jdk-24/hotspot/src/share/vm/interpreter/abstractInterpreter.hpp

312 lines
14 KiB
C++
Raw Normal View History

2007-12-01 00:00:00 +00:00
/*
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
2007-12-01 00:00:00 +00:00
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// This file contains the platform-independent parts
2007-12-01 00:00:00 +00:00
// of the abstract interpreter and the abstract interpreter generator.
// Organization of the interpreter(s). There exists two different interpreters in hotpot
// an assembly language version (aka template interpreter) and a high level language version
// (aka c++ interpreter). Th division of labor is as follows:
// Template Interpreter C++ Interpreter Functionality
//
// templateTable* bytecodeInterpreter* actual interpretation of bytecodes
//
// templateInterpreter* cppInterpreter* generation of assembly code that creates
// and manages interpreter runtime frames.
// Also code for populating interpreter
// frames created during deoptimization.
//
// For both template and c++ interpreter. There are common files for aspects of the interpreter
// that are generic to both interpreters. This is the layout:
//
// abstractInterpreter.hpp: generic description of the interpreter.
// interpreter*: generic frame creation and handling.
//
//------------------------------------------------------------------------------------------------------------------------
// The C++ interface to the bytecode interpreter(s).
class AbstractInterpreter: AllStatic {
friend class VMStructs;
friend class Interpreter;
friend class CppInterpreterGenerator;
public:
enum MethodKind {
zerolocals, // method needs locals initialization
zerolocals_synchronized, // method needs locals initialization & is synchronized
native, // native method
native_synchronized, // native method & is synchronized
empty, // empty method (code: _return)
accessor, // accessor method (code: _aload_0, _getfield, _(a|i)return)
abstract, // abstract method (throws an AbstractMethodException)
method_handle, // java.dyn.MethodHandles::invoke
2007-12-01 00:00:00 +00:00
java_lang_math_sin, // implementation of java.lang.Math.sin (x)
java_lang_math_cos, // implementation of java.lang.Math.cos (x)
java_lang_math_tan, // implementation of java.lang.Math.tan (x)
java_lang_math_abs, // implementation of java.lang.Math.abs (x)
java_lang_math_sqrt, // implementation of java.lang.Math.sqrt (x)
java_lang_math_log, // implementation of java.lang.Math.log (x)
java_lang_math_log10, // implementation of java.lang.Math.log10 (x)
number_of_method_entries,
invalid = -1
};
enum SomeConstants {
number_of_result_handlers = 10 // number of result handlers for native calls
};
protected:
static StubQueue* _code; // the interpreter code (codelets)
static bool _notice_safepoints; // true if safepoints are activated
static address _native_entry_begin; // Region for native entry code
static address _native_entry_end;
// method entry points
static address _entry_table[number_of_method_entries]; // entry points for a given method
static address _native_abi_to_tosca[number_of_result_handlers]; // for native method result handlers
static address _slow_signature_handler; // the native method generic (slow) signature handler
static address _rethrow_exception_entry; // rethrows an activation in previous frame
friend class AbstractInterpreterGenerator;
friend class InterpreterGenerator;
friend class InterpreterMacroAssembler;
public:
// Initialization/debugging
static void initialize();
static StubQueue* code() { return _code; }
// Method activation
static MethodKind method_kind(methodHandle m);
static address entry_for_kind(MethodKind k) { assert(0 <= k && k < number_of_method_entries, "illegal kind"); return _entry_table[k]; }
static address entry_for_method(methodHandle m) { return _entry_table[method_kind(m)]; }
static void print_method_kind(MethodKind kind) PRODUCT_RETURN;
// Runtime support
// length = invoke bytecode length (to advance to next bytecode)
static address deopt_entry (TosState state, int length) { ShouldNotReachHere(); return NULL; }
static address return_entry (TosState state, int length) { ShouldNotReachHere(); return NULL; }
static address rethrow_exception_entry() { return _rethrow_exception_entry; }
// Activation size in words for a method that is just being called.
// Parameters haven't been pushed so count them too.
static int size_top_interpreter_activation(methodOop method);
// Deoptimization support
static address continuation_for(methodOop method,
address bcp,
int callee_parameters,
bool is_top_frame,
bool& use_next_mdp);
// share implementation of size_activation and layout_activation:
static int size_activation(methodOop method,
int temps,
int popframe_args,
int monitors,
int callee_params,
int callee_locals,
bool is_top_frame);
static int layout_activation(methodOop method,
int temps,
int popframe_args,
int monitors,
int callee_params,
int callee_locals,
frame* caller,
frame* interpreter_frame,
bool is_top_frame);
// Runtime support
static bool is_not_reached( methodHandle method, int bci);
// Safepoint support
static void notice_safepoints() { ShouldNotReachHere(); } // stops the thread when reaching a safepoint
static void ignore_safepoints() { ShouldNotReachHere(); } // ignores safepoints
// Support for native calls
static address slow_signature_handler() { return _slow_signature_handler; }
static address result_handler(BasicType type) { return _native_abi_to_tosca[BasicType_as_index(type)]; }
static int BasicType_as_index(BasicType type); // computes index into result_handler_by_index table
static bool in_native_entry(address pc) { return _native_entry_begin <= pc && pc < _native_entry_end; }
// Debugging/printing
static void print(); // prints the interpreter code
// Support for Tagged Stacks
//
// Tags are stored on the Java Expression stack above the value:
//
// tag
// value
//
// For double values:
//
// tag2
// high word
// tag1
// low word
public:
static int stackElementWords() { return TaggedStackInterpreter ? 2 : 1; }
static int stackElementSize() { return stackElementWords()*wordSize; }
static int logStackElementSize() { return
TaggedStackInterpreter? LogBytesPerWord+1 : LogBytesPerWord; }
// Tag is at pointer, value is one below for a stack growing down
// (or above for stack growing up)
static int value_offset_in_bytes() {
return TaggedStackInterpreter ?
frame::interpreter_frame_expression_stack_direction() * wordSize : 0;
}
static int tag_offset_in_bytes() {
assert(TaggedStackInterpreter, "should not call this");
return 0;
}
// Tagged Locals
// Locals are stored relative to Llocals:
//
// tag <- Llocals[n]
// value
//
// Category 2 types are indexed as:
//
// tag <- Llocals[-n]
// high word
// tag <- Llocals[-n+1]
// low word
//
// Local values relative to locals[n]
static int local_offset_in_bytes(int n) {
return ((frame::interpreter_frame_expression_stack_direction() * n) *
stackElementSize()) + value_offset_in_bytes();
}
static int local_tag_offset_in_bytes(int n) {
assert(TaggedStackInterpreter, "should not call this");
return ((frame::interpreter_frame_expression_stack_direction() * n) *
stackElementSize()) + tag_offset_in_bytes();
}
// access to stacked values according to type:
static oop* oop_addr_in_slot(intptr_t* slot_addr) {
return (oop*) slot_addr;
}
static jint* int_addr_in_slot(intptr_t* slot_addr) {
if ((int) sizeof(jint) < wordSize && !Bytes::is_Java_byte_ordering_different())
// big-endian LP64
return (jint*)(slot_addr + 1) - 1;
else
return (jint*) slot_addr;
}
static jlong long_in_slot(intptr_t* slot_addr) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
return *(jlong*) slot_addr;
} else if (!TaggedStackInterpreter) {
return Bytes::get_native_u8((address)slot_addr);
} else {
assert(sizeof(intptr_t) * 2 == sizeof(jlong), "ILP32");
// assemble the long in memory order (not arithmetic order)
union { jlong j; jint i[2]; } u;
u.i[0] = (jint) slot_addr[0*stackElementSize()];
u.i[1] = (jint) slot_addr[1*stackElementSize()];
return u.j;
}
}
static void set_long_in_slot(intptr_t* slot_addr, jlong value) {
if (sizeof(intptr_t) >= sizeof(jlong)) {
*(jlong*) slot_addr = value;
} else if (!TaggedStackInterpreter) {
Bytes::put_native_u8((address)slot_addr, value);
} else {
assert(sizeof(intptr_t) * 2 == sizeof(jlong), "ILP32");
// assemble the long in memory order (not arithmetic order)
union { jlong j; jint i[2]; } u;
u.j = value;
slot_addr[0*stackElementSize()] = (intptr_t) u.i[0];
slot_addr[1*stackElementSize()] = (intptr_t) u.i[1];
}
}
static void get_jvalue_in_slot(intptr_t* slot_addr, BasicType type, jvalue* value) {
switch (type) {
case T_BOOLEAN: value->z = *int_addr_in_slot(slot_addr); break;
case T_CHAR: value->c = *int_addr_in_slot(slot_addr); break;
case T_BYTE: value->b = *int_addr_in_slot(slot_addr); break;
case T_SHORT: value->s = *int_addr_in_slot(slot_addr); break;
case T_INT: value->i = *int_addr_in_slot(slot_addr); break;
case T_LONG: value->j = long_in_slot(slot_addr); break;
case T_FLOAT: value->f = *(jfloat*)int_addr_in_slot(slot_addr); break;
case T_DOUBLE: value->d = jdouble_cast(long_in_slot(slot_addr)); break;
case T_OBJECT: value->l = (jobject)*oop_addr_in_slot(slot_addr); break;
default: ShouldNotReachHere();
}
}
static void set_jvalue_in_slot(intptr_t* slot_addr, BasicType type, jvalue* value) {
switch (type) {
case T_BOOLEAN: *int_addr_in_slot(slot_addr) = (value->z != 0); break;
case T_CHAR: *int_addr_in_slot(slot_addr) = value->c; break;
case T_BYTE: *int_addr_in_slot(slot_addr) = value->b; break;
case T_SHORT: *int_addr_in_slot(slot_addr) = value->s; break;
case T_INT: *int_addr_in_slot(slot_addr) = value->i; break;
case T_LONG: set_long_in_slot(slot_addr, value->j); break;
case T_FLOAT: *(jfloat*)int_addr_in_slot(slot_addr) = value->f; break;
case T_DOUBLE: set_long_in_slot(slot_addr, jlong_cast(value->d)); break;
case T_OBJECT: *oop_addr_in_slot(slot_addr) = (oop) value->l; break;
default: ShouldNotReachHere();
}
}
2007-12-01 00:00:00 +00:00
};
//------------------------------------------------------------------------------------------------------------------------
// The interpreter generator.
class Template;
class AbstractInterpreterGenerator: public StackObj {
protected:
InterpreterMacroAssembler* _masm;
// shared code sequences
// Converter for native abi result to tosca result
address generate_result_handler_for(BasicType type);
address generate_slow_signature_handler();
// entry point generator
address generate_method_entry(AbstractInterpreter::MethodKind kind);
void bang_stack_shadow_pages(bool native_call);
void generate_all();
public:
AbstractInterpreterGenerator(StubQueue* _code);
};