7153771: array bound check elimination for c1

When possible optimize out array bound checks, inserting predicates when needed.

Reviewed-by: never, kvn, twisti
This commit is contained in:
Thomas Wuerthinger 2013-03-21 09:27:54 +01:00 committed by Roland Westrelin
parent 2f4ecb86a2
commit 06ef4cddf7
40 changed files with 2861 additions and 153 deletions

View File

@ -51,6 +51,16 @@ RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_info->deoptimize_on_exception()) {
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(a, relocInfo::runtime_call_type);
__ delayed()->nop();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
return;
}
if (_index->is_register()) {
__ mov(_index->as_register(), G4);
} else {
@ -64,11 +74,22 @@ void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ delayed()->nop();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
#ifdef ASSERT
__ should_not_reach_here();
#endif
debug_only(__ should_not_reach_here());
}
PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
_info = new CodeEmitInfo(info);
}
void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(a, relocInfo::runtime_call_type);
__ delayed()->nop();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
@ -99,10 +120,17 @@ void DivByZeroStub::emit_code(LIR_Assembler* ce) {
void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
address a;
if (_info->deoptimize_on_exception()) {
// Deoptimize, do not throw the exception, because it is probably wrong to do it here.
a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
} else {
a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
}
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
__ bind(_entry);
__ call(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id),
relocInfo::runtime_call_type);
__ call(a, relocInfo::runtime_call_type);
__ delayed()->nop();
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);

View File

@ -3361,6 +3361,45 @@ void LIR_Assembler::get_thread(LIR_Opr result_reg) {
__ mov(G2_thread, result_reg->as_register());
}
#ifdef ASSERT
// emit run-time assertion
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
assert(op->code() == lir_assert, "must be");
if (op->in_opr1()->is_valid()) {
assert(op->in_opr2()->is_valid(), "both operands must be valid");
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
} else {
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
assert(op->condition() == lir_cond_always, "no other conditions allowed");
}
Label ok;
if (op->condition() != lir_cond_always) {
Assembler::Condition acond;
switch (op->condition()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
default: ShouldNotReachHere();
};
__ br(acond, false, Assembler::pt, ok);
__ delayed()->nop();
}
if (op->halt()) {
const char* str = __ code_string(op->msg());
__ stop(str);
} else {
breakpoint();
}
__ bind(ok);
}
#endif
void LIR_Assembler::peephole(LIR_List* lir) {
LIR_OpList* inst = lir->instructions_list();

View File

@ -324,7 +324,7 @@ void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp)
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
assert(x->is_pinned(),"");
bool needs_range_check = true;
bool needs_range_check = x->compute_needs_range_check();
bool use_length = x->length() != NULL;
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
@ -339,12 +339,9 @@ void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
array.load_item();
index.load_nonconstant();
if (use_length) {
needs_range_check = x->compute_needs_range_check();
if (needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (needs_store_check) {
value.load_item();

View File

@ -987,6 +987,25 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
break;
#endif // INCLUDE_ALL_GCS
case predicate_failed_trap_id:
{
__ set_info("predicate_failed_trap", dont_gc_arguments);
OopMap* oop_map = save_live_registers(sasm);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, oop_map);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
restore_live_registers(sasm);
__ restore();
__ br(Assembler::always, false, Assembler::pt, deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type);
__ delayed()->nop();
}
break;
default:
{ __ set_info("unimplemented entry", dont_gc_arguments);
__ save_frame(0);

View File

@ -101,6 +101,15 @@ RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_info->deoptimize_on_exception()) {
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
return;
}
// pass the array index on stack because all registers must be preserved
if (_index->is_cpu_register()) {
ce->store_parameter(_index->as_register(), 0);
@ -115,9 +124,22 @@ void RangeCheckStub::emit_code(LIR_Assembler* ce) {
}
__ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
_info = new CodeEmitInfo(info);
}
void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}
void DivByZeroStub::emit_code(LIR_Assembler* ce) {
if (_offset != -1) {
@ -414,10 +436,19 @@ void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
address a;
if (_info->deoptimize_on_exception()) {
// Deoptimize, do not throw the exception, because it is probably wrong to do it here.
a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
} else {
a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
}
ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
__ bind(_entry);
__ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id)));
__ call(RuntimeAddress(a));
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
debug_only(__ should_not_reach_here());
}

View File

@ -3755,6 +3755,44 @@ void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type,
}
}
#ifdef ASSERT
// emit run-time assertion
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
assert(op->code() == lir_assert, "must be");
if (op->in_opr1()->is_valid()) {
assert(op->in_opr2()->is_valid(), "both operands must be valid");
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
} else {
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
assert(op->condition() == lir_cond_always, "no other conditions allowed");
}
Label ok;
if (op->condition() != lir_cond_always) {
Assembler::Condition acond = Assembler::zero;
switch (op->condition()) {
case lir_cond_equal: acond = Assembler::equal; break;
case lir_cond_notEqual: acond = Assembler::notEqual; break;
case lir_cond_less: acond = Assembler::less; break;
case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
case lir_cond_greater: acond = Assembler::greater; break;
case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
default: ShouldNotReachHere();
}
__ jcc(acond, ok);
}
if (op->halt()) {
const char* str = __ code_string(op->msg());
__ stop(str);
} else {
breakpoint();
}
__ bind(ok);
}
#endif
void LIR_Assembler::membar() {
// QQQ sparc TSO uses this,

View File

@ -263,7 +263,7 @@ void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp)
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
assert(x->is_pinned(),"");
bool needs_range_check = true;
bool needs_range_check = x->compute_needs_range_check();
bool use_length = x->length() != NULL;
bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
@ -278,12 +278,10 @@ void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
array.load_item();
index.load_nonconstant();
if (use_length) {
needs_range_check = x->compute_needs_range_check();
if (needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (needs_store_check) {
value.load_item();

View File

@ -675,7 +675,8 @@ void FpuStackAllocator::handle_op2(LIR_Op2* op2) {
switch (op2->code()) {
case lir_cmp:
case lir_cmp_fd2i:
case lir_ucmp_fd2i: {
case lir_ucmp_fd2i:
case lir_assert: {
assert(left->is_fpu_register(), "invalid LIR");
assert(right->is_fpu_register(), "invalid LIR");

View File

@ -1807,6 +1807,24 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
break;
#endif // INCLUDE_ALL_GCS
case predicate_failed_trap_id:
{
StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
OopMap* map = save_live_registers(sasm, 1);
int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
oop_maps = new OopMapSet();
oop_maps->add_gc_map(call_offset, map);
restore_live_registers(sasm);
__ leave();
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
}
break;
default:
{ StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
__ movptr(rax, (int)id);

View File

@ -937,4 +937,6 @@ void Canonicalizer::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {}
void Canonicalizer::do_ProfileCall(ProfileCall* x) {}
void Canonicalizer::do_ProfileInvoke(ProfileInvoke* x) {}
void Canonicalizer::do_RuntimeCall(RuntimeCall* x) {}
void Canonicalizer::do_RangeCheckPredicate(RangeCheckPredicate* x) {}
void Canonicalizer::do_Assert(Assert* x) {}
void Canonicalizer::do_MemBar(MemBar* x) {}

View File

@ -107,6 +107,8 @@ class Canonicalizer: InstructionVisitor {
virtual void do_ProfileInvoke (ProfileInvoke* x);
virtual void do_RuntimeCall (RuntimeCall* x);
virtual void do_MemBar (MemBar* x);
virtual void do_RangeCheckPredicate(RangeCheckPredicate* x);
virtual void do_Assert (Assert* x);
};
#endif // SHARE_VM_C1_C1_CANONICALIZER_HPP

View File

@ -166,6 +166,22 @@ class RangeCheckStub: public CodeStub {
#endif // PRODUCT
};
// stub used when predicate fails and deoptimization is needed
class PredicateFailedStub: public CodeStub {
private:
CodeEmitInfo* _info;
public:
PredicateFailedStub(CodeEmitInfo* info);
virtual void emit_code(LIR_Assembler* e);
virtual CodeEmitInfo* info() const { return _info; }
virtual void visit(LIR_OpVisitState* visitor) {
visitor->do_slow_case(_info);
}
#ifndef PRODUCT
virtual void print_name(outputStream* out) const { out->print("PredicateFailedStub"); }
#endif // PRODUCT
};
class DivByZeroStub: public CodeStub {
private:

View File

@ -33,13 +33,16 @@
#include "c1/c1_ValueStack.hpp"
#include "code/debugInfoRec.hpp"
#include "compiler/compileLog.hpp"
#include "c1/c1_RangeCheckElimination.hpp"
typedef enum {
_t_compile,
_t_setup,
_t_optimizeIR,
_t_buildIR,
_t_optimize_blocks,
_t_optimize_null_checks,
_t_rangeCheckElimination,
_t_emit_lir,
_t_linearScan,
_t_lirGeneration,
@ -52,8 +55,10 @@ typedef enum {
static const char * timer_name[] = {
"compile",
"setup",
"optimizeIR",
"buildIR",
"optimize_blocks",
"optimize_null_checks",
"rangeCheckElimination",
"emit_lir",
"linearScan",
"lirGeneration",
@ -159,9 +164,9 @@ void Compilation::build_hir() {
if (UseC1Optimizations) {
NEEDS_CLEANUP
// optimization
PhaseTraceTime timeit(_t_optimizeIR);
PhaseTraceTime timeit(_t_optimize_blocks);
_hir->optimize();
_hir->optimize_blocks();
}
_hir->verify();
@ -180,13 +185,47 @@ void Compilation::build_hir() {
_hir->compute_code();
if (UseGlobalValueNumbering) {
ResourceMark rm;
// No resource mark here! LoopInvariantCodeMotion can allocate ValueStack objects.
int instructions = Instruction::number_of_instructions();
GlobalValueNumbering gvn(_hir);
assert(instructions == Instruction::number_of_instructions(),
"shouldn't have created an instructions");
}
_hir->verify();
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_cfg(_hir, "Before RangeCheckElimination", true, false);
}
#endif
if (RangeCheckElimination) {
if (_hir->osr_entry() == NULL) {
PhaseTraceTime timeit(_t_rangeCheckElimination);
RangeCheckElimination::eliminate(_hir);
}
}
#ifndef PRODUCT
if (PrintCFGToFile) {
CFGPrinter::print_cfg(_hir, "After RangeCheckElimination", true, false);
}
#endif
if (UseC1Optimizations) {
// loop invariant code motion reorders instructions and range
// check elimination adds new instructions so do null check
// elimination after.
NEEDS_CLEANUP
// optimization
PhaseTraceTime timeit(_t_optimize_null_checks);
_hir->eliminate_null_checks();
}
_hir->verify();
// compute use counts after global value numbering
_hir->compute_use_counts();
@ -502,6 +541,7 @@ Compilation::Compilation(AbstractCompiler* compiler, ciEnv* env, ciMethod* metho
, _next_id(0)
, _next_block_id(0)
, _code(buffer_blob)
, _has_access_indexed(false)
, _current_instruction(NULL)
#ifndef PRODUCT
, _last_instruction_printed(NULL)
@ -567,7 +607,9 @@ void Compilation::print_timers() {
tty->print_cr(" Detailed C1 Timings");
tty->print_cr(" Setup time: %6.3f s (%4.1f%%)", timers[_t_setup].seconds(), (timers[_t_setup].seconds() / total) * 100.0);
tty->print_cr(" Build IR: %6.3f s (%4.1f%%)", timers[_t_buildIR].seconds(), (timers[_t_buildIR].seconds() / total) * 100.0);
tty->print_cr(" Optimize: %6.3f s (%4.1f%%)", timers[_t_optimizeIR].seconds(), (timers[_t_optimizeIR].seconds() / total) * 100.0);
float t_optimizeIR = timers[_t_optimize_blocks].seconds() + timers[_t_optimize_null_checks].seconds();
tty->print_cr(" Optimize: %6.3f s (%4.1f%%)", t_optimizeIR, (t_optimizeIR / total) * 100.0);
tty->print_cr(" RCE: %6.3f s (%4.1f%%)", timers[_t_rangeCheckElimination].seconds(), (timers[_t_rangeCheckElimination].seconds() / total) * 100.0);
tty->print_cr(" Emit LIR: %6.3f s (%4.1f%%)", timers[_t_emit_lir].seconds(), (timers[_t_emit_lir].seconds() / total) * 100.0);
tty->print_cr(" LIR Gen: %6.3f s (%4.1f%%)", timers[_t_lirGeneration].seconds(), (timers[_t_lirGeneration].seconds() / total) * 100.0);
tty->print_cr(" Linear Scan: %6.3f s (%4.1f%%)", timers[_t_linearScan].seconds(), (timers[_t_linearScan].seconds() / total) * 100.0);

View File

@ -26,8 +26,10 @@
#define SHARE_VM_C1_C1_COMPILATION_HPP
#include "ci/ciEnv.hpp"
#include "ci/ciMethodData.hpp"
#include "code/exceptionHandlerTable.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/deoptimization.hpp"
class CompilationResourceObj;
class XHandlers;
@ -85,6 +87,7 @@ class Compilation: public StackObj {
LinearScan* _allocator;
CodeOffsets _offsets;
CodeBuffer _code;
bool _has_access_indexed;
// compilation helpers
void initialize();
@ -140,6 +143,7 @@ class Compilation: public StackObj {
C1_MacroAssembler* masm() const { return _masm; }
CodeOffsets* offsets() { return &_offsets; }
Arena* arena() { return _arena; }
bool has_access_indexed() { return _has_access_indexed; }
// Instruction ids
int get_next_id() { return _next_id++; }
@ -154,6 +158,7 @@ class Compilation: public StackObj {
void set_has_fpu_code(bool f) { _has_fpu_code = f; }
void set_has_unsafe_access(bool f) { _has_unsafe_access = f; }
void set_would_profile(bool f) { _would_profile = f; }
void set_has_access_indexed(bool f) { _has_access_indexed = f; }
// Add a set of exception handlers covering the given PC offset
void add_exception_handlers_for_pco(int pco, XHandlers* exception_handlers);
// Statistics gathering
@ -233,6 +238,14 @@ class Compilation: public StackObj {
return env()->comp_level() == CompLevel_full_profile &&
C1UpdateMethodData && C1ProfileCheckcasts;
}
// will compilation make optimistic assumptions that might lead to
// deoptimization and that the runtime will account for?
bool is_optimistic() const {
return !TieredCompilation &&
(RangeCheckElimination || UseLoopInvariantCodeMotion) &&
method()->method_data()->trap_count(Deoptimization::Reason_none) == 0;
}
};

View File

@ -947,7 +947,9 @@ void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
void GraphBuilder::load_indexed(BasicType type) {
ValueStack* state_before = copy_state_for_exception();
// In case of in block code motion in range check elimination
ValueStack* state_before = copy_state_indexed_access();
compilation()->set_has_access_indexed(true);
Value index = ipop();
Value array = apop();
Value length = NULL;
@ -961,7 +963,9 @@ void GraphBuilder::load_indexed(BasicType type) {
void GraphBuilder::store_indexed(BasicType type) {
ValueStack* state_before = copy_state_for_exception();
// In case of in block code motion in range check elimination
ValueStack* state_before = copy_state_indexed_access();
compilation()->set_has_access_indexed(true);
Value value = pop(as_ValueType(type));
Value index = ipop();
Value array = apop();
@ -1179,7 +1183,9 @@ void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* sta
BlockBegin* tsux = block_at(stream()->get_dest());
BlockBegin* fsux = block_at(stream()->next_bci());
bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
Instruction *i = append(new If(x, cond, false, y, tsux, fsux, is_bb ? state_before : NULL, is_bb));
// In case of loop invariant code motion or predicate insertion
// before the body of a loop the state is needed
Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic()) ? state_before : NULL, is_bb));
assert(i->as_Goto() == NULL ||
(i->as_Goto()->sux_at(0) == tsux && i->as_Goto()->is_safepoint() == tsux->bci() < stream()->cur_bci()) ||
@ -1294,7 +1300,9 @@ void GraphBuilder::table_switch() {
BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
BlockBegin* fsux = block_at(bci() + sw.default_offset());
bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
ValueStack* state_before = is_bb ? copy_state_before() : NULL;
// In case of loop invariant code motion or predicate insertion
// before the body of a loop the state is needed
ValueStack* state_before = copy_state_if_bb(is_bb);
append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
} else {
// collect successors
@ -1308,7 +1316,9 @@ void GraphBuilder::table_switch() {
// add default successor
if (sw.default_offset() < 0) has_bb = true;
sux->at_put(i, block_at(bci() + sw.default_offset()));
ValueStack* state_before = has_bb ? copy_state_before() : NULL;
// In case of loop invariant code motion or predicate insertion
// before the body of a loop the state is needed
ValueStack* state_before = copy_state_if_bb(has_bb);
Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
#ifdef ASSERT
if (res->as_Goto()) {
@ -1336,7 +1346,9 @@ void GraphBuilder::lookup_switch() {
BlockBegin* tsux = block_at(bci() + pair.offset());
BlockBegin* fsux = block_at(bci() + sw.default_offset());
bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
ValueStack* state_before = is_bb ? copy_state_before() : NULL;
// In case of loop invariant code motion or predicate insertion
// before the body of a loop the state is needed
ValueStack* state_before = copy_state_if_bb(is_bb);;
append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
} else {
// collect successors & keys
@ -1353,7 +1365,9 @@ void GraphBuilder::lookup_switch() {
// add default successor
if (sw.default_offset() < 0) has_bb = true;
sux->at_put(i, block_at(bci() + sw.default_offset()));
ValueStack* state_before = has_bb ? copy_state_before() : NULL;
// In case of loop invariant code motion or predicate insertion
// before the body of a loop the state is needed
ValueStack* state_before = copy_state_if_bb(has_bb);
Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
#ifdef ASSERT
if (res->as_Goto()) {

View File

@ -301,6 +301,8 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
ValueStack* copy_state_exhandling();
ValueStack* copy_state_for_exception_with_bci(int bci);
ValueStack* copy_state_for_exception();
ValueStack* copy_state_if_bb(bool is_bb) { return (is_bb || compilation()->is_optimistic()) ? copy_state_before() : NULL; }
ValueStack* copy_state_indexed_access() { return compilation()->is_optimistic() ? copy_state_before() : copy_state_for_exception(); }
//
// Inlining support

View File

@ -182,13 +182,14 @@ bool IRScopeDebugInfo::should_reexecute() {
// Implementation of CodeEmitInfo
// Stack must be NON-null
CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers)
CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
: _scope(stack->scope())
, _scope_debug_info(NULL)
, _oop_map(NULL)
, _stack(stack)
, _exception_handlers(exception_handlers)
, _is_method_handle_invoke(false) {
, _is_method_handle_invoke(false)
, _deoptimize_on_exception(deoptimize_on_exception) {
assert(_stack != NULL, "must be non null");
}
@ -199,7 +200,8 @@ CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
, _scope_debug_info(NULL)
, _oop_map(NULL)
, _stack(stack == NULL ? info->_stack : stack)
, _is_method_handle_invoke(info->_is_method_handle_invoke) {
, _is_method_handle_invoke(info->_is_method_handle_invoke)
, _deoptimize_on_exception(info->_deoptimize_on_exception) {
// deep copy of exception handlers
if (info->_exception_handlers != NULL) {
@ -239,7 +241,7 @@ IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
}
void IR::optimize() {
void IR::optimize_blocks() {
Optimizer opt(this);
if (!compilation()->profile_branches()) {
if (DoCEE) {
@ -257,6 +259,10 @@ void IR::optimize() {
#endif
}
}
}
void IR::eliminate_null_checks() {
Optimizer opt(this);
if (EliminateNullChecks) {
opt.eliminate_null_checks();
#ifndef PRODUCT
@ -429,6 +435,7 @@ class ComputeLinearScanOrder : public StackObj {
BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
BlockList _work_list; // temporary list (used in mark_loops and compute_order)
BlockList _loop_headers;
Compilation* _compilation;
@ -594,6 +601,7 @@ void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
cur->set_loop_index(_num_loops);
_loop_headers.append(cur);
_num_loops++;
}
@ -656,6 +664,16 @@ void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
// -> this is not a natural loop, so ignore it
TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
BlockBegin *loop_header = _loop_headers.at(i);
assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
for (int j = 0; j < loop_header->number_of_preds(); j++) {
BlockBegin *pred = loop_header->pred_at(j);
pred->clear(BlockBegin::linear_scan_loop_end_flag);
}
loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
clear_block_in_loop(i, block_id);
}
@ -729,9 +747,20 @@ void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* pare
} else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
assert(cur->number_of_preds() > 1, "");
// Does not hold for exception blocks
assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
cur->set_dominator(common_dominator(cur->dominator(), parent));
}
// Additional edge to xhandler of all our successors
// range check elimination needs that the state at the end of a
// block be valid in every block it dominates so cur must dominate
// the exception handlers of its successors.
int num_cur_xhandler = cur->number_of_exception_handlers();
for (int j = 0; j < num_cur_xhandler; j++) {
BlockBegin* xhandler = cur->exception_handler_at(j);
compute_dominator(xhandler, parent);
}
}
@ -898,7 +927,6 @@ void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
num_sux = cur->number_of_exception_handlers();
for (i = 0; i < num_sux; i++) {
BlockBegin* sux = cur->exception_handler_at(i);
compute_dominator(sux, cur);
if (ready_for_processing(sux)) {
sort_into_work_list(sux);
}
@ -918,8 +946,23 @@ bool ComputeLinearScanOrder::compute_dominators_iter() {
BlockBegin* dominator = block->pred_at(0);
int num_preds = block->number_of_preds();
for (int i = 1; i < num_preds; i++) {
dominator = common_dominator(dominator, block->pred_at(i));
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
for (int j = 0; j < num_preds; j++) {
BlockBegin *pred = block->pred_at(j);
TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
if (block->is_set(BlockBegin::exception_entry_flag)) {
dominator = common_dominator(dominator, pred);
int num_pred_preds = pred->number_of_preds();
for (int k = 0; k < num_pred_preds; k++) {
dominator = common_dominator(dominator, pred->pred_at(k));
}
} else {
dominator = common_dominator(dominator, pred);
}
}
if (dominator != block->dominator()) {
@ -946,6 +989,21 @@ void ComputeLinearScanOrder::compute_dominators() {
// check that dominators are correct
assert(!compute_dominators_iter(), "fix point not reached");
// Add Blocks to dominates-Array
int num_blocks = _linear_scan_order->length();
for (int i = 0; i < num_blocks; i++) {
BlockBegin* block = _linear_scan_order->at(i);
BlockBegin *dom = block->dominator();
if (dom) {
assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
dom->dominates()->append(block);
block->set_dominator_depth(dom->dominator_depth() + 1);
} else {
block->set_dominator_depth(0);
}
}
}
@ -1032,7 +1090,7 @@ void ComputeLinearScanOrder::verify() {
BlockBegin* sux = cur->sux_at(j);
assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
}
if (cur->loop_depth() == sux->loop_depth()) {
@ -1044,7 +1102,7 @@ void ComputeLinearScanOrder::verify() {
BlockBegin* pred = cur->pred_at(j);
assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
}
if (cur->loop_depth() == pred->loop_depth()) {
@ -1060,7 +1118,8 @@ void ComputeLinearScanOrder::verify() {
} else {
assert(cur->dominator() != NULL, "all but first block must have dominator");
}
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
// Assertion does not hold for exception handlers
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
}
// check that all loops are continuous
@ -1249,9 +1308,22 @@ class PredecessorValidator : public BlockClosure {
}
};
class VerifyBlockBeginField : public BlockClosure {
public:
virtual void block_do(BlockBegin *block) {
for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
assert(cur->block() == block, "Block begin is not correct");
}
}
};
void IR::verify() {
#ifdef ASSERT
PredecessorValidator pv(this);
VerifyBlockBeginField verifier;
this->iterate_postorder(&verifier);
#endif
}

View File

@ -254,6 +254,7 @@ class CodeEmitInfo: public CompilationResourceObj {
OopMap* _oop_map;
ValueStack* _stack; // used by deoptimization (contains also monitors
bool _is_method_handle_invoke; // true if the associated call site is a MethodHandle call site.
bool _deoptimize_on_exception;
FrameMap* frame_map() const { return scope()->compilation()->frame_map(); }
Compilation* compilation() const { return scope()->compilation(); }
@ -261,7 +262,7 @@ class CodeEmitInfo: public CompilationResourceObj {
public:
// use scope from ValueStack
CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers);
CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception = false);
// make a copy
CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack = NULL);
@ -272,6 +273,7 @@ class CodeEmitInfo: public CompilationResourceObj {
IRScope* scope() const { return _scope; }
XHandlers* exception_handlers() const { return _exception_handlers; }
ValueStack* stack() const { return _stack; }
bool deoptimize_on_exception() const { return _deoptimize_on_exception; }
void add_register_oop(LIR_Opr opr);
void record_debug_info(DebugInformationRecorder* recorder, int pc_offset);
@ -309,7 +311,8 @@ class IR: public CompilationResourceObj {
int max_stack() const { return top_scope()->max_stack(); } // expensive
// ir manipulation
void optimize();
void optimize_blocks();
void eliminate_null_checks();
void compute_predecessors();
void split_critical_edges();
void compute_code();

View File

@ -34,6 +34,15 @@
// Implementation of Instruction
int Instruction::dominator_depth() {
int result = -1;
if (block()) {
result = block()->dominator_depth();
}
assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
return result;
}
Instruction::Condition Instruction::mirror(Condition cond) {
switch (cond) {
case eql: return eql;
@ -42,6 +51,8 @@ Instruction::Condition Instruction::mirror(Condition cond) {
case leq: return geq;
case gtr: return lss;
case geq: return leq;
case aeq: return beq;
case beq: return aeq;
}
ShouldNotReachHere();
return eql;
@ -56,6 +67,8 @@ Instruction::Condition Instruction::negate(Condition cond) {
case leq: return gtr;
case gtr: return leq;
case geq: return lss;
case aeq: assert(false, "Above equal cannot be negated");
case beq: assert(false, "Below equal cannot be negated");
}
ShouldNotReachHere();
return eql;
@ -70,10 +83,10 @@ void Instruction::update_exception_state(ValueStack* state) {
}
}
Instruction* Instruction::prev(BlockBegin* block) {
// Prev without need to have BlockBegin
Instruction* Instruction::prev() {
Instruction* p = NULL;
Instruction* q = block;
Instruction* q = block();
while (q != this) {
assert(q != NULL, "this is not in the block's instruction list");
p = q; q = q->next();
@ -122,15 +135,24 @@ void Instruction::print(InstructionPrinter& ip) {
// perform constant and interval tests on index value
bool AccessIndexed::compute_needs_range_check() {
Constant* clength = length()->as_Constant();
Constant* cindex = index()->as_Constant();
if (clength && cindex) {
IntConstant* l = clength->type()->as_IntConstant();
IntConstant* i = cindex->type()->as_IntConstant();
if (l && i && i->value() < l->value() && i->value() >= 0) {
return false;
if (length()) {
Constant* clength = length()->as_Constant();
Constant* cindex = index()->as_Constant();
if (clength && cindex) {
IntConstant* l = clength->type()->as_IntConstant();
IntConstant* i = cindex->type()->as_IntConstant();
if (l && i && i->value() < l->value() && i->value() >= 0) {
return false;
}
}
}
if (!this->check_flag(NeedsRangeCheckFlag)) {
return false;
}
return true;
}
@ -631,19 +653,25 @@ void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
// of the inserted block, without recomputing the values of the other blocks
// in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
BlockBegin* new_sux = new BlockBegin(end()->state()->bci());
int bci = sux->bci();
// critical edge splitting may introduce a goto after a if and array
// bound check elimination may insert a predicate between the if and
// goto. The bci of the goto can't be the one of the if otherwise
// the state and bci are inconsistent and a deoptimization triggered
// by the predicate would lead to incorrect execution/a crash.
BlockBegin* new_sux = new BlockBegin(bci);
// mark this block (special treatment when block order is computed)
new_sux->set(critical_edge_split_flag);
// This goto is not a safepoint.
Goto* e = new Goto(sux, false);
new_sux->set_next(e, end()->state()->bci());
new_sux->set_next(e, bci);
new_sux->set_end(e);
// setup states
ValueStack* s = end()->state();
new_sux->set_state(s->copy());
e->set_state(s->copy());
new_sux->set_state(s->copy(s->kind(), bci));
e->set_state(s->copy(s->kind(), bci));
assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
@ -960,15 +988,14 @@ void BlockEnd::set_begin(BlockBegin* begin) {
BlockList* sux = NULL;
if (begin != NULL) {
sux = begin->successors();
} else if (_begin != NULL) {
} else if (this->begin() != NULL) {
// copy our sux list
BlockList* sux = new BlockList(_begin->number_of_sux());
for (int i = 0; i < _begin->number_of_sux(); i++) {
sux->append(_begin->sux_at(i));
BlockList* sux = new BlockList(this->begin()->number_of_sux());
for (int i = 0; i < this->begin()->number_of_sux(); i++) {
sux->append(this->begin()->sux_at(i));
}
}
_sux = sux;
_begin = begin;
}
@ -1008,7 +1035,38 @@ int Phi::operand_count() const {
}
}
#ifdef ASSERT
// Constructor of Assert
Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
, _x(x)
, _cond(cond)
, _y(y)
{
set_flag(UnorderedIsTrueFlag, unordered_is_true);
assert(x->type()->tag() == y->type()->tag(), "types must match");
pin();
stringStream strStream;
Compilation::current()->method()->print_name(&strStream);
stringStream strStream1;
InstructionPrinter ip1(1, &strStream1);
ip1.print_instr(x);
stringStream strStream2;
InstructionPrinter ip2(1, &strStream2);
ip2.print_instr(y);
stringStream ss;
ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
_message = ss.as_string();
}
#endif
void RangeCheckPredicate::check_state() {
assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
}
void ProfileInvoke::state_values_do(ValueVisitor* f) {
if (state() != NULL) state()->values_do(f);

View File

@ -110,6 +110,8 @@ class ProfileCall;
class ProfileInvoke;
class RuntimeCall;
class MemBar;
class RangeCheckPredicate;
class Assert;
// A Value is a reference to the instruction creating the value
typedef Instruction* Value;
@ -210,6 +212,10 @@ class InstructionVisitor: public StackObj {
virtual void do_ProfileInvoke (ProfileInvoke* x) = 0;
virtual void do_RuntimeCall (RuntimeCall* x) = 0;
virtual void do_MemBar (MemBar* x) = 0;
virtual void do_RangeCheckPredicate(RangeCheckPredicate* x) = 0;
#ifdef ASSERT
virtual void do_Assert (Assert* x) = 0;
#endif
};
@ -306,8 +312,9 @@ class Instruction: public CompilationResourceObj {
void update_exception_state(ValueStack* state);
//protected:
public:
protected:
BlockBegin* _block; // Block that contains this instruction
void set_type(ValueType* type) {
assert(type != NULL, "type must exist");
_type = type;
@ -342,6 +349,9 @@ class Instruction: public CompilationResourceObj {
ThrowIncompatibleClassChangeErrorFlag,
ProfileMDOFlag,
IsLinkedInBlockFlag,
NeedsRangeCheckFlag,
InWorkListFlag,
DeoptimizeOnException,
InstructionLastFlag
};
@ -351,7 +361,7 @@ class Instruction: public CompilationResourceObj {
// 'globally' used condition values
enum Condition {
eql, neq, lss, leq, gtr, geq
eql, neq, lss, leq, gtr, geq, aeq, beq
};
// Instructions may be pinned for many reasons and under certain conditions
@ -381,6 +391,7 @@ class Instruction: public CompilationResourceObj {
, _pin_state(0)
, _type(type)
, _next(NULL)
, _block(NULL)
, _subst(NULL)
, _flags(0)
, _operand(LIR_OprFact::illegalOpr)
@ -399,11 +410,13 @@ class Instruction: public CompilationResourceObj {
int printable_bci() const { assert(has_printable_bci(), "_printable_bci should have been set"); return _printable_bci; }
void set_printable_bci(int bci) { _printable_bci = bci; }
#endif
int dominator_depth();
int use_count() const { return _use_count; }
int pin_state() const { return _pin_state; }
bool is_pinned() const { return _pin_state != 0 || PinAllInstructions; }
ValueType* type() const { return _type; }
Instruction* prev(BlockBegin* block); // use carefully, expensive operation
BlockBegin *block() const { return _block; }
Instruction* prev(); // use carefully, expensive operation
Instruction* next() const { return _next; }
bool has_subst() const { return _subst != NULL; }
Instruction* subst() { return _subst == NULL ? this : _subst->subst(); }
@ -432,6 +445,9 @@ class Instruction: public CompilationResourceObj {
assert(as_BlockEnd() == NULL, "BlockEnd instructions must have no next");
assert(next->can_be_linked(), "shouldn't link these instructions into list");
BlockBegin *block = this->block();
next->_block = block;
next->set_flag(Instruction::IsLinkedInBlockFlag, true);
_next = next;
return next;
@ -444,6 +460,29 @@ class Instruction: public CompilationResourceObj {
return set_next(next);
}
// when blocks are merged
void fixup_block_pointers() {
Instruction *cur = next()->next(); // next()'s block is set in set_next
while (cur && cur->_block != block()) {
cur->_block = block();
cur = cur->next();
}
}
Instruction *insert_after(Instruction *i) {
Instruction* n = _next;
set_next(i);
i->set_next(n);
return _next;
}
Instruction *insert_after_same_bci(Instruction *i) {
#ifndef PRODUCT
i->set_printable_bci(printable_bci());
#endif
return insert_after(i);
}
void set_subst(Instruction* subst) {
assert(subst == NULL ||
type()->base() == subst->type()->base() ||
@ -452,6 +491,7 @@ class Instruction: public CompilationResourceObj {
}
void set_exception_handlers(XHandlers *xhandlers) { _exception_handlers = xhandlers; }
void set_exception_state(ValueStack* s) { check_state(s); _exception_state = s; }
void set_state_before(ValueStack* s) { check_state(s); _state_before = s; }
// machine-specifics
void set_operand(LIR_Opr operand) { assert(operand != LIR_OprFact::illegalOpr, "operand must exist"); _operand = operand; }
@ -509,6 +549,11 @@ class Instruction: public CompilationResourceObj {
virtual ExceptionObject* as_ExceptionObject() { return NULL; }
virtual UnsafeOp* as_UnsafeOp() { return NULL; }
virtual ProfileInvoke* as_ProfileInvoke() { return NULL; }
virtual RangeCheckPredicate* as_RangeCheckPredicate() { return NULL; }
#ifdef ASSERT
virtual Assert* as_Assert() { return NULL; }
#endif
virtual void visit(InstructionVisitor* v) = 0;
@ -570,7 +615,6 @@ class AssertValues: public ValueVisitor {
LEAF(Phi, Instruction)
private:
BlockBegin* _block; // the block to which the phi function belongs
int _pf_flags; // the flags of the phi function
int _index; // to value on operand stack (index < 0) or to local
public:
@ -578,9 +622,9 @@ LEAF(Phi, Instruction)
Phi(ValueType* type, BlockBegin* b, int index)
: Instruction(type->base())
, _pf_flags(0)
, _block(b)
, _index(index)
{
_block = b;
NOT_PRODUCT(set_printable_bci(Value(b)->printable_bci()));
if (type->is_illegal()) {
make_illegal();
@ -603,8 +647,6 @@ LEAF(Phi, Instruction)
Value operand_at(int i) const;
int operand_count() const;
BlockBegin* block() const { return _block; }
void set(Flag f) { _pf_flags |= f; }
void clear(Flag f) { _pf_flags &= ~f; }
bool is_set(Flag f) const { return (_pf_flags & f) != 0; }
@ -670,6 +712,7 @@ LEAF(Constant, Instruction)
pin();
}
// generic
virtual bool can_trap() const { return state_before() != NULL; }
virtual void input_values_do(ValueVisitor* f) { /* no values */ }
@ -852,6 +895,7 @@ BASE(AccessIndexed, AccessArray)
, _length(length)
, _elt_type(elt_type)
{
set_flag(Instruction::NeedsRangeCheckFlag, true);
ASSERT_VALUES
}
@ -860,6 +904,7 @@ BASE(AccessIndexed, AccessArray)
Value length() const { return _length; }
BasicType elt_type() const { return _elt_type; }
void clear_length() { _length = NULL; }
// perform elimination of range checks involving constants
bool compute_needs_range_check();
@ -1524,6 +1569,7 @@ LEAF(BlockBegin, StateSplit)
int _bci; // start-bci of block
int _depth_first_number; // number of this block in a depth-first ordering
int _linear_scan_number; // number of this block in linear-scan ordering
int _dominator_depth;
int _loop_depth; // the loop nesting level of this block
int _loop_index; // number of the innermost loop of this block
int _flags; // the flags associated with this block
@ -1535,6 +1581,7 @@ LEAF(BlockBegin, StateSplit)
// SSA specific fields: (factor out later)
BlockList _successors; // the successors of this block
BlockList _predecessors; // the predecessors of this block
BlockList _dominates; // list of blocks that are dominated by this block
BlockBegin* _dominator; // the dominator of this block
// SSA specific ends
BlockEnd* _end; // the last instruction of this block
@ -1583,10 +1630,12 @@ LEAF(BlockBegin, StateSplit)
, _linear_scan_number(-1)
, _loop_depth(0)
, _flags(0)
, _dominator_depth(-1)
, _dominator(NULL)
, _end(NULL)
, _predecessors(2)
, _successors(2)
, _dominates(2)
, _exception_handlers(1)
, _exception_states(NULL)
, _exception_handler_pco(-1)
@ -1603,6 +1652,7 @@ LEAF(BlockBegin, StateSplit)
, _total_preds(0)
, _stores_to_locals()
{
_block = this;
#ifndef PRODUCT
set_printable_bci(bci);
#endif
@ -1612,8 +1662,10 @@ LEAF(BlockBegin, StateSplit)
int block_id() const { return _block_id; }
int bci() const { return _bci; }
BlockList* successors() { return &_successors; }
BlockList* dominates() { return &_dominates; }
BlockBegin* dominator() const { return _dominator; }
int loop_depth() const { return _loop_depth; }
int dominator_depth() const { return _dominator_depth; }
int depth_first_number() const { return _depth_first_number; }
int linear_scan_number() const { return _linear_scan_number; }
BlockEnd* end() const { return _end; }
@ -1634,6 +1686,7 @@ LEAF(BlockBegin, StateSplit)
// manipulation
void set_dominator(BlockBegin* dom) { _dominator = dom; }
void set_loop_depth(int d) { _loop_depth = d; }
void set_dominator_depth(int d) { _dominator_depth = d; }
void set_depth_first_number(int dfn) { _depth_first_number = dfn; }
void set_linear_scan_number(int lsn) { _linear_scan_number = lsn; }
void set_end(BlockEnd* end);
@ -1695,7 +1748,8 @@ LEAF(BlockBegin, StateSplit)
parser_loop_header_flag = 1 << 7, // set by parser to identify blocks where phi functions can not be created on demand
critical_edge_split_flag = 1 << 8, // set for all blocks that are introduced when critical edges are split
linear_scan_loop_header_flag = 1 << 9, // set during loop-detection for LinearScan
linear_scan_loop_end_flag = 1 << 10 // set during loop-detection for LinearScan
linear_scan_loop_end_flag = 1 << 10, // set during loop-detection for LinearScan
donot_eliminate_range_checks = 1 << 11 // Should be try to eliminate range checks in this block
};
void set(Flag f) { _flags |= f; }
@ -1728,7 +1782,6 @@ LEAF(BlockBegin, StateSplit)
BASE(BlockEnd, StateSplit)
private:
BlockBegin* _begin;
BlockList* _sux;
protected:
@ -1746,7 +1799,6 @@ BASE(BlockEnd, StateSplit)
// creation
BlockEnd(ValueType* type, ValueStack* state_before, bool is_safepoint)
: StateSplit(type, state_before)
, _begin(NULL)
, _sux(NULL)
{
set_flag(IsSafepointFlag, is_safepoint);
@ -1754,7 +1806,8 @@ BASE(BlockEnd, StateSplit)
// accessors
bool is_safepoint() const { return check_flag(IsSafepointFlag); }
BlockBegin* begin() const { return _begin; }
// For compatibility with old code, for new code use block()
BlockBegin* begin() const { return _block; }
// manipulation
void set_begin(BlockBegin* begin);
@ -1811,6 +1864,74 @@ LEAF(Goto, BlockEnd)
void set_direction(Direction d) { _direction = d; }
};
#ifdef ASSERT
LEAF(Assert, Instruction)
private:
Value _x;
Condition _cond;
Value _y;
char *_message;
public:
// creation
// unordered_is_true is valid for float/double compares only
Assert(Value x, Condition cond, bool unordered_is_true, Value y);
// accessors
Value x() const { return _x; }
Condition cond() const { return _cond; }
bool unordered_is_true() const { return check_flag(UnorderedIsTrueFlag); }
Value y() const { return _y; }
const char *message() const { return _message; }
// generic
virtual void input_values_do(ValueVisitor* f) { f->visit(&_x); f->visit(&_y); }
};
#endif
LEAF(RangeCheckPredicate, StateSplit)
private:
Value _x;
Condition _cond;
Value _y;
void check_state();
public:
// creation
// unordered_is_true is valid for float/double compares only
RangeCheckPredicate(Value x, Condition cond, bool unordered_is_true, Value y, ValueStack* state) : StateSplit(illegalType)
, _x(x)
, _cond(cond)
, _y(y)
{
ASSERT_VALUES
set_flag(UnorderedIsTrueFlag, unordered_is_true);
assert(x->type()->tag() == y->type()->tag(), "types must match");
this->set_state(state);
check_state();
}
// Always deoptimize
RangeCheckPredicate(ValueStack* state) : StateSplit(illegalType)
{
this->set_state(state);
_x = _y = NULL;
check_state();
}
// accessors
Value x() const { return _x; }
Condition cond() const { return _cond; }
bool unordered_is_true() const { return check_flag(UnorderedIsTrueFlag); }
Value y() const { return _y; }
void always_fail() { _x = _y = NULL; }
// generic
virtual void input_values_do(ValueVisitor* f) { StateSplit::input_values_do(f); f->visit(&_x); f->visit(&_y); }
HASHING3(RangeCheckPredicate, true, x()->subst(), y()->subst(), cond())
};
LEAF(If, BlockEnd)
private:

View File

@ -57,6 +57,8 @@ const char* InstructionPrinter::cond_name(If::Condition cond) {
case If::leq: return "<=";
case If::gtr: return ">";
case If::geq: return ">=";
case If::aeq: return "|>=|";
case If::beq: return "|<=|";
}
ShouldNotReachHere();
return NULL;
@ -181,6 +183,11 @@ void InstructionPrinter::print_indexed(AccessIndexed* indexed) {
output()->put('[');
print_value(indexed->index());
output()->put(']');
if (indexed->length() != NULL) {
output()->put('(');
print_value(indexed->length());
output()->put(')');
}
}
@ -373,6 +380,7 @@ void InstructionPrinter::do_Constant(Constant* x) {
void InstructionPrinter::do_LoadField(LoadField* x) {
print_field(x);
output()->print(" (%c)", type2char(x->field()->type()->basic_type()));
output()->print(" %s", x->field()->name()->as_utf8());
}
@ -381,6 +389,7 @@ void InstructionPrinter::do_StoreField(StoreField* x) {
output()->print(" := ");
print_value(x->value());
output()->print(" (%c)", type2char(x->field()->type()->basic_type()));
output()->print(" %s", x->field()->name()->as_utf8());
}
@ -393,6 +402,9 @@ void InstructionPrinter::do_ArrayLength(ArrayLength* x) {
void InstructionPrinter::do_LoadIndexed(LoadIndexed* x) {
print_indexed(x);
output()->print(" (%c)", type2char(x->elt_type()));
if (x->check_flag(Instruction::NeedsRangeCheckFlag)) {
output()->print(" [rc]");
}
}
@ -401,6 +413,9 @@ void InstructionPrinter::do_StoreIndexed(StoreIndexed* x) {
output()->print(" := ");
print_value(x->value());
output()->print(" (%c)", type2char(x->elt_type()));
if (x->check_flag(Instruction::NeedsRangeCheckFlag)) {
output()->print(" [rc]");
}
}
void InstructionPrinter::do_NegateOp(NegateOp* x) {
@ -843,6 +858,25 @@ void InstructionPrinter::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
output()->put(')');
}
void InstructionPrinter::do_RangeCheckPredicate(RangeCheckPredicate* x) {
if (x->x() != NULL && x->y() != NULL) {
output()->print("if ");
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
output()->print(" then deoptimize!");
} else {
output()->print("always deoptimize!");
}
}
void InstructionPrinter::do_Assert(Assert* x) {
output()->print("assert ");
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
}
void InstructionPrinter::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
print_unsafe_object_op(x, "UnsafePrefetchWrite");

View File

@ -135,6 +135,8 @@ class InstructionPrinter: public InstructionVisitor {
virtual void do_ProfileInvoke (ProfileInvoke* x);
virtual void do_RuntimeCall (RuntimeCall* x);
virtual void do_MemBar (MemBar* x);
virtual void do_RangeCheckPredicate(RangeCheckPredicate* x);
virtual void do_Assert (Assert* x);
};
#endif // PRODUCT

View File

@ -633,6 +633,7 @@ void LIR_OpVisitState::visit(LIR_Op* op) {
case lir_ushr:
case lir_xadd:
case lir_xchg:
case lir_assert:
{
assert(op->as_Op2() != NULL, "must be");
LIR_Op2* op2 = (LIR_Op2*)op;
@ -1112,6 +1113,11 @@ void LIR_OpLock::emit_code(LIR_Assembler* masm) {
}
}
#ifdef ASSERT
void LIR_OpAssert::emit_code(LIR_Assembler* masm) {
masm->emit_assert(this);
}
#endif
void LIR_OpDelay::emit_code(LIR_Assembler* masm) {
masm->emit_delay(this);
@ -1771,6 +1777,8 @@ const char * LIR_Op::name() const {
case lir_cas_int: s = "cas_int"; break;
// LIR_OpProfileCall
case lir_profile_call: s = "profile_call"; break;
// LIR_OpAssert
case lir_assert: s = "assert"; break;
case lir_none: ShouldNotReachHere();break;
default: s = "illegal_op"; break;
}
@ -2017,6 +2025,13 @@ void LIR_OpLock::print_instr(outputStream* out) const {
out->print("[lbl:0x%x]", stub()->entry());
}
void LIR_OpAssert::print_instr(outputStream* out) const {
print_condition(out, condition()); out->print(" ");
in_opr1()->print(out); out->print(" ");
in_opr2()->print(out); out->print(", \"");
out->print(msg()); out->print("\"");
}
void LIR_OpDelay::print_instr(outputStream* out) const {
_op->print_on(out);

View File

@ -881,6 +881,7 @@ class LIR_OpLock;
class LIR_OpTypeCheck;
class LIR_OpCompareAndSwap;
class LIR_OpProfileCall;
class LIR_OpAssert;
// LIR operation codes
@ -1000,6 +1001,9 @@ enum LIR_Code {
, begin_opMDOProfile
, lir_profile_call
, end_opMDOProfile
, begin_opAssert
, lir_assert
, end_opAssert
};
@ -1135,6 +1139,7 @@ class LIR_Op: public CompilationResourceObj {
virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
virtual LIR_OpAssert* as_OpAssert() { return NULL; }
virtual void verify() const {}
};
@ -1623,7 +1628,7 @@ class LIR_Op2: public LIR_Op {
, _tmp3(LIR_OprFact::illegalOpr)
, _tmp4(LIR_OprFact::illegalOpr)
, _tmp5(LIR_OprFact::illegalOpr) {
assert(code == lir_cmp, "code check");
assert(code == lir_cmp || code == lir_assert, "code check");
}
LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
@ -1683,7 +1688,7 @@ class LIR_Op2: public LIR_Op {
LIR_Opr tmp4_opr() const { return _tmp4; }
LIR_Opr tmp5_opr() const { return _tmp5; }
LIR_Condition condition() const {
assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
}
void set_condition(LIR_Condition condition) {
assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition;
@ -1823,6 +1828,30 @@ class LIR_OpDelay: public LIR_Op {
CodeEmitInfo* call_info() const { return info(); }
};
#ifdef ASSERT
// LIR_OpAssert
class LIR_OpAssert : public LIR_Op2 {
friend class LIR_OpVisitState;
private:
const char* _msg;
bool _halt;
public:
LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
: LIR_Op2(lir_assert, condition, opr1, opr2)
, _halt(halt)
, _msg(msg) {
}
const char* msg() const { return _msg; }
bool halt() const { return _halt; }
virtual void emit_code(LIR_Assembler* masm);
virtual LIR_OpAssert* as_OpAssert() { return this; }
virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
};
#endif
// LIR_OpCompareAndSwap
class LIR_OpCompareAndSwap : public LIR_Op {
@ -2196,6 +2225,9 @@ class LIR_List: public CompilationResourceObj {
void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
#ifdef ASSERT
void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
#endif
};
void print_LIR(BlockList* blocks);

View File

@ -210,6 +210,9 @@ class LIR_Assembler: public CompilationResourceObj {
void arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack);
void arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info);
void intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op);
#ifdef ASSERT
void emit_assert(LIR_OpAssert* op);
#endif
void logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest);

View File

@ -403,6 +403,10 @@ void LIRGenerator::walk(Value instr) {
CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
assert(state != NULL, "state must be defined");
#ifndef PRODUCT
state->verify();
#endif
ValueStack* s = state;
for_each_state(s) {
if (s->kind() == ValueStack::EmptyExceptionState) {
@ -453,7 +457,7 @@ CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ig
}
}
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
}
@ -1792,11 +1796,18 @@ void LIRGenerator::do_LoadField(LoadField* x) {
}
#endif
bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
if (x->needs_null_check() &&
(needs_patching ||
MacroAssembler::needs_explicit_null_check(x->offset()))) {
MacroAssembler::needs_explicit_null_check(x->offset()) ||
stress_deopt)) {
LIR_Opr obj = object.result();
if (stress_deopt) {
obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
}
// emit an explicit null check because the offset is too large
__ null_check(object.result(), new CodeEmitInfo(info));
__ null_check(obj, new CodeEmitInfo(info));
}
LIR_Opr reg = rlock_result(x, field_type);
@ -1861,6 +1872,8 @@ void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
void LIRGenerator::do_ArrayLength(ArrayLength* x) {
if (x->use_count() == 0 && !x->can_trap()) return;
LIRItem array(x->array(), this);
array.load_item();
LIR_Opr reg = rlock_result(x);
@ -1873,6 +1886,11 @@ void LIRGenerator::do_ArrayLength(ArrayLength* x) {
} else {
info = state_for(nc);
}
if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
LIR_Opr obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
__ null_check(obj, new CodeEmitInfo(info));
}
}
__ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
}
@ -1883,14 +1901,11 @@ void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
LIRItem array(x->array(), this);
LIRItem index(x->index(), this);
LIRItem length(this);
bool needs_range_check = true;
bool needs_range_check = x->compute_needs_range_check();
if (use_length) {
needs_range_check = x->compute_needs_range_check();
if (needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
if (use_length && needs_range_check) {
length.set_instruction(x->length());
length.load_item();
}
array.load_item();
@ -1910,13 +1925,20 @@ void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
} else {
null_check_info = range_check_info;
}
if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
LIR_Opr obj = new_register(T_OBJECT);
__ move(LIR_OprFact::oopConst(NULL), obj);
__ null_check(obj, new CodeEmitInfo(null_check_info));
}
}
// emit array address setup early so it schedules better
LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
if (GenerateRangeChecks && needs_range_check) {
if (use_length) {
if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
__ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
} else if (use_length) {
// TODO: use a (modified) version of array_range_check that does not require a
// constant length to be loaded to a register
__ cmp(lir_cond_belowEqual, length.result(), index.result());
@ -2634,7 +2656,7 @@ void LIRGenerator::do_Base(Base* x) {
LIR_Opr lock = new_register(T_INT);
__ load_stack_address_monitor(0, lock);
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
// receiver is guaranteed non-NULL so don't need CodeEmitInfo
@ -2644,7 +2666,7 @@ void LIRGenerator::do_Base(Base* x) {
// increment invocation counters if needed
if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
increment_invocation_counter(info);
}
@ -3102,6 +3124,95 @@ void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
}
}
void LIRGenerator::do_Assert(Assert *x) {
#ifdef ASSERT
ValueTag tag = x->x()->type()->tag();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
assert(tag == intTag, "Only integer assertions are valid!");
xin->load_item();
yin->dont_load_item();
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
__ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
#endif
}
void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
Instruction *a = x->x();
Instruction *b = x->y();
if (!a || StressRangeCheckElimination) {
assert(!b || StressRangeCheckElimination, "B must also be null");
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ jump(stub);
} else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
int a_int = a->type()->as_IntConstant()->value();
int b_int = b->type()->as_IntConstant()->value();
bool ok = false;
switch(x->cond()) {
case Instruction::eql: ok = (a_int == b_int); break;
case Instruction::neq: ok = (a_int != b_int); break;
case Instruction::lss: ok = (a_int < b_int); break;
case Instruction::leq: ok = (a_int <= b_int); break;
case Instruction::gtr: ok = (a_int > b_int); break;
case Instruction::geq: ok = (a_int >= b_int); break;
case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
default: ShouldNotReachHere();
}
if (ok) {
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ jump(stub);
}
} else {
ValueTag tag = x->x()->type()->tag();
If::Condition cond = x->cond();
LIRItem xitem(x->x(), this);
LIRItem yitem(x->y(), this);
LIRItem* xin = &xitem;
LIRItem* yin = &yitem;
assert(tag == intTag, "Only integer deoptimizations are valid!");
xin->load_item();
yin->dont_load_item();
set_no_result(x);
LIR_Opr left = xin->result();
LIR_Opr right = yin->result();
CodeEmitInfo *info = state_for(x, x->state());
CodeStub* stub = new PredicateFailedStub(info);
__ cmp(lir_cond(cond), left, right);
__ branch(lir_cond(cond), right->type(), stub);
}
}
LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
LIRItemList args(1);
LIRItem value(arg1, this);

View File

@ -412,6 +412,8 @@ class LIRGenerator: public InstructionVisitor, public BlockClosure {
case If::leq: l = lir_cond_lessEqual; break;
case If::geq: l = lir_cond_greaterEqual; break;
case If::gtr: l = lir_cond_greater; break;
case If::aeq: l = lir_cond_aboveEqual; break;
case If::beq: l = lir_cond_belowEqual; break;
};
return l;
}
@ -534,6 +536,8 @@ class LIRGenerator: public InstructionVisitor, public BlockClosure {
virtual void do_ProfileInvoke (ProfileInvoke* x);
virtual void do_RuntimeCall (RuntimeCall* x);
virtual void do_MemBar (MemBar* x);
virtual void do_RangeCheckPredicate(RangeCheckPredicate* x);
virtual void do_Assert (Assert* x);
};

View File

@ -6231,26 +6231,29 @@ void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
LIR_Op2* prev_cmp = NULL;
if (prev_branch->stub() == NULL) {
for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
prev_op = instructions->at(j);
if(prev_op->code() == lir_cmp) {
assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
prev_cmp = (LIR_Op2*)prev_op;
assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
LIR_Op2* prev_cmp = NULL;
for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
prev_op = instructions->at(j);
if (prev_op->code() == lir_cmp) {
assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
prev_cmp = (LIR_Op2*)prev_op;
assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
}
}
}
assert(prev_cmp != NULL, "should have found comp instruction for branch");
if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
assert(prev_cmp != NULL, "should have found comp instruction for branch");
if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
// eliminate a conditional branch to the immediate successor
prev_branch->change_block(last_branch->block());
prev_branch->negate_cond();
prev_cmp->set_condition(prev_branch->cond());
instructions->truncate(instructions->length() - 1);
// eliminate a conditional branch to the immediate successor
prev_branch->change_block(last_branch->block());
prev_branch->negate_cond();
prev_cmp->set_condition(prev_branch->cond());
instructions->truncate(instructions->length() - 1);
}
}
}
}

View File

@ -178,7 +178,7 @@ void CE_Eliminator::block_do(BlockBegin* block) {
// 2) substitute conditional expression
// with an IfOp followed by a Goto
// cut if_ away and get node before
Instruction* cur_end = if_->prev(block);
Instruction* cur_end = if_->prev();
// append constants of true- and false-block if necessary
// clone constants because original block must not be destroyed
@ -202,7 +202,7 @@ void CE_Eliminator::block_do(BlockBegin* block) {
}
// append Goto to successor
ValueStack* state_before = if_->is_safepoint() ? if_->state_before() : NULL;
ValueStack* state_before = if_->state_before();
Goto* goto_ = new Goto(sux, state_before, if_->is_safepoint() || t_goto->is_safepoint() || f_goto->is_safepoint());
// prepare state for Goto
@ -367,10 +367,11 @@ class BlockMerger: public BlockClosure {
#endif
// find instruction before end & append first instruction of sux block
Instruction* prev = end->prev(block);
Instruction* prev = end->prev();
Instruction* next = sux->next();
assert(prev->as_BlockEnd() == NULL, "must not be a BlockEnd");
prev->set_next(next);
prev->fixup_block_pointers();
sux->disconnect_from_graph();
block->set_end(sux->end());
// add exception handlers of deleted block, if any
@ -533,6 +534,8 @@ public:
void do_ProfileInvoke (ProfileInvoke* x);
void do_RuntimeCall (RuntimeCall* x);
void do_MemBar (MemBar* x);
void do_RangeCheckPredicate(RangeCheckPredicate* x);
void do_Assert (Assert* x);
};
@ -714,6 +717,8 @@ void NullCheckVisitor::do_ProfileCall (ProfileCall* x) { nce()->clear_las
void NullCheckVisitor::do_ProfileInvoke (ProfileInvoke* x) {}
void NullCheckVisitor::do_RuntimeCall (RuntimeCall* x) {}
void NullCheckVisitor::do_MemBar (MemBar* x) {}
void NullCheckVisitor::do_RangeCheckPredicate(RangeCheckPredicate* x) {}
void NullCheckVisitor::do_Assert (Assert* x) {}
void NullCheckEliminator::visit(Value* p) {

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,241 @@
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_C1_C1_RANGECHECKELIMINATION_HPP
#define SHARE_VM_C1_C1_RANGECHECKELIMINATION_HPP
#include "c1/c1_Instruction.hpp"
// Base class for range check elimination
class RangeCheckElimination : AllStatic {
public:
static void eliminate(IR *ir);
};
// Implementation
class RangeCheckEliminator VALUE_OBJ_CLASS_SPEC {
private:
int _number_of_instructions;
bool _optimistic; // Insert predicates and deoptimize when they fail
IR *_ir;
define_array(BlockBeginArray, BlockBegin*)
define_stack(BlockBeginList, BlockBeginArray)
define_stack(IntegerStack, intArray)
define_array(IntegerMap, IntegerStack*)
class Verification : public _ValueObj /*VALUE_OBJ_CLASS_SPEC*/, public BlockClosure {
private:
IR *_ir;
boolArray _used;
BlockBeginList _current;
BlockBeginList _successors;
public:
Verification(IR *ir);
virtual void block_do(BlockBegin *block);
bool can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use = NULL);
bool dominates(BlockBegin *dominator, BlockBegin *block);
};
public:
// Bounds for an instruction in the form x + c which c integer
// constant and x another instruction
class Bound : public CompilationResourceObj {
private:
int _upper;
Value _upper_instr;
int _lower;
Value _lower_instr;
public:
Bound();
Bound(Value v);
Bound(Instruction::Condition cond, Value v, int constant = 0);
Bound(int lower, Value lower_instr, int upper, Value upper_instr);
~Bound();
#ifdef ASSERT
void add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond);
#endif
int upper();
Value upper_instr();
int lower();
Value lower_instr();
void print();
bool check_no_overflow(int const_value);
void or_op(Bound *b);
void and_op(Bound *b);
bool has_upper();
bool has_lower();
void set_upper(int upper, Value upper_instr);
void set_lower(int lower, Value lower_instr);
bool is_smaller(Bound *b);
void remove_upper();
void remove_lower();
void add_constant(int value);
Bound *copy();
private:
void init();
};
class Visitor : public InstructionVisitor {
private:
Bound *_bound;
RangeCheckEliminator *_rce;
public:
void set_range_check_eliminator(RangeCheckEliminator *rce) { _rce = rce; }
Bound *bound() const { return _bound; }
void clear_bound() { _bound = NULL; }
protected:
// visitor functions
void do_Constant (Constant* x);
void do_IfOp (IfOp* x);
void do_LogicOp (LogicOp* x);
void do_ArithmeticOp (ArithmeticOp* x);
void do_Phi (Phi* x);
void do_StoreField (StoreField* x) { /* nothing to do */ };
void do_StoreIndexed (StoreIndexed* x) { /* nothing to do */ };
void do_MonitorEnter (MonitorEnter* x) { /* nothing to do */ };
void do_MonitorExit (MonitorExit* x) { /* nothing to do */ };
void do_Invoke (Invoke* x) { /* nothing to do */ };
void do_UnsafePutRaw (UnsafePutRaw* x) { /* nothing to do */ };
void do_UnsafePutObject(UnsafePutObject* x) { /* nothing to do */ };
void do_Intrinsic (Intrinsic* x) { /* nothing to do */ };
void do_Local (Local* x) { /* nothing to do */ };
void do_LoadField (LoadField* x) { /* nothing to do */ };
void do_ArrayLength (ArrayLength* x) { /* nothing to do */ };
void do_LoadIndexed (LoadIndexed* x) { /* nothing to do */ };
void do_NegateOp (NegateOp* x) { /* nothing to do */ };
void do_ShiftOp (ShiftOp* x) { /* nothing to do */ };
void do_CompareOp (CompareOp* x) { /* nothing to do */ };
void do_Convert (Convert* x) { /* nothing to do */ };
void do_NullCheck (NullCheck* x) { /* nothing to do */ };
void do_TypeCast (TypeCast* x) { /* nothing to do */ };
void do_NewInstance (NewInstance* x) { /* nothing to do */ };
void do_NewTypeArray (NewTypeArray* x) { /* nothing to do */ };
void do_NewObjectArray (NewObjectArray* x) { /* nothing to do */ };
void do_NewMultiArray (NewMultiArray* x) { /* nothing to do */ };
void do_CheckCast (CheckCast* x) { /* nothing to do */ };
void do_InstanceOf (InstanceOf* x) { /* nothing to do */ };
void do_BlockBegin (BlockBegin* x) { /* nothing to do */ };
void do_Goto (Goto* x) { /* nothing to do */ };
void do_If (If* x) { /* nothing to do */ };
void do_IfInstanceOf (IfInstanceOf* x) { /* nothing to do */ };
void do_TableSwitch (TableSwitch* x) { /* nothing to do */ };
void do_LookupSwitch (LookupSwitch* x) { /* nothing to do */ };
void do_Return (Return* x) { /* nothing to do */ };
void do_Throw (Throw* x) { /* nothing to do */ };
void do_Base (Base* x) { /* nothing to do */ };
void do_OsrEntry (OsrEntry* x) { /* nothing to do */ };
void do_ExceptionObject(ExceptionObject* x) { /* nothing to do */ };
void do_RoundFP (RoundFP* x) { /* nothing to do */ };
void do_UnsafeGetRaw (UnsafeGetRaw* x) { /* nothing to do */ };
void do_UnsafeGetObject(UnsafeGetObject* x) { /* nothing to do */ };
void do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) { /* nothing to do */ };
void do_UnsafePrefetchRead (UnsafePrefetchRead* x) { /* nothing to do */ };
void do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) { /* nothing to do */ };
void do_ProfileCall (ProfileCall* x) { /* nothing to do */ };
void do_ProfileInvoke (ProfileInvoke* x) { /* nothing to do */ };
void do_RuntimeCall (RuntimeCall* x) { /* nothing to do */ };
void do_MemBar (MemBar* x) { /* nothing to do */ };
void do_RangeCheckPredicate(RangeCheckPredicate* x) { /* nothing to do */ };
void do_Assert (Assert* x) { /* nothing to do */ };
};
#ifdef ASSERT
void add_assertions(Bound *bound, Instruction *instruction, Instruction *position);
#endif
define_array(BoundArray, Bound *)
define_stack(BoundStack, BoundArray)
define_array(BoundMap, BoundStack *)
define_array(AccessIndexedArray, AccessIndexed *)
define_stack(AccessIndexedList, AccessIndexedArray)
define_array(InstructionArray, Instruction *)
define_stack(InstructionList, InstructionArray)
class AccessIndexedInfo : public CompilationResourceObj {
public:
AccessIndexedList *_list;
int _min;
int _max;
};
define_array(AccessIndexedInfoArray, AccessIndexedInfo *)
BoundMap _bounds; // Mapping from Instruction's id to current bound
AccessIndexedInfoArray _access_indexed_info; // Mapping from Instruction's id to AccessIndexedInfo for in block motion
Visitor _visitor;
public:
RangeCheckEliminator(IR *ir);
IR *ir() const { return _ir; }
// Pass over the dominator tree to identify blocks where there's an oppportunity for optimization
bool set_process_block_flags(BlockBegin *block);
// The core of the optimization work: pass over the dominator tree
// to propagate bound information, insert predicate out of loops,
// eliminate bound checks when possible and perform in block motion
void calc_bounds(BlockBegin *block, BlockBegin *loop_header);
// reorder bound checks within a block in order to eliminate some of them
void in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays);
// update/access current bound
void update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant);
void update_bound(IntegerStack &pushed, Value v, Bound *bound);
Bound *get_bound(Value v);
bool loop_invariant(BlockBegin *loop_header, Instruction *instruction); // check for loop invariance
void add_access_indexed_info(InstructionList &indices, int i, Value instruction, AccessIndexed *ai); // record indexed access for in block motion
void remove_range_check(AccessIndexed *ai); // Mark this instructions as not needing a range check
void add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition); // Update bound for an If
bool in_array_bound(Bound *bound, Value array); // Check whether bound is known to fall within array
// helper functions to work with predicates
Instruction* insert_after(Instruction* insert_position, Instruction* instr, int bci);
Instruction* predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci=-1);
Instruction* predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci=1);
Instruction* predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci=-1);
Instruction* predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci=-1);
void insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, // Add predicate
Instruction *length_instruction, Instruction *lower_instr, int lower,
Instruction *upper_instr, int upper, AccessIndexed *ai);
bool is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, // Can we safely add a predicate?
Instruction *length_instr, Instruction *lower_instr,
int lower, Instruction *upper_instr, int upper);
void process_if(IntegerStack &pushed, BlockBegin *block, If *cond); // process If Instruction
void process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai); // process indexed access
void dump_condition_stack(BlockBegin *cur_block);
static void print_statistics();
};
#endif // SHARE_VM_C1_C1_RANGECHECKELIMINATION_HPP

View File

@ -1330,6 +1330,50 @@ JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
JRT_END
JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
ResourceMark rm;
assert(!TieredCompilation, "incompatible with tiered compilation");
RegisterMap reg_map(thread, false);
frame runtime_frame = thread->last_frame();
frame caller_frame = runtime_frame.sender(&reg_map);
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
assert (nm != NULL, "no more nmethod?");
nm->make_not_entrant();
methodHandle m(nm->method());
MethodData* mdo = m->method_data();
if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
// Build an MDO. Ignore errors like OutOfMemory;
// that simply means we won't have an MDO to update.
Method::build_interpreter_method_data(m, THREAD);
if (HAS_PENDING_EXCEPTION) {
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
CLEAR_PENDING_EXCEPTION;
}
mdo = m->method_data();
}
if (mdo != NULL) {
mdo->inc_trap_count(Deoptimization::Reason_none);
}
if (TracePredicateFailedTraps) {
stringStream ss1, ss2;
vframeStream vfst(thread);
methodHandle inlinee = methodHandle(vfst.method());
inlinee->print_short_name(&ss1);
m->print_short_name(&ss2);
tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc %x", ss1.as_string(), vfst.bci(), ss2.as_string(), caller_frame.pc());
}
Deoptimization::deoptimize_frame(thread, caller_frame.id());
JRT_END
#ifndef PRODUCT
void Runtime1::print_statistics() {

View File

@ -71,6 +71,7 @@ class StubAssembler;
stub(g1_post_barrier_slow) \
stub(fpu2long_stub) \
stub(counter_overflow) \
stub(predicate_failed_trap) \
last_entry(number_of_ids)
#define DECLARE_STUB_ID(x) x ## _id ,
@ -190,6 +191,8 @@ class Runtime1: public AllStatic {
static void oop_arraycopy(HeapWord* src, HeapWord* dst, int length);
static int is_instance_of(oopDesc* mirror, oopDesc* obj);
static void predicate_failed_trap(JavaThread* thread);
static void print_statistics() PRODUCT_RETURN;
};

View File

@ -26,9 +26,9 @@
#include "c1/c1_Canonicalizer.hpp"
#include "c1/c1_IR.hpp"
#include "c1/c1_ValueMap.hpp"
#include "c1/c1_ValueStack.hpp"
#include "utilities/bitMap.inline.hpp"
#ifndef PRODUCT
int ValueMap::_number_of_finds = 0;
@ -192,10 +192,6 @@ Value ValueMap::find_insert(Value x) {
&& lf->field()->holder() == field->holder() \
&& (all_offsets || lf->field()->offset() == field->offset());
#define MUST_KILL_EXCEPTION(must_kill, entry, value) \
assert(entry->nesting() < nesting(), "must not find bigger nesting than current"); \
bool must_kill = (entry->nesting() == nesting() - 1);
void ValueMap::kill_memory() {
GENERIC_KILL_VALUE(MUST_KILL_MEMORY);
@ -209,11 +205,6 @@ void ValueMap::kill_field(ciField* field, bool all_offsets) {
GENERIC_KILL_VALUE(MUST_KILL_FIELD);
}
void ValueMap::kill_exception() {
GENERIC_KILL_VALUE(MUST_KILL_EXCEPTION);
}
void ValueMap::kill_map(ValueMap* map) {
assert(is_global_value_numbering(), "only for global value numbering");
_killed_values.set_union(&map->_killed_values);
@ -274,6 +265,8 @@ class ShortLoopOptimizer : public ValueNumberingVisitor {
GlobalValueNumbering* _gvn;
BlockList _loop_blocks;
bool _too_complicated_loop;
bool _has_field_store[T_ARRAY + 1];
bool _has_indexed_store[T_ARRAY + 1];
// simplified access to methods of GlobalValueNumbering
ValueMap* current_map() { return _gvn->current_map(); }
@ -281,8 +274,16 @@ class ShortLoopOptimizer : public ValueNumberingVisitor {
// implementation for abstract methods of ValueNumberingVisitor
void kill_memory() { _too_complicated_loop = true; }
void kill_field(ciField* field, bool all_offsets) { current_map()->kill_field(field, all_offsets); };
void kill_array(ValueType* type) { current_map()->kill_array(type); };
void kill_field(ciField* field, bool all_offsets) {
current_map()->kill_field(field, all_offsets);
assert(field->type()->basic_type() >= 0 && field->type()->basic_type() <= T_ARRAY, "Invalid type");
_has_field_store[field->type()->basic_type()] = true;
}
void kill_array(ValueType* type) {
current_map()->kill_array(type);
BasicType basic_type = as_BasicType(type); assert(basic_type >= 0 && basic_type <= T_ARRAY, "Invalid type");
_has_indexed_store[basic_type] = true;
}
public:
ShortLoopOptimizer(GlobalValueNumbering* gvn)
@ -290,11 +291,141 @@ class ShortLoopOptimizer : public ValueNumberingVisitor {
, _loop_blocks(ValueMapMaxLoopSize)
, _too_complicated_loop(false)
{
for (int i=0; i<= T_ARRAY; i++){
_has_field_store[i] = false;
_has_indexed_store[i] = false;
}
}
bool has_field_store(BasicType type) {
assert(type >= 0 && type <= T_ARRAY, "Invalid type");
return _has_field_store[type];
}
bool has_indexed_store(BasicType type) {
assert(type >= 0 && type <= T_ARRAY, "Invalid type");
return _has_indexed_store[type];
}
bool process(BlockBegin* loop_header);
};
class LoopInvariantCodeMotion : public StackObj {
private:
GlobalValueNumbering* _gvn;
ShortLoopOptimizer* _short_loop_optimizer;
Instruction* _insertion_point;
ValueStack * _state;
void set_invariant(Value v) const { _gvn->set_processed(v); }
bool is_invariant(Value v) const { return _gvn->is_processed(v); }
void process_block(BlockBegin* block);
public:
LoopInvariantCodeMotion(ShortLoopOptimizer *slo, GlobalValueNumbering* gvn, BlockBegin* loop_header, BlockList* loop_blocks);
};
LoopInvariantCodeMotion::LoopInvariantCodeMotion(ShortLoopOptimizer *slo, GlobalValueNumbering* gvn, BlockBegin* loop_header, BlockList* loop_blocks)
: _gvn(gvn), _short_loop_optimizer(slo) {
TRACE_VALUE_NUMBERING(tty->print_cr("using loop invariant code motion loop_header = %d", loop_header->block_id()));
TRACE_VALUE_NUMBERING(tty->print_cr("** loop invariant code motion for short loop B%d", loop_header->block_id()));
BlockBegin* insertion_block = loop_header->dominator();
if (insertion_block->number_of_preds() == 0) {
return; // only the entry block does not have a predecessor
}
assert(insertion_block->end()->as_Base() == NULL, "cannot insert into entry block");
_insertion_point = insertion_block->end()->prev();
BlockEnd *block_end = insertion_block->end();
_state = block_end->state_before();
if (!_state) {
// If, TableSwitch and LookupSwitch always have state_before when
// loop invariant code motion happens..
assert(block_end->as_Goto(), "Block has to be goto");
_state = block_end->state();
}
// the loop_blocks are filled by going backward from the loop header, so this processing order is best
assert(loop_blocks->at(0) == loop_header, "loop header must be first loop block");
process_block(loop_header);
for (int i = loop_blocks->length() - 1; i >= 1; i--) {
process_block(loop_blocks->at(i));
}
}
void LoopInvariantCodeMotion::process_block(BlockBegin* block) {
TRACE_VALUE_NUMBERING(tty->print_cr("processing block B%d", block->block_id()));
Instruction* prev = block;
Instruction* cur = block->next();
while (cur != NULL) {
// determine if cur instruction is loop invariant
// only selected instruction types are processed here
bool cur_invariant = false;
if (cur->as_Constant() != NULL) {
cur_invariant = !cur->can_trap();
} else if (cur->as_ArithmeticOp() != NULL || cur->as_LogicOp() != NULL || cur->as_ShiftOp() != NULL) {
assert(cur->as_Op2() != NULL, "must be Op2");
Op2* op2 = (Op2*)cur;
cur_invariant = !op2->can_trap() && is_invariant(op2->x()) && is_invariant(op2->y());
} else if (cur->as_LoadField() != NULL) {
LoadField* lf = (LoadField*)cur;
// deoptimizes on NullPointerException
cur_invariant = !lf->needs_patching() && !lf->field()->is_volatile() && !_short_loop_optimizer->has_field_store(lf->field()->type()->basic_type()) && is_invariant(lf->obj());
} else if (cur->as_ArrayLength() != NULL) {
ArrayLength *length = cur->as_ArrayLength();
cur_invariant = is_invariant(length->array());
} else if (cur->as_LoadIndexed() != NULL) {
LoadIndexed *li = (LoadIndexed *)cur->as_LoadIndexed();
cur_invariant = !_short_loop_optimizer->has_indexed_store(as_BasicType(cur->type())) && is_invariant(li->array()) && is_invariant(li->index());
}
if (cur_invariant) {
// perform value numbering and mark instruction as loop-invariant
_gvn->substitute(cur);
if (cur->as_Constant() == NULL) {
// ensure that code for non-constant instructions is always generated
cur->pin();
}
// remove cur instruction from loop block and append it to block before loop
Instruction* next = cur->next();
Instruction* in = _insertion_point->next();
_insertion_point = _insertion_point->set_next(cur);
cur->set_next(in);
// Deoptimize on exception
cur->set_flag(Instruction::DeoptimizeOnException, true);
// Clear exception handlers
cur->set_exception_handlers(NULL);
TRACE_VALUE_NUMBERING(tty->print_cr("Instruction %c%d is loop invariant", cur->type()->tchar(), cur->id()));
if (cur->state_before() != NULL) {
cur->set_state_before(_state->copy());
}
if (cur->exception_state() != NULL) {
cur->set_exception_state(_state->copy());
}
cur = prev->set_next(next);
} else {
prev = cur;
cur = cur->next();
}
}
}
bool ShortLoopOptimizer::process(BlockBegin* loop_header) {
TRACE_VALUE_NUMBERING(tty->print_cr("** loop header block"));
@ -316,6 +447,10 @@ bool ShortLoopOptimizer::process(BlockBegin* loop_header) {
for (int j = block->number_of_preds() - 1; j >= 0; j--) {
BlockBegin* pred = block->pred_at(j);
if (pred->is_set(BlockBegin::osr_entry_flag)) {
return false;
}
ValueMap* pred_map = value_map_of(pred);
if (pred_map != NULL) {
current_map()->kill_map(pred_map);
@ -336,6 +471,12 @@ bool ShortLoopOptimizer::process(BlockBegin* loop_header) {
}
}
bool optimistic = this->_gvn->compilation()->is_optimistic();
if (UseLoopInvariantCodeMotion && optimistic) {
LoopInvariantCodeMotion code_motion(this, _gvn, loop_header, &_loop_blocks);
}
TRACE_VALUE_NUMBERING(tty->print_cr("** loop successfully optimized"));
return true;
}
@ -344,11 +485,11 @@ bool ShortLoopOptimizer::process(BlockBegin* loop_header) {
GlobalValueNumbering::GlobalValueNumbering(IR* ir)
: _current_map(NULL)
, _value_maps(ir->linear_scan_order()->length(), NULL)
, _compilation(ir->compilation())
{
TRACE_VALUE_NUMBERING(tty->print_cr("****** start of global value numbering"));
ShortLoopOptimizer short_loop_optimizer(this);
int subst_count = 0;
BlockList* blocks = ir->linear_scan_order();
int num_blocks = blocks->length();
@ -357,6 +498,12 @@ GlobalValueNumbering::GlobalValueNumbering(IR* ir)
assert(start_block == ir->start() && start_block->number_of_preds() == 0 && start_block->dominator() == NULL, "must be start block");
assert(start_block->next()->as_Base() != NULL && start_block->next()->next() == NULL, "start block must not have instructions");
// method parameters are not linked in instructions list, so process them separateley
for_each_state_value(start_block->state(), value,
assert(value->as_Local() != NULL, "only method parameters allowed");
set_processed(value);
);
// initial, empty value map with nesting 0
set_value_map_of(start_block, new ValueMap());
@ -374,7 +521,7 @@ GlobalValueNumbering::GlobalValueNumbering(IR* ir)
// create new value map with increased nesting
_current_map = new ValueMap(value_map_of(dominator));
if (num_preds == 1) {
if (num_preds == 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
assert(dominator == block->pred_at(0), "dominator must be equal to predecessor");
// nothing to do here
@ -403,36 +550,41 @@ GlobalValueNumbering::GlobalValueNumbering(IR* ir)
}
}
if (block->is_set(BlockBegin::exception_entry_flag)) {
current_map()->kill_exception();
}
// phi functions are not linked in instructions list, so process them separateley
for_each_phi_fun(block, phi,
set_processed(phi);
);
TRACE_VALUE_NUMBERING(tty->print("value map before processing block: "); current_map()->print());
// visit all instructions of this block
for (Value instr = block->next(); instr != NULL; instr = instr->next()) {
assert(!instr->has_subst(), "substitution already set");
// check if instruction kills any values
instr->visit(this);
if (instr->hash() != 0) {
Value f = current_map()->find_insert(instr);
if (f != instr) {
assert(!f->has_subst(), "can't have a substitution");
instr->set_subst(f);
subst_count++;
}
}
// perform actual value numbering
substitute(instr);
}
// remember value map for successors
set_value_map_of(block, current_map());
}
if (subst_count != 0) {
if (_has_substitutions) {
SubstitutionResolver resolver(ir);
}
TRACE_VALUE_NUMBERING(tty->print("****** end of global value numbering. "); ValueMap::print_statistics());
}
void GlobalValueNumbering::substitute(Instruction* instr) {
assert(!instr->has_subst(), "substitution already set");
Value subst = current_map()->find_insert(instr);
if (subst != instr) {
assert(!subst->has_subst(), "can't have a substitution");
TRACE_VALUE_NUMBERING(tty->print_cr("substitution for %d set to %d", instr->id(), subst->id()));
instr->set_subst(subst);
_has_substitutions = true;
}
set_processed(instr);
}

View File

@ -206,6 +206,8 @@ class ValueNumberingVisitor: public InstructionVisitor {
void do_ProfileInvoke (ProfileInvoke* x) { /* nothing to do */ };
void do_RuntimeCall (RuntimeCall* x) { /* nothing to do */ };
void do_MemBar (MemBar* x) { /* nothing to do */ };
void do_RangeCheckPredicate(RangeCheckPredicate* x) { /* nothing to do */ };
void do_Assert (Assert* x) { /* nothing to do */ };
};
@ -225,15 +227,22 @@ class ValueNumberingEffects: public ValueNumberingVisitor {
class GlobalValueNumbering: public ValueNumberingVisitor {
private:
Compilation* _compilation; // compilation data
ValueMap* _current_map; // value map of current block
ValueMapArray _value_maps; // list of value maps for all blocks
ValueSet _processed_values; // marker for instructions that were already processed
bool _has_substitutions; // set to true when substitutions must be resolved
public:
// accessors
Compilation* compilation() const { return _compilation; }
ValueMap* current_map() { return _current_map; }
ValueMap* value_map_of(BlockBegin* block) { return _value_maps.at(block->linear_scan_number()); }
void set_value_map_of(BlockBegin* block, ValueMap* map) { assert(value_map_of(block) == NULL, ""); _value_maps.at_put(block->linear_scan_number(), map); }
bool is_processed(Value v) { return _processed_values.contains(v); }
void set_processed(Value v) { _processed_values.put(v); }
// implementation for abstract methods of ValueNumberingVisitor
void kill_memory() { current_map()->kill_memory(); }
void kill_field(ciField* field, bool all_offsets) { current_map()->kill_field(field, all_offsets); }
@ -241,6 +250,7 @@ class GlobalValueNumbering: public ValueNumberingVisitor {
// main entry point that performs global value numbering
GlobalValueNumbering(IR* ir);
void substitute(Instruction* instr); // substitute instruction if it is contained in current value map
};
#endif // SHARE_VM_C1_C1_VALUEMAP_HPP

View File

@ -119,6 +119,24 @@
develop(bool, UseGlobalValueNumbering, true, \
"Use Global Value Numbering (separate phase)") \
\
product(bool, UseLoopInvariantCodeMotion, true, \
"Simple loop invariant code motion for short loops during GVN") \
\
develop(bool, TracePredicateFailedTraps, false, \
"trace runtime traps caused by predicate failure") \
\
develop(bool, StressLoopInvariantCodeMotion, false, \
"stress loop invariant code motion") \
\
develop(bool, TraceRangeCheckElimination, false, \
"Trace Range Check Elimination") \
\
develop(bool, AssertRangeCheckElimination, false, \
"Assert Range Check Elimination") \
\
develop(bool, StressRangeCheckElimination, false, \
"stress Range Check Elimination") \
\
develop(bool, PrintValueNumbering, false, \
"Print Value Numbering") \
\

View File

@ -2166,6 +2166,9 @@ void CompileBroker::print_times() {
comp->print_timers();
}
tty->cr();
tty->print_cr(" Total compiled methods : %6d methods", CompileBroker::_total_compile_count);
tty->print_cr(" Standard compilation : %6d methods", CompileBroker::_total_standard_compile_count);
tty->print_cr(" On stack replacement : %6d methods", CompileBroker::_total_osr_compile_count);
int tcb = CompileBroker::_sum_osr_bytes_compiled + CompileBroker::_sum_standard_bytes_compiled;
tty->print_cr(" Total compiled bytecodes : %6d bytes", tcb);
tty->print_cr(" Standard compilation : %6d bytes", CompileBroker::_sum_standard_bytes_compiled);

View File

@ -2228,8 +2228,6 @@ void InstanceKlass::clean_implementors_list(BoolObjectClosure* is_alive) {
}
void InstanceKlass::clean_method_data(BoolObjectClosure* is_alive) {
#ifdef COMPILER2
// Currently only used by C2.
for (int m = 0; m < methods()->length(); m++) {
MethodData* mdo = methods()->at(m)->method_data();
if (mdo != NULL) {
@ -2240,15 +2238,6 @@ void InstanceKlass::clean_method_data(BoolObjectClosure* is_alive) {
}
}
}
#else
#ifdef ASSERT
// Verify that we haven't started to use MDOs for C1.
for (int m = 0; m < methods()->length(); m++) {
MethodData* mdo = methods()->at(m)->method_data();
assert(mdo == NULL, "Didn't expect C1 to use MDOs");
}
#endif // ASSERT
#endif // !COMPILER2
}

View File

@ -392,6 +392,9 @@ MethodData* MethodData::allocate(ClassLoaderData* loader_data, methodHandle meth
}
int MethodData::bytecode_cell_count(Bytecodes::Code code) {
#if defined(COMPILER1) && !defined(COMPILER2)
return no_profile_data;
#else
switch (code) {
case Bytecodes::_checkcast:
case Bytecodes::_instanceof:
@ -438,6 +441,7 @@ int MethodData::bytecode_cell_count(Bytecodes::Code code) {
return variable_cell_count;
}
return no_profile_data;
#endif
}
// Compute the size of the profiling information corresponding to
@ -509,6 +513,9 @@ int MethodData::compute_allocation_size_in_words(methodHandle method) {
// the segment in bytes.
int MethodData::initialize_data(BytecodeStream* stream,
int data_index) {
#if defined(COMPILER1) && !defined(COMPILER2)
return 0;
#else
int cell_count = -1;
int tag = DataLayout::no_tag;
DataLayout* data_layout = data_layout_at(data_index);
@ -587,6 +594,7 @@ int MethodData::initialize_data(BytecodeStream* stream,
assert(!bytecode_has_profile(c), "agree w/ !BHP");
return 0;
}
#endif
}
// Get the data at an arbitrary (sort of) data index.

View File

@ -2515,7 +2515,7 @@ class CommandLineFlags {
"disable locking assertions (for speed)") \
\
product(bool, RangeCheckElimination, true, \
"Split loop iterations to eliminate range checks") \
"Eliminate range checks") \
\
develop_pd(bool, UncommonNullCast, \
"track occurrences of null in casts; adjust compiler tactics") \