jdk-24/hotspot/src/share/vm/opto/vectornode.cpp

311 lines
9.6 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
2007-12-01 00:00:00 +00:00
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/connode.hpp"
#include "opto/vectornode.hpp"
2007-12-01 00:00:00 +00:00
//------------------------------VectorNode--------------------------------------
// Return the vector operator for the specified scalar operation
// and vector length. Also used to check if the code generator
2007-12-01 00:00:00 +00:00
// supports the vector operation.
int VectorNode::opcode(int sopc, uint vlen, BasicType bt) {
2007-12-01 00:00:00 +00:00
switch (sopc) {
case Op_AddI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_AddVB;
case T_CHAR:
2007-12-01 00:00:00 +00:00
case T_SHORT: return Op_AddVS;
case T_INT: return Op_AddVI;
}
ShouldNotReachHere();
case Op_AddL:
assert(bt == T_LONG, "must be");
return Op_AddVL;
case Op_AddF:
assert(bt == T_FLOAT, "must be");
return Op_AddVF;
case Op_AddD:
assert(bt == T_DOUBLE, "must be");
return Op_AddVD;
case Op_SubI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_SubVB;
case T_CHAR:
2007-12-01 00:00:00 +00:00
case T_SHORT: return Op_SubVS;
case T_INT: return Op_SubVI;
}
ShouldNotReachHere();
case Op_SubL:
assert(bt == T_LONG, "must be");
return Op_SubVL;
case Op_SubF:
assert(bt == T_FLOAT, "must be");
return Op_SubVF;
case Op_SubD:
assert(bt == T_DOUBLE, "must be");
return Op_SubVD;
case Op_MulF:
assert(bt == T_FLOAT, "must be");
return Op_MulVF;
case Op_MulD:
assert(bt == T_DOUBLE, "must be");
return Op_MulVD;
case Op_DivF:
assert(bt == T_FLOAT, "must be");
return Op_DivVF;
case Op_DivD:
assert(bt == T_DOUBLE, "must be");
return Op_DivVD;
case Op_LShiftI:
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_LShiftVB;
case T_CHAR:
2007-12-01 00:00:00 +00:00
case T_SHORT: return Op_LShiftVS;
case T_INT: return Op_LShiftVI;
}
ShouldNotReachHere();
case Op_RShiftI:
2007-12-01 00:00:00 +00:00
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return Op_RShiftVB;
case T_CHAR:
case T_SHORT: return Op_RShiftVS;
case T_INT: return Op_RShiftVI;
2007-12-01 00:00:00 +00:00
}
ShouldNotReachHere();
case Op_AndI:
case Op_AndL:
return Op_AndV;
case Op_OrI:
case Op_OrL:
return Op_OrV;
case Op_XorI:
case Op_XorL:
return Op_XorV;
case Op_LoadB:
case Op_LoadUB:
case Op_LoadUS:
2007-12-01 00:00:00 +00:00
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
case Op_LoadF:
case Op_LoadD:
return Op_LoadVector;
2007-12-01 00:00:00 +00:00
case Op_StoreB:
case Op_StoreC:
case Op_StoreI:
case Op_StoreL:
case Op_StoreF:
case Op_StoreD:
return Op_StoreVector;
2007-12-01 00:00:00 +00:00
}
return 0; // Unimplemented
}
bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
if (is_java_primitive(bt) &&
(vlen > 1) && is_power_of_2(vlen) &&
Matcher::vector_size_supported(bt, vlen)) {
int vopc = VectorNode::opcode(opc, vlen, bt);
return vopc > 0 && Matcher::has_match_rule(vopc);
2007-12-01 00:00:00 +00:00
}
return false;
2007-12-01 00:00:00 +00:00
}
// Return the vector version of a scalar operation node.
VectorNode* VectorNode::make(Compile* C, int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
int vopc = VectorNode::opcode(opc, vlen, bt);
2007-12-01 00:00:00 +00:00
switch (vopc) {
case Op_AddVB: return new (C, 3) AddVBNode(n1, n2, vt);
case Op_AddVS: return new (C, 3) AddVSNode(n1, n2, vt);
case Op_AddVI: return new (C, 3) AddVINode(n1, n2, vt);
case Op_AddVL: return new (C, 3) AddVLNode(n1, n2, vt);
case Op_AddVF: return new (C, 3) AddVFNode(n1, n2, vt);
case Op_AddVD: return new (C, 3) AddVDNode(n1, n2, vt);
case Op_SubVB: return new (C, 3) SubVBNode(n1, n2, vt);
case Op_SubVS: return new (C, 3) SubVSNode(n1, n2, vt);
case Op_SubVI: return new (C, 3) SubVINode(n1, n2, vt);
case Op_SubVL: return new (C, 3) SubVLNode(n1, n2, vt);
case Op_SubVF: return new (C, 3) SubVFNode(n1, n2, vt);
case Op_SubVD: return new (C, 3) SubVDNode(n1, n2, vt);
case Op_MulVF: return new (C, 3) MulVFNode(n1, n2, vt);
case Op_MulVD: return new (C, 3) MulVDNode(n1, n2, vt);
case Op_DivVF: return new (C, 3) DivVFNode(n1, n2, vt);
case Op_DivVD: return new (C, 3) DivVDNode(n1, n2, vt);
case Op_LShiftVB: return new (C, 3) LShiftVBNode(n1, n2, vt);
case Op_LShiftVS: return new (C, 3) LShiftVSNode(n1, n2, vt);
case Op_LShiftVI: return new (C, 3) LShiftVINode(n1, n2, vt);
case Op_RShiftVB: return new (C, 3) RShiftVBNode(n1, n2, vt);
case Op_RShiftVS: return new (C, 3) RShiftVSNode(n1, n2, vt);
case Op_RShiftVI: return new (C, 3) RShiftVINode(n1, n2, vt);
case Op_AndV: return new (C, 3) AndVNode(n1, n2, vt);
case Op_OrV: return new (C, 3) OrVNode (n1, n2, vt);
case Op_XorV: return new (C, 3) XorVNode(n1, n2, vt);
}
ShouldNotReachHere();
return NULL;
2007-12-01 00:00:00 +00:00
}
2007-12-01 00:00:00 +00:00
// Scalar promotion
VectorNode* VectorNode::scalar2vector(Compile* C, Node* s, uint vlen, const Type* opd_t) {
BasicType bt = opd_t->array_element_basic_type();
const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
: TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new (C, 2) ReplicateBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new (C, 2) ReplicateSNode(s, vt);
case T_INT:
return new (C, 2) ReplicateINode(s, vt);
case T_LONG:
return new (C, 2) ReplicateLNode(s, vt);
case T_FLOAT:
return new (C, 2) ReplicateFNode(s, vt);
case T_DOUBLE:
return new (C, 2) ReplicateDNode(s, vt);
2007-12-01 00:00:00 +00:00
}
ShouldNotReachHere();
return NULL;
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Compile* C, Node* s, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new (C, vlen+1) PackBNode(s, vt);
case T_CHAR:
case T_SHORT:
return new (C, vlen+1) PackSNode(s, vt);
case T_INT:
return new (C, vlen+1) PackINode(s, vt);
case T_LONG:
return new (C, vlen+1) PackLNode(s, vt);
case T_FLOAT:
return new (C, vlen+1) PackFNode(s, vt);
case T_DOUBLE:
return new (C, vlen+1) PackDNode(s, vt);
}
ShouldNotReachHere();
return NULL;
}
2007-12-01 00:00:00 +00:00
// Create a binary tree form for Packs. [lo, hi) (half-open) range
Node* PackNode::binaryTreePack(Compile* C, int lo, int hi) {
int ct = hi - lo;
assert(is_power_of_2(ct), "power of 2");
if (ct == 2) {
PackNode* pk = PackNode::make(C, in(lo), 2, vect_type()->element_basic_type());
pk->add_opd(1, in(lo+1));
return pk;
2007-12-01 00:00:00 +00:00
} else {
int mid = lo + ct/2;
Node* n1 = binaryTreePack(C, lo, mid);
Node* n2 = binaryTreePack(C, mid, hi );
2007-12-01 00:00:00 +00:00
BasicType bt = vect_type()->element_basic_type();
switch (bt) {
case T_BOOLEAN:
case T_BYTE:
return new (C, 3) PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
case T_CHAR:
case T_SHORT:
return new (C, 3) PackINode(n1, n2, TypeVect::make(T_INT, 2));
case T_INT:
return new (C, 3) PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_LONG:
return new (C, 3) Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
case T_FLOAT:
return new (C, 3) PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
case T_DOUBLE:
return new (C, 3) Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
}
ShouldNotReachHere();
2007-12-01 00:00:00 +00:00
}
return NULL;
}
// Return the vector version of a scalar load node.
LoadVectorNode* LoadVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
return new (C, 3) LoadVectorNode(ctl, mem, adr, atyp, vt);
2007-12-01 00:00:00 +00:00
return NULL;
}
// Return the vector version of a scalar store node.
StoreVectorNode* StoreVectorNode::make(Compile* C, int opc, Node* ctl, Node* mem,
Node* adr, const TypePtr* atyp, Node* val,
2007-12-01 00:00:00 +00:00
uint vlen) {
return new (C, 4) StoreVectorNode(ctl, mem, adr, atyp, val);
2007-12-01 00:00:00 +00:00
}
// Extract a scalar element of vector.
Node* ExtractNode::make(Compile* C, Node* v, uint position, BasicType bt) {
assert((int)position < Matcher::max_vector_size(bt), "pos in range");
2007-12-01 00:00:00 +00:00
ConINode* pos = ConINode::make(C, (int)position);
switch (bt) {
case T_BOOLEAN:
return new (C, 3) ExtractUBNode(v, pos);
2007-12-01 00:00:00 +00:00
case T_BYTE:
return new (C, 3) ExtractBNode(v, pos);
case T_CHAR:
return new (C, 3) ExtractCNode(v, pos);
case T_SHORT:
return new (C, 3) ExtractSNode(v, pos);
case T_INT:
return new (C, 3) ExtractINode(v, pos);
case T_LONG:
return new (C, 3) ExtractLNode(v, pos);
case T_FLOAT:
return new (C, 3) ExtractFNode(v, pos);
case T_DOUBLE:
return new (C, 3) ExtractDNode(v, pos);
}
ShouldNotReachHere();
return NULL;
}