This commit is contained in:
Chris Hegarty 2018-04-17 18:18:53 +01:00
commit 049184f334
385 changed files with 11111 additions and 7184 deletions

View File

@ -453,7 +453,7 @@ AC_DEFUN([FLAGS_SETUP_CFLAGS_HELPER],
elif test "x$TOOLCHAIN_TYPE" = xmicrosoft; then
ALWAYS_DEFINES_JDK="-DWIN32_LEAN_AND_MEAN -D_CRT_SECURE_NO_DEPRECATE \
-D_CRT_NONSTDC_NO_DEPRECATE -DWIN32 -DIAL"
ALWAYS_DEFINES_JVM="-DNOMINMAX"
ALWAYS_DEFINES_JVM="-DNOMINMAX -DWIN32_LEAN_AND_MEAN"
fi
###############################################################################

View File

@ -34,6 +34,7 @@ ifeq ($(TOOLCHAIN_TYPE), gcc)
BUILD_LIBJVM_jvmciCompilerToVM.cpp_CXXFLAGS := -fno-var-tracking-assignments
BUILD_LIBJVM_jvmciCompilerToVMInit.cpp_CXXFLAGS := -fno-var-tracking-assignments
BUILD_LIBJVM_assembler_x86.cpp_CXXFLAGS := -Wno-maybe-uninitialized
BUILD_LIBJVM_cardTableBarrierSetAssembler_x86.cpp_CXXFLAGS := -Wno-maybe-uninitialized
BUILD_LIBJVM_interp_masm_x86.cpp_CXXFLAGS := -Wno-uninitialized
endif

View File

@ -5847,8 +5847,8 @@ operand immPollPage()
operand immByteMapBase()
%{
// Get base of card map
predicate(Universe::heap()->barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
(jbyte*)n->get_ptr() == ((CardTableBarrierSet*)(Universe::heap()->barrier_set()))->card_table()->byte_map_base());
predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
(jbyte*)n->get_ptr() == ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base());
match(ConP);
op_cost(0);
@ -16167,9 +16167,8 @@ instruct string_equalsL(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
format %{ "String Equals $str1,$str2,$cnt -> $result" %}
ins_encode %{
// Count is in 8-bit bytes; non-Compact chars are 16 bits.
__ arrays_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register,
1, /*is_string*/true);
__ string_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register, 1);
%}
ins_pipe(pipe_class_memory);
%}
@ -16184,42 +16183,42 @@ instruct string_equalsU(iRegP_R1 str1, iRegP_R3 str2, iRegI_R4 cnt,
format %{ "String Equals $str1,$str2,$cnt -> $result" %}
ins_encode %{
// Count is in 8-bit bytes; non-Compact chars are 16 bits.
__ asrw($cnt$$Register, $cnt$$Register, 1);
__ arrays_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register,
2, /*is_string*/true);
__ string_equals($str1$$Register, $str2$$Register,
$result$$Register, $cnt$$Register, 2);
%}
ins_pipe(pipe_class_memory);
%}
instruct array_equalsB(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
iRegP_R10 tmp, rFlagsReg cr)
iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
iRegP_R10 tmp, rFlagsReg cr)
%{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
match(Set result (AryEq ary1 ary2));
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %}
ins_encode %{
__ arrays_equals($ary1$$Register, $ary2$$Register,
$result$$Register, $tmp$$Register,
1, /*is_string*/false);
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
$result$$Register, $tmp$$Register, 1);
%}
ins_pipe(pipe_class_memory);
%}
instruct array_equalsC(iRegP_R1 ary1, iRegP_R2 ary2, iRegI_R0 result,
iRegP_R10 tmp, rFlagsReg cr)
iRegP_R3 tmp1, iRegP_R4 tmp2, iRegP_R5 tmp3,
iRegP_R10 tmp, rFlagsReg cr)
%{
predicate(((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
match(Set result (AryEq ary1 ary2));
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, KILL cr);
effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
format %{ "Array Equals $ary1,ary2 -> $result // KILL $tmp" %}
ins_encode %{
__ arrays_equals($ary1$$Register, $ary2$$Register,
$result$$Register, $tmp$$Register,
2, /*is_string*/false);
$tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
$result$$Register, $tmp$$Register, 2);
%}
ins_pipe(pipe_class_memory);
%}

View File

@ -819,7 +819,7 @@ public:
void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \
starti; \
f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \
rf(Rn, 5), rf(Rd, 0); \
zrf(Rn, 5), rf(Rd, 0); \
}
INSN(sbfmw, 0b0001001100);

View File

@ -46,6 +46,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
@ -1106,7 +1107,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
// arg0 : previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ mov(r0, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), r0);
@ -1118,13 +1119,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
const Register thread = rthread;
const Register tmp = rscratch1;
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
@ -1162,7 +1159,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
{
StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ mov(r0, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), r0);
@ -1181,10 +1178,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
const Register thread = rthread;
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
const Register card_offset = rscratch2;
// LR is free here, so we can use it to hold the byte_map_base.

View File

@ -25,12 +25,12 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "runtime/thread.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ masm->
@ -75,3 +75,233 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
__ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSet::write_ref_array_post_entry), 2);
__ pop(saved_regs, sp);
}
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
assert(thread == rthread, "must be");
Label done;
Label runtime;
assert_different_registers(obj, pre_val, tmp, rscratch1);
assert(pre_val != noreg && tmp != noreg, "expecting a register");
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ldrw(tmp, in_progress);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldrb(tmp, in_progress);
}
__ cbzw(tmp, done);
// Do we need to load the previous value?
if (obj != noreg) {
__ load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
__ cbz(pre_val, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
__ ldr(tmp, index); // tmp := *index_adr
__ cbz(tmp, runtime); // tmp == 0?
// If yes, goto runtime
__ sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
__ str(tmp, index); // *index_adr := tmp
__ ldr(rscratch1, buffer);
__ add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr
// Record the previous value
__ str(pre_val, Address(tmp, 0));
__ b(done);
__ bind(runtime);
// save the live input values
RegSet saved = RegSet::of(pre_val);
if (tosca_live) saved += RegSet::of(r0);
if (obj != noreg) saved += RegSet::of(obj);
__ push(saved, sp);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
if (expand_call) {
assert(pre_val != c_rarg1, "smashed arg");
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
__ pop(saved, sp);
__ bind(done);
}
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
assert(thread == rthread, "must be");
assert_different_registers(store_addr, new_val, thread, tmp, tmp2,
rscratch1);
assert(store_addr != noreg && new_val != noreg && tmp != noreg
&& tmp2 != noreg, "expecting a register");
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
__ eor(tmp, store_addr, new_val);
__ lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
__ cbz(tmp, done);
// crosses regions, storing NULL?
__ cbz(new_val, done);
// storing region crossing non-NULL, is card already dirty?
ExternalAddress cardtable((address) ct->byte_map_base());
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
const Register card_addr = tmp;
__ lsr(card_addr, store_addr, CardTable::card_shift);
// get the address of the card
__ load_byte_map_base(tmp2);
__ add(card_addr, card_addr, tmp2);
__ ldrb(tmp2, Address(card_addr));
__ cmpw(tmp2, (int)G1CardTable::g1_young_card_val());
__ br(Assembler::EQ, done);
assert((int)CardTable::dirty_card_val() == 0, "must be 0");
__ membar(Assembler::StoreLoad);
__ ldrb(tmp2, Address(card_addr));
__ cbzw(tmp2, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
__ strb(zr, Address(card_addr));
__ ldr(rscratch1, queue_index);
__ cbz(rscratch1, runtime);
__ sub(rscratch1, rscratch1, wordSize);
__ str(rscratch1, queue_index);
__ ldr(tmp2, buffer);
__ str(card_addr, Address(tmp2, rscratch1));
__ b(done);
__ bind(runtime);
// save the live input values
RegSet saved = RegSet::of(store_addr, new_val);
__ push(saved, sp);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
__ pop(saved, sp);
__ bind(done);
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
ModRefBarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
g1_write_barrier_pre(masm /* masm */,
noreg /* obj */,
dst /* pre_val */,
rthread /* thread */,
tmp1 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
}
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
// flatten object address if needed
if (dst.index() == noreg && dst.offset() == 0) {
if (dst.base() != r3) {
__ mov(r3, dst.base());
}
} else {
__ lea(r3, dst);
}
g1_write_barrier_pre(masm,
r3 /* obj */,
tmp2 /* pre_val */,
rthread /* thread */,
tmp1 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
if (val == noreg) {
__ store_heap_oop_null(Address(r3, 0));
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops) {
new_val = rscratch2;
__ mov(new_val, val);
}
__ store_heap_oop(Address(r3, 0), val);
g1_write_barrier_post(masm,
r3 /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
tmp1 /* tmp */,
tmp2 /* tmp2 */);
}
}
#undef __

View File

@ -34,6 +34,28 @@ protected:
Register addr, Register count, RegSet saved_regs);
void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register start, Register end, Register tmp, RegSet saved_regs);
void g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
public:
void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread);
};
#endif // CPU_AARCH64_GC_G1_G1BARRIERSETASSEMBLER_AARCH64_HPP

View File

@ -0,0 +1,66 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#define __ masm->
void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
switch (type) {
case T_OBJECT:
case T_ARRAY: {
if (on_heap) {
__ load_heap_oop(dst, src);
} else {
assert(on_root, "why else?");
__ ldr(dst, src);
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
switch (type) {
case T_OBJECT:
case T_ARRAY: {
if (on_heap) {
__ store_heap_oop(dst, val);
} else {
assert(on_root, "why else?");
__ str(val, dst);
}
break;
}
default: Unimplemented();
}
}

View File

@ -35,6 +35,12 @@ public:
Register addr, Register count, RegSet saved_regs) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
Register start, Register end, Register tmp, RegSet saved_regs) {}
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
virtual void barrier_stubs_init() {}
};
#endif // CPU_AARCH64_GC_SHARED_BARRIERSETASSEMBLER_AARCH64_HPP

View File

@ -28,15 +28,44 @@
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/cardTableBarrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
void CardTableBarrierSetAssembler::store_check(MacroAssembler* masm, Register obj, Address dst) {
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs->kind() == BarrierSet::CardTableBarrierSet, "Wrong barrier set kind");
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
__ lsr(obj, obj, CardTable::card_shift);
assert(CardTable::dirty_card_val() == 0, "must be");
__ load_byte_map_base(rscratch1);
if (UseCondCardMark) {
Label L_already_dirty;
__ membar(Assembler::StoreLoad);
__ ldrb(rscratch2, Address(obj, rscratch1));
__ cbz(rscratch2, L_already_dirty);
__ strb(zr, Address(obj, rscratch1));
__ bind(L_already_dirty);
} else {
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
__ membar(Assembler::StoreStore);
}
__ strb(zr, Address(obj, rscratch1));
}
}
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register start, Register end, Register scratch, RegSet saved_regs) {
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
@ -58,3 +87,22 @@ void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembl
__ subs(count, count, 1);
__ br(Assembler::GE, L_loop);
}
void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
if (val == noreg) {
__ store_heap_oop_null(dst);
} else {
__ store_heap_oop(dst, val);
// flatten object address if needed
if (!precise || (dst.index() == noreg && dst.offset() == 0)) {
store_check(masm, dst.base(), dst);
} else {
__ lea(r3, dst);
store_check(masm, r3, dst);
}
}
}

View File

@ -30,8 +30,13 @@
class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
void store_check(MacroAssembler* masm, Register obj, Address dst);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register start, Register end, Register tmp, RegSet saved_regs);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
};
#endif // #ifndef CPU_AARCH64_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_AARCH64_HPP

View File

@ -43,3 +43,18 @@ void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, Decorat
gen_write_ref_array_post_barrier(masm, decorators, start, end, tmp, saved_regs);
}
}
void ModRefBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
}
void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
if (type == T_OBJECT || type == T_ARRAY) {
oop_store_at(masm, decorators, type, dst, val, tmp1, tmp2);
} else {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
}
}

View File

@ -28,6 +28,10 @@
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
// accesses, which are overridden in the concrete BarrierSetAssembler.
class ModRefBarrierSetAssembler: public BarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
@ -35,11 +39,16 @@ protected:
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register start, Register end, Register tmp, RegSet saved_regs) {}
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
public:
virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
Register addr, Register count, RegSet saved_regs);
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
Register start, Register end, Register tmp, RegSet saved_regs);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
};
#endif // CPU_AARCH64_GC_SHARED_MODREFBARRIERSETASSEMBLER_AARCH64_HPP

View File

@ -147,6 +147,10 @@ define_pd_global(intx, InlineSmallCode, 1000);
"Use CRC32 instructions for CRC32 computation") \
product(bool, UseSIMDForMemoryOps, false, \
"Use SIMD instructions in generated memory move code") \
product(bool, UseSIMDForArrayEquals, true, \
"Use SIMD instructions in generated array equals code") \
product(bool, UseSimpleArrayEquals, false, \
"Use simpliest and shortest implementation for array equals") \
product(bool, AvoidUnalignedAccesses, false, \
"Avoid generating unaligned memory accesses") \
product(bool, UseLSE, false, \

View File

@ -24,6 +24,8 @@
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_aarch64.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
@ -277,9 +279,8 @@ void InterpreterMacroAssembler::load_resolved_reference_at_index(
resolve_oop_handle(result);
// Add in the index
add(result, result, tmp);
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
// The resulting oop is null if the reference is not yet resolved.
// It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(this, IN_HEAP, T_OBJECT, result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), /*tmp1*/ noreg, /*tmp_thread*/ noreg);
}
void InterpreterMacroAssembler::load_resolved_klass_at_offset(

View File

@ -29,7 +29,9 @@
#include "jvm.h"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "interpreter/interpreter.hpp"
#include "compiler/disassembler.hpp"
@ -50,7 +52,6 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif
@ -2091,6 +2092,28 @@ void MacroAssembler::verify_heapbase(const char* msg) {
}
#endif
void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) {
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
Label done, not_weak;
cbz(value, done); // Use NULL as-is.
STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
tbz(r0, 0, not_weak); // Test for jweak tag.
// Resolve jweak.
bs->load_at(this, IN_ROOT | ON_PHANTOM_OOP_REF, T_OBJECT,
value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
verify_oop(value);
b(done);
bind(not_weak);
// Resolve (untagged) jobject.
bs->load_at(this, IN_ROOT | ON_STRONG_OOP_REF, T_OBJECT,
value, Address(value, 0), tmp, thread);
verify_oop(value);
bind(done);
}
void MacroAssembler::stop(const char* msg) {
address ip = pc();
pusha();
@ -3609,43 +3632,6 @@ void MacroAssembler::cmpptr(Register src1, Address src2) {
cmp(src1, rscratch1);
}
void MacroAssembler::store_check(Register obj, Address dst) {
store_check(obj);
}
void MacroAssembler::store_check(Register obj) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableBarrierSet,
"Wrong barrier set kind");
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
lsr(obj, obj, CardTable::card_shift);
assert(CardTable::dirty_card_val() == 0, "must be");
load_byte_map_base(rscratch1);
if (UseCondCardMark) {
Label L_already_dirty;
membar(StoreLoad);
ldrb(rscratch2, Address(obj, rscratch1));
cbz(rscratch2, L_already_dirty);
strb(zr, Address(obj, rscratch1));
bind(L_already_dirty);
} else {
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
membar(StoreStore);
}
strb(zr, Address(obj, rscratch1));
}
}
void MacroAssembler::load_klass(Register dst, Register src) {
if (UseCompressedClassPointers) {
ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
@ -4009,190 +3995,6 @@ void MacroAssembler::store_heap_oop_null(Address dst) {
str(zr, dst);
}
#if INCLUDE_ALL_GCS
/*
* g1_write_barrier_pre -- G1GC pre-write barrier for store of new_val at
* store_addr.
*
* Allocates rscratch1
*/
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
assert(thread == rthread, "must be");
Label done;
Label runtime;
assert_different_registers(obj, pre_val, tmp, rscratch1);
assert(pre_val != noreg && tmp != noreg, "expecting a register");
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
ldrw(tmp, in_progress);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
ldrb(tmp, in_progress);
}
cbzw(tmp, done);
// Do we need to load the previous value?
if (obj != noreg) {
load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
cbz(pre_val, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
ldr(tmp, index); // tmp := *index_adr
cbz(tmp, runtime); // tmp == 0?
// If yes, goto runtime
sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
str(tmp, index); // *index_adr := tmp
ldr(rscratch1, buffer);
add(tmp, tmp, rscratch1); // tmp := tmp + *buffer_adr
// Record the previous value
str(pre_val, Address(tmp, 0));
b(done);
bind(runtime);
// save the live input values
push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
if (expand_call) {
assert(pre_val != c_rarg1, "smashed arg");
pass_arg1(this, thread);
pass_arg0(this, pre_val);
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
bind(done);
}
/*
* g1_write_barrier_post -- G1GC post-write barrier for store of new_val at
* store_addr
*
* Allocates rscratch1
*/
void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
assert(thread == rthread, "must be");
assert_different_registers(store_addr, new_val, thread, tmp, tmp2,
rscratch1);
assert(store_addr != noreg && new_val != noreg && tmp != noreg
&& tmp2 != noreg, "expecting a register");
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
BarrierSet* bs = Universe::heap()->barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
eor(tmp, store_addr, new_val);
lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
cbz(tmp, done);
// crosses regions, storing NULL?
cbz(new_val, done);
// storing region crossing non-NULL, is card already dirty?
ExternalAddress cardtable((address) ct->byte_map_base());
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
const Register card_addr = tmp;
lsr(card_addr, store_addr, CardTable::card_shift);
// get the address of the card
load_byte_map_base(tmp2);
add(card_addr, card_addr, tmp2);
ldrb(tmp2, Address(card_addr));
cmpw(tmp2, (int)G1CardTable::g1_young_card_val());
br(Assembler::EQ, done);
assert((int)CardTable::dirty_card_val() == 0, "must be 0");
membar(Assembler::StoreLoad);
ldrb(tmp2, Address(card_addr));
cbzw(tmp2, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
strb(zr, Address(card_addr));
ldr(rscratch1, queue_index);
cbz(rscratch1, runtime);
sub(rscratch1, rscratch1, wordSize);
str(rscratch1, queue_index);
ldr(tmp2, buffer);
str(card_addr, Address(tmp2, rscratch1));
b(done);
bind(runtime);
// save the live input values
push(store_addr->bit(true) | new_val->bit(true), sp);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
pop(store_addr->bit(true) | new_val->bit(true), sp);
bind(done);
}
#endif // INCLUDE_ALL_GCS
Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
int index = oop_recorder()->allocate_metadata_index(obj);
@ -4515,7 +4317,7 @@ void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byt
void MacroAssembler::load_byte_map_base(Register reg) {
jbyte *byte_map_base =
((CardTableBarrierSet*)(Universe::heap()->barrier_set()))->card_table()->byte_map_base();
((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
if (is_valid_AArch64_address((address)byte_map_base)) {
// Strictly speaking the byte_map_base isn't an address at all,
@ -5182,28 +4984,11 @@ void MacroAssembler::has_negatives(Register ary1, Register len, Register result)
BIND(DONE);
}
// Compare Strings or char/byte arrays.
// is_string is true iff this is a string comparison.
// For Strings we're passed the address of the first characters in a1
// and a2 and the length in cnt1.
// For byte and char arrays we're passed the arrays themselves and we
// have to extract length fields and do null checks here.
// elem_size is the element size in bytes: either 1 or 2.
// There are two implementations. For arrays >= 8 bytes, all
// comparisons (including the final one, which may overlap) are
// performed 8 bytes at a time. For arrays < 8 bytes, we compare a
// halfword, then a short, and then a byte.
void MacroAssembler::arrays_equals(Register a1, Register a2,
Register result, Register cnt1,
int elem_size, bool is_string)
void MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
Register tmp4, Register tmp5, Register result,
Register cnt1, int elem_size)
{
Label SAME, DONE, SHORT, NEXT_WORD, ONE;
Label DONE;
Register tmp1 = rscratch1;
Register tmp2 = rscratch2;
Register cnt2 = tmp2; // cnt2 only used in array length compare
@ -5212,6 +4997,7 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset
= arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
assert(elem_size == 1 || elem_size == 2, "must be char or byte");
assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
@ -5220,43 +5006,229 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
{
const char kind = (elem_size == 2) ? 'U' : 'L';
char comment[64];
snprintf(comment, sizeof comment, "%s%c%s {",
is_string ? "string_equals" : "array_equals",
kind, "{");
snprintf(comment, sizeof comment, "array_equals%c{", kind);
BLOCK_COMMENT(comment);
}
#endif
if (UseSimpleArrayEquals) {
Label NEXT_WORD, SHORT, SAME, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
// if (a1==a2)
// return true;
// if (a==null || a2==null)
// return false;
// a1 & a2 == 0 means (some-pointer is null) or
// (very-rare-or-even-probably-impossible-pointer-values)
// so, we can save one branch in most cases
eor(rscratch1, a1, a2);
tst(a1, a2);
mov(result, false);
cbz(rscratch1, SAME);
br(EQ, A_MIGHT_BE_NULL);
// if (a1.length != a2.length)
// return false;
bind(A_IS_NOT_NULL);
ldrw(cnt1, Address(a1, length_offset));
ldrw(cnt2, Address(a2, length_offset));
eorw(tmp5, cnt1, cnt2);
cbnzw(tmp5, DONE);
lea(a1, Address(a1, base_offset));
lea(a2, Address(a2, base_offset));
// Check for short strings, i.e. smaller than wordSize.
subs(cnt1, cnt1, elem_per_word);
br(Assembler::LT, SHORT);
// Main 8 byte comparison loop.
bind(NEXT_WORD); {
ldr(tmp1, Address(post(a1, wordSize)));
ldr(tmp2, Address(post(a2, wordSize)));
subs(cnt1, cnt1, elem_per_word);
eor(tmp5, tmp1, tmp2);
cbnz(tmp5, DONE);
} br(GT, NEXT_WORD);
// Last longword. In the case where length == 4 we compare the
// same longword twice, but that's still faster than another
// conditional branch.
// cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
// length == 4.
if (log_elem_size > 0)
lsl(cnt1, cnt1, log_elem_size);
ldr(tmp3, Address(a1, cnt1));
ldr(tmp4, Address(a2, cnt1));
eor(tmp5, tmp3, tmp4);
cbnz(tmp5, DONE);
b(SAME);
bind(A_MIGHT_BE_NULL);
// in case both a1 and a2 are not-null, proceed with loads
cbz(a1, DONE);
cbz(a2, DONE);
b(A_IS_NOT_NULL);
bind(SHORT);
tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
{
ldrw(tmp1, Address(post(a1, 4)));
ldrw(tmp2, Address(post(a2, 4)));
eorw(tmp5, tmp1, tmp2);
cbnzw(tmp5, DONE);
}
bind(TAIL03);
tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
{
ldrh(tmp3, Address(post(a1, 2)));
ldrh(tmp4, Address(post(a2, 2)));
eorw(tmp5, tmp3, tmp4);
cbnzw(tmp5, DONE);
}
bind(TAIL01);
if (elem_size == 1) { // Only needed when comparing byte arrays.
tbz(cnt1, 0, SAME); // 0-1 bytes left.
{
ldrb(tmp1, a1);
ldrb(tmp2, a2);
eorw(tmp5, tmp1, tmp2);
cbnzw(tmp5, DONE);
}
}
bind(SAME);
mov(result, true);
} else {
Label NEXT_DWORD, A_IS_NULL, SHORT, TAIL, TAIL2, STUB, EARLY_OUT,
CSET_EQ, LAST_CHECK, LEN_IS_ZERO, SAME;
cbz(a1, A_IS_NULL);
ldrw(cnt1, Address(a1, length_offset));
cbz(a2, A_IS_NULL);
ldrw(cnt2, Address(a2, length_offset));
mov(result, false);
// on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
// faster to perform another branch before comparing a1 and a2
cmp(cnt1, elem_per_word);
br(LE, SHORT); // short or same
cmp(a1, a2);
br(EQ, SAME);
ldr(tmp3, Address(pre(a1, base_offset)));
cmp(cnt1, stubBytesThreshold);
br(GE, STUB);
ldr(tmp4, Address(pre(a2, base_offset)));
sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
cmp(cnt2, cnt1);
br(NE, DONE);
// Main 16 byte comparison loop with 2 exits
bind(NEXT_DWORD); {
ldr(tmp1, Address(pre(a1, wordSize)));
ldr(tmp2, Address(pre(a2, wordSize)));
subs(cnt1, cnt1, 2 * elem_per_word);
br(LE, TAIL);
eor(tmp4, tmp3, tmp4);
cbnz(tmp4, DONE);
ldr(tmp3, Address(pre(a1, wordSize)));
ldr(tmp4, Address(pre(a2, wordSize)));
cmp(cnt1, elem_per_word);
br(LE, TAIL2);
cmp(tmp1, tmp2);
} br(EQ, NEXT_DWORD);
b(DONE);
bind(TAIL);
eor(tmp4, tmp3, tmp4);
eor(tmp2, tmp1, tmp2);
lslv(tmp2, tmp2, tmp5);
orr(tmp5, tmp4, tmp2);
cmp(tmp5, zr);
b(CSET_EQ);
bind(TAIL2);
eor(tmp2, tmp1, tmp2);
cbnz(tmp2, DONE);
b(LAST_CHECK);
bind(STUB);
ldr(tmp4, Address(pre(a2, base_offset)));
cmp(cnt2, cnt1);
br(NE, DONE);
if (elem_size == 2) { // convert to byte counter
lsl(cnt1, cnt1, 1);
}
eor(tmp5, tmp3, tmp4);
cbnz(tmp5, DONE);
RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
assert(stub.target() != NULL, "array_equals_long stub has not been generated");
trampoline_call(stub);
b(DONE);
bind(SAME);
mov(result, true);
b(DONE);
bind(A_IS_NULL);
// a1 or a2 is null. if a2 == a2 then return true. else return false
cmp(a1, a2);
b(CSET_EQ);
bind(EARLY_OUT);
// (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
// so, if a2 == null => return false(0), else return true, so we can return a2
mov(result, a2);
b(DONE);
bind(LEN_IS_ZERO);
cmp(cnt2, zr);
b(CSET_EQ);
bind(SHORT);
cbz(cnt1, LEN_IS_ZERO);
sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
ldr(tmp3, Address(a1, base_offset));
ldr(tmp4, Address(a2, base_offset));
bind(LAST_CHECK);
eor(tmp4, tmp3, tmp4);
lslv(tmp5, tmp4, tmp5);
cmp(tmp5, zr);
bind(CSET_EQ);
cset(result, EQ);
}
// That's it.
bind(DONE);
BLOCK_COMMENT("} array_equals");
}
// Compare Strings
// For Strings we're passed the address of the first characters in a1
// and a2 and the length in cnt1.
// elem_size is the element size in bytes: either 1 or 2.
// There are two implementations. For arrays >= 8 bytes, all
// comparisons (including the final one, which may overlap) are
// performed 8 bytes at a time. For strings < 8 bytes, we compare a
// halfword, then a short, and then a byte.
void MacroAssembler::string_equals(Register a1, Register a2,
Register result, Register cnt1, int elem_size)
{
Label SAME, DONE, SHORT, NEXT_WORD;
Register tmp1 = rscratch1;
Register tmp2 = rscratch2;
Register cnt2 = tmp2; // cnt2 only used in array length compare
assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte");
assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
#ifndef PRODUCT
{
const char kind = (elem_size == 2) ? 'U' : 'L';
char comment[64];
snprintf(comment, sizeof comment, "{string_equals%c", kind);
BLOCK_COMMENT(comment);
}
#endif
mov(result, false);
if (!is_string) {
// if (a==a2)
// return true;
eor(rscratch1, a1, a2);
cbz(rscratch1, SAME);
// if (a==null || a2==null)
// return false;
cbz(a1, DONE);
cbz(a2, DONE);
// if (a1.length != a2.length)
// return false;
ldrw(cnt1, Address(a1, length_offset));
ldrw(cnt2, Address(a2, length_offset));
eorw(tmp1, cnt1, cnt2);
cbnzw(tmp1, DONE);
lea(a1, Address(a1, base_offset));
lea(a2, Address(a2, base_offset));
}
// Check for short strings, i.e. smaller than wordSize.
subs(cnt1, cnt1, elem_per_word);
subs(cnt1, cnt1, wordSize);
br(Assembler::LT, SHORT);
// Main 8 byte comparison loop.
bind(NEXT_WORD); {
ldr(tmp1, Address(post(a1, wordSize)));
ldr(tmp2, Address(post(a2, wordSize)));
subs(cnt1, cnt1, elem_per_word);
subs(cnt1, cnt1, wordSize);
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DONE);
} br(GT, NEXT_WORD);
@ -5265,18 +5237,16 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
// conditional branch.
// cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
// length == 4.
if (log_elem_size > 0)
lsl(cnt1, cnt1, log_elem_size);
ldr(tmp1, Address(a1, cnt1));
ldr(tmp2, Address(a2, cnt1));
eor(tmp1, tmp1, tmp2);
cbnz(tmp1, DONE);
eor(tmp2, tmp1, tmp2);
cbnz(tmp2, DONE);
b(SAME);
bind(SHORT);
Label TAIL03, TAIL01;
tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
{
ldrw(tmp1, Address(post(a1, 4)));
ldrw(tmp2, Address(post(a2, 4)));
@ -5284,7 +5254,7 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
cbnzw(tmp1, DONE);
}
bind(TAIL03);
tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
{
ldrh(tmp1, Address(post(a1, 2)));
ldrh(tmp2, Address(post(a2, 2)));
@ -5292,7 +5262,7 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
cbnzw(tmp1, DONE);
}
bind(TAIL01);
if (elem_size == 1) { // Only needed when comparing byte arrays.
if (elem_size == 1) { // Only needed when comparing 1-byte elements
tbz(cnt1, 0, SAME); // 0-1 bytes left.
{
ldrb(tmp1, a1);
@ -5307,7 +5277,7 @@ void MacroAssembler::arrays_equals(Register a1, Register a2,
// That's it.
bind(DONE);
BLOCK_COMMENT(is_string ? "} string_equals" : "} array_equals");
BLOCK_COMMENT("} string_equals");
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -779,6 +779,8 @@ public:
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
void resolve_jobject(Register value, Register thread, Register tmp);
#if INCLUDE_ALL_GCS
void g1_write_barrier_pre(Register obj,
@ -1225,9 +1227,11 @@ public:
void has_negatives(Register ary1, Register len, Register result);
void arrays_equals(Register a1, Register a2,
Register result, Register cnt1,
int elem_size, bool is_string);
void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
Register tmp1, Register tmp2, Register tmp3, int elem_size);
void string_equals(Register a1, Register a2, Register result, Register cnt1,
int elem_size);
void fill_words(Register base, Register cnt, Register value);
void zero_words(Register base, u_int64_t cnt);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -2050,29 +2050,7 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
// Unbox oop result, e.g. JNIHandles::resolve result.
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
Label done, not_weak;
__ cbz(r0, done); // Use NULL as-is.
STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
__ tbz(r0, 0, not_weak); // Test for jweak tag.
// Resolve jweak.
__ ldr(r0, Address(r0, -JNIHandles::weak_tag_value));
__ verify_oop(r0);
#if INCLUDE_ALL_GCS
if (UseG1GC) {
__ g1_write_barrier_pre(noreg /* obj */,
r0 /* pre_val */,
rthread /* thread */,
rscratch2 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
}
#endif // INCLUDE_ALL_GCS
__ b(done);
__ bind(not_weak);
// Resolve (untagged) jobject.
__ ldr(r0, Address(r0, 0));
__ verify_oop(r0);
__ bind(done);
__ resolve_jobject(r0, rthread, rscratch2);
}
if (CheckJNICalls) {

View File

@ -1359,7 +1359,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, is_oop, d, count, saved_reg);
if (is_oop) {
@ -1433,7 +1433,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, is_oop, d, count, saved_regs);
if (is_oop) {
@ -1795,7 +1795,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= AS_DEST_NOT_INITIALIZED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, is_oop, to, count, wb_pre_saved_regs);
// save the original count
@ -3813,6 +3813,182 @@ class StubGenerator: public StubCodeGenerator {
__ ret(lr);
return entry;
}
void generate_large_array_equals_loop_nonsimd(int loopThreshold,
bool usePrefetch, Label &NOT_EQUAL) {
Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1,
tmp2 = rscratch2, tmp3 = r3, tmp4 = r4, tmp5 = r5, tmp6 = r11,
tmp7 = r12, tmp8 = r13;
Label LOOP;
__ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize)));
__ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize)));
__ bind(LOOP);
if (usePrefetch) {
__ prfm(Address(a1, SoftwarePrefetchHintDistance));
__ prfm(Address(a2, SoftwarePrefetchHintDistance));
}
__ ldp(tmp5, tmp7, Address(__ post(a1, 2 * wordSize)));
__ eor(tmp1, tmp1, tmp2);
__ eor(tmp3, tmp3, tmp4);
__ ldp(tmp6, tmp8, Address(__ post(a2, 2 * wordSize)));
__ orr(tmp1, tmp1, tmp3);
__ cbnz(tmp1, NOT_EQUAL);
__ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize)));
__ eor(tmp5, tmp5, tmp6);
__ eor(tmp7, tmp7, tmp8);
__ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize)));
__ orr(tmp5, tmp5, tmp7);
__ cbnz(tmp5, NOT_EQUAL);
__ ldp(tmp5, tmp7, Address(__ post(a1, 2 * wordSize)));
__ eor(tmp1, tmp1, tmp2);
__ eor(tmp3, tmp3, tmp4);
__ ldp(tmp6, tmp8, Address(__ post(a2, 2 * wordSize)));
__ orr(tmp1, tmp1, tmp3);
__ cbnz(tmp1, NOT_EQUAL);
__ ldp(tmp1, tmp3, Address(__ post(a1, 2 * wordSize)));
__ eor(tmp5, tmp5, tmp6);
__ sub(cnt1, cnt1, 8 * wordSize);
__ eor(tmp7, tmp7, tmp8);
__ ldp(tmp2, tmp4, Address(__ post(a2, 2 * wordSize)));
__ cmp(cnt1, loopThreshold);
__ orr(tmp5, tmp5, tmp7);
__ cbnz(tmp5, NOT_EQUAL);
__ br(__ GE, LOOP);
// post-loop
__ eor(tmp1, tmp1, tmp2);
__ eor(tmp3, tmp3, tmp4);
__ orr(tmp1, tmp1, tmp3);
__ sub(cnt1, cnt1, 2 * wordSize);
__ cbnz(tmp1, NOT_EQUAL);
}
void generate_large_array_equals_loop_simd(int loopThreshold,
bool usePrefetch, Label &NOT_EQUAL) {
Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1,
tmp2 = rscratch2;
Label LOOP;
__ bind(LOOP);
if (usePrefetch) {
__ prfm(Address(a1, SoftwarePrefetchHintDistance));
__ prfm(Address(a2, SoftwarePrefetchHintDistance));
}
__ ld1(v0, v1, v2, v3, __ T2D, Address(__ post(a1, 4 * 2 * wordSize)));
__ sub(cnt1, cnt1, 8 * wordSize);
__ ld1(v4, v5, v6, v7, __ T2D, Address(__ post(a2, 4 * 2 * wordSize)));
__ cmp(cnt1, loopThreshold);
__ eor(v0, __ T16B, v0, v4);
__ eor(v1, __ T16B, v1, v5);
__ eor(v2, __ T16B, v2, v6);
__ eor(v3, __ T16B, v3, v7);
__ orr(v0, __ T16B, v0, v1);
__ orr(v1, __ T16B, v2, v3);
__ orr(v0, __ T16B, v0, v1);
__ umov(tmp1, v0, __ D, 0);
__ umov(tmp2, v0, __ D, 1);
__ orr(tmp1, tmp1, tmp2);
__ cbnz(tmp1, NOT_EQUAL);
__ br(__ GE, LOOP);
}
// a1 = r1 - array1 address
// a2 = r2 - array2 address
// result = r0 - return value. Already contains "false"
// cnt1 = r10 - amount of elements left to check, reduced by wordSize
// r3-r5 are reserved temporary registers
address generate_large_array_equals() {
StubCodeMark mark(this, "StubRoutines", "large_array_equals");
Register a1 = r1, a2 = r2, result = r0, cnt1 = r10, tmp1 = rscratch1,
tmp2 = rscratch2, tmp3 = r3, tmp4 = r4, tmp5 = r5, tmp6 = r11,
tmp7 = r12, tmp8 = r13;
Label TAIL, NOT_EQUAL, EQUAL, NOT_EQUAL_NO_POP, NO_PREFETCH_LARGE_LOOP,
SMALL_LOOP, POST_LOOP;
const int PRE_LOOP_SIZE = UseSIMDForArrayEquals ? 0 : 16;
// calculate if at least 32 prefetched bytes are used
int prefetchLoopThreshold = SoftwarePrefetchHintDistance + 32;
int nonPrefetchLoopThreshold = (64 + PRE_LOOP_SIZE);
RegSet spilled_regs = RegSet::range(tmp6, tmp8);
assert_different_registers(a1, a2, result, cnt1, tmp1, tmp2, tmp3, tmp4,
tmp5, tmp6, tmp7, tmp8);
__ align(CodeEntryAlignment);
address entry = __ pc();
__ enter();
__ sub(cnt1, cnt1, wordSize); // first 8 bytes were loaded outside of stub
// also advance pointers to use post-increment instead of pre-increment
__ add(a1, a1, wordSize);
__ add(a2, a2, wordSize);
if (AvoidUnalignedAccesses) {
// both implementations (SIMD/nonSIMD) are using relatively large load
// instructions (ld1/ldp), which has huge penalty (up to x2 exec time)
// on some CPUs in case of address is not at least 16-byte aligned.
// Arrays are 8-byte aligned currently, so, we can make additional 8-byte
// load if needed at least for 1st address and make if 16-byte aligned.
Label ALIGNED16;
__ tbz(a1, 3, ALIGNED16);
__ ldr(tmp1, Address(__ post(a1, wordSize)));
__ ldr(tmp2, Address(__ post(a2, wordSize)));
__ sub(cnt1, cnt1, wordSize);
__ eor(tmp1, tmp1, tmp2);
__ cbnz(tmp1, NOT_EQUAL_NO_POP);
__ bind(ALIGNED16);
}
if (UseSIMDForArrayEquals) {
if (SoftwarePrefetchHintDistance >= 0) {
__ cmp(cnt1, prefetchLoopThreshold);
__ br(__ LE, NO_PREFETCH_LARGE_LOOP);
generate_large_array_equals_loop_simd(prefetchLoopThreshold,
/* prfm = */ true, NOT_EQUAL);
__ cmp(cnt1, nonPrefetchLoopThreshold);
__ br(__ LT, TAIL);
}
__ bind(NO_PREFETCH_LARGE_LOOP);
generate_large_array_equals_loop_simd(nonPrefetchLoopThreshold,
/* prfm = */ false, NOT_EQUAL);
} else {
__ push(spilled_regs, sp);
if (SoftwarePrefetchHintDistance >= 0) {
__ cmp(cnt1, prefetchLoopThreshold);
__ br(__ LE, NO_PREFETCH_LARGE_LOOP);
generate_large_array_equals_loop_nonsimd(prefetchLoopThreshold,
/* prfm = */ true, NOT_EQUAL);
__ cmp(cnt1, nonPrefetchLoopThreshold);
__ br(__ LT, TAIL);
}
__ bind(NO_PREFETCH_LARGE_LOOP);
generate_large_array_equals_loop_nonsimd(nonPrefetchLoopThreshold,
/* prfm = */ false, NOT_EQUAL);
}
__ bind(TAIL);
__ cbz(cnt1, EQUAL);
__ subs(cnt1, cnt1, wordSize);
__ br(__ LE, POST_LOOP);
__ bind(SMALL_LOOP);
__ ldr(tmp1, Address(__ post(a1, wordSize)));
__ ldr(tmp2, Address(__ post(a2, wordSize)));
__ subs(cnt1, cnt1, wordSize);
__ eor(tmp1, tmp1, tmp2);
__ cbnz(tmp1, NOT_EQUAL);
__ br(__ GT, SMALL_LOOP);
__ bind(POST_LOOP);
__ ldr(tmp1, Address(a1, cnt1));
__ ldr(tmp2, Address(a2, cnt1));
__ eor(tmp1, tmp1, tmp2);
__ cbnz(tmp1, NOT_EQUAL);
__ bind(EQUAL);
__ mov(result, true);
__ bind(NOT_EQUAL);
if (!UseSIMDForArrayEquals) {
__ pop(spilled_regs, sp);
}
__ bind(NOT_EQUAL_NO_POP);
__ leave();
__ ret(lr);
return entry;
}
/**
* Arguments:
*
@ -4895,6 +5071,11 @@ class StubGenerator: public StubCodeGenerator {
// has negatives stub for large arrays.
StubRoutines::aarch64::_has_negatives = generate_has_negatives(StubRoutines::aarch64::_has_negatives_long);
// array equals stub for large arrays.
if (!UseSimpleArrayEquals) {
StubRoutines::aarch64::_large_array_equals = generate_large_array_equals();
}
if (UseMultiplyToLenIntrinsic) {
StubRoutines::_multiplyToLen = generate_multiplyToLen();
}

View File

@ -46,6 +46,7 @@ address StubRoutines::aarch64::_double_sign_flip = NULL;
address StubRoutines::aarch64::_zero_blocks = NULL;
address StubRoutines::aarch64::_has_negatives = NULL;
address StubRoutines::aarch64::_has_negatives_long = NULL;
address StubRoutines::aarch64::_large_array_equals = NULL;
bool StubRoutines::aarch64::_completed = false;
/**

View File

@ -65,6 +65,7 @@ class aarch64 {
static address _has_negatives;
static address _has_negatives_long;
static address _large_array_equals;
static bool _completed;
public:
@ -131,6 +132,10 @@ class aarch64 {
return _has_negatives_long;
}
static address large_array_equals() {
return _large_array_equals;
}
static bool complete() {
return _completed;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
@ -889,7 +890,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// Method entry for java.lang.ref.Reference.get.
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
@ -923,43 +923,29 @@ address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
const Register local_0 = c_rarg0;
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ldr(local_0, Address(esp, 0));
__ cbz(local_0, slow_path);
Label slow_path;
const Register local_0 = c_rarg0;
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ldr(local_0, Address(esp, 0));
__ cbz(local_0, slow_path);
// Load the value of the referent field.
const Address field_address(local_0, referent_offset);
__ load_heap_oop(local_0, field_address);
__ mov(r19, r13); // Move senderSP to a callee-saved register
__ mov(r19, r13); // Move senderSP to a callee-saved register
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
__ enter(); // g1_write may call runtime
__ g1_write_barrier_pre(noreg /* obj */,
local_0 /* pre_val */,
rthread /* thread */,
rscratch2 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
__ leave();
// areturn
__ andr(sp, r19, -16); // done with stack
__ ret(lr);
// Load the value of the referent field.
const Address field_address(local_0, referent_offset);
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch2, /*tmp2*/ rscratch1);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
}
#endif // INCLUDE_ALL_GCS
// areturn
__ andr(sp, r19, -16); // done with stack
__ ret(lr);
// generate a vanilla interpreter entry as the slow path
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return NULL;
}
/**
@ -1434,28 +1420,7 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
__ br(Assembler::NE, no_oop);
// Unbox oop result, e.g. JNIHandles::resolve result.
__ pop(ltos);
__ cbz(r0, store_result); // Use NULL as-is.
STATIC_ASSERT(JNIHandles::weak_tag_mask == 1u);
__ tbz(r0, 0, not_weak); // Test for jweak tag.
// Resolve jweak.
__ ldr(r0, Address(r0, -JNIHandles::weak_tag_value));
#if INCLUDE_ALL_GCS
if (UseG1GC) {
__ enter(); // Barrier may call runtime.
__ g1_write_barrier_pre(noreg /* obj */,
r0 /* pre_val */,
rthread /* thread */,
t /* tmp */,
true /* tosca_live */,
true /* expand_call */);
__ leave();
}
#endif // INCLUDE_ALL_GCS
__ b(store_result);
__ bind(not_weak);
// Resolve (untagged) jobject.
__ ldr(r0, Address(r0, 0));
__ bind(store_result);
__ resolve_jobject(r0, rthread, t);
__ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize));
// keep stack depth as expected by pushing oop which will eventually be discarded
__ push(ltos);

View File

@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
@ -142,76 +143,20 @@ static Assembler::Condition j_not(TemplateTable::Condition cc) {
// Store an oop (or NULL) at the Address described by obj.
// If val == noreg this means store a NULL
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address obj,
Address dst,
Register val,
BarrierSet::Name barrier,
bool precise) {
DecoratorSet decorators) {
assert(val == noreg || val == r0, "parameter is just for looks");
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1BarrierSet:
{
// flatten object address if needed
if (obj.index() == noreg && obj.offset() == 0) {
if (obj.base() != r3) {
__ mov(r3, obj.base());
}
} else {
__ lea(r3, obj);
}
__ g1_write_barrier_pre(r3 /* obj */,
r1 /* pre_val */,
rthread /* thread */,
r10 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
if (val == noreg) {
__ store_heap_oop_null(Address(r3, 0));
} else {
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops) {
new_val = rscratch2;
__ mov(new_val, val);
}
__ store_heap_oop(Address(r3, 0), val);
__ g1_write_barrier_post(r3 /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
r10 /* tmp */,
r1 /* tmp2 */);
}
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->store_at(_masm, decorators, T_OBJECT, dst, val, /*tmp1*/ r10, /*tmp2*/ r1);
}
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableBarrierSet:
{
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
// flatten object address if needed
if (!precise || (obj.index() == noreg && obj.offset() == 0)) {
__ store_check(obj.base());
} else {
__ lea(r3, obj);
__ store_check(r3);
}
}
}
break;
case BarrierSet::ModRef:
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
}
break;
default :
ShouldNotReachHere();
}
static void do_oop_load(InterpreterMacroAssembler* _masm,
Address src,
Register dst,
DecoratorSet decorators) {
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, decorators, T_OBJECT, dst, src, /*tmp1*/ r10, /*tmp_thread*/ r1);
}
Address TemplateTable::at_bcp(int offset) {
@ -865,7 +810,10 @@ void TemplateTable::aaload()
index_check(r0, r1); // leaves index in r1, kills rscratch1
int s = (UseCompressedOops ? 2 : 3);
__ lea(r1, Address(r0, r1, Address::uxtw(s)));
__ load_heap_oop(r0, Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
do_oop_load(_masm,
Address(r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT)),
r0,
IN_HEAP | IN_HEAP_ARRAY);
}
void TemplateTable::baload()
@ -1193,7 +1141,7 @@ void TemplateTable::aastore() {
// Get the value we will store
__ ldr(r0, at_tos());
// Now store using the appropriate barrier
do_oop_store(_masm, element_address, r0, _bs->kind(), true);
do_oop_store(_masm, element_address, r0, IN_HEAP | IN_HEAP_ARRAY);
__ b(done);
// Have a NULL in r0, r3=array, r2=index. Store NULL at ary[idx]
@ -1201,7 +1149,7 @@ void TemplateTable::aastore() {
__ profile_null_seen(r2);
// Store a NULL
do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
do_oop_store(_masm, element_address, noreg, IN_HEAP | IN_HEAP_ARRAY);
// Pop stack arguments
__ bind(done);
@ -2591,7 +2539,7 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteContr
__ cmp(flags, atos);
__ br(Assembler::NE, notObj);
// atos
__ load_heap_oop(r0, field);
do_oop_load(_masm, field, r0, IN_HEAP);
__ push(atos);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
@ -2834,7 +2782,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteContr
__ pop(atos);
if (!is_static) pop_and_check_object(obj);
// Store into the field
do_oop_store(_masm, field, r0, _bs->kind(), false);
do_oop_store(_masm, field, r0, IN_HEAP);
if (rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
}
@ -3054,7 +3002,7 @@ void TemplateTable::fast_storefield(TosState state)
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, field, r0, _bs->kind(), false);
do_oop_store(_masm, field, r0, IN_HEAP);
break;
case Bytecodes::_fast_lputfield:
__ str(r0, field);
@ -3146,7 +3094,7 @@ void TemplateTable::fast_accessfield(TosState state)
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
__ load_heap_oop(r0, field);
do_oop_load(_masm, field, r0, IN_HEAP);
__ verify_oop(r0);
break;
case Bytecodes::_fast_lgetfield:
@ -3216,7 +3164,7 @@ void TemplateTable::fast_xaccess(TosState state)
__ ldrw(r0, Address(r0, r1, Address::lsl(0)));
break;
case atos:
__ load_heap_oop(r0, Address(r0, r1, Address::lsl(0)));
do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
__ verify_oop(r0);
break;
case ftos:

View File

@ -203,7 +203,11 @@ void VM_Version::get_processor_features() {
if (FLAG_IS_DEFAULT(UseSIMDForMemoryOps)) {
FLAG_SET_DEFAULT(UseSIMDForMemoryOps, (_variant > 0));
}
if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) {
FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false);
}
}
// ThunderX2
if ((_cpu == CPU_CAVIUM && (_model == 0xAF)) ||
(_cpu == CPU_BROADCOM && (_model == 0x516))) {
@ -218,7 +222,25 @@ void VM_Version::get_processor_features() {
}
}
if (_cpu == CPU_ARM && (_model == 0xd03 || _model2 == 0xd03)) _features |= CPU_A53MAC;
// Cortex A53
if (_cpu == CPU_ARM && (_model == 0xd03 || _model2 == 0xd03)) {
_features |= CPU_A53MAC;
if (FLAG_IS_DEFAULT(UseSIMDForArrayEquals)) {
FLAG_SET_DEFAULT(UseSIMDForArrayEquals, false);
}
}
// Cortex A73
if (_cpu == CPU_ARM && (_model == 0xd09 || _model2 == 0xd09)) {
if (FLAG_IS_DEFAULT(SoftwarePrefetchHintDistance)) {
FLAG_SET_DEFAULT(SoftwarePrefetchHintDistance, -1);
}
// A73 is faster with short-and-easy-for-speculative-execution-loop
if (FLAG_IS_DEFAULT(UseSimpleArrayEquals)) {
FLAG_SET_DEFAULT(UseSimpleArrayEquals, true);
}
}
if (_cpu == CPU_ARM && (_model == 0xd07 || _model2 == 0xd07)) _features |= CPU_STXR_PREFETCH;
// If an olde style /proc/cpuinfo (cpu_lines == 1) then if _model is an A57 (0xd07)
// we assume the worst and assume we could be on a big little system and have

View File

@ -44,7 +44,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS

View File

@ -44,7 +44,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS

View File

@ -44,7 +44,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS

View File

@ -533,9 +533,11 @@ void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LI
set_card(tmp, card_addr);
__ branch_destination(L_already_dirty->label());
} else {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
__ membar_storestore();
}
#endif
set_card(tmp, card_addr);
}
}

View File

@ -45,6 +45,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
// Note: Rtemp usage is this file should not impact C2 and should be
@ -540,7 +541,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ set_info("g1_pre_barrier_slow_id", dont_gc_arguments);
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ mov(R0, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), R0);
@ -564,12 +565,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
const Register r_index_1 = R1;
const Register r_buffer_2 = R2;
Address queue_active(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address queue_index(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
Address queue_active(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
@ -620,7 +618,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ set_info("g1_post_barrier_slow_id", dont_gc_arguments);
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ mov(R0, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), R0);
@ -632,10 +630,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
Label recheck;
Label runtime;
Address queue_index(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
AddressLiteral cardtable(ci_card_table_address_as<address>(), relocInfo::none);

View File

@ -28,7 +28,6 @@
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"

View File

@ -35,6 +35,8 @@ public:
Register addr, Register count, int callee_saved_regs) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
Register addr, Register count, Register tmp) {}
virtual void barrier_stubs_init() {}
};
#endif // CPU_ARM_GC_SHARED_BARRIERSETASSEMBLER_ARM_HPP

View File

@ -44,7 +44,7 @@
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {
BLOCK_COMMENT("CardTablePostBarrier");
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");

View File

@ -45,7 +45,6 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
@ -411,7 +410,7 @@ void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
// Sets card_table_base register.
void InterpreterMacroAssembler::store_check_part1(Register card_table_base) {
// Check barrier set type (should be card table) and element size
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
assert(bs->kind() == BarrierSet::CardTableBarrierSet,
"Wrong barrier set kind");
@ -451,9 +450,11 @@ void InterpreterMacroAssembler::store_check_part2(Register obj, Register card_ta
#endif
if (UseCondCardMark) {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC) {
membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), noreg);
}
#endif
Label already_dirty;
ldrb(tmp, card_table_addr);
@ -463,9 +464,11 @@ void InterpreterMacroAssembler::store_check_part2(Register obj, Register card_ta
bind(already_dirty);
} else {
#if INCLUDE_ALL_GCS
if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore), noreg);
}
#endif
set_card(card_table_base, card_table_addr, tmp);
}
}
@ -474,7 +477,7 @@ void InterpreterMacroAssembler::set_card(Register card_table_base, Address card_
#ifdef AARCH64
strb(ZR, card_table_addr);
#else
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
if ((((uintptr_t)ct->byte_map_base() & 0xff) == 0)) {
// Card table is aligned so the lowest byte of the table address base is zero.

View File

@ -29,6 +29,7 @@
#include "ci/ciEnv.hpp"
#include "code/nativeInst.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
@ -46,7 +47,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#endif
@ -2175,12 +2176,9 @@ void MacroAssembler::g1_write_barrier_pre(Register store_addr,
assert_different_registers(pre_val, tmp1, tmp2, noreg);
}
Address in_progress(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address index(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
Address in_progress(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address index(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
// Is marking active?
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "adjust this code");
@ -2261,12 +2259,10 @@ void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register tmp2,
Register tmp3) {
Address queue_index(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(Rthread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
Address queue_index(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(Rthread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
Label done;

View File

@ -39,7 +39,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS

View File

@ -620,7 +620,7 @@ inline void Assembler::stdcx_(Register s, Register a, Register b)
inline void Assembler::stqcx_(Register s, Register a, Register b) { emit_int32( STQCX_OPCODE | rs(s) | ra0mem(a) | rb(b) | rc(1)); }
// Instructions for adjusting thread priority
// for simultaneous multithreading (SMT) on POWER5.
// for simultaneous multithreading (SMT) on >= POWER5.
inline void Assembler::smt_prio_very_low() { Assembler::or_unchecked(R31, R31, R31); }
inline void Assembler::smt_prio_low() { Assembler::or_unchecked(R1, R1, R1); }
inline void Assembler::smt_prio_medium_low() { Assembler::or_unchecked(R6, R6, R6); }
@ -628,11 +628,11 @@ inline void Assembler::smt_prio_medium() { Assembler::or_unchecked(R2, R2,
inline void Assembler::smt_prio_medium_high() { Assembler::or_unchecked(R5, R5, R5); }
inline void Assembler::smt_prio_high() { Assembler::or_unchecked(R3, R3, R3); }
// >= Power7
inline void Assembler::smt_yield() { Assembler::or_unchecked(R27, R27, R27); }
inline void Assembler::smt_mdoio() { Assembler::or_unchecked(R29, R29, R29); }
inline void Assembler::smt_mdoom() { Assembler::or_unchecked(R30, R30, R30); }
// >= Power8
inline void Assembler::smt_miso() { Assembler::or_unchecked(R26, R26, R26); }
inline void Assembler::smt_yield() { Assembler::or_unchecked(R27, R27, R27); } // never actually implemented
inline void Assembler::smt_mdoio() { Assembler::or_unchecked(R29, R29, R29); } // never actually implemetned
inline void Assembler::smt_mdoom() { Assembler::or_unchecked(R30, R30, R30); } // never actually implemented
// Power8
inline void Assembler::smt_miso() { Assembler::or_unchecked(R26, R26, R26); } // never actually implemented
inline void Assembler::twi_0(Register a) { twi_unchecked(0, a, 0);}

View File

@ -45,6 +45,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
// Implementation of StubAssembler
@ -710,7 +711,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
#if INCLUDE_ALL_GCS
case g1_pre_barrier_slow_id:
{
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
goto unimplemented_entry;
}
@ -724,15 +725,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
Register tmp2 = R15;
Label refill, restart, marking_not_active;
int satb_q_active_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active());
int satb_q_index_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index());
int satb_q_buf_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf());
int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
// Spill
__ std(tmp, -16, R1_SP);
@ -787,7 +782,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case g1_post_barrier_slow_id:
{
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
goto unimplemented_entry;
}
@ -829,12 +824,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ li(tmp, G1CardTable::dirty_card_val());
__ stb(tmp, 0, addr);
int dirty_card_q_index_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index());
int dirty_card_q_buf_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf());
int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
__ bind(restart);

View File

@ -28,10 +28,10 @@
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "runtime/thread.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ masm->
@ -49,10 +49,10 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ lwz(R0, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
__ lwz(R0, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), R16_thread);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ lbz(R0, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
__ lbz(R0, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), R16_thread);
}
__ cmpdi(CCR0, R0, 0);
__ beq(CCR0, filtered);
@ -98,3 +98,245 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
__ addi(R1_SP, R1_SP, frame_size); // pop_frame();
__ restore_LR_CR(R0);
}
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm, DecoratorSet decorators, Register obj, RegisterOrConstant ind_or_offs, Register pre_val,
Register tmp1, Register tmp2, bool needs_frame) {
bool not_null = (decorators & OOP_NOT_NULL) != 0,
preloaded = obj == noreg;
Register nv_save = noreg;
if (preloaded) {
// We are not loading the previous value so make
// sure that we don't trash the value in pre_val
// with the code below.
assert_different_registers(pre_val, tmp1, tmp2);
if (pre_val->is_volatile()) {
nv_save = !tmp1->is_volatile() ? tmp1 : tmp2;
assert(!nv_save->is_volatile(), "need one nv temp register if pre_val lives in volatile register");
}
}
Label runtime, filtered;
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ lwz(tmp1, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), R16_thread);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ lbz(tmp1, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), R16_thread);
}
__ cmpdi(CCR0, tmp1, 0);
__ beq(CCR0, filtered);
// Do we need to load the previous value?
if (!preloaded) {
// Load the previous value...
if (UseCompressedOops) {
__ lwz(pre_val, ind_or_offs, obj);
} else {
__ ld(pre_val, ind_or_offs, obj);
}
// Previous value has been loaded into Rpre_val.
}
assert(pre_val != noreg, "must have a real register");
// Is the previous value null?
if (preloaded && not_null) {
#ifdef ASSERT
__ cmpdi(CCR0, pre_val, 0);
__ asm_assert_ne("null oop not allowed (G1 pre)", 0x321); // Checked by caller.
#endif
} else {
__ cmpdi(CCR0, pre_val, 0);
__ beq(CCR0, filtered);
}
if (!preloaded && UseCompressedOops) {
__ decode_heap_oop_not_null(pre_val);
}
// OK, it's not filtered, so we'll need to call enqueue. In the normal
// case, pre_val will be a scratch G-reg, but there are some cases in
// which it's an O-reg. In the first case, do a normal call. In the
// latter, do a save here and call the frameless version.
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
const Register Rbuffer = tmp1, Rindex = tmp2;
__ ld(Rindex, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()), R16_thread);
__ cmpdi(CCR0, Rindex, 0);
__ beq(CCR0, runtime); // If index == 0, goto runtime.
__ ld(Rbuffer, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()), R16_thread);
__ addi(Rindex, Rindex, -wordSize); // Decrement index.
__ std(Rindex, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()), R16_thread);
// Record the previous value.
__ stdx(pre_val, Rbuffer, Rindex);
__ b(filtered);
__ bind(runtime);
// May need to preserve LR. Also needed if current frame is not compatible with C calling convention.
if (needs_frame) {
__ save_LR_CR(tmp1);
__ push_frame_reg_args(0, tmp2);
}
if (pre_val->is_volatile() && preloaded) { __ mr(nv_save, pre_val); } // Save pre_val across C call if it was preloaded.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, R16_thread);
if (pre_val->is_volatile() && preloaded) { __ mr(pre_val, nv_save); } // restore
if (needs_frame) {
__ pop_frame();
__ restore_LR_CR(tmp1);
}
__ bind(filtered);
}
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm, DecoratorSet decorators, Register store_addr, Register new_val,
Register tmp1, Register tmp2, Register tmp3) {
bool not_null = (decorators & OOP_NOT_NULL) != 0;
Label runtime, filtered;
assert_different_registers(store_addr, new_val, tmp1, tmp2);
CardTableBarrierSet* ct = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
assert(sizeof(*ct->card_table()->byte_map_base()) == sizeof(jbyte), "adjust this code");
// Does store cross heap regions?
if (G1RSBarrierRegionFilter) {
__ xorr(tmp1, store_addr, new_val);
__ srdi_(tmp1, tmp1, HeapRegion::LogOfHRGrainBytes);
__ beq(CCR0, filtered);
}
// Crosses regions, storing NULL?
if (not_null) {
#ifdef ASSERT
__ cmpdi(CCR0, new_val, 0);
__ asm_assert_ne("null oop not allowed (G1 post)", 0x322); // Checked by caller.
#endif
} else {
__ cmpdi(CCR0, new_val, 0);
__ beq(CCR0, filtered);
}
// Storing region crossing non-NULL, is card already dirty?
const Register Rcard_addr = tmp1;
Register Rbase = tmp2;
__ load_const_optimized(Rbase, (address)(ct->card_table()->byte_map_base()), /*temp*/ tmp3);
__ srdi(Rcard_addr, store_addr, CardTable::card_shift);
// Get the address of the card.
__ lbzx(/*card value*/ tmp3, Rbase, Rcard_addr);
__ cmpwi(CCR0, tmp3, (int)G1CardTable::g1_young_card_val());
__ beq(CCR0, filtered);
__ membar(Assembler::StoreLoad);
__ lbzx(/*card value*/ tmp3, Rbase, Rcard_addr); // Reload after membar.
__ cmpwi(CCR0, tmp3 /* card value */, (int)G1CardTable::dirty_card_val());
__ beq(CCR0, filtered);
// Storing a region crossing, non-NULL oop, card is clean.
// Dirty card and log.
__ li(tmp3, (int)G1CardTable::dirty_card_val());
//release(); // G1: oops are allowed to get visible after dirty marking.
__ stbx(tmp3, Rbase, Rcard_addr);
__ add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
Rbase = noreg; // end of lifetime
const Register Rqueue_index = tmp2,
Rqueue_buf = tmp3;
__ ld(Rqueue_index, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()), R16_thread);
__ cmpdi(CCR0, Rqueue_index, 0);
__ beq(CCR0, runtime); // index == 0 then jump to runtime
__ ld(Rqueue_buf, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()), R16_thread);
__ addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
__ std(Rqueue_index, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()), R16_thread);
__ stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
__ b(filtered);
__ bind(runtime);
// Save the live input values.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
__ bind(filtered);
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
// Load and record the previous value.
g1_write_barrier_pre(masm, decorators, base, ind_or_offs,
tmp1, tmp2, tmp3, needs_frame);
BarrierSetAssembler::store_at(masm, decorators, type, base, ind_or_offs, val, tmp1, tmp2, tmp3, needs_frame);
// No need for post barrier if storing NULL
if (val != noreg) {
if (precise) {
if (ind_or_offs.is_constant()) {
__ add_const_optimized(base, base, ind_or_offs.as_constant(), tmp1);
} else {
__ add(base, ind_or_offs.as_register(), base);
}
}
g1_write_barrier_post(masm, decorators, base, val, tmp1, tmp2, tmp3);
}
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register dst,
Register tmp1, Register tmp2, bool needs_frame, Label *is_null) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
Label done;
if (on_oop && on_reference && is_null == NULL) { is_null = &done; }
// Load the value of the referent field.
ModRefBarrierSetAssembler::load_at(masm, decorators, type, base, ind_or_offs, dst, tmp1, tmp2, needs_frame, is_null);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value
// We only reach here if value is not null.
g1_write_barrier_pre(masm, decorators | OOP_NOT_NULL, noreg /* obj */, (intptr_t)0, dst /* pre_val */,
tmp1, tmp2, needs_frame);
}
__ bind(done);
}
void G1BarrierSetAssembler::resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2, bool needs_frame) {
Label done, not_weak;
__ cmpdi(CCR0, value, 0);
__ beq(CCR0, done); // Use NULL as-is.
__ clrrdi(tmp1, value, JNIHandles::weak_tag_size);
__ andi_(tmp2, value, JNIHandles::weak_tag_mask);
__ ld(value, 0, tmp1); // Resolve (untagged) jobject.
__ beq(CCR0, not_weak); // Test for jweak tag.
__ verify_oop(value);
g1_write_barrier_pre(masm, IN_ROOT | ON_PHANTOM_OOP_REF,
noreg, noreg, value,
tmp1, tmp2, needs_frame);
__ bind(not_weak);
__ verify_oop(value);
__ bind(done);
}
#undef __

View File

@ -34,6 +34,22 @@ protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register from, Register to, Register count,
Register preserve1, Register preserve2);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register preserve);
void g1_write_barrier_pre(MacroAssembler* masm, DecoratorSet decorators, Register obj, RegisterOrConstant ind_or_offs, Register pre_val,
Register tmp1, Register tmp2, bool needs_frame);
void g1_write_barrier_post(MacroAssembler* masm, DecoratorSet decorators, Register store_addr, Register new_val,
Register tmp1, Register tmp2, Register tmp3);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame);
public:
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register dst,
Register tmp1, Register tmp2, bool needs_frame, Label *is_null = NULL);
virtual void resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2, bool needs_frame);
};
#endif // CPU_PPC_GC_G1_G1BARRIERSETASSEMBLER_PPC_HPP

View File

@ -0,0 +1,110 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool not_null = (decorators & OOP_NOT_NULL) != 0;
assert(on_heap || on_root, "where?");
assert_different_registers(base, val, tmp1, tmp2, R0);
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (UseCompressedOops && on_heap) {
Register co = tmp1;
if (val == noreg) {
__ li(co, 0);
} else {
co = not_null ? __ encode_heap_oop_not_null(tmp1, val) : __ encode_heap_oop(tmp1, val);
}
__ stw(co, ind_or_offs, base, tmp2);
} else {
if (val == noreg) {
val = tmp1;
__ li(val, 0);
}
__ std(val, ind_or_offs, base, tmp2);
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register dst,
Register tmp1, Register tmp2, bool needs_frame, Label *is_null) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
assert(on_heap || on_root, "where?");
assert_different_registers(ind_or_offs.register_or_noreg(), dst, R0);
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (UseCompressedOops && on_heap) {
__ lwz(dst, ind_or_offs, base);
if (is_null) {
__ cmpwi(CCR0, dst, 0);
__ beq(CCR0, *is_null);
__ decode_heap_oop_not_null(dst);
} else {
__ decode_heap_oop(dst);
}
} else {
__ ld(dst, ind_or_offs, base);
if (is_null) {
__ cmpdi(CCR0, dst, 0);
__ beq(CCR0, *is_null);
}
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::resolve_jobject(MacroAssembler* masm, Register value,
Register tmp1, Register tmp2, bool needs_frame) {
Label done;
__ cmpdi(CCR0, value, 0);
__ beq(CCR0, done); // Use NULL as-is.
__ clrrdi(tmp1, value, JNIHandles::weak_tag_size);
__ ld(value, 0, tmp1); // Resolve (untagged) jobject.
__ verify_oop(value);
__ bind(done);
}

View File

@ -38,6 +38,18 @@ public:
Register src, Register dst, Register count, Register preserve1, Register preserve2) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Register count, Register preserve) {}
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame);
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register dst,
Register tmp1, Register tmp2, bool needs_frame, Label *is_null = NULL);
virtual void resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2, bool needs_frame);
virtual void barrier_stubs_init() {}
};
#endif // CPU_PPC_GC_SHARED_BARRIERSETASSEMBLER_PPC_HPP

View File

@ -29,7 +29,6 @@
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/cardTableBarrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
@ -44,7 +43,7 @@
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr,
Register count, Register preserve) {
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
assert_different_registers(addr, count, R0);
@ -72,3 +71,41 @@ void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembl
__ bdnz(Lstore_loop);
__ bind(Lskip_loop);
}
void CardTableBarrierSetAssembler::card_table_write(MacroAssembler* masm,
jbyte* byte_map_base,
Register tmp, Register obj) {
assert_different_registers(obj, tmp, R0);
__ load_const_optimized(tmp, (address)byte_map_base, R0);
__ srdi(obj, obj, CardTable::card_shift);
__ li(R0, CardTable::dirty_card_val());
if (UseConcMarkSweepGC) { __ membar(Assembler::StoreStore); }
__ stbx(R0, tmp, obj);
}
void CardTableBarrierSetAssembler::card_write_barrier_post(MacroAssembler* masm, Register store_addr, Register tmp) {
CardTableBarrierSet* bs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
card_table_write(masm, bs->card_table()->byte_map_base(), tmp, store_addr);
}
void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
BarrierSetAssembler::store_at(masm, decorators, type, base, ind_or_offs, val, tmp1, tmp2, tmp3, needs_frame);
// No need for post barrier if storing NULL
if (val != noreg) {
if (precise) {
if (ind_or_offs.is_constant()) {
__ add_const_optimized(base, base, ind_or_offs.as_constant(), tmp1);
} else {
__ add(base, ind_or_offs.as_register(), base);
}
}
card_write_barrier_post(masm, base, tmp1);
}
}

View File

@ -31,8 +31,16 @@
class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr,
Register count, Register preserve);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register preserve);
void card_table_write(MacroAssembler* masm, jbyte* byte_map_base, Register tmp, Register obj);
void card_write_barrier_post(MacroAssembler* masm, Register store_addr, Register tmp);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame);
};
#endif // CPU_PPC_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_PPC_HPP

View File

@ -55,3 +55,19 @@ void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, Decorat
}
}
}
void ModRefBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
BarrierSetAssembler::store_at(masm, decorators, type, base, ind_or_offs, val, tmp1, tmp2, tmp3, needs_frame);
}
void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame) {
if (type == T_OBJECT || type == T_ARRAY) {
oop_store_at(masm, decorators, type, base, ind_or_offs, val, tmp1, tmp2, tmp3, needs_frame);
} else {
BarrierSetAssembler::store_at(masm, decorators, type, base, ind_or_offs, val, tmp1, tmp2, tmp3, needs_frame);
}
}

View File

@ -29,17 +29,28 @@
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
// accesses, which are overridden in the concrete BarrierSetAssembler.
class ModRefBarrierSetAssembler: public BarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register from, Register to, Register count,
Register preserve1, Register preserve2) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register preserve) {}
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame);
public:
virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count, Register preserve1, Register preserve2);
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Register count, Register preserve);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register base, RegisterOrConstant ind_or_offs, Register val,
Register tmp1, Register tmp2, Register tmp3, bool needs_frame);
};
#endif // CPU_PPC_GC_SHARED_MODREFBARRIERSETASSEMBLER_PPC_HPP

View File

@ -26,6 +26,8 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_ppc.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "prims/jvmtiThreadState.hpp"
@ -492,9 +494,8 @@ void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result
#endif
// Add in the index.
add(result, tmp, result);
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null);
// The resulting oop is null if the reference is not yet resolved.
// It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(this, IN_HEAP, T_OBJECT, result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp, R0, false, is_null);
}
// load cpool->resolved_klass_at(index)
@ -2446,4 +2447,3 @@ void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosSta
// Dtrace support not implemented.
}

View File

@ -26,9 +26,9 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_ppc.hpp"
@ -43,12 +43,6 @@
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif
@ -2579,7 +2573,6 @@ void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register
if (checkRetry) { bind(*checkRetry); }
addic_(retry_count_Reg, retry_count_Reg, -1);
blt(CCR0, doneRetry);
smt_yield(); // Can't use wait(). No permission (SIGILL).
b(retryLabel);
bind(doneRetry);
}
@ -2590,7 +2583,7 @@ void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register
// output: retry_count_Reg decremented by 1
// CTR is killed
void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register owner_addr_Reg, Label& retryLabel) {
Label SpinLoop, doneRetry;
Label SpinLoop, doneRetry, doRetry;
addic_(retry_count_Reg, retry_count_Reg, -1);
blt(CCR0, doneRetry);
@ -2599,16 +2592,26 @@ void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register o
mtctr(R0);
}
// low thread priority
smt_prio_low();
bind(SpinLoop);
smt_yield(); // Can't use waitrsv(). No permission (SIGILL).
if (RTMSpinLoopCount > 1) {
bdz(retryLabel);
bdz(doRetry);
ld(R0, 0, owner_addr_Reg);
cmpdi(CCR0, R0, 0);
bne(CCR0, SpinLoop);
}
bind(doRetry);
// restore thread priority to default in userspace
#ifdef LINUX
smt_prio_medium_low();
#else
smt_prio_medium();
#endif
b(retryLabel);
bind(doneRetry);
@ -3031,213 +3034,11 @@ void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
bne(CCR0, slow_path);
}
// GC barrier helper macros
// Write the card table byte if needed.
void MacroAssembler::card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp) {
CardTableBarrierSet* bs =
barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
assert(bs->kind() == BarrierSet::CardTableBarrierSet, "wrong barrier");
CardTable* ct = bs->card_table();
#ifdef ASSERT
cmpdi(CCR0, Rnew_val, 0);
asm_assert_ne("null oop not allowed", 0x321);
#endif
card_table_write(ct->byte_map_base(), Rtmp, Rstore_addr);
}
// Write the card table byte.
void MacroAssembler::card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj) {
assert_different_registers(Robj, Rtmp, R0);
load_const_optimized(Rtmp, (address)byte_map_base, R0);
srdi(Robj, Robj, CardTable::card_shift);
li(R0, 0); // dirty
if (UseConcMarkSweepGC) membar(Assembler::StoreStore);
stbx(R0, Rtmp, Robj);
}
// Kills R31 if value is a volatile register.
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame) {
Label done;
cmpdi(CCR0, value, 0);
beq(CCR0, done); // Use NULL as-is.
clrrdi(tmp1, value, JNIHandles::weak_tag_size);
#if INCLUDE_ALL_GCS
if (UseG1GC) { andi_(tmp2, value, JNIHandles::weak_tag_mask); }
#endif
ld(value, 0, tmp1); // Resolve (untagged) jobject.
#if INCLUDE_ALL_GCS
if (UseG1GC) {
Label not_weak;
beq(CCR0, not_weak); // Test for jweak tag.
verify_oop(value);
g1_write_barrier_pre(noreg, // obj
noreg, // offset
value, // pre_val
tmp1, tmp2, needs_frame);
bind(not_weak);
}
#endif // INCLUDE_ALL_GCS
verify_oop(value);
bind(done);
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->resolve_jobject(this, value, tmp1, tmp2, needs_frame);
}
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
// Goal: record the previous value if it is not null.
void MacroAssembler::g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
Register Rtmp1, Register Rtmp2, bool needs_frame) {
Label runtime, filtered;
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
lwz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
lbz(Rtmp1, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), R16_thread);
}
cmpdi(CCR0, Rtmp1, 0);
beq(CCR0, filtered);
// Do we need to load the previous value?
if (Robj != noreg) {
// Load the previous value...
if (UseCompressedOops) {
lwz(Rpre_val, offset, Robj);
} else {
ld(Rpre_val, offset, Robj);
}
// Previous value has been loaded into Rpre_val.
}
assert(Rpre_val != noreg, "must have a real register");
// Is the previous value null?
cmpdi(CCR0, Rpre_val, 0);
beq(CCR0, filtered);
if (Robj != noreg && UseCompressedOops) {
decode_heap_oop_not_null(Rpre_val);
}
// OK, it's not filtered, so we'll need to call enqueue. In the normal
// case, pre_val will be a scratch G-reg, but there are some cases in
// which it's an O-reg. In the first case, do a normal call. In the
// latter, do a save here and call the frameless version.
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
const Register Rbuffer = Rtmp1, Rindex = Rtmp2;
ld(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
cmpdi(CCR0, Rindex, 0);
beq(CCR0, runtime); // If index == 0, goto runtime.
ld(Rbuffer, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf()), R16_thread);
addi(Rindex, Rindex, -wordSize); // Decrement index.
std(Rindex, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index()), R16_thread);
// Record the previous value.
stdx(Rpre_val, Rbuffer, Rindex);
b(filtered);
bind(runtime);
// May need to preserve LR. Also needed if current frame is not compatible with C calling convention.
if (needs_frame) {
save_LR_CR(Rtmp1);
push_frame_reg_args(0, Rtmp2);
}
if (Rpre_val->is_volatile() && Robj == noreg) mr(R31, Rpre_val); // Save pre_val across C call if it was preloaded.
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_val, R16_thread);
if (Rpre_val->is_volatile() && Robj == noreg) mr(Rpre_val, R31); // restore
if (needs_frame) {
pop_frame();
restore_LR_CR(Rtmp1);
}
bind(filtered);
}
// General G1 post-barrier generator
// Store cross-region card.
void MacroAssembler::g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1, Register Rtmp2, Register Rtmp3, Label *filtered_ext) {
Label runtime, filtered_int;
Label& filtered = (filtered_ext != NULL) ? *filtered_ext : filtered_int;
assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2);
G1BarrierSet* bs =
barrier_set_cast<G1BarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = bs->card_table();
// Does store cross heap regions?
if (G1RSBarrierRegionFilter) {
xorr(Rtmp1, Rstore_addr, Rnew_val);
srdi_(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
beq(CCR0, filtered);
}
// Crosses regions, storing NULL?
#ifdef ASSERT
cmpdi(CCR0, Rnew_val, 0);
asm_assert_ne("null oop not allowed (G1)", 0x322); // Checked by caller on PPC64, so following branch is obsolete:
//beq(CCR0, filtered);
#endif
// Storing region crossing non-NULL, is card already dirty?
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
const Register Rcard_addr = Rtmp1;
Register Rbase = Rtmp2;
load_const_optimized(Rbase, (address)ct->byte_map_base(), /*temp*/ Rtmp3);
srdi(Rcard_addr, Rstore_addr, CardTable::card_shift);
// Get the address of the card.
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr);
cmpwi(CCR0, Rtmp3, (int)G1CardTable::g1_young_card_val());
beq(CCR0, filtered);
membar(Assembler::StoreLoad);
lbzx(/*card value*/ Rtmp3, Rbase, Rcard_addr); // Reload after membar.
cmpwi(CCR0, Rtmp3 /* card value */, CardTable::dirty_card_val());
beq(CCR0, filtered);
// Storing a region crossing, non-NULL oop, card is clean.
// Dirty card and log.
li(Rtmp3, CardTable::dirty_card_val());
//release(); // G1: oops are allowed to get visible after dirty marking.
stbx(Rtmp3, Rbase, Rcard_addr);
add(Rcard_addr, Rbase, Rcard_addr); // This is the address which needs to get enqueued.
Rbase = noreg; // end of lifetime
const Register Rqueue_index = Rtmp2,
Rqueue_buf = Rtmp3;
ld(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
cmpdi(CCR0, Rqueue_index, 0);
beq(CCR0, runtime); // index == 0 then jump to runtime
ld(Rqueue_buf, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf()), R16_thread);
addi(Rqueue_index, Rqueue_index, -wordSize); // decrement index
std(Rqueue_index, in_bytes(JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index()), R16_thread);
stdx(Rcard_addr, Rqueue_buf, Rqueue_index); // store card
b(filtered);
bind(runtime);
// Save the live input values.
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, R16_thread);
bind(filtered_int);
}
#endif // INCLUDE_ALL_GCS
// Values for last_Java_pc, and last_Java_sp must comply to the rules
// in frame_ppc.hpp.
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc) {

View File

@ -650,21 +650,8 @@ class MacroAssembler: public Assembler {
// Check if safepoint requested and if so branch
void safepoint_poll(Label& slow_path, Register temp_reg);
// GC barrier support.
void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame);
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
Register Rtmp1, Register Rtmp2, bool needs_frame = false);
// General G1 post-barrier generator
void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
#endif
// Support for managing the JavaThread pointer (i.e.; the reference to
// thread-local information).

View File

@ -2495,7 +2495,7 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
// --------------------------------------------------------------------------
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
__ resolve_jobject(R3_RET, r_temp_1, r_temp_2, /* needs_frame */ false); // kills R31
__ resolve_jobject(R3_RET, r_temp_1, r_temp_2, /* needs_frame */ false);
}
if (CheckJNICalls) {

View File

@ -2032,7 +2032,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg);
if (UseCompressedOops) {
@ -2071,7 +2071,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_ARG1, R4_ARG2, R5_ARG3, noreg, noreg);
if (UseCompressedOops) {
@ -2164,7 +2164,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= AS_DEST_NOT_INITIALIZED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, R3_from, R4_to, R5_count, /* preserve: */ R6_ckoff, R7_ckval);
//inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, R12_tmp, R3_RET);

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2017, SAP SE. All rights reserved.
* Copyright (c) 2015, 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
@ -402,7 +403,7 @@ address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type
break;
case T_OBJECT:
// JNIHandles::resolve result.
__ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
__ resolve_jobject(R3_RET, R11_scratch1, R31, /* needs_frame */ true); // kills R31
break;
case T_FLOAT:
break;
@ -504,59 +505,50 @@ address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
// regular method entry code to generate the NPE.
//
if (UseG1GC) {
address entry = __ pc();
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
Label slow_path;
Label slow_path;
// Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
// Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// If the receiver is null then it is OK to jump to the slow path.
__ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
// If the receiver is null then it is OK to jump to the slow path.
__ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
// Check if receiver == NULL and go the slow path.
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, slow_path);
// Check if receiver == NULL and go the slow path.
__ cmpdi(CCR0, R3_RET, 0);
__ beq(CCR0, slow_path);
// Load the value of the referent field.
__ load_heap_oop(R3_RET, referent_offset, R3_RET);
// Load the value of the referent field.
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
R3_RET, referent_offset, R3_RET,
/* non-volatile temp */ R31, R11_scratch1, true);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value.
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value.
// Restore caller sp for c2i case.
// Restore caller sp for c2i case.
#ifdef ASSERT
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x544);
__ ld(R9_ARG7, 0, R1_SP);
__ ld(R10_ARG8, 0, R21_sender_SP);
__ cmpd(CCR0, R9_ARG7, R10_ARG8);
__ asm_assert_eq("backlink", 0x544);
#endif // ASSERT
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
__ g1_write_barrier_pre(noreg, // obj
noreg, // offset
R3_RET, // pre_val
R11_scratch1, // tmp
R12_scratch2, // tmp
true); // needs_frame
__ blr();
__ blr();
// Generate regular method entry.
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
return entry;
}
return NULL;
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
return entry;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {

View File

@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
@ -53,99 +54,29 @@
// Kills:
// Rbase, Rtmp
static void do_oop_store(InterpreterMacroAssembler* _masm,
Register Rbase,
Register base,
RegisterOrConstant offset,
Register Rval, // Noreg means always null.
Register Rtmp1,
Register Rtmp2,
Register Rtmp3,
BarrierSet::Name barrier,
bool precise,
bool check_null) {
assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
Register val, // Noreg means always null.
Register tmp1,
Register tmp2,
Register tmp3,
DecoratorSet decorators) {
assert_different_registers(tmp1, tmp2, tmp3, val, base);
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->store_at(_masm, decorators, T_OBJECT, base, offset, val, tmp1, tmp2, tmp3, false);
}
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1BarrierSet:
{
// Load and record the previous value.
__ g1_write_barrier_pre(Rbase, offset,
Rtmp3, /* holder of pre_val ? */
Rtmp1, Rtmp2, false /* frame */);
Label Lnull, Ldone;
if (Rval != noreg) {
if (check_null) {
__ cmpdi(CCR0, Rval, 0);
__ beq(CCR0, Lnull);
}
__ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
// Mark the card.
if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
__ add(Rbase, offset, Rbase);
}
__ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
if (check_null) { __ b(Ldone); }
}
if (Rval == noreg || check_null) { // Store null oop.
Register Rnull = Rval;
__ bind(Lnull);
if (Rval == noreg) {
Rnull = Rtmp1;
__ li(Rnull, 0);
}
if (UseCompressedOops) {
__ stw(Rnull, offset, Rbase);
} else {
__ std(Rnull, offset, Rbase);
}
}
__ bind(Ldone);
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableBarrierSet:
{
Label Lnull, Ldone;
if (Rval != noreg) {
if (check_null) {
__ cmpdi(CCR0, Rval, 0);
__ beq(CCR0, Lnull);
}
__ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
// Mark the card.
if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
__ add(Rbase, offset, Rbase);
}
__ card_write_barrier_post(Rbase, Rval, Rtmp1);
if (check_null) {
__ b(Ldone);
}
}
if (Rval == noreg || check_null) { // Store null oop.
Register Rnull = Rval;
__ bind(Lnull);
if (Rval == noreg) {
Rnull = Rtmp1;
__ li(Rnull, 0);
}
if (UseCompressedOops) {
__ stw(Rnull, offset, Rbase);
} else {
__ std(Rnull, offset, Rbase);
}
}
__ bind(Ldone);
}
break;
case BarrierSet::ModRef:
ShouldNotReachHere();
break;
default:
ShouldNotReachHere();
}
static void do_oop_load(InterpreterMacroAssembler* _masm,
Register base,
RegisterOrConstant offset,
Register dst,
Register tmp1,
Register tmp2,
DecoratorSet decorators) {
assert_different_registers(base, tmp1, tmp2);
assert_different_registers(dst, tmp1, tmp2);
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, decorators, T_OBJECT, base, offset, dst, tmp1, tmp2, false);
}
// ============================================================================
@ -755,9 +686,11 @@ void TemplateTable::aaload() {
// result tos: array
const Register Rload_addr = R3_ARG1,
Rarray = R4_ARG2,
Rtemp = R5_ARG3;
Rtemp = R5_ARG3,
Rtemp2 = R31;
__ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
__ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
do_oop_load(_masm, Rload_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos, Rtemp, Rtemp2,
IN_HEAP | IN_HEAP_ARRAY);
__ verify_oop(R17_tos);
//__ dcbt(R17_tos); // prefetch
}
@ -1084,14 +1017,14 @@ void TemplateTable::aastore() {
__ bind(Lis_null);
do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
Rscratch, Rscratch2, Rscratch3, IN_HEAP | IN_HEAP_ARRAY);
__ profile_null_seen(Rscratch, Rscratch2);
__ b(Ldone);
// Store is OK.
__ bind(Lstore_ok);
do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
Rscratch, Rscratch2, Rscratch3, IN_HEAP | IN_HEAP_ARRAY | OOP_NOT_NULL);
__ bind(Ldone);
// Adjust sp (pops array, index and value).
@ -2714,7 +2647,7 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteContr
__ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
assert(branch_table[atos] == 0, "can't compute twice");
branch_table[atos] = __ pc(); // non-volatile_entry point
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
__ verify_oop(R17_tos);
__ push(atos);
//__ dcbt(R17_tos); // prefetch
@ -3047,7 +2980,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteContr
branch_table[atos] = __ pc(); // non-volatile_entry point
__ pop(atos);
if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, IN_HEAP);
if (!is_static && rc == may_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no);
}
@ -3122,7 +3055,7 @@ void TemplateTable::fast_storefield(TosState state) {
switch(bytecode()) {
case Bytecodes::_fast_aputfield:
// Store into the field.
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, IN_HEAP);
break;
case Bytecodes::_fast_iputfield:
@ -3196,13 +3129,13 @@ void TemplateTable::fast_accessfield(TosState state) {
switch(bytecode()) {
case Bytecodes::_fast_agetfield:
{
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
__ verify_oop(R17_tos);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
__ verify_oop(R17_tos);
__ twi_0(R17_tos);
__ isync();
@ -3336,13 +3269,13 @@ void TemplateTable::fast_xaccess(TosState state) {
switch(state) {
case atos:
{
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
__ verify_oop(R17_tos);
__ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
__ bind(LisVolatile);
if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
__ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
do_oop_load(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, /* nv temp */ Rflags, IN_HEAP);
__ verify_oop(R17_tos);
__ twi_0(R17_tos);
__ isync();

View File

@ -40,7 +40,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif

View File

@ -45,6 +45,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
// Implementation of StubAssembler
@ -767,7 +768,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case g1_pre_barrier_slow_id:
{ // Z_R1_scratch: previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ should_not_reach_here(FILE_AND_LINE);
break;
@ -780,15 +781,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
Register tmp2 = Z_R7;
Label refill, restart, marking_not_active;
int satb_q_active_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active());
int satb_q_index_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index());
int satb_q_buf_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf());
int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
// Save tmp registers (see assertion in G1PreBarrierStub::emit_code()).
__ z_stg(tmp, 0*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
@ -836,7 +831,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case g1_post_barrier_slow_id:
{ // Z_R1_scratch: oop address, address of updated memory slot
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ should_not_reach_here(FILE_AND_LINE);
break;
@ -890,10 +885,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
// Save registers used below (see assertion in G1PreBarrierStub::emit_code()).
__ z_stg(r2, 1*BytesPerWord + FrameMap::first_available_sp_in_frame, Z_SP);
ByteSize dirty_card_q_index_byte_offset =
JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_index();
ByteSize dirty_card_q_buf_byte_offset =
JavaThread::dirty_card_queue_offset() + DirtyCardQueue::byte_offset_of_buf();
ByteSize dirty_card_q_index_byte_offset = G1ThreadLocalData::dirty_card_queue_index_offset();
ByteSize dirty_card_q_buf_byte_offset = G1ThreadLocalData::dirty_card_queue_buffer_offset();
__ bind(restart);

View File

@ -29,10 +29,10 @@
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "runtime/thread.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#define __ masm->
@ -49,8 +49,7 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
assert_different_registers(addr, Z_R0_scratch); // would be destroyed by push_frame()
assert_different_registers(count, Z_R0_scratch); // would be destroyed by push_frame()
Register Rtmp1 = Z_R0_scratch;
const int active_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active());
const int active_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
} else {
@ -90,3 +89,321 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
__ z_br(Z_R1); // Branch without linking, callee will return to stub caller.
}
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& src, Register dst, Register tmp1, Register tmp2, Label *is_null) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
Label done;
if (on_oop && on_reference && is_null == NULL) { is_null = &done; }
ModRefBarrierSetAssembler::load_at(masm, decorators, type, src, dst, tmp1, tmp2, is_null);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
g1_write_barrier_pre(masm, decorators | OOP_NOT_NULL,
NULL /* obj */,
dst /* pre_val */,
noreg/* preserve */ ,
tmp1, tmp2 /* tmp */,
true /* pre_val_needed */);
}
__ bind(done);
}
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm, DecoratorSet decorators,
const Address* obj,
Register Rpre_val, // Ideally, this is a non-volatile register.
Register Rval, // Will be preserved.
Register Rtmp1, // If Rpre_val is volatile, either Rtmp1
Register Rtmp2, // or Rtmp2 has to be non-volatile.
bool pre_val_needed // Save Rpre_val across runtime call, caller uses it.
) {
bool not_null = (decorators & OOP_NOT_NULL) != 0,
preloaded = obj == NULL;
const Register Robj = obj ? obj->base() : noreg,
Roff = obj ? obj->index() : noreg;
const int active_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
const int buffer_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
const int index_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
assert_different_registers(Rtmp1, Rtmp2, Z_R0_scratch); // None of the Rtmp<i> must be Z_R0!!
assert_different_registers(Robj, Z_R0_scratch); // Used for addressing. Furthermore, push_frame destroys Z_R0!!
assert_different_registers(Rval, Z_R0_scratch); // push_frame destroys Z_R0!!
Label callRuntime, filtered;
BLOCK_COMMENT("g1_write_barrier_pre {");
// Is marking active?
// Note: value is loaded for test purposes only. No further use here.
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
}
__ z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
assert(Rpre_val != noreg, "must have a real register");
// If an object is given, we need to load the previous value into Rpre_val.
if (obj) {
// Load the previous value...
if (UseCompressedOops) {
__ z_llgf(Rpre_val, *obj);
} else {
__ z_lg(Rpre_val, *obj);
}
}
// Is the previous value NULL?
// If so, we don't need to record it and we're done.
// Note: pre_val is loaded, decompressed and stored (directly or via runtime call).
// Register contents is preserved across runtime call if caller requests to do so.
if (preloaded && not_null) {
#ifdef ASSERT
__ z_ltgr(Rpre_val, Rpre_val);
__ asm_assert_ne("null oop not allowed (G1 pre)", 0x321); // Checked by caller.
#endif
} else {
__ z_ltgr(Rpre_val, Rpre_val);
__ z_bre(filtered); // previous value is NULL, so we don't need to record it.
}
// Decode the oop now. We know it's not NULL.
if (Robj != noreg && UseCompressedOops) {
__ oop_decoder(Rpre_val, Rpre_val, /*maybeNULL=*/false);
}
// OK, it's not filtered, so we'll need to call enqueue.
// We can store the original value in the thread's buffer
// only if index > 0. Otherwise, we need runtime to handle.
// (The index field is typed as size_t.)
Register Rbuffer = Rtmp1, Rindex = Rtmp2;
assert_different_registers(Rbuffer, Rindex, Rpre_val);
__ z_lg(Rbuffer, buffer_offset, Z_thread);
__ load_and_test_long(Rindex, Address(Z_thread, index_offset));
__ z_bre(callRuntime); // If index == 0, goto runtime.
__ add2reg(Rindex, -wordSize); // Decrement index.
__ z_stg(Rindex, index_offset, Z_thread);
// Record the previous value.
__ z_stg(Rpre_val, 0, Rbuffer, Rindex);
__ z_bru(filtered); // We are done.
Rbuffer = noreg; // end of life
Rindex = noreg; // end of life
__ bind(callRuntime);
// Save some registers (inputs and result) over runtime call
// by spilling them into the top frame.
if (Robj != noreg && Robj->is_volatile()) {
__ z_stg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
}
if (Roff != noreg && Roff->is_volatile()) {
__ z_stg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
}
if (Rval != noreg && Rval->is_volatile()) {
__ z_stg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
}
// Save Rpre_val (result) over runtime call.
Register Rpre_save = Rpre_val;
if ((Rpre_val == Z_R0_scratch) || (pre_val_needed && Rpre_val->is_volatile())) {
guarantee(!Rtmp1->is_volatile() || !Rtmp2->is_volatile(), "oops!");
Rpre_save = !Rtmp1->is_volatile() ? Rtmp1 : Rtmp2;
}
__ lgr_if_needed(Rpre_save, Rpre_val);
// Push frame to protect top frame with return pc and spilled register values.
__ save_return_pc();
__ push_frame_abi160(0); // Will use Z_R0 as tmp.
// Rpre_val may be destroyed by push_frame().
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_save, Z_thread);
__ pop_frame();
__ restore_return_pc();
// Restore spilled values.
if (Robj != noreg && Robj->is_volatile()) {
__ z_lg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
}
if (Roff != noreg && Roff->is_volatile()) {
__ z_lg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
}
if (Rval != noreg && Rval->is_volatile()) {
__ z_lg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
}
if (pre_val_needed && Rpre_val->is_volatile()) {
__ lgr_if_needed(Rpre_val, Rpre_save);
}
__ bind(filtered);
BLOCK_COMMENT("} g1_write_barrier_pre");
}
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm, DecoratorSet decorators, Register Rstore_addr, Register Rnew_val,
Register Rtmp1, Register Rtmp2, Register Rtmp3) {
bool not_null = (decorators & OOP_NOT_NULL) != 0;
assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); // Most probably, Rnew_val == Rtmp3.
Label callRuntime, filtered;
CardTableBarrierSet* ct = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
assert(sizeof(*ct->card_table()->byte_map_base()) == sizeof(jbyte), "adjust this code");
BLOCK_COMMENT("g1_write_barrier_post {");
// Does store cross heap regions?
// It does if the two addresses specify different grain addresses.
if (G1RSBarrierRegionFilter) {
if (VM_Version::has_DistinctOpnds()) {
__ z_xgrk(Rtmp1, Rstore_addr, Rnew_val);
} else {
__ z_lgr(Rtmp1, Rstore_addr);
__ z_xgr(Rtmp1, Rnew_val);
}
__ z_srag(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
__ z_bre(filtered);
}
// Crosses regions, storing NULL?
if (not_null) {
#ifdef ASSERT
__ z_ltgr(Rnew_val, Rnew_val);
__ asm_assert_ne("null oop not allowed (G1 post)", 0x322); // Checked by caller.
#endif
} else {
__ z_ltgr(Rnew_val, Rnew_val);
__ z_bre(filtered);
}
Rnew_val = noreg; // end of lifetime
// Storing region crossing non-NULL, is card already dirty?
assert(sizeof(*ct->card_table()->byte_map_base()) == sizeof(jbyte), "adjust this code");
assert_different_registers(Rtmp1, Rtmp2, Rtmp3);
// Make sure not to use Z_R0 for any of these registers.
Register Rcard_addr = (Rtmp1 != Z_R0_scratch) ? Rtmp1 : Rtmp3;
Register Rbase = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp3;
// calculate address of card
__ load_const_optimized(Rbase, (address)ct->card_table()->byte_map_base()); // Card table base.
__ z_srlg(Rcard_addr, Rstore_addr, CardTable::card_shift); // Index into card table.
__ z_algr(Rcard_addr, Rbase); // Explicit calculation needed for cli.
Rbase = noreg; // end of lifetime
// Filter young.
assert((unsigned int)G1CardTable::g1_young_card_val() <= 255, "otherwise check this code");
__ z_cli(0, Rcard_addr, G1CardTable::g1_young_card_val());
__ z_bre(filtered);
// Check the card value. If dirty, we're done.
// This also avoids false sharing of the (already dirty) card.
__ z_sync(); // Required to support concurrent cleaning.
assert((unsigned int)G1CardTable::dirty_card_val() <= 255, "otherwise check this code");
__ z_cli(0, Rcard_addr, G1CardTable::dirty_card_val()); // Reload after membar.
__ z_bre(filtered);
// Storing a region crossing, non-NULL oop, card is clean.
// Dirty card and log.
__ z_mvi(0, Rcard_addr, G1CardTable::dirty_card_val());
Register Rcard_addr_x = Rcard_addr;
Register Rqueue_index = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp1;
Register Rqueue_buf = (Rtmp3 != Z_R0_scratch) ? Rtmp3 : Rtmp1;
const int qidx_off = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
const int qbuf_off = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
if ((Rcard_addr == Rqueue_buf) || (Rcard_addr == Rqueue_index)) {
Rcard_addr_x = Z_R0_scratch; // Register shortage. We have to use Z_R0.
}
__ lgr_if_needed(Rcard_addr_x, Rcard_addr);
__ load_and_test_long(Rqueue_index, Address(Z_thread, qidx_off));
__ z_bre(callRuntime); // Index == 0 then jump to runtime.
__ z_lg(Rqueue_buf, qbuf_off, Z_thread);
__ add2reg(Rqueue_index, -wordSize); // Decrement index.
__ z_stg(Rqueue_index, qidx_off, Z_thread);
__ z_stg(Rcard_addr_x, 0, Rqueue_index, Rqueue_buf); // Store card.
__ z_bru(filtered);
__ bind(callRuntime);
// TODO: do we need a frame? Introduced to be on the safe side.
bool needs_frame = true;
__ lgr_if_needed(Rcard_addr, Rcard_addr_x); // copy back asap. push_frame will destroy Z_R0_scratch!
// VM call need frame to access(write) O register.
if (needs_frame) {
__ save_return_pc();
__ push_frame_abi160(0); // Will use Z_R0 as tmp on old CPUs.
}
// Save the live input values.
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, Z_thread);
if (needs_frame) {
__ pop_frame();
__ restore_return_pc();
}
__ bind(filtered);
BLOCK_COMMENT("} g1_write_barrier_post");
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
// Load and record the previous value.
g1_write_barrier_pre(masm, decorators, &dst, tmp3, val, tmp1, tmp2, false);
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
// No need for post barrier if storing NULL
if (val != noreg) {
const Register base = dst.base(),
idx = dst.index();
const intptr_t disp = dst.disp();
if (precise && (disp != 0 || idx != noreg)) {
__ add2reg_with_index(base, disp, idx, base);
}
g1_write_barrier_post(masm, decorators, base, val, tmp1, tmp2, tmp3);
}
}
void G1BarrierSetAssembler::resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2) {
NearLabel Ldone, Lnot_weak;
__ z_ltgr(tmp1, value);
__ z_bre(Ldone); // Use NULL result as-is.
__ z_nill(value, ~JNIHandles::weak_tag_mask);
__ z_lg(value, 0, value); // Resolve (untagged) jobject.
__ z_tmll(tmp1, JNIHandles::weak_tag_mask); // Test for jweak tag.
__ z_braz(Lnot_weak);
__ verify_oop(value);
DecoratorSet decorators = IN_ROOT | ON_PHANTOM_OOP_REF;
g1_write_barrier_pre(masm, decorators, (const Address*)NULL, value, noreg, tmp1, tmp2, true);
__ bind(Lnot_weak);
__ verify_oop(value);
__ bind(Ldone);
}
#undef __

View File

@ -31,10 +31,29 @@
class G1BarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, bool do_return);
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count,
bool do_return);
void g1_write_barrier_pre(MacroAssembler* masm, DecoratorSet decorators,
const Address* obj, // Address of oop or NULL if pre-loaded.
Register Rpre_val, // Ideally, this is a non-volatile register.
Register Rval, // Will be preserved.
Register Rtmp1, // If Rpre_val is volatile, either Rtmp1
Register Rtmp2, // or Rtmp2 has to be non-volatile.
bool pre_val_needed); // Save Rpre_val across runtime call, caller uses it.
void g1_write_barrier_post(MacroAssembler* masm, DecoratorSet decorators, Register Rstore_addr, Register Rnew_val,
Register Rtmp1, Register Rtmp2, Register Rtmp3);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3);
public:
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& src, Register dst, Register tmp1, Register tmp2, Label *is_null = NULL);
virtual void resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2);
};
#endif // CPU_S390_GC_G1_G1BARRIERSETASSEMBLER_S390_HPP

View File

@ -0,0 +1,110 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
void BarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Register count, bool do_return) {
if (do_return) { __ z_br(Z_R14); }
}
void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& addr, Register dst, Register tmp1, Register tmp2, Label *is_null) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
assert(on_heap || on_root, "where?");
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (UseCompressedOops && on_heap) {
__ z_llgf(dst, addr);
if (is_null) {
__ compareU32_and_branch(dst, (intptr_t)0, Assembler::bcondEqual, *is_null);
__ oop_decoder(dst, dst, false);
} else {
__ oop_decoder(dst, dst, true);
}
} else {
__ z_lg(dst, addr);
if (is_null) {
__ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondEqual, *is_null);
}
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& addr, Register val, Register tmp1, Register tmp2, Register tmp3) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool not_null = (decorators & OOP_NOT_NULL) != 0;
assert(on_heap || on_root, "where?");
assert_different_registers(val, tmp1, tmp2);
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (UseCompressedOops && on_heap) {
if (val == noreg) {
__ clear_mem(addr, 4);
} else if (Universe::narrow_oop_mode() == Universe::UnscaledNarrowOop) {
__ z_st(val, addr);
} else {
Register tmp = (tmp1 != Z_R1) ? tmp1 : tmp2; // Avoid tmp == Z_R1 (see oop_encoder).
__ oop_encoder(tmp, val, !not_null);
__ z_st(tmp, addr);
}
} else {
if (val == noreg) {
__ clear_mem(addr, 8);
} else {
__ z_stg(val, addr);
}
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2) {
NearLabel Ldone;
__ z_ltgr(tmp1, value);
__ z_bre(Ldone); // Use NULL result as-is.
__ z_nill(value, ~JNIHandles::weak_tag_mask);
__ z_lg(value, 0, value); // Resolve (untagged) jobject.
__ verify_oop(value);
__ bind(Ldone);
}

View File

@ -23,8 +23,8 @@
*
*/
#ifndef CPU_S390_GC_G1_BARRIERSETASSEMBLER_S390_HPP
#define CPU_S390_GC_G1_BARRIERSETASSEMBLER_S390_HPP
#ifndef CPU_S390_GC_SHARED_BARRIERSETASSEMBLER_S390_HPP
#define CPU_S390_GC_SHARED_BARRIERSETASSEMBLER_S390_HPP
#include "asm/macroAssembler.hpp"
#include "memory/allocation.hpp"
@ -38,6 +38,15 @@ public:
Register src, Register dst, Register count) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Register count, bool do_return = false);
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& addr, Register dst, Register tmp1, Register tmp2, Label *is_null = NULL);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& addr, Register val, Register tmp1, Register tmp2, Register tmp3);
virtual void resolve_jobject(MacroAssembler* masm, Register value, Register tmp1, Register tmp2);
virtual void barrier_stubs_init() {}
};
#endif // CPU_S390_GC_G1_BARRIERSETASSEMBLER_S390_HPP
#endif // CPU_S390_GC_SHARED_BARRIERSETASSEMBLER_S390_HPP

View File

@ -29,7 +29,6 @@
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/cardTableBarrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
@ -46,7 +45,7 @@
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count,
bool do_return) {
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
@ -139,3 +138,38 @@ void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembl
__ bind(done);
}
void CardTableBarrierSetAssembler::store_check(MacroAssembler* masm, Register store_addr, Register tmp) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
assert_different_registers(store_addr, tmp);
__ z_srlg(store_addr, store_addr, CardTable::card_shift);
__ load_absolute_address(tmp, (address)ct->byte_map_base());
__ z_agr(store_addr, tmp);
__ z_mvi(0, store_addr, CardTable::dirty_card_val());
}
void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
// No need for post barrier if storing NULL
if (val != noreg) {
const Register base = dst.base(),
idx = dst.index();
const intptr_t disp = dst.disp();
if (precise && (disp != 0 || idx != noreg)) {
__ add2reg_with_index(base, disp, idx, base);
}
store_check(masm, base, tmp1);
}
}

View File

@ -23,16 +23,21 @@
*
*/
#ifndef CPU_X86_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_X86_HPP
#define CPU_X86_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_X86_HPP
#ifndef CPU_S390_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_S390_HPP
#define CPU_S390_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_S390_HPP
#include "asm/macroAssembler.hpp"
#include "gc/shared/modRefBarrierSetAssembler.hpp"
class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
void store_check(MacroAssembler* masm, Register store_addr, Register tmp);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count,
bool do_return);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3);
};
#endif // CPU_X86_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_X86_HPP
#endif // CPU_S390_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_S390_HPP

View File

@ -49,3 +49,17 @@ void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, Decorat
if (do_return) { __ z_br(Z_R14); }
}
}
void ModRefBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
}
void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3) {
if (type == T_OBJECT || type == T_ARRAY) {
oop_store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
} else {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2, tmp3);
}
}

View File

@ -23,23 +23,31 @@
*
*/
#ifndef CPU_X86_GC_SHARED_MODREFBARRIERSETASSEMBLER_X86_HPP
#define CPU_X86_GC_SHARED_MODREFBARRIERSETASSEMBLER_X86_HPP
#ifndef CPU_S390_GC_SHARED_MODREFBARRIERSETASSEMBLER_S390_HPP
#define CPU_S390_GC_SHARED_MODREFBARRIERSETASSEMBLER_S390_HPP
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
// accesses, which are overridden in the concrete BarrierSetAssembler.
class ModRefBarrierSetAssembler: public BarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count,
bool do_return);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3);
public:
virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count);
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Register count, bool do_return = false);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
const Address& dst, Register val, Register tmp1, Register tmp2, Register tmp3);
};
#endif // CPU_X86_GC_SHARED_MODREFBARRIERSETASSEMBLER_X86_HPP
#endif // CPU_S390_GC_SHARED_MODREFBARRIERSETASSEMBLER_S390_HPP

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017 SAP SE. All rights reserved.
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,6 +27,8 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_s390.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
@ -42,7 +44,7 @@
#include "runtime/thread.inline.hpp"
// Implementation of InterpreterMacroAssembler.
// This file specializes the assember with interpreter-specific macros.
// This file specializes the assembler with interpreter-specific macros.
#ifdef PRODUCT
#define BLOCK_COMMENT(str)
@ -389,9 +391,8 @@ void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result
bind(index_ok);
#endif
z_agr(result, index); // Address of indexed array element.
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
// The resulting oop is null if the reference is not yet resolved.
// It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(this, IN_HEAP, T_OBJECT, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), result, tmp, noreg);
}
// load cpool->resolved_klass_at(index)
@ -2197,4 +2198,3 @@ void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
unimplemented("verfiyFPU");
}
}

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, SAP SE. All rights reserved.
* Copyright (c) 2016, 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -27,7 +27,8 @@
#include "asm/codeBuffer.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
@ -51,12 +52,6 @@
#include "runtime/stubRoutines.hpp"
#include "utilities/events.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif
#include <ucontext.h>
@ -3503,316 +3498,11 @@ void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Reg
// flag == NE indicates failure
}
// Write to card table for modification at store_addr - register is destroyed afterwards.
void MacroAssembler::card_write_barrier_post(Register store_addr, Register tmp) {
BarrierSet* bs = Universe::heap()->barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(bs->kind() == BarrierSet::CardTableBarrierSet, "wrong barrier");
assert_different_registers(store_addr, tmp);
z_srlg(store_addr, store_addr, CardTable::card_shift);
load_absolute_address(tmp, (address)ct->byte_map_base());
z_agr(store_addr, tmp);
z_mvi(0, store_addr, 0); // Store byte 0.
}
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
NearLabel Ldone;
z_ltgr(tmp1, value);
z_bre(Ldone); // Use NULL result as-is.
z_nill(value, ~JNIHandles::weak_tag_mask);
z_lg(value, 0, value); // Resolve (untagged) jobject.
#if INCLUDE_ALL_GCS
if (UseG1GC) {
NearLabel Lnot_weak;
z_tmll(tmp1, JNIHandles::weak_tag_mask); // Test for jweak tag.
z_braz(Lnot_weak);
verify_oop(value);
g1_write_barrier_pre(noreg /* obj */,
noreg /* offset */,
value /* pre_val */,
noreg /* val */,
tmp1 /* tmp1 */,
tmp2 /* tmp2 */,
true /* pre_val_needed */);
bind(Lnot_weak);
}
#endif // INCLUDE_ALL_GCS
verify_oop(value);
bind(Ldone);
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->resolve_jobject(this, value, tmp1, tmp2);
}
#if INCLUDE_ALL_GCS
//------------------------------------------------------
// General G1 pre-barrier generator.
// Purpose: record the previous value if it is not null.
// All non-tmps are preserved.
//------------------------------------------------------
// Note: Rpre_val needs special attention.
// The flag pre_val_needed indicated that the caller of this emitter function
// relies on Rpre_val containing the correct value, that is:
// either the value it contained on entry to this code segment
// or the value that was loaded into the register from (Robj+offset).
//
// Independent from this requirement, the contents of Rpre_val must survive
// the push_frame() operation. push_frame() uses Z_R0_scratch by default
// to temporarily remember the frame pointer.
// If Rpre_val is assigned Z_R0_scratch by the caller, code must be emitted to
// save it's value.
void MacroAssembler::g1_write_barrier_pre(Register Robj,
RegisterOrConstant offset,
Register Rpre_val, // Ideally, this is a non-volatile register.
Register Rval, // Will be preserved.
Register Rtmp1, // If Rpre_val is volatile, either Rtmp1
Register Rtmp2, // or Rtmp2 has to be non-volatile..
bool pre_val_needed // Save Rpre_val across runtime call, caller uses it.
) {
Label callRuntime, filtered;
const int active_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active());
const int buffer_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_buf());
const int index_offset = in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_index());
assert_different_registers(Rtmp1, Rtmp2, Z_R0_scratch); // None of the Rtmp<i> must be Z_R0!!
assert_different_registers(Robj, Z_R0_scratch); // Used for addressing. Furthermore, push_frame destroys Z_R0!!
assert_different_registers(Rval, Z_R0_scratch); // push_frame destroys Z_R0!!
#ifdef ASSERT
// make sure the register is not Z_R0. Used for addressing. Furthermore, would be destroyed by push_frame.
if (offset.is_register() && offset.as_register()->encoding() == 0) {
tty->print_cr("Roffset(g1_write_barrier_pre) = %%r%d", offset.as_register()->encoding());
assert(false, "bad register for offset");
}
#endif
BLOCK_COMMENT("g1_write_barrier_pre {");
// Is marking active?
// Note: value is loaded for test purposes only. No further use here.
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
load_and_test_int(Rtmp1, Address(Z_thread, active_offset));
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
load_and_test_byte(Rtmp1, Address(Z_thread, active_offset));
}
z_bre(filtered); // Activity indicator is zero, so there is no marking going on currently.
assert(Rpre_val != noreg, "must have a real register");
// If an object is given, we need to load the previous value into Rpre_val.
if (Robj != noreg) {
// Load the previous value...
Register ixReg = offset.is_register() ? offset.register_or_noreg() : Z_R0;
if (UseCompressedOops) {
z_llgf(Rpre_val, offset.constant_or_zero(), ixReg, Robj);
} else {
z_lg(Rpre_val, offset.constant_or_zero(), ixReg, Robj);
}
}
// Is the previous value NULL?
// If so, we don't need to record it and we're done.
// Note: pre_val is loaded, decompressed and stored (directly or via runtime call).
// Register contents is preserved across runtime call if caller requests to do so.
z_ltgr(Rpre_val, Rpre_val);
z_bre(filtered); // previous value is NULL, so we don't need to record it.
// Decode the oop now. We know it's not NULL.
if (Robj != noreg && UseCompressedOops) {
oop_decoder(Rpre_val, Rpre_val, /*maybeNULL=*/false);
}
// OK, it's not filtered, so we'll need to call enqueue.
// We can store the original value in the thread's buffer
// only if index > 0. Otherwise, we need runtime to handle.
// (The index field is typed as size_t.)
Register Rbuffer = Rtmp1, Rindex = Rtmp2;
assert_different_registers(Rbuffer, Rindex, Rpre_val);
z_lg(Rbuffer, buffer_offset, Z_thread);
load_and_test_long(Rindex, Address(Z_thread, index_offset));
z_bre(callRuntime); // If index == 0, goto runtime.
add2reg(Rindex, -wordSize); // Decrement index.
z_stg(Rindex, index_offset, Z_thread);
// Record the previous value.
z_stg(Rpre_val, 0, Rbuffer, Rindex);
z_bru(filtered); // We are done.
Rbuffer = noreg; // end of life
Rindex = noreg; // end of life
bind(callRuntime);
// Save some registers (inputs and result) over runtime call
// by spilling them into the top frame.
if (Robj != noreg && Robj->is_volatile()) {
z_stg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
}
if (offset.is_register() && offset.as_register()->is_volatile()) {
Register Roff = offset.as_register();
z_stg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
}
if (Rval != noreg && Rval->is_volatile()) {
z_stg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
}
// Save Rpre_val (result) over runtime call.
Register Rpre_save = Rpre_val;
if ((Rpre_val == Z_R0_scratch) || (pre_val_needed && Rpre_val->is_volatile())) {
guarantee(!Rtmp1->is_volatile() || !Rtmp2->is_volatile(), "oops!");
Rpre_save = !Rtmp1->is_volatile() ? Rtmp1 : Rtmp2;
}
lgr_if_needed(Rpre_save, Rpre_val);
// Push frame to protect top frame with return pc and spilled register values.
save_return_pc();
push_frame_abi160(0); // Will use Z_R0 as tmp.
// Rpre_val may be destroyed by push_frame().
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), Rpre_save, Z_thread);
pop_frame();
restore_return_pc();
// Restore spilled values.
if (Robj != noreg && Robj->is_volatile()) {
z_lg(Robj, Robj->encoding()*BytesPerWord, Z_SP);
}
if (offset.is_register() && offset.as_register()->is_volatile()) {
Register Roff = offset.as_register();
z_lg(Roff, Roff->encoding()*BytesPerWord, Z_SP);
}
if (Rval != noreg && Rval->is_volatile()) {
z_lg(Rval, Rval->encoding()*BytesPerWord, Z_SP);
}
if (pre_val_needed && Rpre_val->is_volatile()) {
lgr_if_needed(Rpre_val, Rpre_save);
}
bind(filtered);
BLOCK_COMMENT("} g1_write_barrier_pre");
}
// General G1 post-barrier generator.
// Purpose: Store cross-region card.
void MacroAssembler::g1_write_barrier_post(Register Rstore_addr,
Register Rnew_val,
Register Rtmp1,
Register Rtmp2,
Register Rtmp3) {
Label callRuntime, filtered;
assert_different_registers(Rstore_addr, Rnew_val, Rtmp1, Rtmp2); // Most probably, Rnew_val == Rtmp3.
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = bs->card_table();
assert(bs->kind() == BarrierSet::G1BarrierSet, "wrong barrier");
BLOCK_COMMENT("g1_write_barrier_post {");
// Does store cross heap regions?
// It does if the two addresses specify different grain addresses.
if (G1RSBarrierRegionFilter) {
if (VM_Version::has_DistinctOpnds()) {
z_xgrk(Rtmp1, Rstore_addr, Rnew_val);
} else {
z_lgr(Rtmp1, Rstore_addr);
z_xgr(Rtmp1, Rnew_val);
}
z_srag(Rtmp1, Rtmp1, HeapRegion::LogOfHRGrainBytes);
z_bre(filtered);
}
// Crosses regions, storing NULL?
#ifdef ASSERT
z_ltgr(Rnew_val, Rnew_val);
asm_assert_ne("null oop not allowed (G1)", 0x255); // TODO: also on z? Checked by caller on PPC64, so following branch is obsolete:
z_bre(filtered); // Safety net: don't break if we have a NULL oop.
#endif
Rnew_val = noreg; // end of lifetime
// Storing region crossing non-NULL, is card already dirty?
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
assert_different_registers(Rtmp1, Rtmp2, Rtmp3);
// Make sure not to use Z_R0 for any of these registers.
Register Rcard_addr = (Rtmp1 != Z_R0_scratch) ? Rtmp1 : Rtmp3;
Register Rbase = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp3;
// calculate address of card
load_const_optimized(Rbase, (address)ct->byte_map_base()); // Card table base.
z_srlg(Rcard_addr, Rstore_addr, CardTable::card_shift); // Index into card table.
z_algr(Rcard_addr, Rbase); // Explicit calculation needed for cli.
Rbase = noreg; // end of lifetime
// Filter young.
assert((unsigned int)G1CardTable::g1_young_card_val() <= 255, "otherwise check this code");
z_cli(0, Rcard_addr, (int)G1CardTable::g1_young_card_val());
z_bre(filtered);
// Check the card value. If dirty, we're done.
// This also avoids false sharing of the (already dirty) card.
z_sync(); // Required to support concurrent cleaning.
assert((unsigned int)CardTable::dirty_card_val() <= 255, "otherwise check this code");
z_cli(0, Rcard_addr, CardTable::dirty_card_val()); // Reload after membar.
z_bre(filtered);
// Storing a region crossing, non-NULL oop, card is clean.
// Dirty card and log.
z_mvi(0, Rcard_addr, CardTable::dirty_card_val());
Register Rcard_addr_x = Rcard_addr;
Register Rqueue_index = (Rtmp2 != Z_R0_scratch) ? Rtmp2 : Rtmp1;
Register Rqueue_buf = (Rtmp3 != Z_R0_scratch) ? Rtmp3 : Rtmp1;
const int qidx_off = in_bytes(JavaThread::dirty_card_queue_offset() + SATBMarkQueue::byte_offset_of_index());
const int qbuf_off = in_bytes(JavaThread::dirty_card_queue_offset() + SATBMarkQueue::byte_offset_of_buf());
if ((Rcard_addr == Rqueue_buf) || (Rcard_addr == Rqueue_index)) {
Rcard_addr_x = Z_R0_scratch; // Register shortage. We have to use Z_R0.
}
lgr_if_needed(Rcard_addr_x, Rcard_addr);
load_and_test_long(Rqueue_index, Address(Z_thread, qidx_off));
z_bre(callRuntime); // Index == 0 then jump to runtime.
z_lg(Rqueue_buf, qbuf_off, Z_thread);
add2reg(Rqueue_index, -wordSize); // Decrement index.
z_stg(Rqueue_index, qidx_off, Z_thread);
z_stg(Rcard_addr_x, 0, Rqueue_index, Rqueue_buf); // Store card.
z_bru(filtered);
bind(callRuntime);
// TODO: do we need a frame? Introduced to be on the safe side.
bool needs_frame = true;
lgr_if_needed(Rcard_addr, Rcard_addr_x); // copy back asap. push_frame will destroy Z_R0_scratch!
// VM call need frame to access(write) O register.
if (needs_frame) {
save_return_pc();
push_frame_abi160(0); // Will use Z_R0 as tmp on old CPUs.
}
// Save the live input values.
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), Rcard_addr, Z_thread);
if (needs_frame) {
pop_frame();
restore_return_pc();
}
bind(filtered);
BLOCK_COMMENT("} g1_write_barrier_post");
}
#endif // INCLUDE_ALL_GCS
// Last_Java_sp must comply to the rules in frame_s390.hpp.
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
BLOCK_COMMENT("set_last_Java_frame {");

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, SAP SE. All rights reserved.
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -744,32 +744,8 @@ class MacroAssembler: public Assembler {
void compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias = UseBiasedLocking);
void compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias = UseBiasedLocking);
// Write to card table for modification at store_addr - register is destroyed afterwards.
void card_write_barrier_post(Register store_addr, Register tmp);
void resolve_jobject(Register value, Register tmp1, Register tmp2);
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
// Purpose: record the previous value if it is not null.
// All non-tmps are preserved.
void g1_write_barrier_pre(Register Robj,
RegisterOrConstant offset,
Register Rpre_val, // Ideally, this is a non-volatile register.
Register Rval, // Will be preserved.
Register Rtmp1, // If Rpre_val is volatile, either Rtmp1
Register Rtmp2, // or Rtmp2 has to be non-volatile.
bool pre_val_needed); // Save Rpre_val across runtime call, caller uses it.
// General G1 post-barrier generator.
// Purpose: Store cross-region card.
void g1_write_barrier_post(Register Rstore_addr,
Register Rnew_val,
Register Rtmp1,
Register Rtmp2,
Register Rtmp3);
#endif // INCLUDE_ALL_GCS
// Support for last Java frame (but use call_VM instead where possible).
private:
void set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation);

View File

@ -1308,7 +1308,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, Z_ARG1, Z_ARG2, Z_ARG3);
generate_disjoint_copy(aligned, size, true, true);
@ -1400,7 +1400,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, Z_ARG1, Z_ARG2, Z_ARG3);
generate_conjoint_copy(aligned, size, true); // Must preserve ARG2, ARG3.

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, SAP SE. All rights reserved.
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2018, SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/abstractInterpreter.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
@ -479,73 +480,55 @@ address TemplateInterpreterGenerator::generate_abstract_entry(void) {
}
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
if (UseG1GC) {
// Inputs:
// Z_ARG1 - receiver
//
// What we do:
// - Load the referent field address.
// - Load the value in the referent field.
// - Pass that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
// Inputs:
// Z_ARG1 - receiver
//
// What we do:
// - Load the referent field address.
// - Load the value in the referent field.
// - Pass that value to the pre-barrier.
//
// In the case of G1 this will record the value of the
// referent in an SATB buffer if marking is active.
// This will cause concurrent marking to mark the referent
// field as live.
Register scratch1 = Z_tmp_2;
Register scratch2 = Z_tmp_3;
Register pre_val = Z_RET; // return value
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
Register Rargp = Z_esp;
Register scratch1 = Z_tmp_2;
Register scratch2 = Z_tmp_3;
Register pre_val = Z_RET; // return value
// Z_esp is callers operand stack pointer, i.e. it points to the parameters.
Register Rargp = Z_esp;
Label slow_path;
address entry = __ pc();
Label slow_path;
address entry = __ pc();
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
BLOCK_COMMENT("Reference_get {");
BLOCK_COMMENT("Reference_get {");
// If the receiver is null then it is OK to jump to the slow path.
__ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
__ z_bre(slow_path);
// If the receiver is null then it is OK to jump to the slow path.
__ load_and_test_long(pre_val, Address(Rargp, Interpreter::stackElementSize)); // Get receiver.
__ z_bre(slow_path);
// Load the value of the referent field.
__ load_heap_oop(pre_val, referent_offset, pre_val);
// Load the value of the referent field.
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
Address(pre_val, referent_offset), pre_val, scratch1, scratch2);
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
// Restore caller sp for c2i case.
__ resize_frame_absolute(Z_R10, Z_R0, true); // Cut the stack back to where the caller started.
__ z_br(Z_R14);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
// Note:
// With these parameters the write_barrier_pre does not
// generate instructions to load the previous value.
__ g1_write_barrier_pre(noreg, // obj
noreg, // offset
pre_val, // pre_val
noreg, // no new val to preserve
scratch1, // tmp
scratch2, // tmp
true); // pre_val_needed
// Branch to previously generated regular method entry.
__ bind(slow_path);
__ z_br(Z_R14);
address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
__ jump_to_entry(meth_entry, Z_R1);
// Branch to previously generated regular method entry.
__ bind(slow_path);
BLOCK_COMMENT("} Reference_get");
address meth_entry = Interpreter::entry_for_kind(Interpreter::zerolocals);
__ jump_to_entry(meth_entry, Z_R1);
BLOCK_COMMENT("} Reference_get");
return entry;
}
#endif // INCLUDE_ALL_GCS
return NULL;
return entry;
}
address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017 SAP SE. All rights reserved.
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -25,6 +25,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
@ -192,97 +193,27 @@ static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
// Do an oop store like *(base + offset) = val
// offset can be a register or a constant.
static void do_oop_store(InterpreterMacroAssembler* _masm,
Register base,
RegisterOrConstant offset,
Register val,
bool val_is_null, // == false does not guarantee that val really is not equal NULL.
Register tmp1, // If tmp3 is volatile, either tmp1 or tmp2 must be
Register tmp2, // non-volatile to hold a copy of pre_val across runtime calls.
Register tmp3, // Ideally, this tmp register is non-volatile, as it is used to
// hold pre_val (must survive runtime calls).
BarrierSet::Name barrier,
bool precise) {
BLOCK_COMMENT("do_oop_store {");
assert(val != noreg, "val must always be valid, even if it is zero");
assert_different_registers(tmp1, tmp2, tmp3, val, base, offset.register_or_noreg());
__ verify_oop(val);
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1BarrierSet:
{
#ifdef ASSERT
if (val_is_null) { // Check if the flag setting reflects reality.
Label OK;
__ z_ltgr(val, val);
__ z_bre(OK);
__ z_illtrap(0x11);
__ bind(OK);
}
#endif
Register pre_val = tmp3;
// Load and record the previous value.
__ g1_write_barrier_pre(base, offset, pre_val, val,
tmp1, tmp2,
false); // Needs to hold pre_val in non_volatile register?
const Address& addr,
Register val, // Noreg means always null.
Register tmp1,
Register tmp2,
Register tmp3,
DecoratorSet decorators) {
assert_different_registers(tmp1, tmp2, tmp3, val, addr.base());
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->store_at(_masm, decorators, T_OBJECT, addr, val, tmp1, tmp2, tmp3);
}
if (val_is_null) {
__ store_heap_oop_null(val, offset, base);
} else {
Label Done;
// val_is_null == false does not guarantee that val really is not equal NULL.
// Checking for this case dynamically has some cost, but also some benefit (in GC).
// It's hard to say if cost or benefit is greater.
{ Label OK;
__ z_ltgr(val, val);
__ z_brne(OK);
__ store_heap_oop_null(val, offset, base);
__ z_bru(Done);
__ bind(OK);
}
// G1 barrier needs uncompressed oop for region cross check.
// Store_heap_oop compresses the oop in the argument register.
Register val_work = val;
if (UseCompressedOops) {
val_work = tmp3;
__ z_lgr(val_work, val);
}
__ store_heap_oop_not_null(val_work, offset, base);
// We need precise card marks for oop array stores.
// Otherwise, cardmarking the object which contains the oop is sufficient.
if (precise && !(offset.is_constant() && offset.as_constant() == 0)) {
__ add2reg_with_index(base,
offset.constant_or_zero(),
offset.register_or_noreg(),
base);
}
__ g1_write_barrier_post(base /* store_adr */, val, tmp1, tmp2, tmp3);
__ bind(Done);
}
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableBarrierSet:
{
if (val_is_null) {
__ store_heap_oop_null(val, offset, base);
} else {
__ store_heap_oop(val, offset, base);
// Flatten object address if needed.
if (precise && ((offset.register_or_noreg() != noreg) || (offset.constant_or_zero() != 0))) {
__ load_address(base, Address(base, offset.register_or_noreg(), offset.constant_or_zero()));
}
__ card_write_barrier_post(base, tmp1);
}
}
break;
case BarrierSet::ModRef:
// fall through
default:
ShouldNotReachHere();
}
BLOCK_COMMENT("} do_oop_store");
static void do_oop_load(InterpreterMacroAssembler* _masm,
const Address& addr,
Register dst,
Register tmp1,
Register tmp2,
DecoratorSet decorators) {
assert_different_registers(addr.base(), tmp1, tmp2);
assert_different_registers(dst, tmp1, tmp2);
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->load_at(_masm, decorators, T_OBJECT, addr, dst, tmp1, tmp2);
}
Address TemplateTable::at_bcp(int offset) {
@ -923,8 +854,8 @@ void TemplateTable::aaload() {
Register index = Z_tos;
index_check(Z_tmp_1, index, shift);
// Now load array element.
__ load_heap_oop(Z_tos,
Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
do_oop_load(_masm, Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), Z_tos,
Z_tmp_2, Z_tmp_3, IN_HEAP | IN_HEAP_ARRAY);
__ verify_oop(Z_tos);
}
@ -1260,22 +1191,23 @@ void TemplateTable::aastore() {
__ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
__ z_br(tmp1);
// Come here on success.
__ bind(ok_is_subtype);
// Now store using the appropriate barrier.
Register tmp3 = Rsub_klass;
do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, false/*val==null*/,
tmp3, tmp2, tmp1, _bs->kind(), true);
__ z_bru(done);
// Have a NULL in Rvalue.
__ bind(is_null);
__ profile_null_seen(tmp1);
// Store a NULL.
do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, true/*val==null*/,
tmp3, tmp2, tmp1, _bs->kind(), true);
do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), noreg,
tmp3, tmp2, tmp1, IN_HEAP | IN_HEAP_ARRAY);
__ z_bru(done);
// Come here on success.
__ bind(ok_is_subtype);
// Now store using the appropriate barrier.
do_oop_store(_masm, Address(Rstore_addr, (intptr_t)0), Rvalue,
tmp3, tmp2, tmp1, IN_HEAP | IN_HEAP_ARRAY | OOP_NOT_NULL);
// Pop stack arguments.
__ bind(done);
@ -2831,7 +2763,7 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteContr
// to here is compensated for by the fallthru to "Done".
{
unsigned int b_off = __ offset();
__ load_heap_oop(Z_tos, field);
do_oop_load(_masm, field, Z_tos, Z_tmp_2, Z_tmp_3, IN_HEAP);
__ verify_oop(Z_tos);
__ push(atos);
if (do_rewrite) {
@ -3160,8 +3092,8 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteContr
pop_and_check_object(obj);
}
// Store into the field
do_oop_store(_masm, obj, off, Z_tos, false,
oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, _bs->kind(), false);
do_oop_store(_masm, Address(obj, off), Z_tos,
oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, IN_HEAP);
if (do_rewrite) {
patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
}
@ -3322,8 +3254,8 @@ void TemplateTable::fast_storefield(TosState state) {
// access field
switch (bytecode()) {
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, obj, field_offset, Z_tos, false,
Z_ARG2, Z_ARG3, Z_ARG4, _bs->kind(), false);
do_oop_store(_masm, Address(obj, field_offset), Z_tos,
Z_ARG2, Z_ARG3, Z_ARG4, IN_HEAP);
break;
case Bytecodes::_fast_lputfield:
__ reg2mem_opt(Z_tos, field);
@ -3414,7 +3346,7 @@ void TemplateTable::fast_accessfield(TosState state) {
// access field
switch (bytecode()) {
case Bytecodes::_fast_agetfield:
__ load_heap_oop(Z_tos, field);
do_oop_load(_masm, field, Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
__ verify_oop(Z_tos);
return;
case Bytecodes::_fast_lgetfield:
@ -3470,7 +3402,7 @@ void TemplateTable::fast_xaccess(TosState state) {
__ mem2reg_opt(Z_tos, Address(receiver, index), false);
break;
case atos:
__ load_heap_oop(Z_tos, Address(receiver, index));
do_oop_load(_masm, Address(receiver, index), Z_tos, Z_tmp_1, Z_tmp_2, IN_HEAP);
__ verify_oop(Z_tos);
break;
case ftos:

View File

@ -43,6 +43,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
// Implementation of StubAssembler
@ -761,7 +762,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
#if INCLUDE_ALL_GCS
case g1_pre_barrier_slow_id:
{ // G4: previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ save_frame(0);
__ set((int)id, O1);
@ -777,15 +778,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
Register tmp2 = G3_scratch;
Label refill, restart;
int satb_q_active_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active());
int satb_q_index_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index());
int satb_q_buf_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf());
int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
// Is marking still active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
@ -832,7 +827,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case g1_post_barrier_slow_id:
{
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ save_frame(0);
__ set((int)id, O1);
@ -886,12 +881,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
// these registers are now dead
addr = cardtable = tmp = noreg;
int dirty_card_q_index_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index());
int dirty_card_q_buf_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf());
int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
__ bind(restart);

View File

@ -27,11 +27,10 @@
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#define __ masm->
@ -46,11 +45,10 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
Label filtered;
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ld(G2, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), tmp);
__ ld(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
"Assumption");
__ ldsb(G2, in_bytes(JavaThread::satb_mark_queue_offset() + SATBMarkQueue::byte_offset_of_active()), tmp);
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldsb(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
}
// Is marking active?
__ cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
@ -91,3 +89,408 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
__ delayed()->mov(count->after_save(), O1);
__ restore();
}
#undef __
static address satb_log_enqueue_with_frame = NULL;
static u_char* satb_log_enqueue_with_frame_end = NULL;
static address satb_log_enqueue_frameless = NULL;
static u_char* satb_log_enqueue_frameless_end = NULL;
static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
static void generate_satb_log_enqueue(bool with_frame) {
BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Register pre_val;
Label refill, restart;
if (with_frame) {
__ save_frame(0);
pre_val = I0; // Was O0 before the save.
} else {
pre_val = O0;
}
int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset());
int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset());
assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
"check sizes in assembly below");
__ bind(restart);
// Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
// so ld_ptr is appropriate.
__ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
if (!with_frame) {
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
} else {
// Not delayed.
__ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
}
if (with_frame) {
__ ret();
__ delayed()->restore();
}
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&SATBMarkQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L0);
__ mov(G3_scratch, L1);
__ mov(G4, L2);
// We need the value of O0 above (for the write into the buffer), so we
// save and restore it.
__ mov(O0, L3);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L5, handle_zero, G2_thread);
__ mov(L0, G1_scratch);
__ mov(L1, G3_scratch);
__ mov(L2, G4);
__ mov(L3, O0);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
if (with_frame) {
satb_log_enqueue_with_frame = start;
satb_log_enqueue_with_frame_end = __ pc();
} else {
satb_log_enqueue_frameless = start;
satb_log_enqueue_frameless_end = __ pc();
}
#undef __
}
#define __ masm->
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register index,
int offset,
Register pre_val,
Register tmp,
bool preserve_o_regs) {
Label filtered;
if (obj == noreg) {
// We are not loading the previous value so make
// sure that we don't trash the value in pre_val
// with the code below.
assert_different_registers(pre_val, tmp);
} else {
// We will be loading the previous value
// in this code so...
assert(offset == 0 || index == noreg, "choose one");
assert(pre_val == noreg, "check this code");
}
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ ld(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ ldsb(G2, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), tmp);
}
// Is marking active?
__ cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
// Do we need to load the previous value?
if (obj != noreg) {
// Load the previous value...
if (index == noreg) {
if (Assembler::is_simm13(offset)) {
__ load_heap_oop(obj, offset, tmp);
} else {
__ set(offset, tmp);
__ load_heap_oop(obj, tmp, tmp);
}
} else {
__ load_heap_oop(obj, index, tmp);
}
// Previous value has been loaded into tmp
pre_val = tmp;
}
assert(pre_val != noreg, "must have a real register");
// Is the previous value null?
__ cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
// OK, it's not filtered, so we'll need to call enqueue. In the normal
// case, pre_val will be a scratch G-reg, but there are some cases in
// which it's an O-reg. In the first case, do a normal call. In the
// latter, do a save here and call the frameless version.
guarantee(pre_val->is_global() || pre_val->is_out(),
"Or we need to think harder.");
if (pre_val->is_global() && !preserve_o_regs) {
__ call(satb_log_enqueue_with_frame);
__ delayed()->mov(pre_val, O0);
} else {
__ save_frame(0);
__ call(satb_log_enqueue_frameless);
__ delayed()->mov(pre_val->after_save(), O0);
__ restore();
}
__ bind(filtered);
}
#undef __
static address dirty_card_log_enqueue = 0;
static u_char* dirty_card_log_enqueue_end = 0;
// This gets to assume that o0 contains the object address.
static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Label not_already_dirty, restart, refill, young_card;
__ srlx(O0, CardTable::card_shift, O0);
AddressLiteral addrlit(byte_map_base);
__ set(addrlit, O1); // O1 := <card table base>
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
__ cmp_and_br_short(O2, G1CardTable::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
assert(G1CardTable::dirty_card_val() == 0, "otherwise check this code");
__ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
__ bind(young_card);
// We didn't take the branch, so we're already dirty: return.
// Use return-from-leaf
__ retl();
__ delayed()->nop();
// Not dirty.
__ bind(not_already_dirty);
// Get O0 + O1 into a reg by itself
__ add(O0, O1, O3);
// First, dirty it.
__ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset());
int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset());
__ bind(restart);
// Load the index into the update buffer. DirtyCardQueue::_index is
// a size_t so ld_ptr is appropriate here.
__ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(O3, L1, L0); // [_buf + index] := I0
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&DirtyCardQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L3);
__ mov(G3_scratch, L5);
// We need the value of O3 above (for the write into the buffer), so we
// save and restore it.
__ mov(O3, L6);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
__ mov(L3, G1_scratch);
__ mov(L5, G3_scratch);
__ mov(L6, O3);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
dirty_card_log_enqueue = start;
dirty_card_log_enqueue_end = __ pc();
// XXX Should have a guarantee here about not going off the end!
// Does it already do so? Do an experiment...
#undef __
}
#define __ masm->
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register tmp) {
Label filtered;
MacroAssembler* post_filter_masm = masm;
if (new_val == G0) return;
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(BarrierSet::barrier_set());
if (G1RSBarrierRegionFilter) {
__ xor3(store_addr, new_val, tmp);
__ srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
__ cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
}
// If the "store_addr" register is an "in" or "local" register, move it to
// a scratch reg so we can pass it as an argument.
bool use_scr = !(store_addr->is_global() || store_addr->is_out());
// Pick a scratch register different from "tmp".
Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
// Make sure we use up the delay slot!
if (use_scr) {
post_filter_masm->mov(store_addr, scr);
} else {
post_filter_masm->nop();
}
__ save_frame(0);
__ call(dirty_card_log_enqueue);
if (use_scr) {
__ delayed()->mov(scr, O0);
} else {
__ delayed()->mov(store_addr->after_save(), O0);
}
__ restore();
__ bind(filtered);
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool in_concurrent_root = (decorators & IN_CONCURRENT_ROOT) != 0;
bool needs_pre_barrier = in_heap || in_concurrent_root;
// No need for post barrier if storing NULL
bool needs_post_barrier = val != G0 && in_heap;
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
Register index = dst.has_index() ? dst.index() : noreg;
int disp = dst.has_disp() ? dst.disp() : 0;
if (needs_pre_barrier) {
// Load and record the previous value.
g1_write_barrier_pre(masm, dst.base(), index, disp,
noreg /* pre_val */,
tmp, true /*preserve_o_regs*/);
}
Register new_val = val;
if (needs_post_barrier) {
// G1 barrier needs uncompressed oop for region cross check.
if (UseCompressedOops && val != G0) {
new_val = tmp;
__ mov(val, new_val);
}
}
BarrierSetAssembler::store_at(masm, decorators, type, val, dst, tmp);
if (needs_post_barrier) {
Register base = dst.base();
if (precise) {
if (!dst.has_index()) {
__ add(base, disp, base);
} else {
assert(!dst.has_disp(), "not supported yet");
__ add(base, index, base);
}
}
g1_write_barrier_post(masm, base, new_val, tmp);
}
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address src, Register dst, Register tmp) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
// Load the value of the referent field.
ModRefBarrierSetAssembler::load_at(masm, decorators, type, src, dst, tmp);
if (on_oop && on_reference) {
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value
Register pre_val = dst;
bool saved = false;
if (pre_val->is_in()) {
// The g1_write_barrier_pre method assumes that the pre_val
// is not in an input register.
__ save_frame_and_mov(0, pre_val, O0);
pre_val = O0;
saved = true;
}
g1_write_barrier_pre(masm, noreg /* obj */, noreg /* index */, 0 /* offset */,
pre_val /* pre_val */,
tmp /* tmp */,
true /* preserve_o_regs */);
if (saved) {
__ restore();
}
}
}
#undef __
void G1BarrierSetAssembler::barrier_stubs_init() {
if (dirty_card_log_enqueue == 0) {
G1BarrierSet* bs = barrier_set_cast<G1BarrierSet>(BarrierSet::barrier_set());
CardTable *ct = bs->card_table();
generate_dirty_card_log_enqueue(ct->byte_map_base());
assert(dirty_card_log_enqueue != 0, "postcondition.");
}
if (satb_log_enqueue_with_frame == 0) {
generate_satb_log_enqueue(true);
assert(satb_log_enqueue_with_frame != 0, "postcondition.");
}
if (satb_log_enqueue_frameless == 0) {
generate_satb_log_enqueue(false);
assert(satb_log_enqueue_frameless != 0, "postcondition.");
}
}

View File

@ -30,10 +30,19 @@
class G1BarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp);
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register tmp);
void g1_write_barrier_pre(MacroAssembler* masm, Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
void g1_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register tmp);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp);
public:
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address src, Register dst, Register tmp);
virtual void barrier_stubs_init();
};
#endif // CPU_SPARC_GC_G1_G1BARRIERSETASSEMBLER_SPARC_HPP

View File

@ -0,0 +1,100 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool oop_not_null = (decorators & OOP_NOT_NULL) != 0;
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (on_heap) {
if (dst.has_disp() && !Assembler::is_simm13(dst.disp())) {
assert(!dst.has_index(), "not supported yet");
__ set(dst.disp(), tmp);
dst = Address(dst.base(), tmp);
}
if (UseCompressedOops) {
assert(dst.base() != val, "not enough registers");
if (oop_not_null) {
__ encode_heap_oop_not_null(val);
} else {
__ encode_heap_oop(val);
}
__ st(val, dst);
} else {
__ st_ptr(val, dst);
}
} else {
assert(on_root, "why else?");
__ st_ptr(val, dst);
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address src, Register dst, Register tmp) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool oop_not_null = (decorators & OOP_NOT_NULL) != 0;
switch (type) {
case T_ARRAY:
case T_OBJECT: {
if (on_heap) {
if (src.has_disp() && !Assembler::is_simm13(src.disp())) {
assert(!src.has_index(), "not supported yet");
__ set(src.disp(), tmp);
src = Address(src.base(), tmp);
}
if (UseCompressedOops) {
__ lduw(src, dst);
if (oop_not_null) {
__ decode_heap_oop_not_null(dst);
} else {
__ decode_heap_oop(dst);
}
} else {
__ ld_ptr(src, dst);
}
} else {
assert(on_root, "why else?");
__ ld_ptr(src, dst);
}
break;
}
default: Unimplemented();
}
}

View File

@ -37,6 +37,14 @@ public:
Register src, Register dst, Register count) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count) {}
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Address dst, Register tmp);
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address src, Register dst, Register tmp);
virtual void barrier_stubs_init() {}
};
#endif // CPU_SPARC_GC_SHARED_BARRIERSETASSEMBLER_SPARC_HPP

View File

@ -29,7 +29,6 @@
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/cardTableBarrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
@ -44,7 +43,7 @@
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
assert_different_registers(addr, count, tmp);
@ -70,3 +69,45 @@ void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembl
__ BIND(L_done);
}
void CardTableBarrierSetAssembler::card_table_write(MacroAssembler* masm,
jbyte* byte_map_base,
Register tmp, Register obj) {
__ srlx(obj, CardTable::card_shift, obj);
assert(tmp != obj, "need separate temp reg");
__ set((address) byte_map_base, tmp);
__ stb(G0, tmp, obj);
}
void CardTableBarrierSetAssembler::card_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register tmp) {
// If we're writing constant NULL, we can skip the write barrier.
if (new_val == G0) return;
CardTableBarrierSet* bs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
card_table_write(masm, bs->card_table()->byte_map_base(), tmp, store_addr);
}
void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
// No need for post barrier if storing NULL
bool needs_post_barrier = val != G0 && in_heap;
BarrierSetAssembler::store_at(masm, decorators, type, val, dst, tmp);
if (needs_post_barrier) {
Register base = dst.base();
if (precise) {
if (!dst.has_index()) {
__ add(base, dst.disp(), base);
} else {
assert(!dst.has_disp(), "not supported yet");
__ add(base, dst.index(), base);
}
}
card_write_barrier_post(masm, base, val, tmp);
}
}

View File

@ -32,6 +32,13 @@ class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp);
void card_table_write(MacroAssembler* masm, jbyte* byte_map_base, Register tmp, Register obj);
void card_write_barrier_post(MacroAssembler* masm, Register store_addr, Register new_val, Register tmp);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp);
};
#endif // CPU_SPARC_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_SPARC_HPP

View File

@ -55,3 +55,12 @@ void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, Decorat
}
}
}
void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) {
if (type == T_OBJECT || type == T_ARRAY) {
oop_store_at(masm, decorators, type, val, dst, tmp);
} else {
BarrierSetAssembler::store_at(masm, decorators, type, val, dst, tmp);
}
}

View File

@ -28,16 +28,27 @@
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
// accesses, which are overridden in the concrete BarrierSetAssembler.
class ModRefBarrierSetAssembler: public BarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register tmp) {}
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {}
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp) = 0;
public:
virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count);
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register val, Address dst, Register tmp);
};
#endif // CPU_SPARC_GC_SHARED_MODREFBARRIERSETASSEMBLER_SPARC_HPP

View File

@ -753,7 +753,7 @@ void InterpreterMacroAssembler::load_resolved_reference_at_index(
resolve_oop_handle(result);
// Add in the index
add(result, tmp, result);
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, tmp);
}

View File

@ -26,9 +26,9 @@
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
@ -45,12 +45,6 @@
#include "runtime/stubRoutines.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif
@ -174,6 +168,24 @@ int MacroAssembler::branch_destination(int inst, int pos) {
return r;
}
void MacroAssembler::resolve_jobject(Register value, Register tmp) {
Label done, not_weak;
br_null(value, false, Assembler::pn, done); // Use NULL as-is.
delayed()->andcc(value, JNIHandles::weak_tag_mask, G0); // Test for jweak
brx(Assembler::zero, true, Assembler::pt, not_weak);
delayed()->nop();
access_load_at(T_OBJECT, IN_ROOT | ON_PHANTOM_OOP_REF,
Address(value, -JNIHandles::weak_tag_value), value, tmp);
verify_oop(value);
br (Assembler::always, true, Assembler::pt, done);
delayed()->nop();
bind(not_weak);
access_load_at(T_OBJECT, IN_ROOT | IN_CONCURRENT_ROOT,
Address(value, 0), value, tmp);
verify_oop(value);
bind(done);
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check((intptr_t)offset)) {
// provoke OS NULL exception if reg = NULL by
@ -659,14 +671,6 @@ void MacroAssembler::ic_call(address entry, bool emit_delay, jint method_index)
}
}
void MacroAssembler::card_table_write(jbyte* byte_map_base,
Register tmp, Register obj) {
srlx(obj, CardTable::card_shift, obj);
assert(tmp != obj, "need separate temp reg");
set((address) byte_map_base, tmp);
stb(G0, tmp, obj);
}
void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
address save_pc;
@ -3387,361 +3391,6 @@ void MacroAssembler::reserved_stack_check() {
bind(no_reserved_zone_enabling);
}
///////////////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
static address satb_log_enqueue_with_frame = NULL;
static u_char* satb_log_enqueue_with_frame_end = NULL;
static address satb_log_enqueue_frameless = NULL;
static u_char* satb_log_enqueue_frameless_end = NULL;
static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
static void generate_satb_log_enqueue(bool with_frame) {
BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Register pre_val;
Label refill, restart;
if (with_frame) {
__ save_frame(0);
pre_val = I0; // Was O0 before the save.
} else {
pre_val = O0;
}
int satb_q_index_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index());
int satb_q_buf_byte_offset =
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf());
assert(in_bytes(SATBMarkQueue::byte_width_of_index()) == sizeof(intptr_t) &&
in_bytes(SATBMarkQueue::byte_width_of_buf()) == sizeof(intptr_t),
"check sizes in assembly below");
__ bind(restart);
// Load the index into the SATB buffer. SATBMarkQueue::_index is a size_t
// so ld_ptr is appropriate.
__ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
if (!with_frame) {
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
} else {
// Not delayed.
__ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
}
if (with_frame) {
__ ret();
__ delayed()->restore();
}
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&SATBMarkQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L0);
__ mov(G3_scratch, L1);
__ mov(G4, L2);
// We need the value of O0 above (for the write into the buffer), so we
// save and restore it.
__ mov(O0, L3);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L5, handle_zero, G2_thread);
__ mov(L0, G1_scratch);
__ mov(L1, G3_scratch);
__ mov(L2, G4);
__ mov(L3, O0);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
if (with_frame) {
satb_log_enqueue_with_frame = start;
satb_log_enqueue_with_frame_end = __ pc();
} else {
satb_log_enqueue_frameless = start;
satb_log_enqueue_frameless_end = __ pc();
}
#undef __
}
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register index,
int offset,
Register pre_val,
Register tmp,
bool preserve_o_regs) {
Label filtered;
if (obj == noreg) {
// We are not loading the previous value so make
// sure that we don't trash the value in pre_val
// with the code below.
assert_different_registers(pre_val, tmp);
} else {
// We will be loading the previous value
// in this code so...
assert(offset == 0 || index == noreg, "choose one");
assert(pre_val == noreg, "check this code");
}
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
ld(G2,
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()),
tmp);
} else {
guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
"Assumption");
ldsb(G2,
in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()),
tmp);
}
// Is marking active?
cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
// Do we need to load the previous value?
if (obj != noreg) {
// Load the previous value...
if (index == noreg) {
if (Assembler::is_simm13(offset)) {
load_heap_oop(obj, offset, tmp);
} else {
set(offset, tmp);
load_heap_oop(obj, tmp, tmp);
}
} else {
load_heap_oop(obj, index, tmp);
}
// Previous value has been loaded into tmp
pre_val = tmp;
}
assert(pre_val != noreg, "must have a real register");
// Is the previous value null?
cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
// OK, it's not filtered, so we'll need to call enqueue. In the normal
// case, pre_val will be a scratch G-reg, but there are some cases in
// which it's an O-reg. In the first case, do a normal call. In the
// latter, do a save here and call the frameless version.
guarantee(pre_val->is_global() || pre_val->is_out(),
"Or we need to think harder.");
if (pre_val->is_global() && !preserve_o_regs) {
call(satb_log_enqueue_with_frame);
delayed()->mov(pre_val, O0);
} else {
save_frame(0);
call(satb_log_enqueue_frameless);
delayed()->mov(pre_val->after_save(), O0);
restore();
}
bind(filtered);
}
static address dirty_card_log_enqueue = 0;
static u_char* dirty_card_log_enqueue_end = 0;
// This gets to assume that o0 contains the object address.
static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
CodeBuffer buf(bb);
MacroAssembler masm(&buf);
#define __ masm.
address start = __ pc();
Label not_already_dirty, restart, refill, young_card;
__ srlx(O0, CardTable::card_shift, O0);
AddressLiteral addrlit(byte_map_base);
__ set(addrlit, O1); // O1 := <card table base>
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
__ cmp_and_br_short(O2, G1CardTable::g1_young_card_val(), Assembler::equal, Assembler::pt, young_card);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ ldub(O0, O1, O2); // O2 := [O0 + O1]
assert(CardTable::dirty_card_val() == 0, "otherwise check this code");
__ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
__ bind(young_card);
// We didn't take the branch, so we're already dirty: return.
// Use return-from-leaf
__ retl();
__ delayed()->nop();
// Not dirty.
__ bind(not_already_dirty);
// Get O0 + O1 into a reg by itself
__ add(O0, O1, O3);
// First, dirty it.
__ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
int dirty_card_q_index_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index());
int dirty_card_q_buf_byte_offset =
in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf());
__ bind(restart);
// Load the index into the update buffer. DirtyCardQueue::_index is
// a size_t so ld_ptr is appropriate here.
__ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
// index == 0?
__ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
__ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
__ sub(L0, oopSize, L0);
__ st_ptr(O3, L1, L0); // [_buf + index] := I0
// Use return-from-leaf
__ retl();
__ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
__ bind(refill);
address handle_zero =
CAST_FROM_FN_PTR(address,
&DirtyCardQueueSet::handle_zero_index_for_thread);
// This should be rare enough that we can afford to save all the
// scratch registers that the calling context might be using.
__ mov(G1_scratch, L3);
__ mov(G3_scratch, L5);
// We need the value of O3 above (for the write into the buffer), so we
// save and restore it.
__ mov(O3, L6);
// Since the call will overwrite O7, we save and restore that, as well.
__ mov(O7, L4);
__ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
__ mov(L3, G1_scratch);
__ mov(L5, G3_scratch);
__ mov(L6, O3);
__ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
__ delayed()->mov(L4, O7);
dirty_card_log_enqueue = start;
dirty_card_log_enqueue_end = __ pc();
// XXX Should have a guarantee here about not going off the end!
// Does it already do so? Do an experiment...
#undef __
}
void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
Label filtered;
MacroAssembler* post_filter_masm = this;
if (new_val == G0) return;
G1BarrierSet* bs =
barrier_set_cast<G1BarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = bs->card_table();
if (G1RSBarrierRegionFilter) {
xor3(store_addr, new_val, tmp);
srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
// XXX Should I predict this taken or not? Does it matter?
cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
}
// If the "store_addr" register is an "in" or "local" register, move it to
// a scratch reg so we can pass it as an argument.
bool use_scr = !(store_addr->is_global() || store_addr->is_out());
// Pick a scratch register different from "tmp".
Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
// Make sure we use up the delay slot!
if (use_scr) {
post_filter_masm->mov(store_addr, scr);
} else {
post_filter_masm->nop();
}
save_frame(0);
call(dirty_card_log_enqueue);
if (use_scr) {
delayed()->mov(scr, O0);
} else {
delayed()->mov(store_addr->after_save(), O0);
}
restore();
bind(filtered);
}
// Called from init_globals() after universe_init() and before interpreter_init()
void g1_barrier_stubs_init() {
CollectedHeap* heap = Universe::heap();
if (heap->kind() == CollectedHeap::G1) {
// Only needed for G1
if (dirty_card_log_enqueue == 0) {
G1BarrierSet* bs =
barrier_set_cast<G1BarrierSet>(heap->barrier_set());
CardTable *ct = bs->card_table();
generate_dirty_card_log_enqueue(ct->byte_map_base());
assert(dirty_card_log_enqueue != 0, "postcondition.");
}
if (satb_log_enqueue_with_frame == 0) {
generate_satb_log_enqueue(true);
assert(satb_log_enqueue_with_frame != 0, "postcondition.");
}
if (satb_log_enqueue_frameless == 0) {
generate_satb_log_enqueue(false);
assert(satb_log_enqueue_frameless != 0, "postcondition.");
}
}
}
#endif // INCLUDE_ALL_GCS
///////////////////////////////////////////////////////////////////////////////////
void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
// If we're writing constant NULL, we can skip the write barrier.
if (new_val == G0) return;
CardTableBarrierSet* bs =
barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = bs->card_table();
assert(bs->kind() == BarrierSet::CardTableBarrierSet, "wrong barrier");
card_table_write(ct->byte_map_base(), tmp, store_addr);
}
// ((OopHandle)result).resolve();
void MacroAssembler::resolve_oop_handle(Register result) {
// OopHandle::resolve is an indirection.
@ -3786,65 +3435,63 @@ void MacroAssembler::store_klass_gap(Register s, Register d) {
}
}
void MacroAssembler::load_heap_oop(const Address& s, Register d) {
if (UseCompressedOops) {
lduw(s, d);
decode_heap_oop(d);
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
Register src, Address dst, Register tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::store_at(this, decorators, type, src, dst, tmp);
} else {
ld_ptr(s, d);
bs->store_at(this, decorators, type, src, dst, tmp);
}
}
void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
if (UseCompressedOops) {
lduw(s1, s2, d);
decode_heap_oop(d, d);
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
Address src, Register dst, Register tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::load_at(this, decorators, type, src, dst, tmp);
} else {
ld_ptr(s1, s2, d);
bs->load_at(this, decorators, type, src, dst, tmp);
}
}
void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
if (UseCompressedOops) {
lduw(s1, simm13a, d);
decode_heap_oop(d, d);
void MacroAssembler::load_heap_oop(const Address& s, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, s, d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2), d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, simm13a), d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d, Register tmp, DecoratorSet decorators) {
if (s2.is_constant()) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2.as_constant()), d, tmp);
} else {
ld_ptr(s1, simm13a, d);
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2.as_register()), d, tmp);
}
}
void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
else load_heap_oop(s1, s2.as_register(), d);
void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2, Register tmp, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(s1, s2), tmp);
}
void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
if (UseCompressedOops) {
assert(s1 != d && s2 != d, "not enough registers");
encode_heap_oop(d);
st(d, s1, s2);
} else {
st_ptr(d, s1, s2);
}
void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a, Register tmp, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(s1, simm13a), tmp);
}
void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
if (UseCompressedOops) {
assert(s1 != d, "not enough registers");
encode_heap_oop(d);
st(d, s1, simm13a);
void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset, Register tmp, DecoratorSet decorators) {
if (a.has_index()) {
assert(!a.has_disp(), "not supported yet");
assert(offset == 0, "not supported yet");
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(a.base(), a.index()), tmp);
} else {
st_ptr(d, s1, simm13a);
}
}
void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
if (UseCompressedOops) {
assert(a.base() != d, "not enough registers");
encode_heap_oop(d);
st(d, a, offset);
} else {
st_ptr(d, a, offset);
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(a.base(), a.disp() + offset), tmp);
}
}

View File

@ -703,6 +703,9 @@ public:
// cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
inline void cas_ptr( Register s1, Register s2, Register d);
// Resolve a jobject or jweak
void resolve_jobject(Register value, Register tmp);
// Functions for isolating 64 bit shifts for LP64
inline void sll_ptr( Register s1, Register s2, Register d );
inline void sll_ptr( Register s1, int imm6a, Register d );
@ -974,13 +977,25 @@ public:
void store_klass_gap(Register s, Register dst_oop);
// oop manipulations
void load_heap_oop(const Address& s, Register d);
void load_heap_oop(Register s1, Register s2, Register d);
void load_heap_oop(Register s1, int simm13a, Register d);
void load_heap_oop(Register s1, RegisterOrConstant s2, Register d);
void store_heap_oop(Register d, Register s1, Register s2);
void store_heap_oop(Register d, Register s1, int simm13a);
void store_heap_oop(Register d, const Address& a, int offset = 0);
void access_store_at(BasicType type, DecoratorSet decorators,
Register src, Address dst, Register tmp);
void access_load_at(BasicType type, DecoratorSet decorators,
Address src, Register dst, Register tmp);
void load_heap_oop(const Address& s, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, Register s2, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, int simm13a, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop(Register s1, RegisterOrConstant s2, Register d,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, Register s1, Register s2,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, Register s1, int simm13a,
Register tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Register d, const Address& a, int offset = 0,
Register tmp = noreg, DecoratorSet decorators = 0);
void encode_heap_oop(Register src, Register dst);
void encode_heap_oop(Register r) {
@ -1043,19 +1058,6 @@ public:
// check_and_forward_exception to handle exceptions when it is safe
void check_and_forward_exception(Register scratch_reg);
// Write to card table for - register is destroyed afterwards.
void card_table_write(jbyte* byte_map_base, Register tmp, Register obj);
void card_write_barrier_post(Register store_addr, Register new_val, Register tmp);
#if INCLUDE_ALL_GCS
// General G1 pre-barrier generator.
void g1_write_barrier_pre(Register obj, Register index, int offset, Register pre_val, Register tmp, bool preserve_o_regs);
// General G1 post-barrier generator
void g1_write_barrier_post(Register store_addr, Register new_val, Register tmp);
#endif // INCLUDE_ALL_GCS
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void push_fTOS();

View File

@ -31,8 +31,6 @@
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
// An implementation of memset, for use when there may be concurrent
// readers of the region being stored into.
//
@ -156,5 +154,3 @@ void memset_with_concurrent_readers(void* to, int value, size_t size) {
// Fill any partial word suffix. Also the prefix if size < BytesPerWord.
fill_subword(to, end, value);
}
#endif // INCLUDE_ALL_GCS

View File

@ -180,13 +180,13 @@ void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm,
// Load the invoker, as MH -> MH.form -> LF.vmentry
__ verify_oop(recv);
__ load_heap_oop(Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes())), method_temp);
__ load_heap_oop(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes()), method_temp, temp2);
__ verify_oop(method_temp);
__ load_heap_oop(Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes())), method_temp);
__ load_heap_oop(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes()), method_temp, temp2);
__ verify_oop(method_temp);
__ load_heap_oop(Address(method_temp, NONZERO(java_lang_invoke_MemberName::method_offset_in_bytes())), method_temp);
__ load_heap_oop(method_temp, NONZERO(java_lang_invoke_MemberName::method_offset_in_bytes()), method_temp, temp2);
__ verify_oop(method_temp);
__ ld_ptr( Address(method_temp, NONZERO(java_lang_invoke_ResolvedMethodName::vmtarget_offset_in_bytes())), method_temp);
__ ld_ptr(Address(method_temp, NONZERO(java_lang_invoke_ResolvedMethodName::vmtarget_offset_in_bytes())), method_temp);
if (VerifyMethodHandles && !for_compiler_entry) {
// make sure recv is already on stack
@ -362,7 +362,7 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) {
Label L_ok;
Register temp2_defc = temp2;
__ load_heap_oop(member_clazz, temp2_defc);
__ load_heap_oop(member_clazz, temp2_defc, temp3);
load_klass_from_Class(_masm, temp2_defc, temp3, temp4);
__ verify_klass_ptr(temp2_defc);
__ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, temp4, L_ok);
@ -389,7 +389,7 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp2);
}
__ load_heap_oop(member_vmtarget, G5_method);
__ load_heap_oop(member_vmtarget, G5_method, temp3);
__ ld_ptr(vmtarget_method, G5_method);
break;
@ -397,7 +397,7 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
if (VerifyMethodHandles) {
verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp2);
}
__ load_heap_oop(member_vmtarget, G5_method);
__ load_heap_oop(member_vmtarget, G5_method, temp3);
__ ld_ptr(vmtarget_method, G5_method);
break;
@ -438,7 +438,7 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
}
Register temp2_intf = temp2;
__ load_heap_oop(member_clazz, temp2_intf);
__ load_heap_oop(member_clazz, temp2_intf, temp3);
load_klass_from_Class(_masm, temp2_intf, temp3, temp4);
__ verify_klass_ptr(temp2_intf);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -2516,28 +2516,7 @@ nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
// Unbox oop result, e.g. JNIHandles::resolve value in I0.
if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
Label done, not_weak;
__ br_null(I0, false, Assembler::pn, done); // Use NULL as-is.
__ delayed()->andcc(I0, JNIHandles::weak_tag_mask, G0); // Test for jweak
__ brx(Assembler::zero, true, Assembler::pt, not_weak);
__ delayed()->ld_ptr(I0, 0, I0); // Maybe resolve (untagged) jobject.
// Resolve jweak.
__ ld_ptr(I0, -JNIHandles::weak_tag_value, I0);
#if INCLUDE_ALL_GCS
if (UseG1GC) {
// Copy to O0 because macro doesn't allow pre_val in input reg.
__ mov(I0, O0);
__ g1_write_barrier_pre(noreg /* obj */,
noreg /* index */,
0 /* offset */,
O0 /* pre_val */,
G3_scratch /* tmp */,
true /* preserve_o_regs */);
}
#endif // INCLUDE_ALL_GCS
__ bind(not_weak);
__ verify_oop(I0);
__ bind(done);
__ resolve_jobject(I0, G3_scratch);
}
if (CheckJNICalls) {

View File

@ -2277,7 +2277,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, from, to, count);
assert_clean_int(count, O3); // Make sure 'count' is clean int.
@ -2334,7 +2334,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= ARRAYCOPY_ALIGNED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, from, to, count);
if (UseCompressedOops) {
@ -2451,7 +2451,7 @@ class StubGenerator: public StubCodeGenerator {
decorators |= AS_DEST_NOT_INITIALIZED;
}
BarrierSetAssembler *bs = Universe::heap()->barrier_set()->barrier_set_assembler();
BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
bs->arraycopy_prologue(_masm, decorators, T_OBJECT, O0_from, O1_to, O2_count);
Label load_element, store_element, do_epilogue, fail, done;
@ -2474,14 +2474,14 @@ class StubGenerator: public StubCodeGenerator {
__ BIND(store_element);
__ deccc(G1_remain); // decrement the count
__ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
__ store_heap_oop(G3_oop, O1_to, O5_offset, noreg, AS_RAW); // store the oop
__ inc(O5_offset, heapOopSize); // step to next offset
__ brx(Assembler::zero, true, Assembler::pt, do_epilogue);
__ delayed()->set(0, O0); // return -1 on success
// ======== loop entry is here ========
__ BIND(load_element);
__ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
__ load_heap_oop(O0_from, O5_offset, G3_oop, noreg, AS_RAW); // load the oop
__ br_null_short(G3_oop, Assembler::pt, store_element);
__ load_klass(G3_oop, G4_klass); // query the object klass

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -24,6 +24,7 @@
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/bytecodeHistogram.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
@ -827,29 +828,18 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// Method entry for java.lang.ref.Reference.get.
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
#if INCLUDE_ALL_GCS
// Code: _aload_0, _getfield, _areturn
// parameter size = 1
//
// The code that gets generated by this routine is split into 2 parts:
// 1. The "intrinsified" code for G1 (or any SATB based GC),
// 1. The "intrinsified" code performing an ON_WEAK_OOP_REF load,
// 2. The slow path - which is an expansion of the regular method entry.
//
// Notes:-
// * In the G1 code we do not check whether we need to block for
// a safepoint. If G1 is enabled then we must execute the specialized
// code for Reference.get (except when the Reference object is null)
// so that we can log the value in the referent field with an SATB
// update buffer.
// If the code for the getfield template is modified so that the
// G1 pre-barrier code is executed when the current method is
// Reference.get() then going through the normal method entry
// will be fine.
// * The G1 code can, however, check the receiver object (the instance
// of java.lang.Reference) and jump to the slow path if null. If the
// Reference object is null then we obviously cannot fetch the referent
// and so we don't need to call the G1 pre-barrier. Thus we can use the
// regular method entry code to generate the NPE.
// * An intrinsic is always executed, where an ON_WEAK_OOP_REF load is performed.
// * We may jump to the slow path iff the receiver is null. If the
// Reference object is null then we no longer perform an ON_WEAK_OOP_REF load
// Thus we can use the regular method entry code to generate the NPE.
//
// This code is based on generate_accessor_enty.
@ -858,51 +848,27 @@ address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
const int referent_offset = java_lang_ref_Reference::referent_offset;
guarantee(referent_offset > 0, "referent offset not initialized");
if (UseG1GC) {
Label slow_path;
Label slow_path;
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// In the G1 code we don't check if we need to reach a safepoint. We
// continue and the thread will safepoint at the next bytecode dispatch.
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
// check if local 0 == NULL and go the slow path
__ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
// Check if local 0 != NULL
// If the receiver is null then it is OK to jump to the slow path.
__ ld_ptr(Gargs, G0, Otos_i ); // get local 0
// check if local 0 == NULL and go the slow path
__ cmp_and_brx_short(Otos_i, 0, Assembler::equal, Assembler::pn, slow_path);
__ load_heap_oop(Otos_i, referent_offset, Otos_i, G3_scratch, ON_WEAK_OOP_REF);
// Load the value of the referent field.
if (Assembler::is_simm13(referent_offset)) {
__ load_heap_oop(Otos_i, referent_offset, Otos_i);
} else {
__ set(referent_offset, G3_scratch);
__ load_heap_oop(Otos_i, G3_scratch, Otos_i);
}
// _areturn
__ retl(); // return from leaf routine
__ delayed()->mov(O5_savedSP, SP);
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer. Note with
// these parameters the pre-barrier does not generate
// the load of the previous value
__ g1_write_barrier_pre(noreg /* obj */, noreg /* index */, 0 /* offset */,
Otos_i /* pre_val */,
G3_scratch /* tmp */,
true /* preserve_o_regs */);
// _areturn
__ retl(); // return from leaf routine
__ delayed()->mov(O5_savedSP, SP);
// Generate regular method entry
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
}
#endif // INCLUDE_ALL_GCS
// If G1 is not enabled then attempt to go through the accessor entry point
// Reference.get is an accessor
return NULL;
// Generate regular method entry
__ bind(slow_path);
__ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
return entry;
}
/**
@ -1469,33 +1435,15 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// If we have an oop result store it where it will be safe for any further gc
// until we return now that we've released the handle it might be protected by
{ Label no_oop, store_result;
{ Label no_oop;
__ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
__ cmp_and_brx_short(G3_scratch, Lscratch, Assembler::notEqual, Assembler::pt, no_oop);
// Unbox oop result, e.g. JNIHandles::resolve value in O0.
__ br_null(O0, false, Assembler::pn, store_result); // Use NULL as-is.
__ delayed()->andcc(O0, JNIHandles::weak_tag_mask, G0); // Test for jweak
__ brx(Assembler::zero, true, Assembler::pt, store_result);
__ delayed()->ld_ptr(O0, 0, O0); // Maybe resolve (untagged) jobject.
// Resolve jweak.
__ ld_ptr(O0, -JNIHandles::weak_tag_value, O0);
#if INCLUDE_ALL_GCS
if (UseG1GC) {
__ g1_write_barrier_pre(noreg /* obj */,
noreg /* index */,
0 /* offset */,
O0 /* pre_val */,
G3_scratch /* tmp */,
true /* preserve_o_regs */);
}
#endif // INCLUDE_ALL_GCS
__ bind(store_result);
__ resolve_jobject(O0, G3_scratch);
// Store it where gc will look for it and result handler expects it.
__ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
__ bind(no_oop);
}

View File

@ -23,6 +23,7 @@
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/interp_masm.hpp"
@ -51,74 +52,31 @@ static void do_oop_store(InterpreterMacroAssembler* _masm,
int offset,
Register val,
Register tmp,
BarrierSet::Name barrier,
bool precise) {
DecoratorSet decorators = 0) {
assert(tmp != val && tmp != base && tmp != index, "register collision");
assert(index == noreg || offset == 0, "only one offset");
switch (barrier) {
#if INCLUDE_ALL_GCS
case BarrierSet::G1BarrierSet:
{
// Load and record the previous value.
__ g1_write_barrier_pre(base, index, offset,
noreg /* pre_val */,
tmp, true /*preserve_o_regs*/);
// G1 barrier needs uncompressed oop for region cross check.
Register new_val = val;
if (UseCompressedOops && val != G0) {
new_val = tmp;
__ mov(val, new_val);
}
if (index == noreg ) {
assert(Assembler::is_simm13(offset), "fix this code");
__ store_heap_oop(val, base, offset);
} else {
__ store_heap_oop(val, base, index);
}
// No need for post barrier if storing NULL
if (val != G0) {
if (precise) {
if (index == noreg) {
__ add(base, offset, base);
} else {
__ add(base, index, base);
}
}
__ g1_write_barrier_post(base, new_val, tmp);
}
}
break;
#endif // INCLUDE_ALL_GCS
case BarrierSet::CardTableBarrierSet:
{
if (index == noreg ) {
assert(Assembler::is_simm13(offset), "fix this code");
__ store_heap_oop(val, base, offset);
} else {
__ store_heap_oop(val, base, index);
}
// No need for post barrier if storing NULL
if (val != G0) {
if (precise) {
if (index == noreg) {
__ add(base, offset, base);
} else {
__ add(base, index, base);
}
}
__ card_write_barrier_post(base, val, tmp);
}
}
break;
case BarrierSet::ModRef:
ShouldNotReachHere();
break;
default :
ShouldNotReachHere();
if (index == noreg) {
__ store_heap_oop(val, base, offset, tmp, decorators);
} else {
__ store_heap_oop(val, base, index, tmp, decorators);
}
}
// Do an oop load like val = *(base + index + offset)
// index can be noreg.
static void do_oop_load(InterpreterMacroAssembler* _masm,
Register base,
Register index,
int offset,
Register dst,
Register tmp,
DecoratorSet decorators = 0) {
assert(tmp != dst && tmp != base && tmp != index, "register collision");
assert(index == noreg || offset == 0, "only one offset");
if (index == noreg) {
__ load_heap_oop(base, offset, dst, tmp, decorators);
} else {
__ load_heap_oop(base, index, dst, tmp, decorators);
}
}
@ -587,7 +545,13 @@ void TemplateTable::aaload() {
// Otos_i: index
// tos: array
__ index_check(O2, Otos_i, UseCompressedOops ? 2 : LogBytesPerWord, G3_scratch, O3);
__ load_heap_oop(O3, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i);
do_oop_load(_masm,
O3,
noreg,
arrayOopDesc::base_offset_in_bytes(T_OBJECT),
Otos_i,
G3_scratch,
IN_HEAP_ARRAY);
__ verify_oop(Otos_i);
}
@ -887,13 +851,13 @@ void TemplateTable::aastore() {
// Store is OK.
__ bind(store_ok);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, _bs->kind(), true);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Otos_i, G3_scratch, IN_HEAP_ARRAY);
__ ba(done);
__ delayed()->inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
__ bind(is_null);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, _bs->kind(), true);
do_oop_store(_masm, O1, noreg, arrayOopDesc::base_offset_in_bytes(T_OBJECT), G0, G4_scratch, IN_HEAP_ARRAY);
__ profile_null_seen(G3_scratch);
__ inc(Lesp, 3* Interpreter::stackElementSize); // adj sp (pops array, index and value)
@ -2155,7 +2119,7 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteContr
__ delayed() ->cmp(Rflags, itos);
// atos
__ load_heap_oop(Rclass, Roffset, Otos_i);
do_oop_load(_masm, Rclass, Roffset, 0, Otos_i, noreg);
__ verify_oop(Otos_i);
__ push(atos);
if (!is_static && rc == may_rewrite) {
@ -2354,7 +2318,7 @@ void TemplateTable::fast_accessfield(TosState state) {
__ ldf(FloatRegisterImpl::D, Otos_i, Roffset, Ftos_d);
break;
case Bytecodes::_fast_agetfield:
__ load_heap_oop(Otos_i, Roffset, Otos_i);
do_oop_load(_masm, Otos_i, Roffset, 0, Otos_i, noreg);
break;
default:
ShouldNotReachHere();
@ -2537,7 +2501,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteContr
{
__ pop_ptr();
__ verify_oop(Otos_i);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
}
@ -2582,7 +2546,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteContr
__ pop_ptr();
pop_and_check_object(Rclass);
__ verify_oop(Otos_i);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
if (rc == may_rewrite) patch_bytecode(Bytecodes::_fast_aputfield, G3_scratch, G4_scratch, true, byte_no);
__ ba(checkVolatile);
__ delayed()->tst(Lscratch);
@ -2763,7 +2727,7 @@ void TemplateTable::fast_storefield(TosState state) {
__ stf(FloatRegisterImpl::D, Ftos_d, Rclass, Roffset);
break;
case Bytecodes::_fast_aputfield:
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch, _bs->kind(), false);
do_oop_store(_masm, Rclass, Roffset, 0, Otos_i, G1_scratch);
break;
default:
ShouldNotReachHere();
@ -2805,7 +2769,7 @@ void TemplateTable::fast_xaccess(TosState state) {
__ verify_oop(Rreceiver);
__ null_check(Rreceiver);
if (state == atos) {
__ load_heap_oop(Rreceiver, Roffset, Otos_i);
do_oop_load(_masm, Rreceiver, Roffset, 0, Otos_i, noreg);
} else if (state == itos) {
__ ld (Rreceiver, Roffset, Otos_i) ;
} else if (state == ftos) {

View File

@ -38,7 +38,6 @@
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS

View File

@ -44,6 +44,7 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#endif
@ -1562,7 +1563,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
// arg0 : previous value of memory
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ movptr(rax, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
@ -1578,12 +1579,9 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
NOT_LP64(__ get_thread(thread);)
Address queue_active(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
Address queue_active(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
Label done;
Label runtime;
@ -1632,7 +1630,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
{
StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
BarrierSet* bs = Universe::heap()->barrier_set();
BarrierSet* bs = BarrierSet::barrier_set();
if (bs->kind() != BarrierSet::G1BarrierSet) {
__ movptr(rax, (int)id);
__ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
@ -1652,10 +1650,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
__ push(rax);
__ push(rcx);

View File

@ -27,11 +27,10 @@
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1BarrierSetAssembler.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interp_masm.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#define __ masm->
@ -48,8 +47,7 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
#endif
Label filtered;
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ cmpl(in_progress, 0);
@ -111,3 +109,293 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
#endif
__ popa();
}
void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_oop = type == T_OBJECT || type == T_ARRAY;
bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
bool on_reference = on_weak || on_phantom;
ModRefBarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
if (on_oop && on_reference) {
const Register thread = NOT_LP64(tmp_thread) LP64_ONLY(r15_thread);
NOT_LP64(__ get_thread(thread));
// Generate the G1 pre-barrier code to log the value of
// the referent field in an SATB buffer.
g1_write_barrier_pre(masm /* masm */,
noreg /* obj */,
dst /* pre_val */,
thread /* thread */,
tmp1 /* tmp */,
true /* tosca_live */,
true /* expand_call */);
}
}
void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Label done;
Label runtime;
assert(pre_val != noreg, "check this code");
if (obj != noreg) {
assert_different_registers(obj, pre_val, tmp);
assert(pre_val != rax, "check this code");
}
Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
Address index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
__ cmpl(in_progress, 0);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
__ cmpb(in_progress, 0);
}
__ jcc(Assembler::equal, done);
// Do we need to load the previous value?
if (obj != noreg) {
__ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW);
}
// Is the previous value null?
__ cmpptr(pre_val, (int32_t) NULL_WORD);
__ jcc(Assembler::equal, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
__ movptr(tmp, index); // tmp := *index_adr
__ cmpptr(tmp, 0); // tmp == 0?
__ jcc(Assembler::equal, runtime); // If yes, goto runtime
__ subptr(tmp, wordSize); // tmp := tmp - wordSize
__ movptr(index, tmp); // *index_adr := tmp
__ addptr(tmp, buffer); // tmp := tmp + *buffer_adr
// Record the previous value
__ movptr(Address(tmp, 0), pre_val);
__ jmp(done);
__ bind(runtime);
// save the live input values
if(tosca_live) __ push(rax);
if (obj != noreg && obj != rax)
__ push(obj);
if (pre_val != rax)
__ push(pre_val);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
NOT_LP64( __ push(thread); )
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
#ifdef _LP64
if (c_rarg1 != thread) {
__ mov(c_rarg1, thread);
}
if (c_rarg0 != pre_val) {
__ mov(c_rarg0, pre_val);
}
#else
__ push(thread);
__ push(pre_val);
#endif
__ MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
NOT_LP64( __ pop(thread); )
// save the live input values
if (pre_val != rax)
__ pop(pre_val);
if (obj != noreg && obj != rax)
__ pop(obj);
if(tosca_live) __ pop(rax);
__ bind(done);
}
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
CardTableBarrierSet* ct =
barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
assert(sizeof(*ct->card_table()->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
__ movptr(tmp, store_addr);
__ xorptr(tmp, new_val);
__ shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
__ jcc(Assembler::equal, done);
// crosses regions, storing NULL?
__ cmpptr(new_val, (int32_t) NULL_WORD);
__ jcc(Assembler::equal, done);
// storing region crossing non-NULL, is card already dirty?
const Register card_addr = tmp;
const Register cardtable = tmp2;
__ movptr(card_addr, store_addr);
__ shrptr(card_addr, CardTable::card_shift);
// Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
// a valid address and therefore is not properly handled by the relocation code.
__ movptr(cardtable, (intptr_t)ct->card_table()->byte_map_base());
__ addptr(card_addr, cardtable);
__ cmpb(Address(card_addr, 0), (int)G1CardTable::g1_young_card_val());
__ jcc(Assembler::equal, done);
__ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
__ cmpb(Address(card_addr, 0), (int)G1CardTable::dirty_card_val());
__ jcc(Assembler::equal, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
__ movb(Address(card_addr, 0), (int)G1CardTable::dirty_card_val());
__ cmpl(queue_index, 0);
__ jcc(Assembler::equal, runtime);
__ subl(queue_index, wordSize);
__ movptr(tmp2, buffer);
#ifdef _LP64
__ movslq(rscratch1, queue_index);
__ addq(tmp2, rscratch1);
__ movq(Address(tmp2, 0), card_addr);
#else
__ addl(tmp2, queue_index);
__ movl(Address(tmp2, 0), card_addr);
#endif
__ jmp(done);
__ bind(runtime);
// save the live input values
__ push(store_addr);
__ push(new_val);
#ifdef _LP64
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
__ push(thread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
__ pop(thread);
#endif
__ pop(new_val);
__ pop(store_addr);
__ bind(done);
}
void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool in_concurrent_root = (decorators & IN_CONCURRENT_ROOT) != 0;
bool needs_pre_barrier = in_heap || in_concurrent_root;
bool needs_post_barrier = val != noreg && in_heap;
Register tmp3 = LP64_ONLY(r8) NOT_LP64(rsi);
Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
// flatten object address if needed
// We do it regardless of precise because we need the registers
if (dst.index() == noreg && dst.disp() == 0) {
if (dst.base() != tmp1) {
__ movptr(tmp1, dst.base());
}
} else {
__ lea(tmp1, dst);
}
#ifndef _LP64
InterpreterMacroAssembler *imasm = static_cast<InterpreterMacroAssembler*>(masm);
#endif
NOT_LP64(__ get_thread(rcx));
NOT_LP64(imasm->save_bcp());
if (needs_pre_barrier) {
g1_write_barrier_pre(masm /*masm*/,
tmp1 /* obj */,
tmp2 /* pre_val */,
rthread /* thread */,
tmp3 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
}
if (val == noreg) {
BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg);
} else {
Register new_val = val;
if (needs_post_barrier) {
// G1 barrier needs uncompressed oop for region cross check.
if (UseCompressedOops) {
new_val = tmp2;
__ movptr(new_val, val);
}
}
BarrierSetAssembler::store_at(masm, decorators, type, Address(tmp1, 0), val, noreg, noreg);
if (needs_post_barrier) {
g1_write_barrier_post(masm /*masm*/,
tmp1 /* store_adr */,
new_val /* new_val */,
rthread /* thread */,
tmp3 /* tmp */,
tmp2 /* tmp2 */);
}
}
NOT_LP64(imasm->restore_bcp());
}

View File

@ -30,10 +30,30 @@
class G1BarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp);
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register tmp);
void g1_write_barrier_pre(MacroAssembler* masm,
Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
public:
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread);
};
#endif // CPU_X86_GC_G1_G1BARRIERSETASSEMBLER_X86_HPP

View File

@ -0,0 +1,110 @@
/*
* Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interp_masm.hpp"
#define __ masm->
void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool oop_not_null = (decorators & OOP_NOT_NULL) != 0;
switch (type) {
case T_OBJECT:
case T_ARRAY: {
if (on_heap) {
#ifdef _LP64
if (UseCompressedOops) {
__ movl(dst, src);
if (oop_not_null) {
__ decode_heap_oop_not_null(dst);
} else {
__ decode_heap_oop(dst);
}
} else
#endif
{
__ movptr(dst, src);
}
} else {
assert(on_root, "why else?");
__ movptr(dst, src);
}
break;
}
default: Unimplemented();
}
}
void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool on_heap = (decorators & IN_HEAP) != 0;
bool on_root = (decorators & IN_ROOT) != 0;
bool oop_not_null = (decorators & OOP_NOT_NULL) != 0;
switch (type) {
case T_OBJECT:
case T_ARRAY: {
if (on_heap) {
if (val == noreg) {
assert(!oop_not_null, "inconsistent access");
#ifdef _LP64
if (UseCompressedOops) {
__ movl(dst, (int32_t)NULL_WORD);
} else {
__ movslq(dst, (int32_t)NULL_WORD);
}
#else
__ movl(dst, (int32_t)NULL_WORD);
#endif
} else {
#ifdef _LP64
if (UseCompressedOops) {
assert(!dst.uses(val), "not enough registers");
if (oop_not_null) {
__ encode_heap_oop_not_null(val);
} else {
__ encode_heap_oop(val);
}
__ movl(dst, val);
} else
#endif
{
__ movptr(dst, val);
}
}
} else {
assert(on_root, "why else?");
assert(val != noreg, "not supported");
__ movptr(dst, val);
}
break;
}
default: Unimplemented();
}
}

View File

@ -22,8 +22,8 @@
*
*/
#ifndef CPU_X86_GC_G1_BARRIERSETASSEMBLER_X86_HPP
#define CPU_X86_GC_G1_BARRIERSETASSEMBLER_X86_HPP
#ifndef CPU_X86_GC_SHARED_BARRIERSETASSEMBLER_X86_HPP
#define CPU_X86_GC_SHARED_BARRIERSETASSEMBLER_X86_HPP
#include "asm/macroAssembler.hpp"
#include "memory/allocation.hpp"
@ -38,6 +38,13 @@ public:
Register src, Register dst, Register count) {}
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count) {}
virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register dst, Address src, Register tmp1, Register tmp_thread);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
virtual void barrier_stubs_init() {}
};
#endif // CPU_X86_GC_G1_BARRIERSETASSEMBLER_X86_HPP
#endif // CPU_X86_GC_SHARED_BARRIERSETASSEMBLER_X86_HPP

View File

@ -28,7 +28,6 @@
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/cardTableBarrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.hpp"
#define __ masm->
@ -44,7 +43,7 @@
void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {
BarrierSet *bs = Universe::heap()->barrier_set();
BarrierSet *bs = BarrierSet::barrier_set();
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
@ -85,3 +84,70 @@ __ BIND(L_loop);
__ BIND(L_done);
}
void CardTableBarrierSetAssembler::store_check(MacroAssembler* masm, Register obj, Address dst) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
BarrierSet* bs = BarrierSet::barrier_set();
CardTableBarrierSet* ct = barrier_set_cast<CardTableBarrierSet>(bs);
assert(sizeof(*ct->card_table()->byte_map_base()) == sizeof(jbyte), "adjust this code");
__ shrptr(obj, CardTable::card_shift);
Address card_addr;
// The calculation for byte_map_base is as follows:
// byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
// So this essentially converts an address to a displacement and it will
// never need to be relocated. On 64bit however the value may be too
// large for a 32bit displacement.
intptr_t disp = (intptr_t) ct->card_table()->byte_map_base();
if (__ is_simm32(disp)) {
card_addr = Address(noreg, obj, Address::times_1, disp);
} else {
// By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
// displacement and done in a single instruction given favorable mapping and a
// smarter version of as_Address. However, 'ExternalAddress' generates a relocation
// entry and that entry is not properly handled by the relocation code.
AddressLiteral cardtable((address)ct->card_table()->byte_map_base(), relocInfo::none);
Address index(noreg, obj, Address::times_1);
card_addr = __ as_Address(ArrayAddress(cardtable, index));
}
int dirty = CardTable::dirty_card_val();
if (UseCondCardMark) {
Label L_already_dirty;
if (UseConcMarkSweepGC) {
__ membar(Assembler::StoreLoad);
}
__ cmpb(card_addr, dirty);
__ jcc(Assembler::equal, L_already_dirty);
__ movb(card_addr, dirty);
__ bind(L_already_dirty);
} else {
__ movb(card_addr, dirty);
}
}
void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
bool in_heap = (decorators & IN_HEAP) != 0;
bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
bool precise = on_array || on_anonymous;
bool needs_post_barrier = val != noreg && in_heap;
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, noreg, noreg);
if (needs_post_barrier) {
// flatten object address if needed
if (!precise || (dst.index() == noreg && dst.disp() == 0)) {
store_check(masm, dst.base(), dst);
} else {
__ lea(tmp1, dst);
store_check(masm, tmp1, dst);
}
}
}

View File

@ -30,8 +30,12 @@
class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
protected:
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr,
Register count, Register tmp);
void store_check(MacroAssembler* masm, Register obj, Address dst);
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register tmp);
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
};
#endif // CPU_X86_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_X86_HPP

View File

@ -78,3 +78,12 @@ void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, Decorat
gen_write_ref_array_post_barrier(masm, decorators, dst, count, tmp);
}
}
void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) {
if (type == T_OBJECT || type == T_ARRAY) {
oop_store_at(masm, decorators, type, dst, val, tmp1, tmp2);
} else {
BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
}
}

View File

@ -28,16 +28,26 @@
#include "asm/macroAssembler.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
// accesses, which are overridden in the concrete BarrierSetAssembler.
class ModRefBarrierSetAssembler: public BarrierSetAssembler {
protected:
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators, Register addr, Register count, Register tmp) {}
virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count) {}
virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
Register addr, Register count, Register tmp) {}
virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2) = 0;
public:
virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count);
virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Register src, Register dst, Register count);
virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
Address dst, Register val, Register tmp1, Register tmp2);
};
#endif // CPU_X86_GC_SHARED_MODREFBARRIERSETASSEMBLER_X86_HPP

View File

@ -516,9 +516,7 @@ void InterpreterMacroAssembler::load_resolved_reference_at_index(
resolve_oop_handle(result);
// Add in the index
addptr(result, tmp);
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
// The resulting oop is null if the reference is not yet resolved.
// It is Universe::the_null_sentinel() if the reference resolved to NULL via condy.
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
}
// load cpool->resolved_klass_at(index)

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -35,12 +35,13 @@
typedef ByteSize (*OffsetFunction)(uint);
class InterpreterMacroAssembler: public MacroAssembler {
protected:
public:
// Interpreter specific version of call_VM_base
virtual void call_VM_leaf_base(address entry_point,
int number_of_arguments);
protected:
virtual void call_VM_base(Register oop_result,
Register java_thread,
Register last_java_sp,

View File

@ -27,12 +27,13 @@
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/cardTable.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/access.hpp"
#include "oops/klass.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
@ -45,12 +46,6 @@
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTable.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/heapRegion.hpp"
#endif // INCLUDE_ALL_GCS
#include "crc32c.h"
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
@ -5240,6 +5235,12 @@ void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src
}
}
void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
// The inverted mask is sign-extended
andptr(possibly_jweak, inverted_jweak_mask);
}
void MacroAssembler::resolve_jobject(Register value,
Register thread,
@ -5251,296 +5252,18 @@ void MacroAssembler::resolve_jobject(Register value,
testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
jcc(Assembler::zero, not_weak);
// Resolve jweak.
movptr(value, Address(value, -JNIHandles::weak_tag_value));
access_load_at(T_OBJECT, IN_ROOT | ON_PHANTOM_OOP_REF,
value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
verify_oop(value);
#if INCLUDE_ALL_GCS
if (UseG1GC) {
g1_write_barrier_pre(noreg /* obj */,
value /* pre_val */,
thread /* thread */,
tmp /* tmp */,
true /* tosca_live */,
true /* expand_call */);
}
#endif // INCLUDE_ALL_GCS
jmp(done);
bind(not_weak);
// Resolve (untagged) jobject.
movptr(value, Address(value, 0));
access_load_at(T_OBJECT, IN_ROOT | IN_CONCURRENT_ROOT,
value, Address(value, 0), tmp, thread);
verify_oop(value);
bind(done);
}
void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
// The inverted mask is sign-extended
andptr(possibly_jweak, inverted_jweak_mask);
}
//////////////////////////////////////////////////////////////////////////////////
#if INCLUDE_ALL_GCS
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
// If expand_call is true then we expand the call_VM_leaf macro
// directly to skip generating the check by
// InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Label done;
Label runtime;
assert(pre_val != noreg, "check this code");
if (obj != noreg) {
assert_different_registers(obj, pre_val, tmp);
assert(pre_val != rax, "check this code");
}
Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_active()));
Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
SATBMarkQueue::byte_offset_of_buf()));
// Is marking active?
if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
cmpl(in_progress, 0);
} else {
assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
cmpb(in_progress, 0);
}
jcc(Assembler::equal, done);
// Do we need to load the previous value?
if (obj != noreg) {
load_heap_oop(pre_val, Address(obj, 0));
}
// Is the previous value null?
cmpptr(pre_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// Can we store original value in the thread's buffer?
// Is index == 0?
// (The index field is typed as size_t.)
movptr(tmp, index); // tmp := *index_adr
cmpptr(tmp, 0); // tmp == 0?
jcc(Assembler::equal, runtime); // If yes, goto runtime
subptr(tmp, wordSize); // tmp := tmp - wordSize
movptr(index, tmp); // *index_adr := tmp
addptr(tmp, buffer); // tmp := tmp + *buffer_adr
// Record the previous value
movptr(Address(tmp, 0), pre_val);
jmp(done);
bind(runtime);
// save the live input values
if(tosca_live) push(rax);
if (obj != noreg && obj != rax)
push(obj);
if (pre_val != rax)
push(pre_val);
// Calling the runtime using the regular call_VM_leaf mechanism generates
// code (generated by InterpreterMacroAssember::call_VM_leaf_base)
// that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
//
// If we care generating the pre-barrier without a frame (e.g. in the
// intrinsified Reference.get() routine) then ebp might be pointing to
// the caller frame and so this check will most likely fail at runtime.
//
// Expanding the call directly bypasses the generation of the check.
// So when we do not have have a full interpreter frame on the stack
// expand_call should be passed true.
NOT_LP64( push(thread); )
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
pass_arg1(this, thread);
pass_arg0(this, pre_val);
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
NOT_LP64( pop(thread); )
// save the live input values
if (pre_val != rax)
pop(pre_val);
if (obj != noreg && obj != rax)
pop(obj);
if(tosca_live) pop(rax);
bind(done);
}
void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64
Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
DirtyCardQueue::byte_offset_of_buf()));
CardTableBarrierSet* ctbs =
barrier_set_cast<CardTableBarrierSet>(Universe::heap()->barrier_set());
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
Label done;
Label runtime;
// Does store cross heap regions?
movptr(tmp, store_addr);
xorptr(tmp, new_val);
shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
jcc(Assembler::equal, done);
// crosses regions, storing NULL?
cmpptr(new_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
// storing region crossing non-NULL, is card already dirty?
const Register card_addr = tmp;
const Register cardtable = tmp2;
movptr(card_addr, store_addr);
shrptr(card_addr, CardTable::card_shift);
// Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
// a valid address and therefore is not properly handled by the relocation code.
movptr(cardtable, (intptr_t)ct->byte_map_base());
addptr(card_addr, cardtable);
cmpb(Address(card_addr, 0), (int)G1CardTable::g1_young_card_val());
jcc(Assembler::equal, done);
membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
cmpb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
jcc(Assembler::equal, done);
// storing a region crossing, non-NULL oop, card is clean.
// dirty card and log.
movb(Address(card_addr, 0), (int)CardTable::dirty_card_val());
cmpl(queue_index, 0);
jcc(Assembler::equal, runtime);
subl(queue_index, wordSize);
movptr(tmp2, buffer);
#ifdef _LP64
movslq(rscratch1, queue_index);
addq(tmp2, rscratch1);
movq(Address(tmp2, 0), card_addr);
#else
addl(tmp2, queue_index);
movl(Address(tmp2, 0), card_addr);
#endif
jmp(done);
bind(runtime);
// save the live input values
push(store_addr);
push(new_val);
#ifdef _LP64
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
#else
push(thread);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
pop(thread);
#endif
pop(new_val);
pop(store_addr);
bind(done);
}
#endif // INCLUDE_ALL_GCS
//////////////////////////////////////////////////////////////////////////////////
void MacroAssembler::store_check(Register obj, Address dst) {
store_check(obj);
}
void MacroAssembler::store_check(Register obj) {
// Does a store check for the oop in register obj. The content of
// register obj is destroyed afterwards.
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->kind() == BarrierSet::CardTableBarrierSet,
"Wrong barrier set kind");
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
CardTable* ct = ctbs->card_table();
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "adjust this code");
shrptr(obj, CardTable::card_shift);
Address card_addr;
// The calculation for byte_map_base is as follows:
// byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
// So this essentially converts an address to a displacement and it will
// never need to be relocated. On 64bit however the value may be too
// large for a 32bit displacement.
intptr_t disp = (intptr_t) ct->byte_map_base();
if (is_simm32(disp)) {
card_addr = Address(noreg, obj, Address::times_1, disp);
} else {
// By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
// displacement and done in a single instruction given favorable mapping and a
// smarter version of as_Address. However, 'ExternalAddress' generates a relocation
// entry and that entry is not properly handled by the relocation code.
AddressLiteral cardtable((address)ct->byte_map_base(), relocInfo::none);
Address index(noreg, obj, Address::times_1);
card_addr = as_Address(ArrayAddress(cardtable, index));
}
int dirty = CardTable::dirty_card_val();
if (UseCondCardMark) {
Label L_already_dirty;
if (UseConcMarkSweepGC) {
membar(Assembler::StoreLoad);
}
cmpb(card_addr, dirty);
jcc(Assembler::equal, L_already_dirty);
movb(card_addr, dirty);
bind(L_already_dirty);
} else {
movb(card_addr, dirty);
}
}
void MacroAssembler::subptr(Register dst, int32_t imm32) {
LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
}
@ -6591,69 +6314,47 @@ void MacroAssembler::store_klass(Register dst, Register src) {
movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
}
void MacroAssembler::load_heap_oop(Register dst, Address src) {
#ifdef _LP64
// FIXME: Must change all places where we try to load the klass.
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop(dst);
} else
#endif
movptr(dst, src);
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
Register tmp1, Register thread_tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
} else {
bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
}
}
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
Register tmp1, Register tmp2) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
} else {
bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
}
}
void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
Register thread_tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
}
// Doesn't do verfication, generates fixed size code
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, src);
decode_heap_oop_not_null(dst);
} else
#endif
movptr(dst, src);
void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
Register thread_tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | OOP_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
}
void MacroAssembler::store_heap_oop(Address dst, Register src) {
#ifdef _LP64
if (UseCompressedOops) {
assert(!dst.uses(src), "not enough registers");
encode_heap_oop(src);
movl(dst, src);
} else
#endif
movptr(dst, src);
}
void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
assert_different_registers(src1, tmp);
#ifdef _LP64
if (UseCompressedOops) {
bool did_push = false;
if (tmp == noreg) {
tmp = rax;
push(tmp);
did_push = true;
assert(!src2.uses(rsp), "can't push");
}
load_heap_oop(tmp, src2);
cmpptr(src1, tmp);
if (did_push) pop(tmp);
} else
#endif
cmpptr(src1, src2);
void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
Register tmp2, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
}
// Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) {
#ifdef _LP64
if (UseCompressedOops) {
movl(dst, (int32_t)NULL_WORD);
} else {
movslq(dst, (int32_t)NULL_WORD);
}
#else
movl(dst, (int32_t)NULL_WORD);
#endif
access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
}
#ifdef _LP64

View File

@ -38,11 +38,7 @@ class MacroAssembler: public Assembler {
friend class LIR_Assembler;
friend class Runtime1; // as_Address()
protected:
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr);
public:
// Support for VM calls
//
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
@ -54,6 +50,7 @@ class MacroAssembler: public Assembler {
int number_of_arguments // the number of arguments to pop after the call
);
protected:
// This is the base routine called by the different versions of call_VM. The interpreter
// may customize this version by overriding it for its purposes (e.g., to save/restore
// additional registers when doing a VM call).
@ -87,6 +84,9 @@ class MacroAssembler: public Assembler {
virtual void check_and_handle_popframe(Register java_thread);
virtual void check_and_handle_earlyret(Register java_thread);
Address as_Address(AddressLiteral adr);
Address as_Address(ArrayAddress adr);
// Support for NULL-checks
//
// Generates code that causes a NULL OS exception if the content of reg is NULL.
@ -293,29 +293,9 @@ class MacroAssembler: public Assembler {
// thread in the default location (r15_thread on 64bit)
void reset_last_Java_frame(bool clear_fp);
// Stores
void store_check(Register obj); // store check for obj - register is destroyed afterwards
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
void resolve_jobject(Register value, Register thread, Register tmp);
// jobjects
void clear_jweak_tag(Register possibly_jweak);
#if INCLUDE_ALL_GCS
void g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call);
void g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2);
#endif // INCLUDE_ALL_GCS
void resolve_jobject(Register value, Register thread, Register tmp);
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
void c2bool(Register x);
@ -334,10 +314,17 @@ class MacroAssembler: public Assembler {
void load_klass(Register dst, Register src);
void store_klass(Register dst, Register src);
void load_heap_oop(Register dst, Address src);
void load_heap_oop_not_null(Register dst, Address src);
void store_heap_oop(Address dst, Register src);
void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
Register tmp1, Register thread_tmp);
void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
Register tmp1, Register tmp2);
void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
Register thread_tmp = noreg, DecoratorSet decorators = 0);
void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
Register thread_tmp = noreg, DecoratorSet decorators = 0);
void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
Register tmp2 = noreg, DecoratorSet decorators = 0);
// Used for storing NULL. All other oop constants should be
// stored using routines that take a jobject.

Some files were not shown because too many files have changed in this diff Show More