7082969: NUMA interleaving

Support interleaving on NUMA systems for collectors that don't have NUMA-awareness.

Reviewed-by: iveresov, ysr
This commit is contained in:
Tom Deneau 2011-08-25 02:57:46 -07:00 committed by Igor Veresov
parent 0c6ad2c298
commit 06d05b7c47
6 changed files with 383 additions and 105 deletions

View File

@ -2502,7 +2502,13 @@ bool os::commit_memory(char* addr, size_t size, bool exec) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
uintptr_t res = (uintptr_t) ::mmap(addr, size, prot, uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0); MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
return res != (uintptr_t) MAP_FAILED; if (res != (uintptr_t) MAP_FAILED) {
if (UseNUMAInterleaving) {
numa_make_global(addr, size);
}
return true;
}
return false;
} }
// Define MAP_HUGETLB here so we can build HotSpot on old systems. // Define MAP_HUGETLB here so we can build HotSpot on old systems.
@ -2523,7 +2529,13 @@ bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
(uintptr_t) ::mmap(addr, size, prot, (uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0); -1, 0);
return res != (uintptr_t) MAP_FAILED; if (res != (uintptr_t) MAP_FAILED) {
if (UseNUMAInterleaving) {
numa_make_global(addr, size);
}
return true;
}
return false;
} }
return commit_memory(addr, size, exec); return commit_memory(addr, size, exec);
@ -3115,6 +3127,10 @@ char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
return NULL; return NULL;
} }
if ((addr != NULL) && UseNUMAInterleaving) {
numa_make_global(addr, bytes);
}
return addr; return addr;
} }

View File

@ -2777,8 +2777,14 @@ int os::vm_allocation_granularity() {
bool os::commit_memory(char* addr, size_t bytes, bool exec) { bool os::commit_memory(char* addr, size_t bytes, bool exec) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE; int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
size_t size = bytes; size_t size = bytes;
return char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
NULL != Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot); if (res != NULL) {
if (UseNUMAInterleaving) {
numa_make_global(addr, bytes);
}
return true;
}
return false;
} }
bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint, bool os::commit_memory(char* addr, size_t bytes, size_t alignment_hint,
@ -3389,12 +3395,11 @@ bool os::Solaris::set_mpss_range(caddr_t start, size_t bytes, size_t align) {
return true; return true;
} }
char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) { char* os::reserve_memory_special(size_t size, char* addr, bool exec) {
// "exec" is passed in but not used. Creating the shared image for // "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check. // the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages && UseISM, "only for ISM large pages"); assert(UseLargePages && UseISM, "only for ISM large pages");
size_t size = bytes;
char* retAddr = NULL; char* retAddr = NULL;
int shmid; int shmid;
key_t ismKey; key_t ismKey;
@ -3436,7 +3441,9 @@ char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
} }
return NULL; return NULL;
} }
if ((retAddr != NULL) && UseNUMAInterleaving) {
numa_make_global(retAddr, size);
}
return retAddr; return retAddr;
} }

View File

@ -2614,6 +2614,57 @@ int os::vm_allocation_granularity() {
static HANDLE _hProcess; static HANDLE _hProcess;
static HANDLE _hToken; static HANDLE _hToken;
// Container for NUMA node list info
class NUMANodeListHolder {
private:
int *_numa_used_node_list; // allocated below
int _numa_used_node_count;
void free_node_list() {
if (_numa_used_node_list != NULL) {
FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
}
}
public:
NUMANodeListHolder() {
_numa_used_node_count = 0;
_numa_used_node_list = NULL;
// do rest of initialization in build routine (after function pointers are set up)
}
~NUMANodeListHolder() {
free_node_list();
}
bool build() {
DWORD_PTR proc_aff_mask;
DWORD_PTR sys_aff_mask;
if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
ULONG highest_node_number;
if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
free_node_list();
_numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number);
for (unsigned int i = 0; i <= highest_node_number; i++) {
ULONGLONG proc_mask_numa_node;
if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
if ((proc_aff_mask & proc_mask_numa_node)!=0) {
_numa_used_node_list[_numa_used_node_count++] = i;
}
}
return (_numa_used_node_count > 1);
}
int get_count() {return _numa_used_node_count;}
int get_node_list_entry(int n) {
// for indexes out of range, returns -1
return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
}
} numa_node_list_holder;
static size_t _large_page_size = 0; static size_t _large_page_size = 0;
static bool resolve_functions_for_large_page_init() { static bool resolve_functions_for_large_page_init() {
@ -2653,6 +2704,154 @@ static void cleanup_after_large_page_init() {
_hToken = NULL; _hToken = NULL;
} }
static bool numa_interleaving_init() {
bool success = false;
bool use_numa_specified = !FLAG_IS_DEFAULT(UseNUMA);
bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
// print a warning if UseNUMA or UseNUMAInterleaving flag is specified on command line
bool warn_on_failure = use_numa_specified || use_numa_interleaving_specified;
# define WARN(msg) if (warn_on_failure) { warning(msg); }
// NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
if (os::Kernel32Dll::NumaCallsAvailable()) {
if (numa_node_list_holder.build()) {
if (PrintMiscellaneous && Verbose) {
tty->print("NUMA UsedNodeCount=%d, namely ", os::numa_get_groups_num());
for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
}
tty->print("\n");
}
success = true;
} else {
WARN("Process does not cover multiple NUMA nodes.");
}
} else {
WARN("NUMA Interleaving is not supported by the operating system.");
}
if (!success) {
if (use_numa_specified) WARN("...Ignoring UseNUMA flag.");
if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
}
return success;
#undef WARN
}
// this routine is used whenever we need to reserve a contiguous VA range
// but we need to make separate VirtualAlloc calls for each piece of the range
// Reasons for doing this:
// * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
// * UseNUMAInterleaving requires a separate node for each piece
static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
bool should_inject_error=false) {
char * p_buf;
// note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
// first reserve enough address space in advance since we want to be
// able to break a single contiguous virtual address range into multiple
// large page commits but WS2003 does not allow reserving large page space
// so we just use 4K pages for reserve, this gives us a legal contiguous
// address space. then we will deallocate that reservation, and re alloc
// using large pages
const size_t size_of_reserve = bytes + chunk_size;
if (bytes > size_of_reserve) {
// Overflowed.
return NULL;
}
p_buf = (char *) VirtualAlloc(addr,
size_of_reserve, // size of Reserve
MEM_RESERVE,
PAGE_READWRITE);
// If reservation failed, return NULL
if (p_buf == NULL) return NULL;
os::release_memory(p_buf, bytes + chunk_size);
// we still need to round up to a page boundary (in case we are using large pages)
// but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
// instead we handle this in the bytes_to_rq computation below
p_buf = (char *) align_size_up((size_t)p_buf, page_size);
// now go through and allocate one chunk at a time until all bytes are
// allocated
size_t bytes_remaining = bytes;
// An overflow of align_size_up() would have been caught above
// in the calculation of size_of_reserve.
char * next_alloc_addr = p_buf;
HANDLE hProc = GetCurrentProcess();
#ifdef ASSERT
// Variable for the failure injection
long ran_num = os::random();
size_t fail_after = ran_num % bytes;
#endif
int count=0;
while (bytes_remaining) {
// select bytes_to_rq to get to the next chunk_size boundary
size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
// Note allocate and commit
char * p_new;
#ifdef ASSERT
bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
#else
const bool inject_error_now = false;
#endif
if (inject_error_now) {
p_new = NULL;
} else {
if (!UseNUMAInterleaving) {
p_new = (char *) VirtualAlloc(next_alloc_addr,
bytes_to_rq,
flags,
prot);
} else {
// get the next node to use from the used_node_list
DWORD node = numa_node_list_holder.get_node_list_entry(count % os::numa_get_groups_num());
p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
next_alloc_addr,
bytes_to_rq,
flags,
prot,
node);
}
}
if (p_new == NULL) {
// Free any allocated pages
if (next_alloc_addr > p_buf) {
// Some memory was committed so release it.
size_t bytes_to_release = bytes - bytes_remaining;
os::release_memory(p_buf, bytes_to_release);
}
#ifdef ASSERT
if (should_inject_error) {
if (TracePageSizes && Verbose) {
tty->print_cr("Reserving pages individually failed.");
}
}
#endif
return NULL;
}
bytes_remaining -= bytes_to_rq;
next_alloc_addr += bytes_to_rq;
count++;
}
// made it this far, success
return p_buf;
}
void os::large_page_init() { void os::large_page_init() {
if (!UseLargePages) return; if (!UseLargePages) return;
@ -2722,9 +2921,30 @@ char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
assert((size_t)addr % os::vm_allocation_granularity() == 0, assert((size_t)addr % os::vm_allocation_granularity() == 0,
"reserve alignment"); "reserve alignment");
assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size"); assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE); char* res;
// note that if UseLargePages is on, all the areas that require interleaving
// will go thru reserve_memory_special rather than thru here.
bool use_individual = (UseNUMAInterleaving && !UseLargePages);
if (!use_individual) {
res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
} else {
elapsedTimer reserveTimer;
if( Verbose && PrintMiscellaneous ) reserveTimer.start();
// in numa interleaving, we have to allocate pages individually
// (well really chunks of NUMAInterleaveGranularity size)
res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
if (res == NULL) {
warning("NUMA page allocation failed");
}
if( Verbose && PrintMiscellaneous ) {
reserveTimer.stop();
tty->print_cr("reserve_memory of %Ix bytes took %ld ms (%ld ticks)", bytes,
reserveTimer.milliseconds(), reserveTimer.ticks());
}
}
assert(res == NULL || addr == NULL || addr == res, assert(res == NULL || addr == NULL || addr == res,
"Unexpected address from reserve."); "Unexpected address from reserve.");
return res; return res;
} }
@ -2754,92 +2974,27 @@ bool os::can_execute_large_page_memory() {
char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) { char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
if (UseLargePagesIndividualAllocation) { // with large pages, there are two cases where we need to use Individual Allocation
// 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
// 2) NUMA Interleaving is enabled, in which case we use a different node for each page
if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
if (TracePageSizes && Verbose) { if (TracePageSizes && Verbose) {
tty->print_cr("Reserving large pages individually."); tty->print_cr("Reserving large pages individually.");
} }
char * p_buf; char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
// first reserve enough address space in advance since we want to be if (p_buf == NULL) {
// able to break a single contiguous virtual address range into multiple // give an appropriate warning message
// large page commits but WS2003 does not allow reserving large page space if (UseNUMAInterleaving) {
// so we just use 4K pages for reserve, this gives us a legal contiguous warning("NUMA large page allocation failed, UseLargePages flag ignored");
// address space. then we will deallocate that reservation, and re alloc }
// using large pages if (UseLargePagesIndividualAllocation) {
const size_t size_of_reserve = bytes + _large_page_size;
if (bytes > size_of_reserve) {
// Overflowed.
warning("Individually allocated large pages failed, " warning("Individually allocated large pages failed, "
"use -XX:-UseLargePagesIndividualAllocation to turn off"); "use -XX:-UseLargePagesIndividualAllocation to turn off");
}
return NULL; return NULL;
} }
p_buf = (char *) VirtualAlloc(addr,
size_of_reserve, // size of Reserve
MEM_RESERVE,
PAGE_READWRITE);
// If reservation failed, return NULL
if (p_buf == NULL) return NULL;
release_memory(p_buf, bytes + _large_page_size);
// round up to page boundary. If the size_of_reserve did not
// overflow and the reservation did not fail, this align up
// should not overflow.
p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
// now go through and allocate one page at a time until all bytes are
// allocated
size_t bytes_remaining = align_size_up(bytes, _large_page_size);
// An overflow of align_size_up() would have been caught above
// in the calculation of size_of_reserve.
char * next_alloc_addr = p_buf;
#ifdef ASSERT
// Variable for the failure injection
long ran_num = os::random();
size_t fail_after = ran_num % bytes;
#endif
while (bytes_remaining) {
size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
// Note allocate and commit
char * p_new;
#ifdef ASSERT
bool inject_error = LargePagesIndividualAllocationInjectError &&
(bytes_remaining <= fail_after);
#else
const bool inject_error = false;
#endif
if (inject_error) {
p_new = NULL;
} else {
p_new = (char *) VirtualAlloc(next_alloc_addr,
bytes_to_rq,
MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
prot);
}
if (p_new == NULL) {
// Free any allocated pages
if (next_alloc_addr > p_buf) {
// Some memory was committed so release it.
size_t bytes_to_release = bytes - bytes_remaining;
release_memory(p_buf, bytes_to_release);
}
#ifdef ASSERT
if (UseLargePagesIndividualAllocation &&
LargePagesIndividualAllocationInjectError) {
if (TracePageSizes && Verbose) {
tty->print_cr("Reserving large pages individually failed.");
}
}
#endif
return NULL;
}
bytes_remaining -= bytes_to_rq;
next_alloc_addr += bytes_to_rq;
}
return p_buf; return p_buf;
@ -2867,14 +3022,43 @@ bool os::commit_memory(char* addr, size_t bytes, bool exec) {
assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks"); assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
// Don't attempt to print anything if the OS call fails. We're // Don't attempt to print anything if the OS call fails. We're
// probably low on resources, so the print itself may cause crashes. // probably low on resources, so the print itself may cause crashes.
bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
if (result != NULL && exec) { // unless we have NUMAInterleaving enabled, the range of a commit
// is always within a reserve covered by a single VirtualAlloc
// in that case we can just do a single commit for the requested size
if (!UseNUMAInterleaving) {
if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
if (exec) {
DWORD oldprot; DWORD oldprot;
// Windows doc says to use VirtualProtect to get execute permissions // Windows doc says to use VirtualProtect to get execute permissions
return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0; if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
} else {
return result;
} }
return true;
} else {
// when NUMAInterleaving is enabled, the commit might cover a range that
// came from multiple VirtualAlloc reserves (using allocate_pages_individually).
// VirtualQuery can help us determine that. The RegionSize that VirtualQuery
// returns represents the number of bytes that can be committed in one step.
size_t bytes_remaining = bytes;
char * next_alloc_addr = addr;
while (bytes_remaining > 0) {
MEMORY_BASIC_INFORMATION alloc_info;
VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
return false;
if (exec) {
DWORD oldprot;
if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
return false;
}
bytes_remaining -= bytes_to_rq;
next_alloc_addr += bytes_to_rq;
}
}
// if we made it this far, return true
return true;
} }
bool os::commit_memory(char* addr, size_t size, size_t alignment_hint, bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
@ -2948,14 +3132,15 @@ void os::free_memory(char *addr, size_t bytes) { }
void os::numa_make_global(char *addr, size_t bytes) { } void os::numa_make_global(char *addr, size_t bytes) { }
void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { } void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { }
bool os::numa_topology_changed() { return false; } bool os::numa_topology_changed() { return false; }
size_t os::numa_get_groups_num() { return 1; } size_t os::numa_get_groups_num() { return numa_node_list_holder.get_count(); }
int os::numa_get_group_id() { return 0; } int os::numa_get_group_id() { return 0; }
size_t os::numa_get_leaf_groups(int *ids, size_t size) { size_t os::numa_get_leaf_groups(int *ids, size_t size) {
if (size > 0) { // check for size bigger than actual groups_num
ids[0] = 0; size = MIN2(size, numa_get_groups_num());
return 1; for (int i = 0; i < (int)size; i++) {
ids[i] = numa_node_list_holder.get_node_list_entry(i);
} }
return 0; return size;
} }
bool os::get_page_info(char *start, page_info* info) { bool os::get_page_info(char *start, page_info* info) {
@ -3583,8 +3768,10 @@ jint os::init_2(void) {
// initialize thread priority policy // initialize thread priority policy
prio_init(); prio_init();
if (UseNUMA && !ForceNUMA) { if (UseNUMAInterleaving) {
UseNUMA = false; // Currently unsupported. // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
bool success = numa_interleaving_init();
if (!success) UseNUMAInterleaving = false;
} }
return JNI_OK; return JNI_OK;
@ -4758,7 +4945,14 @@ int os::set_sock_opt(int fd, int level, int optname,
// Kernel32 API // Kernel32 API
typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void); typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL; GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL;
VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL;
GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
BOOL os::Kernel32Dll::initialized = FALSE; BOOL os::Kernel32Dll::initialized = FALSE;
SIZE_T os::Kernel32Dll::GetLargePageMinimum() { SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
assert(initialized && _GetLargePageMinimum != NULL, assert(initialized && _GetLargePageMinimum != NULL,
@ -4773,19 +4967,56 @@ BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
return _GetLargePageMinimum != NULL; return _GetLargePageMinimum != NULL;
} }
BOOL os::Kernel32Dll::NumaCallsAvailable() {
if (!initialized) {
initialize();
}
return _VirtualAllocExNuma != NULL;
}
#ifndef JDK6_OR_EARLIER LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
assert(initialized && _VirtualAllocExNuma != NULL,
"NUMACallsAvailable() not yet called");
void os::Kernel32Dll::initialize() { return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
}
BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
assert(initialized && _GetNumaHighestNodeNumber != NULL,
"NUMACallsAvailable() not yet called");
return _GetNumaHighestNodeNumber(ptr_highest_node_number);
}
BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
assert(initialized && _GetNumaNodeProcessorMask != NULL,
"NUMACallsAvailable() not yet called");
return _GetNumaNodeProcessorMask(node, proc_mask);
}
void os::Kernel32Dll::initializeCommon() {
if (!initialized) { if (!initialized) {
HMODULE handle = ::GetModuleHandle("Kernel32.dll"); HMODULE handle = ::GetModuleHandle("Kernel32.dll");
assert(handle != NULL, "Just check"); assert(handle != NULL, "Just check");
_GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum"); _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
_VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
_GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
_GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
initialized = TRUE; initialized = TRUE;
} }
} }
#ifndef JDK6_OR_EARLIER
void os::Kernel32Dll::initialize() {
initializeCommon();
}
// Kernel32 API // Kernel32 API
inline BOOL os::Kernel32Dll::SwitchToThread() { inline BOOL os::Kernel32Dll::SwitchToThread() {
return ::SwitchToThread(); return ::SwitchToThread();
@ -4887,18 +5118,19 @@ Module32First_Fn os::Kernel32Dll::_Module32First = NULL;
Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL; Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL;
GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL; GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL;
void os::Kernel32Dll::initialize() { void os::Kernel32Dll::initialize() {
if (!initialized) { if (!initialized) {
HMODULE handle = ::GetModuleHandle("Kernel32.dll"); HMODULE handle = ::GetModuleHandle("Kernel32.dll");
assert(handle != NULL, "Just check"); assert(handle != NULL, "Just check");
_SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread"); _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
_GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
_CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn) _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
::GetProcAddress(handle, "CreateToolhelp32Snapshot"); ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
_Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First"); _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
_Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next"); _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
_GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo"); _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
initializeCommon(); // resolve the functions that always need resolving
initialized = TRUE; initialized = TRUE;
} }
@ -4964,6 +5196,8 @@ void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
_GetNativeSystemInfo(lpSystemInfo); _GetNativeSystemInfo(lpSystemInfo);
} }
// PSAPI API // PSAPI API

View File

@ -173,13 +173,25 @@ public:
static BOOL GetNativeSystemInfoAvailable(); static BOOL GetNativeSystemInfoAvailable();
static void GetNativeSystemInfo(LPSYSTEM_INFO); static void GetNativeSystemInfo(LPSYSTEM_INFO);
// NUMA calls
static BOOL NumaCallsAvailable();
static LPVOID VirtualAllocExNuma(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
static BOOL GetNumaHighestNodeNumber(PULONG);
static BOOL GetNumaNodeProcessorMask(UCHAR, PULONGLONG);
private: private:
// GetLargePageMinimum available on Windows Vista/Windows Server 2003 // GetLargePageMinimum available on Windows Vista/Windows Server 2003
// and later // and later
// NUMA calls available Windows Vista/WS2008 and later
static SIZE_T (WINAPI *_GetLargePageMinimum)(void); static SIZE_T (WINAPI *_GetLargePageMinimum)(void);
static LPVOID (WINAPI *_VirtualAllocExNuma) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
static BOOL (WINAPI *_GetNumaHighestNodeNumber) (PULONG);
static BOOL (WINAPI *_GetNumaNodeProcessorMask) (UCHAR, PULONGLONG);
static BOOL initialized; static BOOL initialized;
static void initialize(); static void initialize();
static void initializeCommon();
#ifdef JDK6_OR_EARLIER #ifdef JDK6_OR_EARLIER
private: private:

View File

@ -1423,6 +1423,9 @@ void Arguments::set_parallel_gc_flags() {
if (FLAG_IS_DEFAULT(MinHeapDeltaBytes)) { if (FLAG_IS_DEFAULT(MinHeapDeltaBytes)) {
FLAG_SET_DEFAULT(MinHeapDeltaBytes, 64*M); FLAG_SET_DEFAULT(MinHeapDeltaBytes, 64*M);
} }
// For those collectors or operating systems (eg, Windows) that do
// not support full UseNUMA, we will map to UseNUMAInterleaving for now
UseNUMAInterleaving = true;
} }
} }

View File

@ -475,6 +475,12 @@ class CommandLineFlags {
product(bool, UseNUMA, false, \ product(bool, UseNUMA, false, \
"Use NUMA if available") \ "Use NUMA if available") \
\ \
product(bool, UseNUMAInterleaving, false, \
"Interleave memory across NUMA nodes if available") \
\
product(uintx, NUMAInterleaveGranularity, 2*M, \
"Granularity to use for NUMA interleaving on Windows OS") \
\
product(bool, ForceNUMA, false, \ product(bool, ForceNUMA, false, \
"Force NUMA optimizations on single-node/UMA systems") \ "Force NUMA optimizations on single-node/UMA systems") \
\ \