jdk-24/hotspot/src/share/vm/opto/mathexactnode.cpp

431 lines
12 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mathexactnode.hpp"
#include "opto/subnode.hpp"
MathExactNode::MathExactNode(Node* ctrl, Node* in1) : MultiNode(2) {
init_class_id(Class_MathExact);
init_req(0, ctrl);
init_req(1, in1);
}
MathExactNode::MathExactNode(Node* ctrl, Node* in1, Node* in2) : MultiNode(3) {
init_class_id(Class_MathExact);
init_req(0, ctrl);
init_req(1, in1);
init_req(2, in2);
}
BoolNode* MathExactNode::bool_node() const {
Node* flags = flags_node();
BoolNode* boolnode = flags->unique_out()->as_Bool();
assert(boolnode != NULL, "must have BoolNode");
return boolnode;
}
IfNode* MathExactNode::if_node() const {
BoolNode* boolnode = bool_node();
IfNode* ifnode = boolnode->unique_out()->as_If();
assert(ifnode != NULL, "must have IfNode");
return ifnode;
}
Node* MathExactNode::control_node() const {
IfNode* ifnode = if_node();
return ifnode->in(0);
}
Node* MathExactNode::non_throwing_branch() const {
IfNode* ifnode = if_node();
if (bool_node()->_test._test == BoolTest::overflow) {
return ifnode->proj_out(0);
}
return ifnode->proj_out(1);
}
// If the MathExactNode won't overflow we have to replace the
// FlagsProjNode and ProjNode that is generated by the MathExactNode
Node* MathExactNode::no_overflow(PhaseGVN* phase, Node* new_result) {
PhaseIterGVN* igvn = phase->is_IterGVN();
if (igvn) {
ProjNode* result = result_node();
ProjNode* flags = flags_node();
if (result != NULL) {
igvn->replace_node(result, new_result);
}
if (flags != NULL) {
BoolNode* boolnode = bool_node();
switch (boolnode->_test._test) {
case BoolTest::overflow:
// if the check is for overflow - never taken
igvn->replace_node(boolnode, phase->intcon(0));
break;
case BoolTest::no_overflow:
// if the check is for no overflow - always taken
igvn->replace_node(boolnode, phase->intcon(1));
break;
default:
fatal("Unexpected value of BoolTest");
break;
}
flags->del_req(0);
}
}
return new_result;
}
Node* MathExactINode::match(const ProjNode* proj, const Matcher* m) {
uint ideal_reg = proj->ideal_reg();
RegMask rm;
if (proj->_con == result_proj_node) {
rm = m->mathExactI_result_proj_mask();
} else {
assert(proj->_con == flags_proj_node, "must be result or flags");
assert(ideal_reg == Op_RegFlags, "sanity");
rm = m->mathExactI_flags_proj_mask();
}
return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
}
Node* MathExactLNode::match(const ProjNode* proj, const Matcher* m) {
uint ideal_reg = proj->ideal_reg();
RegMask rm;
if (proj->_con == result_proj_node) {
rm = m->mathExactL_result_proj_mask();
} else {
assert(proj->_con == flags_proj_node, "must be result or flags");
assert(ideal_reg == Op_RegFlags, "sanity");
rm = m->mathExactI_flags_proj_mask();
}
return new (m->C) MachProjNode(this, proj->_con, rm, ideal_reg);
}
Node* AddExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jint val1 = arg1->get_int();
jint val2 = arg2->get_int();
jint result = val1 + val2;
// Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
Node* con_result = ConINode::make(phase->C, result);
return no_overflow(phase, con_result);
}
return NULL;
}
if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) { // (Add 0 x) == x
Node* add_result = new (phase->C) AddINode(arg1, arg2);
return no_overflow(phase, add_result);
}
if (type2->singleton()) {
return NULL; // no change - keep constant on the right
}
if (type1->singleton()) {
// Make it x + Constant - move constant to the right
swap_edges(1, 2);
return this;
}
if (arg2->is_Load()) {
return NULL; // no change - keep load on the right
}
if (arg1->is_Load()) {
// Make it x + Load - move load to the right
swap_edges(1, 2);
return this;
}
if (arg1->_idx > arg2->_idx) {
// Sort the edges
swap_edges(1, 2);
return this;
}
return NULL;
}
Node* AddExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jlong val1 = arg1->get_long();
jlong val2 = arg2->get_long();
jlong result = val1 + val2;
// Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
if ( (((val1 ^ result) & (val2 ^ result)) >= 0)) {
Node* con_result = ConLNode::make(phase->C, result);
return no_overflow(phase, con_result);
}
return NULL;
}
if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) { // (Add 0 x) == x
Node* add_result = new (phase->C) AddLNode(arg1, arg2);
return no_overflow(phase, add_result);
}
if (type2->singleton()) {
return NULL; // no change - keep constant on the right
}
if (type1->singleton()) {
// Make it x + Constant - move constant to the right
swap_edges(1, 2);
return this;
}
if (arg2->is_Load()) {
return NULL; // no change - keep load on the right
}
if (arg1->is_Load()) {
// Make it x + Load - move load to the right
swap_edges(1, 2);
return this;
}
if (arg1->_idx > arg2->_idx) {
// Sort the edges
swap_edges(1, 2);
return this;
}
return NULL;
}
Node* SubExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jint val1 = arg1->get_int();
jint val2 = arg2->get_int();
jint result = val1 - val2;
// Hacker's Delight 2-12 Overflow iff the arguments have different signs and
// the sign of the result is different than the sign of arg1
if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
Node* con_result = ConINode::make(phase->C, result);
return no_overflow(phase, con_result);
}
return NULL;
}
if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
// Sub with zero is the same as add with zero
Node* add_result = new (phase->C) AddINode(arg1, arg2);
return no_overflow(phase, add_result);
}
return NULL;
}
Node* SubExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jlong val1 = arg1->get_long();
jlong val2 = arg2->get_long();
jlong result = val1 - val2;
// Hacker's Delight 2-12 Overflow iff the arguments have different signs and
// the sign of the result is different than the sign of arg1
if (((val1 ^ val2) & (val1 ^ result)) >= 0) {
Node* con_result = ConLNode::make(phase->C, result);
return no_overflow(phase, con_result);
}
return NULL;
}
if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
// Sub with zero is the same as add with zero
Node* add_result = new (phase->C) AddLNode(arg1, arg2);
return no_overflow(phase, add_result);
}
return NULL;
}
Node* NegExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node *arg = in(1);
const Type* type = phase->type(arg);
if (type != Type::TOP && type->singleton()) {
jint value = arg->get_int();
if (value != min_jint) {
Node* neg_result = ConINode::make(phase->C, -value);
return no_overflow(phase, neg_result);
}
}
return NULL;
}
Node* NegExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node *arg = in(1);
const Type* type = phase->type(arg);
if (type != Type::TOP && type->singleton()) {
jlong value = arg->get_long();
if (value != min_jlong) {
Node* neg_result = ConLNode::make(phase->C, -value);
return no_overflow(phase, neg_result);
}
}
return NULL;
}
Node* MulExactINode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jint val1 = arg1->get_int();
jint val2 = arg2->get_int();
jlong result = (jlong) val1 * (jlong) val2;
if ((jint) result == result) {
// no overflow
Node* mul_result = ConINode::make(phase->C, result);
return no_overflow(phase, mul_result);
}
}
if (type1 == TypeInt::ZERO || type2 == TypeInt::ZERO) {
return no_overflow(phase, ConINode::make(phase->C, 0));
}
if (type1 == TypeInt::ONE) {
Node* mul_result = new (phase->C) AddINode(arg2, phase->intcon(0));
return no_overflow(phase, mul_result);
}
if (type2 == TypeInt::ONE) {
Node* mul_result = new (phase->C) AddINode(arg1, phase->intcon(0));
return no_overflow(phase, mul_result);
}
if (type1 == TypeInt::MINUS_1) {
return new (phase->C) NegExactINode(NULL, arg2);
}
if (type2 == TypeInt::MINUS_1) {
return new (phase->C) NegExactINode(NULL, arg1);
}
return NULL;
}
Node* MulExactLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
Node* arg1 = in(1);
Node* arg2 = in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
jlong val1 = arg1->get_long();
jlong val2 = arg2->get_long();
jlong result = val1 * val2;
jlong ax = (val1 < 0 ? -val1 : val1);
jlong ay = (val2 < 0 ? -val2 : val2);
bool overflow = false;
if ((ax | ay) & CONST64(0xFFFFFFFF00000000)) {
// potential overflow if any bit in upper 32 bits are set
if ((val1 == min_jlong && val2 == -1) || (val2 == min_jlong && val1 == -1)) {
// -1 * Long.MIN_VALUE will overflow
overflow = true;
} else if (val2 != 0 && (result / val2 != val1)) {
overflow = true;
}
}
if (!overflow) {
Node* mul_result = ConLNode::make(phase->C, result);
return no_overflow(phase, mul_result);
}
}
if (type1 == TypeLong::ZERO || type2 == TypeLong::ZERO) {
return no_overflow(phase, ConLNode::make(phase->C, 0));
}
if (type1 == TypeLong::ONE) {
Node* mul_result = new (phase->C) AddLNode(arg2, phase->longcon(0));
return no_overflow(phase, mul_result);
}
if (type2 == TypeLong::ONE) {
Node* mul_result = new (phase->C) AddLNode(arg1, phase->longcon(0));
return no_overflow(phase, mul_result);
}
if (type1 == TypeLong::MINUS_1) {
return new (phase->C) NegExactLNode(NULL, arg2);
}
if (type2 == TypeLong::MINUS_1) {
return new (phase->C) NegExactLNode(NULL, arg1);
}
return NULL;
}