8303621: BitMap::iterate should support lambdas and other function objects

Reviewed-by: aboldtch, tschatzl, stefank
This commit is contained in:
Kim Barrett 2023-03-07 12:59:26 +00:00
parent 52d3008773
commit 008c5eb4dd
5 changed files with 301 additions and 41 deletions

View File

@ -1329,10 +1329,9 @@ void LinearScan::build_intervals() {
assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be");
// Update intervals for registers live at the end of this block;
ResourceBitMap live = block->live_out();
int size = (int)live.size();
for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
assert(live.at(number), "should not stop here otherwise");
ResourceBitMap& live = block->live_out();
auto updater = [&](BitMap::idx_t index) {
int number = static_cast<int>(index);
assert(number >= LIR_Opr::vreg_base, "fixed intervals must not be live on block bounds");
TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
@ -1347,7 +1346,8 @@ void LinearScan::build_intervals() {
is_interval_in_loop(number, block->loop_index())) {
interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
}
}
};
live.iterate(updater);
// iterate all instructions of the block in reverse order.
// skip the first instruction because it is always a label
@ -1738,11 +1738,10 @@ Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
DEBUG_ONLY(move_resolver.check_empty());
const int size = live_set_size();
const ResourceBitMap live_at_edge = to_block->live_in();
// visit all registers where the live_at_edge bit is set
for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
const ResourceBitMap& live_at_edge = to_block->live_in();
auto visitor = [&](BitMap::idx_t index) {
int r = static_cast<int>(index);
assert(r < num_virtual_regs(), "live information set for not existing interval");
assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
@ -1753,7 +1752,8 @@ void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to
// need to insert move instruction
move_resolver.add_mapping(from_interval, to_interval);
}
}
};
live_at_edge.iterate(visitor, 0, live_set_size());
}
@ -1913,10 +1913,11 @@ void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_r
DEBUG_ONLY(move_resolver.check_empty());
// visit all registers where the live_in bit is set
int size = live_set_size();
for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
auto resolver = [&](BitMap::idx_t index) {
int r = static_cast<int>(index);
resolve_exception_entry(block, r, move_resolver);
}
};
block->live_in().iterate(resolver, 0, live_set_size());
// the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
for_each_phi_fun(block, phi,
@ -1986,10 +1987,11 @@ void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, M
// visit all registers where the live_in bit is set
BlockBegin* block = handler->entry_block();
int size = live_set_size();
for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
auto resolver = [&](BitMap::idx_t index) {
int r = static_cast<int>(index);
resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
}
};
block->live_in().iterate(resolver, 0, live_set_size());
// the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
for_each_phi_fun(block, phi,
@ -3466,10 +3468,11 @@ void LinearScan::verify_constants() {
for (int i = 0; i < num_blocks; i++) {
BlockBegin* block = block_at(i);
ResourceBitMap live_at_edge = block->live_in();
ResourceBitMap& live_at_edge = block->live_in();
// visit all registers where the live_at_edge bit is set
for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
auto visitor = [&](BitMap::idx_t index) {
int r = static_cast<int>(index);
TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
Value value = gen()->instruction_for_vreg(r);
@ -3478,7 +3481,8 @@ void LinearScan::verify_constants() {
assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
assert(value->operand()->vreg_number() == r, "register number must match");
// TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive across block boundaries");
}
};
live_at_edge.iterate(visitor, 0, size);
}
}

View File

@ -249,11 +249,7 @@ inline G1AddCardResult G1CardSetBitMap::add(uint card_idx, size_t threshold, siz
template <class CardVisitor>
inline void G1CardSetBitMap::iterate(CardVisitor& found, size_t size_in_bits, uint offset) {
BitMapView bm(_bits, size_in_bits);
BitMap::idx_t idx = bm.get_next_one_offset(0);
while (idx != size_in_bits) {
found((offset | (uint)idx));
idx = bm.get_next_one_offset(idx + 1);
}
bm.iterate([&](BitMap::idx_t idx) { found(offset | (uint)idx); });
}
inline size_t G1CardSetBitMap::header_size_in_bytes() {

View File

@ -105,6 +105,8 @@ class BitMap {
static const bm_word_t find_ones_flip = 0;
static const bm_word_t find_zeros_flip = ~(bm_word_t)0;
template<typename ReturnType> struct IterateInvoker;
// Threshold for performing small range operation, even when large range
// operation was requested. Measured in words.
static const size_t small_range_words = 32;
@ -252,19 +254,38 @@ class BitMap {
// Verify [beg,end) is a valid range, e.g. beg <= end <= size().
void verify_range(idx_t beg, idx_t end) const NOT_DEBUG_RETURN;
// Iteration support. Applies the closure to the index for each set bit,
// starting from the least index in the range to the greatest, in order.
// The iteration terminates if the closure returns false. Returns true if
// the iteration completed, false if terminated early because the closure
// returned false. If the closure modifies the bitmap, modifications to
// bits at indices greater than the current index will affect which further
// indices the closure will be applied to.
// precondition: beg and end form a valid range.
template <class BitMapClosureType>
bool iterate(BitMapClosureType* cl, idx_t beg, idx_t end);
// Applies an operation to the index of each set bit in [beg, end), in
// increasing order.
//
// If i is an index of the bitmap, the operation is either
// - function(i)
// - cl->do_bit(i)
// The result of an operation must be either void or convertible to bool.
//
// If an operation returns false then the iteration stops at that index.
// The result of the iteration is true unless the iteration was stopped by
// an operation returning false.
//
// If an operation modifies the bitmap, modifications to bits at indices
// greater than the current index will affect which further indices the
// operation will be applied to.
//
// precondition: beg and end form a valid range for the bitmap.
template<typename Function>
bool iterate(Function function, idx_t beg, idx_t end) const;
template <class BitMapClosureType>
bool iterate(BitMapClosureType* cl);
template<typename BitMapClosureType>
bool iterate(BitMapClosureType* cl, idx_t beg, idx_t end) const;
template<typename Function>
bool iterate(Function function) const {
return iterate(function, 0, size());
}
template<typename BitMapClosureType>
bool iterate(BitMapClosureType* cl) const {
return iterate(cl, 0, size());
}
// Looking for 1's and 0's at indices equal to or greater than "beg",
// stopping if none has been found before "end", and returning

View File

@ -243,21 +243,47 @@ BitMap::get_next_one_offset_aligned_right(idx_t beg, idx_t end) const {
return get_next_bit_impl<find_ones_flip, true>(beg, end);
}
template <typename BitMapClosureType>
inline bool BitMap::iterate(BitMapClosureType* cl, idx_t beg, idx_t end) {
// IterateInvoker supports conditionally stopping iteration early. The
// invoker is called with the function to apply to each set index, along with
// the current index. If the function returns void then the invoker always
// returns true, so no early stopping. Otherwise, the result of the function
// is returned by the invoker. Iteration stops early if conversion of that
// result to bool is false.
template<typename ReturnType>
struct BitMap::IterateInvoker {
template<typename Function>
bool operator()(Function function, idx_t index) const {
return function(index); // Stop early if converting to bool is false.
}
};
template<>
struct BitMap::IterateInvoker<void> {
template<typename Function>
bool operator()(Function function, idx_t index) const {
function(index); // Result is void.
return true; // Never stop early.
}
};
template <typename Function>
inline bool BitMap::iterate(Function function, idx_t beg, idx_t end) const {
auto invoke = IterateInvoker<decltype(function(beg))>();
for (idx_t index = beg; true; ++index) {
index = get_next_one_offset(index, end);
if (index >= end) {
return true;
} else if (!cl->do_bit(index)) {
} else if (!invoke(function, index)) {
return false;
}
}
}
template <typename BitMapClosureType>
inline bool BitMap::iterate(BitMapClosureType* cl) {
return iterate(cl, 0, size());
inline bool BitMap::iterate(BitMapClosureType* cl, idx_t beg, idx_t end) const {
auto function = [&](idx_t index) { return cl->do_bit(index); };
return iterate(function, beg, end);
}
// Returns a bit mask for a range of bits [beg, end) within a single word. Each

View File

@ -0,0 +1,213 @@
/*
* Copyright (c) 2023, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/align.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
#include "unittest.hpp"
using idx_t = BitMap::idx_t;
using bm_word_t = BitMap::bm_word_t;
static const idx_t BITMAP_SIZE = 1024;
static const idx_t BITMAP_WORD_SIZE = align_up(BITMAP_SIZE, BitsPerWord) / BitsPerWord;
static void test_iterate_step(const BitMap& map,
idx_t index,
const idx_t* positions,
size_t positions_index,
size_t positions_size) {
ASSERT_LT(positions_index, positions_size);
ASSERT_EQ(index, positions[positions_index]);
ASSERT_TRUE(map.at(index));
}
// Test lambda returning void.
static void test_iterate_lambda(const BitMap& map,
const idx_t* positions,
size_t positions_size) {
SCOPED_TRACE("iterate with lambda");
size_t positions_index = 0;
auto f = [&](idx_t i) {
test_iterate_step(map, i, positions, positions_index++, positions_size);
};
ASSERT_TRUE(map.iterate(f));
ASSERT_EQ(positions_index, positions_size);
}
// Test closure returning bool. Also tests lambda returning bool.
static void test_iterate_closure(const BitMap& map,
const idx_t* positions,
size_t positions_size) {
SCOPED_TRACE("iterate with BitMapClosure");
struct Closure : public BitMapClosure {
const BitMap& _map;
const idx_t* _positions;
size_t _positions_index;
size_t _positions_size;
Closure(const BitMap& map, const idx_t* positions, size_t positions_size)
: _map(map),
_positions(positions),
_positions_index(0),
_positions_size(positions_size)
{}
bool do_bit(idx_t i) override {
test_iterate_step(_map, i, _positions, _positions_index++, _positions_size);
return true;
}
} closure{map, positions, positions_size};
ASSERT_TRUE(map.iterate(&closure));
ASSERT_EQ(closure._positions_index, positions_size);
}
// Test closure returning void. Also tests lambda returning bool.
static void test_iterate_non_closure(const BitMap& map,
const idx_t* positions,
size_t positions_size) {
SCOPED_TRACE("iterate with non-BitMapClosure");
struct Closure {
const BitMap& _map;
const idx_t* _positions;
size_t _positions_index;
size_t _positions_size;
Closure(const BitMap& map, const idx_t* positions, size_t positions_size)
: _map(map),
_positions(positions),
_positions_index(0),
_positions_size(positions_size)
{}
void do_bit(idx_t i) {
test_iterate_step(_map, i, _positions, _positions_index++, _positions_size);
}
} closure{map, positions, positions_size};
ASSERT_TRUE(map.iterate(&closure));
ASSERT_EQ(closure._positions_index, positions_size);
}
static void fill_iterate_map(BitMap& map,
const idx_t* positions,
size_t positions_size) {
map.clear_range(0, map.size());
for (size_t i = 0; i < positions_size; ++i) {
map.set_bit(positions[i]);
}
}
static void test_iterate(BitMap& map,
const idx_t* positions,
size_t positions_size) {
fill_iterate_map(map, positions, positions_size);
test_iterate_lambda(map, positions, positions_size);
test_iterate_closure(map, positions, positions_size);
test_iterate_non_closure(map, positions, positions_size);
}
TEST(BitMap, iterate_empty) {
bm_word_t test_data[BITMAP_WORD_SIZE];
BitMapView test_map{test_data, BITMAP_SIZE};
idx_t positions[1] = {};
test_iterate(test_map, positions, 0);
}
TEST(BitMap, iterate_with_endpoints) {
bm_word_t test_data[BITMAP_WORD_SIZE];
BitMapView test_map{test_data, BITMAP_SIZE};
idx_t positions[] = { 0, 2, 6, 31, 61, 131, 247, 578, BITMAP_SIZE - 1 };
test_iterate(test_map, positions, ARRAY_SIZE(positions));
}
TEST(BitMap, iterate_without_endpoints) {
bm_word_t test_data[BITMAP_WORD_SIZE];
BitMapView test_map{test_data, BITMAP_SIZE};
idx_t positions[] = { 1, 2, 6, 31, 61, 131, 247, 578, BITMAP_SIZE - 2 };
test_iterate(test_map, positions, ARRAY_SIZE(positions));
}
TEST(BitMap, iterate_full) {
bm_word_t test_data[BITMAP_WORD_SIZE];
BitMapView test_map{test_data, BITMAP_SIZE};
static idx_t positions[BITMAP_SIZE]; // static to avoid large stack allocation.
for (idx_t i = 0; i < BITMAP_SIZE; ++i) {
positions[i] = i;
}
test_iterate(test_map, positions, ARRAY_SIZE(positions));
}
TEST(BitMap, iterate_early_termination) {
bm_word_t test_data[BITMAP_WORD_SIZE];
BitMapView test_map{test_data, BITMAP_SIZE};
idx_t positions[] = { 1, 2, 6, 31, 61, 131, 247, 578, BITMAP_SIZE - 2 };
size_t positions_size = ARRAY_SIZE(positions);
size_t positions_index = 0;
fill_iterate_map(test_map, positions, positions_size);
idx_t stop_at = 131;
auto f = [&](idx_t i) {
test_iterate_step(test_map, i, positions, positions_index, positions_size);
if (positions[positions_index] == stop_at) {
return false;
} else {
positions_index += 1;
return true;
}
};
ASSERT_FALSE(test_map.iterate(f));
ASSERT_LT(positions_index, positions_size);
ASSERT_EQ(positions[positions_index], stop_at);
struct Closure : public BitMapClosure {
const BitMap& _map;
const idx_t* _positions;
size_t _positions_index;
size_t _positions_size;
idx_t _stop_at;
Closure(const BitMap& map, const idx_t* positions, size_t positions_size, idx_t stop_at)
: _map(map),
_positions(positions),
_positions_index(0),
_positions_size(positions_size),
_stop_at(stop_at)
{}
bool do_bit(idx_t i) override {
test_iterate_step(_map, i, _positions, _positions_index, _positions_size);
if (_positions[_positions_index] == _stop_at) {
return false;
} else {
_positions_index += 1;
return true;
}
}
} closure{test_map, positions, positions_size, stop_at};
ASSERT_FALSE(test_map.iterate(&closure));
ASSERT_LT(closure._positions_index, positions_size);
ASSERT_EQ(positions[closure._positions_index], stop_at);
}