This commit is contained in:
Antonios Printezis 2011-10-21 07:24:06 -04:00
commit 01ba4cd795
8 changed files with 128 additions and 233 deletions

View File

@ -1816,9 +1816,7 @@ void ConcurrentMark::cleanup() {
// this will also free any regions totally full of garbage objects, // this will also free any regions totally full of garbage objects,
// and sort the regions. // and sort the regions.
g1h->g1_policy()->record_concurrent_mark_cleanup_end( g1h->g1_policy()->record_concurrent_mark_cleanup_end();
g1_par_note_end_task.freed_bytes(),
g1_par_note_end_task.max_live_bytes());
// Statistics. // Statistics.
double end = os::elapsedTime(); double end = os::elapsedTime();

View File

@ -215,19 +215,19 @@ void ConcurrentMarkThread::run() {
gclog_or_tty->print_cr("[GC concurrent-cleanup-start]"); gclog_or_tty->print_cr("[GC concurrent-cleanup-start]");
} }
// Now do the remainder of the cleanup operation. // Now do the concurrent cleanup operation.
_cm->completeCleanup(); _cm->completeCleanup();
// Notify anyone who's waiting that there are no more free
// regions coming. We have to do this before we join the STS,
// otherwise we might deadlock: a GC worker could be blocked
// waiting for the notification whereas this thread will be
// blocked for the pause to finish while it's trying to join
// the STS, which is conditional on the GC workers finishing.
g1h->reset_free_regions_coming();
_sts.join(); // Notify anyone who's waiting that there are no more free
g1_policy->record_concurrent_mark_cleanup_completed(); // regions coming. We have to do this before we join the STS
_sts.leave(); // (in fact, we should not attempt to join the STS in the
// interval between finishing the cleanup pause and clearing
// the free_regions_coming flag) otherwise we might deadlock:
// a GC worker could be blocked waiting for the notification
// whereas this thread will be blocked for the pause to finish
// while it's trying to join the STS, which is conditional on
// the GC workers finishing.
g1h->reset_free_regions_coming();
double cleanup_end_sec = os::elapsedTime(); double cleanup_end_sec = os::elapsedTime();
if (PrintGC) { if (PrintGC) {
@ -240,6 +240,36 @@ void ConcurrentMarkThread::run() {
guarantee(cm()->cleanup_list_is_empty(), guarantee(cm()->cleanup_list_is_empty(),
"at this point there should be no regions on the cleanup list"); "at this point there should be no regions on the cleanup list");
// There is a tricky race before recording that the concurrent
// cleanup has completed and a potential Full GC starting around
// the same time. We want to make sure that the Full GC calls
// abort() on concurrent mark after
// record_concurrent_mark_cleanup_completed(), since abort() is
// the method that will reset the concurrent mark state. If we
// end up calling record_concurrent_mark_cleanup_completed()
// after abort() then we might incorrectly undo some of the work
// abort() did. Checking the has_aborted() flag after joining
// the STS allows the correct ordering of the two methods. There
// are two scenarios:
//
// a) If we reach here before the Full GC, the fact that we have
// joined the STS means that the Full GC cannot start until we
// leave the STS, so record_concurrent_mark_cleanup_completed()
// will complete before abort() is called.
//
// b) If we reach here during the Full GC, we'll be held up from
// joining the STS until the Full GC is done, which means that
// abort() will have completed and has_aborted() will return
// true to prevent us from calling
// record_concurrent_mark_cleanup_completed() (and, in fact, it's
// not needed any more as the concurrent mark state has been
// already reset).
_sts.join();
if (!cm()->has_aborted()) {
g1_policy->record_concurrent_mark_cleanup_completed();
}
_sts.leave();
if (cm()->has_aborted()) { if (cm()->has_aborted()) {
if (PrintGC) { if (PrintGC) {
gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->date_stamp(PrintGCDateStamps);
@ -248,7 +278,7 @@ void ConcurrentMarkThread::run() {
} }
} }
// we now want to allow clearing of the marking bitmap to be // We now want to allow clearing of the marking bitmap to be
// suspended by a collection pause. // suspended by a collection pause.
_sts.join(); _sts.join();
_cm->clearNextBitmap(); _cm->clearNextBitmap();

View File

@ -2011,8 +2011,6 @@ jint G1CollectedHeap::initialize() {
// Perform any initialization actions delegated to the policy. // Perform any initialization actions delegated to the policy.
g1_policy()->init(); g1_policy()->init();
g1_policy()->note_start_of_mark_thread();
_refine_cte_cl = _refine_cte_cl =
new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(), new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
g1_rem_set(), g1_rem_set(),
@ -3960,9 +3958,6 @@ void G1CollectedHeap::remove_self_forwarding_pointers() {
// _next_top_at_mark_start == top, _next_marked_bytes == 0 // _next_top_at_mark_start == top, _next_marked_bytes == 0
// _next_marked_bytes == next_marked_bytes. // _next_marked_bytes == next_marked_bytes.
} }
// Now make sure the region has the right index in the sorted array.
g1_policy()->note_change_in_marked_bytes(cur);
} }
cur = cur->next_in_collection_set(); cur = cur->next_in_collection_set();
} }
@ -5073,7 +5068,7 @@ public:
// Select discovered lists [i, i+stride, i+2*stride,...,limit) // Select discovered lists [i, i+stride, i+2*stride,...,limit)
for (int idx = i; idx < limit; idx += stride) { for (int idx = i; idx < limit; idx += stride) {
DiscoveredList& ref_list = rp->discovered_soft_refs()[idx]; DiscoveredList& ref_list = rp->discovered_refs()[idx];
DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive); DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
while (iter.has_next()) { while (iter.has_next()) {

View File

@ -225,16 +225,12 @@ G1CollectorPolicy::G1CollectorPolicy() :
_recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)), _recent_CS_bytes_surviving(new TruncatedSeq(NumPrevPausesForHeuristics)),
_recent_avg_pause_time_ratio(0.0), _recent_avg_pause_time_ratio(0.0),
_num_markings(0),
_n_marks(0),
_n_pauses_at_mark_end(0),
_all_full_gc_times_ms(new NumberSeq()), _all_full_gc_times_ms(new NumberSeq()),
// G1PausesBtwnConcMark defaults to -1 // G1PausesBtwnConcMark defaults to -1
// so the hack is to do the cast QQQ FIXME // so the hack is to do the cast QQQ FIXME
_pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark), _pauses_btwn_concurrent_mark((size_t)G1PausesBtwnConcMark),
_n_marks_since_last_pause(0),
_initiate_conc_mark_if_possible(false), _initiate_conc_mark_if_possible(false),
_during_initial_mark_pause(false), _during_initial_mark_pause(false),
_should_revert_to_full_young_gcs(false), _should_revert_to_full_young_gcs(false),
@ -440,6 +436,7 @@ G1CollectorPolicy::G1CollectorPolicy() :
_reserve_regions = 0; _reserve_regions = 0;
initialize_all(); initialize_all();
_collectionSetChooser = new CollectionSetChooser();
} }
// Increment "i", mod "len" // Increment "i", mod "len"
@ -921,6 +918,7 @@ void G1CollectorPolicy::record_full_collection_end() {
// Reset survivors SurvRateGroup. // Reset survivors SurvRateGroup.
_survivor_surv_rate_group->reset(); _survivor_surv_rate_group->reset();
update_young_list_target_length(); update_young_list_target_length();
_collectionSetChooser->updateAfterFullCollection();
} }
void G1CollectorPolicy::record_stop_world_start() { void G1CollectorPolicy::record_stop_world_start() {
@ -1029,39 +1027,7 @@ void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
_mark_cleanup_start_sec = os::elapsedTime(); _mark_cleanup_start_sec = os::elapsedTime();
} }
void void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
G1CollectorPolicy::record_concurrent_mark_cleanup_end(size_t freed_bytes,
size_t max_live_bytes) {
record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
record_concurrent_mark_cleanup_end_work2();
}
void
G1CollectorPolicy::
record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
size_t max_live_bytes) {
if (_n_marks < 2) {
_n_marks++;
}
}
// The important thing about this is that it includes "os::elapsedTime".
void G1CollectorPolicy::record_concurrent_mark_cleanup_end_work2() {
double end_time_sec = os::elapsedTime();
double elapsed_time_ms = (end_time_sec - _mark_cleanup_start_sec)*1000.0;
_concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
_cur_mark_stop_world_time_ms += elapsed_time_ms;
_prev_collection_pause_end_ms += elapsed_time_ms;
_mmu_tracker->add_pause(_mark_cleanup_start_sec, end_time_sec, true);
_num_markings++;
_n_pauses_at_mark_end = _n_pauses;
_n_marks_since_last_pause++;
}
void
G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
_should_revert_to_full_young_gcs = false; _should_revert_to_full_young_gcs = false;
_last_full_young_gc = true; _last_full_young_gc = true;
_in_marking_window = false; _in_marking_window = false;
@ -1501,11 +1467,9 @@ void G1CollectorPolicy::record_collection_pause_end() {
summary->record_other_time_ms(other_time_ms); summary->record_other_time_ms(other_time_ms);
} }
for (int i = 0; i < _aux_num; ++i) for (int i = 0; i < _aux_num; ++i)
if (_cur_aux_times_set[i]) if (_cur_aux_times_set[i]) {
_all_aux_times_ms[i].add(_cur_aux_times_ms[i]); _all_aux_times_ms[i].add(_cur_aux_times_ms[i]);
}
// Reset marks-between-pauses counter.
_n_marks_since_last_pause = 0;
// Update the efficiency-since-mark vars. // Update the efficiency-since-mark vars.
double proc_ms = elapsed_ms * (double) _parallel_gc_threads; double proc_ms = elapsed_ms * (double) _parallel_gc_threads;
@ -1729,6 +1693,8 @@ void G1CollectorPolicy::record_collection_pause_end() {
double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0; double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms); adjust_concurrent_refinement(update_rs_time, update_rs_processed_buffers, update_rs_time_goal_ms);
// </NEW PREDICTION> // </NEW PREDICTION>
assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
} }
#define EXT_SIZE_FORMAT "%d%s" #define EXT_SIZE_FORMAT "%d%s"
@ -2156,10 +2122,6 @@ size_t G1CollectorPolicy::expansion_amount() {
} }
} }
void G1CollectorPolicy::note_start_of_mark_thread() {
_mark_thread_startup_sec = os::elapsedTime();
}
class CountCSClosure: public HeapRegionClosure { class CountCSClosure: public HeapRegionClosure {
G1CollectorPolicy* _g1_policy; G1CollectorPolicy* _g1_policy;
public: public:
@ -2446,7 +2408,7 @@ public:
} }
}; };
bool G1CollectorPolicy_BestRegionsFirst::assertMarkedBytesDataOK() { bool G1CollectorPolicy::assertMarkedBytesDataOK() {
HRSortIndexIsOKClosure cl(_collectionSetChooser); HRSortIndexIsOKClosure cl(_collectionSetChooser);
_g1->heap_region_iterate(&cl); _g1->heap_region_iterate(&cl);
return true; return true;
@ -2532,12 +2494,6 @@ G1CollectorPolicy::decide_on_conc_mark_initiation() {
} }
} }
void
G1CollectorPolicy_BestRegionsFirst::
record_collection_pause_start(double start_time_sec, size_t start_used) {
G1CollectorPolicy::record_collection_pause_start(start_time_sec, start_used);
}
class KnownGarbageClosure: public HeapRegionClosure { class KnownGarbageClosure: public HeapRegionClosure {
CollectionSetChooser* _hrSorted; CollectionSetChooser* _hrSorted;
@ -2645,20 +2601,20 @@ public:
}; };
void void
G1CollectorPolicy_BestRegionsFirst:: G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
record_concurrent_mark_cleanup_end(size_t freed_bytes, double start_sec;
size_t max_live_bytes) { if (G1PrintParCleanupStats) {
double start; start_sec = os::elapsedTime();
if (G1PrintParCleanupStats) start = os::elapsedTime(); }
record_concurrent_mark_cleanup_end_work1(freed_bytes, max_live_bytes);
_collectionSetChooser->clearMarkedHeapRegions(); _collectionSetChooser->clearMarkedHeapRegions();
double clear_marked_end; double clear_marked_end_sec;
if (G1PrintParCleanupStats) { if (G1PrintParCleanupStats) {
clear_marked_end = os::elapsedTime(); clear_marked_end_sec = os::elapsedTime();
gclog_or_tty->print_cr(" clear marked regions + work1: %8.3f ms.", gclog_or_tty->print_cr(" clear marked regions: %8.3f ms.",
(clear_marked_end - start)*1000.0); (clear_marked_end_sec - start_sec) * 1000.0);
} }
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
const size_t OverpartitionFactor = 4; const size_t OverpartitionFactor = 4;
const size_t MinWorkUnit = 8; const size_t MinWorkUnit = 8;
@ -2677,27 +2633,25 @@ record_concurrent_mark_cleanup_end(size_t freed_bytes,
KnownGarbageClosure knownGarbagecl(_collectionSetChooser); KnownGarbageClosure knownGarbagecl(_collectionSetChooser);
_g1->heap_region_iterate(&knownGarbagecl); _g1->heap_region_iterate(&knownGarbagecl);
} }
double known_garbage_end; double known_garbage_end_sec;
if (G1PrintParCleanupStats) { if (G1PrintParCleanupStats) {
known_garbage_end = os::elapsedTime(); known_garbage_end_sec = os::elapsedTime();
gclog_or_tty->print_cr(" compute known garbage: %8.3f ms.", gclog_or_tty->print_cr(" compute known garbage: %8.3f ms.",
(known_garbage_end - clear_marked_end)*1000.0); (known_garbage_end_sec - clear_marked_end_sec) * 1000.0);
}
_collectionSetChooser->sortMarkedHeapRegions();
double sort_end;
if (G1PrintParCleanupStats) {
sort_end = os::elapsedTime();
gclog_or_tty->print_cr(" sorting: %8.3f ms.",
(sort_end - known_garbage_end)*1000.0);
} }
record_concurrent_mark_cleanup_end_work2(); _collectionSetChooser->sortMarkedHeapRegions();
double work2_end; double end_sec = os::elapsedTime();
if (G1PrintParCleanupStats) { if (G1PrintParCleanupStats) {
work2_end = os::elapsedTime(); gclog_or_tty->print_cr(" sorting: %8.3f ms.",
gclog_or_tty->print_cr(" work2: %8.3f ms.", (end_sec - known_garbage_end_sec) * 1000.0);
(work2_end - sort_end)*1000.0);
} }
double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
_concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
_cur_mark_stop_world_time_ms += elapsed_time_ms;
_prev_collection_pause_end_ms += elapsed_time_ms;
_mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
} }
// Add the heap region at the head of the non-incremental collection set // Add the heap region at the head of the non-incremental collection set
@ -2912,9 +2866,7 @@ void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream
} }
#endif // !PRODUCT #endif // !PRODUCT
void void G1CollectorPolicy::choose_collection_set(double target_pause_time_ms) {
G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
double target_pause_time_ms) {
// Set this here - in case we're not doing young collections. // Set this here - in case we're not doing young collections.
double non_young_start_time_sec = os::elapsedTime(); double non_young_start_time_sec = os::elapsedTime();
@ -3115,14 +3067,3 @@ G1CollectorPolicy_BestRegionsFirst::choose_collection_set(
_recorded_non_young_cset_choice_time_ms = _recorded_non_young_cset_choice_time_ms =
(non_young_end_time_sec - non_young_start_time_sec) * 1000.0; (non_young_end_time_sec - non_young_start_time_sec) * 1000.0;
} }
void G1CollectorPolicy_BestRegionsFirst::record_full_collection_end() {
G1CollectorPolicy::record_full_collection_end();
_collectionSetChooser->updateAfterFullCollection();
}
void G1CollectorPolicy_BestRegionsFirst::
record_collection_pause_end() {
G1CollectorPolicy::record_collection_pause_end();
assert(assertMarkedBytesDataOK(), "Marked regions not OK at pause end.");
}

View File

@ -84,7 +84,7 @@ public:
}; };
class G1CollectorPolicy: public CollectorPolicy { class G1CollectorPolicy: public CollectorPolicy {
protected: private:
// The number of pauses during the execution. // The number of pauses during the execution.
long _n_pauses; long _n_pauses;
@ -106,10 +106,7 @@ protected:
initialize_perm_generation(PermGen::MarkSweepCompact); initialize_perm_generation(PermGen::MarkSweepCompact);
} }
virtual size_t default_init_heap_size() { CollectionSetChooser* _collectionSetChooser;
// Pick some reasonable default.
return 8*M;
}
double _cur_collection_start_sec; double _cur_collection_start_sec;
size_t _cur_collection_pause_used_at_start_bytes; size_t _cur_collection_pause_used_at_start_bytes;
@ -316,7 +313,6 @@ private:
double update_rs_processed_buffers, double update_rs_processed_buffers,
double goal_ms); double goal_ms);
protected:
double _pause_time_target_ms; double _pause_time_target_ms;
double _recorded_young_cset_choice_time_ms; double _recorded_young_cset_choice_time_ms;
double _recorded_non_young_cset_choice_time_ms; double _recorded_non_young_cset_choice_time_ms;
@ -554,7 +550,7 @@ public:
return _short_lived_surv_rate_group->accum_surv_rate_pred(age); return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
} }
protected: private:
void print_stats(int level, const char* str, double value); void print_stats(int level, const char* str, double value);
void print_stats(int level, const char* str, int value); void print_stats(int level, const char* str, int value);
@ -588,10 +584,6 @@ protected:
// Statistics kept per GC stoppage, pause or full. // Statistics kept per GC stoppage, pause or full.
TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec; TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
// We track markings.
int _num_markings;
double _mark_thread_startup_sec; // Time at startup of marking thread
// Add a new GC of the given duration and end time to the record. // Add a new GC of the given duration and end time to the record.
void update_recent_gc_times(double end_time_sec, double elapsed_ms); void update_recent_gc_times(double end_time_sec, double elapsed_ms);
@ -664,12 +656,6 @@ protected:
// young list/collection set). // young list/collection set).
size_t _inc_cset_predicted_bytes_to_copy; size_t _inc_cset_predicted_bytes_to_copy;
// Info about marking.
int _n_marks; // Sticky at 2, so we know when we've done at least 2.
// The number of collection pauses at the end of the last mark.
size_t _n_pauses_at_mark_end;
// Stash a pointer to the g1 heap. // Stash a pointer to the g1 heap.
G1CollectedHeap* _g1; G1CollectedHeap* _g1;
@ -737,8 +723,6 @@ protected:
// Number of pauses between concurrent marking. // Number of pauses between concurrent marking.
size_t _pauses_btwn_concurrent_mark; size_t _pauses_btwn_concurrent_mark;
size_t _n_marks_since_last_pause;
// At the end of a pause we check the heap occupancy and we decide // At the end of a pause we check the heap occupancy and we decide
// whether we will start a marking cycle during the next pause. If // whether we will start a marking cycle during the next pause. If
// we decide that we want to do that, we will set this parameter to // we decide that we want to do that, we will set this parameter to
@ -810,6 +794,11 @@ protected:
bool predict_will_fit(size_t young_length, double base_time_ms, bool predict_will_fit(size_t young_length, double base_time_ms,
size_t base_free_regions, double target_pause_time_ms); size_t base_free_regions, double target_pause_time_ms);
// Count the number of bytes used in the CS.
void count_CS_bytes_used();
void update_young_list_size_using_newratio(size_t number_of_heap_regions);
public: public:
G1CollectorPolicy(); G1CollectorPolicy();
@ -836,22 +825,9 @@ public:
// This should be called after the heap is resized. // This should be called after the heap is resized.
void record_new_heap_size(size_t new_number_of_regions); void record_new_heap_size(size_t new_number_of_regions);
protected:
// Count the number of bytes used in the CS.
void count_CS_bytes_used();
// Together these do the base cleanup-recording work. Subclasses might
// want to put something between them.
void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
size_t max_live_bytes);
void record_concurrent_mark_cleanup_end_work2();
void update_young_list_size_using_newratio(size_t number_of_heap_regions);
public: public:
virtual void init(); void init();
// Create jstat counters for the policy. // Create jstat counters for the policy.
virtual void initialize_gc_policy_counters(); virtual void initialize_gc_policy_counters();
@ -876,10 +852,9 @@ public:
// start time, where the given number of bytes were used at the start. // start time, where the given number of bytes were used at the start.
// This may involve changing the desired size of a collection set. // This may involve changing the desired size of a collection set.
virtual void record_stop_world_start(); void record_stop_world_start();
virtual void record_collection_pause_start(double start_time_sec, void record_collection_pause_start(double start_time_sec, size_t start_used);
size_t start_used);
// Must currently be called while the world is stopped. // Must currently be called while the world is stopped.
void record_concurrent_mark_init_end(double void record_concurrent_mark_init_end(double
@ -887,23 +862,22 @@ public:
void record_mark_closure_time(double mark_closure_time_ms); void record_mark_closure_time(double mark_closure_time_ms);
virtual void record_concurrent_mark_remark_start(); void record_concurrent_mark_remark_start();
virtual void record_concurrent_mark_remark_end(); void record_concurrent_mark_remark_end();
virtual void record_concurrent_mark_cleanup_start(); void record_concurrent_mark_cleanup_start();
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes, void record_concurrent_mark_cleanup_end();
size_t max_live_bytes); void record_concurrent_mark_cleanup_completed();
virtual void record_concurrent_mark_cleanup_completed();
virtual void record_concurrent_pause(); void record_concurrent_pause();
virtual void record_concurrent_pause_end(); void record_concurrent_pause_end();
virtual void record_collection_pause_end(); void record_collection_pause_end();
void print_heap_transition(); void print_heap_transition();
// Record the fact that a full collection occurred. // Record the fact that a full collection occurred.
virtual void record_full_collection_start(); void record_full_collection_start();
virtual void record_full_collection_end(); void record_full_collection_end();
void record_gc_worker_start_time(int worker_i, double ms) { void record_gc_worker_start_time(int worker_i, double ms) {
_par_last_gc_worker_start_times_ms[worker_i] = ms; _par_last_gc_worker_start_times_ms[worker_i] = ms;
@ -1022,7 +996,7 @@ public:
// Choose a new collection set. Marks the chosen regions as being // Choose a new collection set. Marks the chosen regions as being
// "in_collection_set", and links them together. The head and number of // "in_collection_set", and links them together. The head and number of
// the collection set are available via access methods. // the collection set are available via access methods.
virtual void choose_collection_set(double target_pause_time_ms) = 0; void choose_collection_set(double target_pause_time_ms);
// The head of the list (via "next_in_collection_set()") representing the // The head of the list (via "next_in_collection_set()") representing the
// current collection set. // current collection set.
@ -1107,19 +1081,12 @@ public:
// If an expansion would be appropriate, because recent GC overhead had // If an expansion would be appropriate, because recent GC overhead had
// exceeded the desired limit, return an amount to expand by. // exceeded the desired limit, return an amount to expand by.
virtual size_t expansion_amount(); size_t expansion_amount();
// note start of mark thread
void note_start_of_mark_thread();
// The marked bytes of the "r" has changed; reclassify it's desirability
// for marking. Also asserts that "r" is eligible for a CS.
virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
#ifndef PRODUCT #ifndef PRODUCT
// Check any appropriate marked bytes info, asserting false if // Check any appropriate marked bytes info, asserting false if
// something's wrong, else returning "true". // something's wrong, else returning "true".
virtual bool assertMarkedBytesDataOK() = 0; bool assertMarkedBytesDataOK();
#endif #endif
// Print tracing information. // Print tracing information.
@ -1182,10 +1149,10 @@ public:
return ret; return ret;
} }
private:
// //
// Survivor regions policy. // Survivor regions policy.
// //
protected:
// Current tenuring threshold, set to 0 if the collector reaches the // Current tenuring threshold, set to 0 if the collector reaches the
// maximum amount of suvivors regions. // maximum amount of suvivors regions.
@ -1265,51 +1232,6 @@ public:
}; };
// This encapsulates a particular strategy for a g1 Collector.
//
// Start a concurrent mark when our heap size is n bytes
// greater then our heap size was at the last concurrent
// mark. Where n is a function of the CMSTriggerRatio
// and the MinHeapFreeRatio.
//
// Start a g1 collection pause when we have allocated the
// average number of bytes currently being freed in
// a collection, but only if it is at least one region
// full
//
// Resize Heap based on desired
// allocation space, where desired allocation space is
// a function of survival rate and desired future to size.
//
// Choose collection set by first picking all older regions
// which have a survival rate which beats our projected young
// survival rate. Then fill out the number of needed regions
// with young regions.
class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
CollectionSetChooser* _collectionSetChooser;
virtual void choose_collection_set(double target_pause_time_ms);
virtual void record_collection_pause_start(double start_time_sec,
size_t start_used);
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
size_t max_live_bytes);
virtual void record_full_collection_end();
public:
G1CollectorPolicy_BestRegionsFirst() {
_collectionSetChooser = new CollectionSetChooser();
}
void record_collection_pause_end();
// This is not needed any more, after the CSet choosing code was
// changed to use the pause prediction work. But let's leave the
// hook in just in case.
void note_change_in_marked_bytes(HeapRegion* r) { }
#ifndef PRODUCT
bool assertMarkedBytesDataOK();
#endif
};
// This should move to some place more general... // This should move to some place more general...
// If we have "n" measurements, and we've kept track of their "sum" and the // If we have "n" measurements, and we've kept track of their "sum" and the

View File

@ -105,19 +105,22 @@ ReferenceProcessor::ReferenceProcessor(MemRegion span,
_discovery_is_mt = mt_discovery; _discovery_is_mt = mt_discovery;
_num_q = MAX2(1, mt_processing_degree); _num_q = MAX2(1, mt_processing_degree);
_max_num_q = MAX2(_num_q, mt_discovery_degree); _max_num_q = MAX2(_num_q, mt_discovery_degree);
_discoveredSoftRefs = NEW_C_HEAP_ARRAY(DiscoveredList, _discovered_refs = NEW_C_HEAP_ARRAY(DiscoveredList,
_max_num_q * number_of_subclasses_of_ref()); _max_num_q * number_of_subclasses_of_ref());
if (_discoveredSoftRefs == NULL) { if (_discovered_refs == NULL) {
vm_exit_during_initialization("Could not allocated RefProc Array"); vm_exit_during_initialization("Could not allocated RefProc Array");
} }
_discoveredSoftRefs = &_discovered_refs[0];
_discoveredWeakRefs = &_discoveredSoftRefs[_max_num_q]; _discoveredWeakRefs = &_discoveredSoftRefs[_max_num_q];
_discoveredFinalRefs = &_discoveredWeakRefs[_max_num_q]; _discoveredFinalRefs = &_discoveredWeakRefs[_max_num_q];
_discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q]; _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
// Initialized all entries to NULL
// Initialize all entries to NULL
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
_discoveredSoftRefs[i].set_head(NULL); _discovered_refs[i].set_head(NULL);
_discoveredSoftRefs[i].set_length(0); _discovered_refs[i].set_length(0);
} }
// If we do barriers, cache a copy of the barrier set. // If we do barriers, cache a copy of the barrier set.
if (discovered_list_needs_barrier) { if (discovered_list_needs_barrier) {
_bs = Universe::heap()->barrier_set(); _bs = Universe::heap()->barrier_set();
@ -129,7 +132,7 @@ ReferenceProcessor::ReferenceProcessor(MemRegion span,
void ReferenceProcessor::verify_no_references_recorded() { void ReferenceProcessor::verify_no_references_recorded() {
guarantee(!_discovering_refs, "Discovering refs?"); guarantee(!_discovering_refs, "Discovering refs?");
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
guarantee(_discoveredSoftRefs[i].is_empty(), guarantee(_discovered_refs[i].is_empty(),
"Found non-empty discovered list"); "Found non-empty discovered list");
} }
} }
@ -138,9 +141,9 @@ void ReferenceProcessor::verify_no_references_recorded() {
void ReferenceProcessor::weak_oops_do(OopClosure* f) { void ReferenceProcessor::weak_oops_do(OopClosure* f) {
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
if (UseCompressedOops) { if (UseCompressedOops) {
f->do_oop((narrowOop*)_discoveredSoftRefs[i].adr_head()); f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
} else { } else {
f->do_oop((oop*)_discoveredSoftRefs[i].adr_head()); f->do_oop((oop*)_discovered_refs[i].adr_head());
} }
} }
} }
@ -423,15 +426,15 @@ void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr
AbstractRefProcTaskExecutor* task_executor) { AbstractRefProcTaskExecutor* task_executor) {
if (_processing_is_mt && task_executor != NULL) { if (_processing_is_mt && task_executor != NULL) {
// Parallel code // Parallel code
RefProcEnqueueTask tsk(*this, _discoveredSoftRefs, RefProcEnqueueTask tsk(*this, _discovered_refs,
pending_list_addr, _max_num_q); pending_list_addr, _max_num_q);
task_executor->execute(tsk); task_executor->execute(tsk);
} else { } else {
// Serial code: call the parent class's implementation // Serial code: call the parent class's implementation
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
enqueue_discovered_reflist(_discoveredSoftRefs[i], pending_list_addr); enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
_discoveredSoftRefs[i].set_head(NULL); _discovered_refs[i].set_head(NULL);
_discoveredSoftRefs[i].set_length(0); _discovered_refs[i].set_length(0);
} }
} }
} }
@ -691,7 +694,7 @@ void ReferenceProcessor::abandon_partial_discovery() {
if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) { if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i)); gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
} }
abandon_partial_discovered_list(_discoveredSoftRefs[i]); abandon_partial_discovered_list(_discovered_refs[i]);
} }
} }
@ -952,7 +955,7 @@ void ReferenceProcessor::clean_up_discovered_references() {
"\nScrubbing %s discovered list of Null referents", "\nScrubbing %s discovered list of Null referents",
list_name(i)); list_name(i));
} }
clean_up_discovered_reflist(_discoveredSoftRefs[i]); clean_up_discovered_reflist(_discovered_refs[i]);
} }
} }
@ -1402,7 +1405,7 @@ void ReferenceProcessor::verify_ok_to_handle_reflists() {
void ReferenceProcessor::clear_discovered_references() { void ReferenceProcessor::clear_discovered_references() {
guarantee(!_discovering_refs, "Discovering refs?"); guarantee(!_discovering_refs, "Discovering refs?");
for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) { for (int i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
clear_discovered_references(_discoveredSoftRefs[i]); clear_discovered_references(_discovered_refs[i]);
} }
} }

View File

@ -255,7 +255,11 @@ class ReferenceProcessor : public CHeapObj {
int _num_q; int _num_q;
// The maximum MT'ness degree of the queues below // The maximum MT'ness degree of the queues below
int _max_num_q; int _max_num_q;
// Arrays of lists of oops, one per thread
// Master array of discovered oops
DiscoveredList* _discovered_refs;
// Arrays of lists of oops, one per thread (pointers into master array above)
DiscoveredList* _discoveredSoftRefs; DiscoveredList* _discoveredSoftRefs;
DiscoveredList* _discoveredWeakRefs; DiscoveredList* _discoveredWeakRefs;
DiscoveredList* _discoveredFinalRefs; DiscoveredList* _discoveredFinalRefs;
@ -267,7 +271,8 @@ class ReferenceProcessor : public CHeapObj {
int num_q() { return _num_q; } int num_q() { return _num_q; }
int max_num_q() { return _max_num_q; } int max_num_q() { return _max_num_q; }
void set_active_mt_degree(int v) { _num_q = v; } void set_active_mt_degree(int v) { _num_q = v; }
DiscoveredList* discovered_soft_refs() { return _discoveredSoftRefs; }
DiscoveredList* discovered_refs() { return _discovered_refs; }
ReferencePolicy* setup_policy(bool always_clear) { ReferencePolicy* setup_policy(bool always_clear) {
_current_soft_ref_policy = always_clear ? _current_soft_ref_policy = always_clear ?
@ -411,6 +416,7 @@ class ReferenceProcessor : public CHeapObj {
// constructor // constructor
ReferenceProcessor(): ReferenceProcessor():
_span((HeapWord*)NULL, (HeapWord*)NULL), _span((HeapWord*)NULL, (HeapWord*)NULL),
_discovered_refs(NULL),
_discoveredSoftRefs(NULL), _discoveredWeakRefs(NULL), _discoveredSoftRefs(NULL), _discoveredWeakRefs(NULL),
_discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL), _discoveredFinalRefs(NULL), _discoveredPhantomRefs(NULL),
_discovering_refs(false), _discovering_refs(false),

View File

@ -893,7 +893,7 @@ jint Universe::initialize_heap() {
} else if (UseG1GC) { } else if (UseG1GC) {
#ifndef SERIALGC #ifndef SERIALGC
G1CollectorPolicy* g1p = new G1CollectorPolicy_BestRegionsFirst(); G1CollectorPolicy* g1p = new G1CollectorPolicy();
G1CollectedHeap* g1h = new G1CollectedHeap(g1p); G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
Universe::_collectedHeap = g1h; Universe::_collectedHeap = g1h;
#else // SERIALGC #else // SERIALGC