x200;
|
||
|
if (all) {
|
||
|
generate_all();
|
||
|
} else {
|
||
|
generate_initial();
|
||
|
}
|
||
|
|
||
|
// make sure this stub is available for all local calls
|
||
|
if (_atomic_add_stub.is_unbound()) {
|
||
|
// generate a second time, if necessary
|
||
|
(void) generate_atomic_add();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
private:
|
||
|
int _stub_count;
|
||
|
void stub_prolog(StubCodeDesc* cdesc) {
|
||
|
# ifdef ASSERT
|
||
|
// put extra information in the stub code, to make it more readable
|
||
|
#ifdef _LP64
|
||
|
// Write the high part of the address
|
||
|
// [RGV] Check if there is a dependency on the size of this prolog
|
||
|
__ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
|
||
|
#endif
|
||
|
__ emit_data((intptr_t)cdesc, relocInfo::none);
|
||
|
__ emit_data(++_stub_count, relocInfo::none);
|
||
|
# endif
|
||
|
align(true);
|
||
|
}
|
||
|
|
||
|
void align(bool at_header = false) {
|
||
|
// %%%%% move this constant somewhere else
|
||
|
// UltraSPARC cache line size is 8 instructions:
|
||
|
const unsigned int icache_line_size = 32;
|
||
|
const unsigned int icache_half_line_size = 16;
|
||
|
|
||
|
if (at_header) {
|
||
|
while ((intptr_t)(__ pc()) % icache_line_size != 0) {
|
||
|
__ emit_data(0, relocInfo::none);
|
||
|
}
|
||
|
} else {
|
||
|
while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
|
||
|
__ nop();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}; // end class declaration
|
||
|
|
||
|
|
||
|
address StubGenerator::disjoint_byte_copy_entry = NULL;
|
||
|
address StubGenerator::disjoint_short_copy_entry = NULL;
|
||
|
address StubGenerator::disjoint_int_copy_entry = NULL;
|
||
|
address StubGenerator::disjoint_long_copy_entry = NULL;
|
||
|
address StubGenerator::disjoint_oop_copy_entry = NULL;
|
||
|
|
||
|
address StubGenerator::byte_copy_entry = NULL;
|
||
|
address StubGenerator::short_copy_entry = NULL;
|
||
|
address StubGenerator::int_copy_entry = NULL;
|
||
|
address StubGenerator::long_copy_entry = NULL;
|
||
|
address StubGenerator::oop_copy_entry = NULL;
|
||
|
|
||
|
address StubGenerator::checkcast_copy_entry = NULL;
|
||
|
|
||
|
void StubGenerator_generate(CodeBuffer* code, bool all) {
|
||
|
StubGenerator g(code, all);
|
||
|
}
|