jdk-24/hotspot/test/compiler/intrinsics/unsafe/HeapByteBufferTest.java

372 lines
13 KiB
Java
Raw Normal View History

//
// Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
// Copyright (c) 2015, Red Hat Inc. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
//
import jdk.test.lib.Utils;
import static java.lang.Math.abs;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import static java.nio.ByteOrder.BIG_ENDIAN;
import static java.nio.ByteOrder.LITTLE_ENDIAN;
import java.util.Random;
import java.util.Arrays;
/**
* @test
* @bug 8026049
* @library /testlibrary
* @run main/othervm -XX:+UnlockDiagnosticVMOptions -XX:-UseUnalignedAccesses HeapByteBufferTest
* @run main/othervm HeapByteBufferTest
* @summary Verify that byte buffers are correctly accessed.
*/
// A wrapper for a ByteBuffer which maintains a backing array and a
// position. Whenever this wrapper is written the backing array and
// the wrapped byte buffer are updated together, and whenever it is
// read we check that the ByteBuffer and the backing array are identical.
class MyByteBuffer {
final ByteBuffer buf;
final byte[] bytes;
int pos;
ByteOrder byteOrder = BIG_ENDIAN;
MyByteBuffer(ByteBuffer buf, byte[] bytes) {
this.buf = buf;
this.bytes = Arrays.copyOf(bytes, bytes.length);
pos = 0;
}
public final MyByteBuffer order(ByteOrder bo) {
byteOrder = bo;
buf.order(bo);
return this;
}
static MyByteBuffer wrap(byte[] bytes) {
return new MyByteBuffer(ByteBuffer.wrap(bytes), bytes);
}
int capacity() { return bytes.length; }
int position() {
if (buf.position() != pos)
throw new RuntimeException();
return buf.position();
}
byte[] array() { return buf.array(); }
byte[] backingArray() { return bytes; }
private static byte long7(long x) { return (byte)(x >> 56); }
private static byte long6(long x) { return (byte)(x >> 48); }
private static byte long5(long x) { return (byte)(x >> 40); }
private static byte long4(long x) { return (byte)(x >> 32); }
private static byte long3(long x) { return (byte)(x >> 24); }
private static byte long2(long x) { return (byte)(x >> 16); }
private static byte long1(long x) { return (byte)(x >> 8); }
private static byte long0(long x) { return (byte)(x ); }
private static byte int3(int x) { return (byte)(x >> 24); }
private static byte int2(int x) { return (byte)(x >> 16); }
private static byte int1(int x) { return (byte)(x >> 8); }
private static byte int0(int x) { return (byte)(x ); }
private static byte short1(short x) { return (byte)(x >> 8); }
private static byte short0(short x) { return (byte)(x ); }
byte _get(long i) { return bytes[(int)i]; }
void _put(long i, byte x) { bytes[(int)i] = x; }
private void putLongX(long a, long x) {
if (byteOrder == BIG_ENDIAN) {
x = Long.reverseBytes(x);
}
_put(a + 7, long7(x));
_put(a + 6, long6(x));
_put(a + 5, long5(x));
_put(a + 4, long4(x));
_put(a + 3, long3(x));
_put(a + 2, long2(x));
_put(a + 1, long1(x));
_put(a , long0(x));
}
private void putIntX(long a, int x) {
if (byteOrder == BIG_ENDIAN) {
x = Integer.reverseBytes(x);
}
_put(a + 3, int3(x));
_put(a + 2, int2(x));
_put(a + 1, int1(x));
_put(a , int0(x));
}
private void putShortX(int bi, short x) {
if (byteOrder == BIG_ENDIAN) {
x = Short.reverseBytes(x);
}
_put(bi , short0(x));
_put(bi + 1, short1(x));
}
static private int makeInt(byte b3, byte b2, byte b1, byte b0) {
return (((b3 ) << 24) |
((b2 & 0xff) << 16) |
((b1 & 0xff) << 8) |
((b0 & 0xff) ));
}
int getIntX(long a) {
int x = makeInt(_get(a + 3),
_get(a + 2),
_get(a + 1),
_get(a));
if (byteOrder == BIG_ENDIAN) {
x = Integer.reverseBytes(x);
}
return x;
}
static private long makeLong(byte b7, byte b6, byte b5, byte b4,
byte b3, byte b2, byte b1, byte b0)
{
return ((((long)b7 ) << 56) |
(((long)b6 & 0xff) << 48) |
(((long)b5 & 0xff) << 40) |
(((long)b4 & 0xff) << 32) |
(((long)b3 & 0xff) << 24) |
(((long)b2 & 0xff) << 16) |
(((long)b1 & 0xff) << 8) |
(((long)b0 & 0xff) ));
}
long getLongX(long a) {
long x = makeLong(_get(a + 7),
_get(a + 6),
_get(a + 5),
_get(a + 4),
_get(a + 3),
_get(a + 2),
_get(a + 1),
_get(a));
if (byteOrder == BIG_ENDIAN) {
x = Long.reverseBytes(x);
}
return x;
}
static private short makeShort(byte b1, byte b0) {
return (short)((b1 << 8) | (b0 & 0xff));
}
short getShortX(long a) {
short x = makeShort(_get(a + 1),
_get(a ));
if (byteOrder == BIG_ENDIAN) {
x = Short.reverseBytes(x);
}
return x;
}
double getDoubleX(long a) {
long x = getLongX(a);
return Double.longBitsToDouble(x);
}
double getFloatX(long a) {
int x = getIntX(a);
return Float.intBitsToFloat(x);
}
void ck(long x, long y) {
if (x != y) {
throw new RuntimeException(" x = " + Long.toHexString(x) + ", y = " + Long.toHexString(y));
}
}
void ck(double x, double y) {
if (x == x && y == y && x != y) {
ck(x, y);
}
}
long getLong(int i) { ck(buf.getLong(i), getLongX(i)); return buf.getLong(i); }
int getInt(int i) { ck(buf.getInt(i), getIntX(i)); return buf.getInt(i); }
short getShort(int i) { ck(buf.getShort(i), getShortX(i)); return buf.getShort(i); }
char getChar(int i) { ck(buf.getChar(i), (char)getShortX(i)); return buf.getChar(i); }
double getDouble(int i) { ck(buf.getDouble(i), getDoubleX(i)); return buf.getDouble(i); }
float getFloat(int i) { ck(buf.getFloat(i), getFloatX(i)); return buf.getFloat(i); }
void putLong(int i, long x) { buf.putLong(i, x); putLongX(i, x); }
void putInt(int i, int x) { buf.putInt(i, x); putIntX(i, x); }
void putShort(int i, short x) { buf.putShort(i, x); putShortX(i, x); }
void putChar(int i, char x) { buf.putChar(i, x); putShortX(i, (short)x); }
void putDouble(int i, double x) { buf.putDouble(i, x); putLongX(i, Double.doubleToRawLongBits(x)); }
void putFloat(int i, float x) { buf.putFloat(i, x); putIntX(i, Float.floatToRawIntBits(x)); }
long getLong() { ck(buf.getLong(buf.position()), getLongX(pos)); long x = buf.getLong(); pos += 8; return x; }
int getInt() { ck(buf.getInt(buf.position()), getIntX(pos)); int x = buf.getInt(); pos += 4; return x; }
short getShort() { ck(buf.getShort(buf.position()), getShortX(pos)); short x = buf.getShort(); pos += 2; return x; }
char getChar() { ck(buf.getChar(buf.position()), (char)getShortX(pos)); char x = buf.getChar(); pos += 2; return x; }
double getDouble() { ck(buf.getDouble(buf.position()), getDoubleX(pos)); double x = buf.getDouble(); pos += 8; return x; }
float getFloat() { ck(buf.getFloat(buf.position()), getFloatX(pos)); float x = buf.getFloat(); pos += 4; return x; }
void putLong(long x) { putLongX(pos, x); pos += 8; buf.putLong(x); }
void putInt(int x) { putIntX(pos, x); pos += 4; buf.putInt(x); }
void putShort(short x) { putShortX(pos, x); pos += 2; buf.putShort(x); }
void putChar(char x) { putShortX(pos, (short)x); pos += 2; buf.putChar(x); }
void putDouble(double x) { putLongX(pos, Double.doubleToRawLongBits(x)); pos += 8; buf.putDouble(x); }
void putFloat(float x) { putIntX(pos, Float.floatToRawIntBits(x)); pos += 4; buf.putFloat(x); }
void rewind() { pos = 0; buf.rewind(); }
}
public class HeapByteBufferTest implements Runnable {
Random random = Utils.getRandomInstance();
MyByteBuffer data = MyByteBuffer.wrap(new byte[1024]);
int randomOffset(Random r, MyByteBuffer buf, int size) {
return r.nextInt(buf.capacity() - size);
}
long iterations;
HeapByteBufferTest(long iterations) {
this.iterations = iterations;
}
// The core of the test. Walk over the buffer reading and writing
// random data, XORing it as we go. We can detect writes in the
// wrong place, writes which are too long or too short, and reads
// or writes of the wrong data,
void step(Random r) {
data.order((r.nextInt() & 1) != 0 ? BIG_ENDIAN : LITTLE_ENDIAN);
data.rewind();
while (data.position() < data.capacity())
data.putLong(data.getLong() ^ random.nextLong());
data.rewind();
while (data.position() < data.capacity())
data.putInt(data.getInt() ^ random.nextInt());
data.rewind();
while (data.position() < data.capacity())
data.putShort((short)(data.getShort() ^ random.nextInt()));
data.rewind();
while (data.position() < data.capacity())
data.putChar((char)(data.getChar() ^ random.nextInt()));
data.rewind();
while (data.position() < data.capacity()) {
data.putDouble(combine(data.getDouble(), random.nextLong()));
}
data.rewind();
while (data.position() < data.capacity())
data.putFloat(combine(data.getFloat(), random.nextInt()));
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 8);
data.putLong(offset, data.getLong(offset) ^ random.nextLong());
}
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 4);
data.putInt(offset, data.getInt(offset) ^ random.nextInt());
}
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 2);
data.putShort(offset, (short)(data.getShort(offset) ^ random.nextInt()));
}
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 2);
data.putChar(offset, (char)(data.getChar(offset) ^ random.nextInt()));
}
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 8);
data.putDouble(offset, combine(data.getDouble(offset), random.nextLong()));
}
for (int i = 0; i < 100; i++) {
int offset = randomOffset(r, data, 4);
data.putFloat(offset, combine(data.getFloat(offset), random.nextInt()));
}
}
// XOR the bit pattern of a double and a long, returning the
// result as a double.
//
// We convert signalling NaNs to quiet NaNs. We need to do this
// because some platforms (in particular legacy 80x87) do not
// provide transparent conversions between integer and
// floating-point types even when using raw conversions but
// quietly convert sNaN to qNaN. This causes spurious test
// failures when the template interpreter uses 80x87 and the JITs
// use XMM registers.
//
public double combine(double prev, long bits) {
bits ^= Double.doubleToRawLongBits(prev);
double result = Double.longBitsToDouble(bits);
if (Double.isNaN(result)) {
result = Double.longBitsToDouble(bits | 0x8000000000000l);
}
return result;
}
// XOR the bit pattern of a float and an int, returning the result
// as a float. Convert sNaNs to qNaNs.
public Float combine(float prev, int bits) {
bits ^= Float.floatToRawIntBits(prev);
Float result = Float.intBitsToFloat(bits);
if (Float.isNaN(result)) {
result = Float.intBitsToFloat(bits | 0x400000);
}
return result;
}
public void run() {
for (int i = 0; i < data.capacity(); i += 8) {
data.putLong(i, random.nextLong());
}
for (int i = 0; i < iterations; i++) {
step(random);
}
if (!Arrays.equals(data.array(), data.backingArray())) {
throw new RuntimeException();
}
}
public static void main(String[] args) {
// The number of iterations is high to ensure that tiered
// compilation kicks in all the way up to C2.
long iterations = 100000;
if (args.length > 0)
iterations = Long.parseLong(args[0]);
new HeapByteBufferTest(iterations).run();
}
}