This commit is contained in:
Erik Trimble 2009-02-18 18:14:18 -08:00
commit 0a2c842e50
84 changed files with 1577 additions and 442 deletions

View File

@ -762,7 +762,7 @@ void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int te
case Assembler::stdf_op3: st_op = Op_StoreD; break;
case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
case Assembler::lduh_op3: ld_op = Op_LoadC; break;
case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
case Assembler::ldx_op3: // may become LoadP or stay LoadI
case Assembler::ldsw_op3: // may become LoadP or stay LoadI
@ -3869,6 +3869,8 @@ operand regD() %{
constraint(ALLOC_IN_RC(dflt_reg));
match(RegD);
match(regD_low);
format %{ %}
interface(REG_INTER);
%}
@ -3883,7 +3885,7 @@ operand regF() %{
operand regD_low() %{
constraint(ALLOC_IN_RC(dflt_low_reg));
match(RegD);
match(regD);
format %{ %}
interface(REG_INTER);
@ -5314,9 +5316,9 @@ instruct loadUBL(iRegL dst, memory mem, immL_FF bytemask) %{
ins_pipe(iload_mask_mem);
%}
// Load Char (16bit UNsigned) into a Long Register
instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
match(Set dst (AndL (ConvI2L (LoadC mem)) bytemask));
// Load Unsigned Short/Char (16bit UNsigned) into a Long Register
instruct loadUS2L(iRegL dst, memory mem, immL_FFFF bytemask) %{
match(Set dst (AndL (ConvI2L (LoadUS mem)) bytemask));
ins_cost(MEMORY_REF_COST);
size(4);
@ -5326,9 +5328,9 @@ instruct loadUCL(iRegL dst, memory mem, immL_FFFF bytemask) %{
ins_pipe(iload_mask_mem);
%}
// Load Char (16bit unsigned)
instruct loadC(iRegI dst, memory mem) %{
match(Set dst (LoadC mem));
// Load Unsigned Short/Char (16bit unsigned)
instruct loadUS(iRegI dst, memory mem) %{
match(Set dst (LoadUS mem));
ins_cost(MEMORY_REF_COST);
size(4);

View File

@ -6413,9 +6413,9 @@ instruct loadUB(xRegI dst, memory mem, immI_255 bytemask) %{
ins_pipe( ialu_reg_mem );
%}
// Load Char (16bit unsigned)
instruct loadC(eRegI dst, memory mem) %{
match(Set dst (LoadC mem));
// Load Unsigned Short/Char (16bit unsigned)
instruct loadUS(eRegI dst, memory mem) %{
match(Set dst (LoadUS mem));
ins_cost(125);
format %{ "MOVZX $dst,$mem" %}

View File

@ -6096,25 +6096,25 @@ instruct loadS(rRegI dst, memory mem)
// ins_pipe(ialu_reg_mem);
// %}
// Load Char (16 bit UNsigned)
instruct loadC(rRegI dst, memory mem)
// Load Unsigned Short/Char (16 bit UNsigned)
instruct loadUS(rRegI dst, memory mem)
%{
match(Set dst (LoadC mem));
match(Set dst (LoadUS mem));
ins_cost(125);
format %{ "movzwl $dst, $mem\t# char" %}
format %{ "movzwl $dst, $mem\t# ushort/char" %}
opcode(0x0F, 0xB7);
ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
ins_pipe(ialu_reg_mem);
%}
// Load Char (16 bit UNsigned) into long
// instruct loadC2L(rRegL dst, memory mem)
// Load Unsigned Short/Char (16 bit UNsigned) into long
// instruct loadUS2L(rRegL dst, memory mem)
// %{
// match(Set dst (ConvI2L (LoadC mem)));
// match(Set dst (ConvI2L (LoadUS mem)));
// ins_cost(125);
// format %{ "movzwl $dst, $mem\t# char -> long" %}
// format %{ "movzwl $dst, $mem\t# ushort/char -> long" %}
// opcode(0x0F, 0xB7);
// ins_encode(REX_reg_mem(dst, mem), OpcP, OpcS, reg_mem(dst, mem));
// ins_pipe(ialu_reg_mem);
@ -9490,14 +9490,14 @@ instruct andL_rReg_imm255(rRegL dst, immL_255 src)
%{
match(Set dst (AndL dst src));
format %{ "movzbq $dst, $src\t# long & 0xFF" %}
format %{ "movzbq $dst, $dst\t# long & 0xFF" %}
opcode(0x0F, 0xB6);
ins_encode(REX_reg_reg_wide(dst, dst), OpcP, OpcS, reg_reg(dst, dst));
ins_pipe(ialu_reg);
%}
// And Register with Immediate 65535
instruct andL_rReg_imm65535(rRegI dst, immL_65535 src)
instruct andL_rReg_imm65535(rRegL dst, immL_65535 src)
%{
match(Set dst (AndL dst src));

View File

@ -1432,6 +1432,10 @@ char * os::local_time_string(char *buf, size_t buflen) {
return buf;
}
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
return localtime_r(clock, res);
}
////////////////////////////////////////////////////////////////////////////////
// runtime exit support

View File

@ -323,6 +323,10 @@ size_t os::current_stack_size() {
return (size_t)(base - bottom);
}
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
return localtime_r(clock, res);
}
// interruptible infrastructure
// setup_interruptible saves the thread state before going into an

View File

@ -327,6 +327,14 @@ size_t os::current_stack_size() {
return sz;
}
struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
const struct tm* time_struct_ptr = localtime(clock);
if (time_struct_ptr != NULL) {
*res = *time_struct_ptr;
return res;
}
return NULL;
}
LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);

View File

@ -316,9 +316,12 @@ int cmpstr(const void *k1, const void *k2) {
return strcmp((const char *)k1,(const char *)k2);
}
// Slimey cheap key comparator.
// Cheap key comparator.
int cmpkey(const void *key1, const void *key2) {
return (int)((intptr_t)key1 - (intptr_t)key2);
if (key1 == key2) return 0;
intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
if (delta > 0) return 1;
return -1;
}
//=============================================================================

View File

@ -248,7 +248,7 @@ Form::DataType Form::ideal_to_Reg_type(const char *name) const {
// True if 'opType', an ideal name, loads or stores.
Form::DataType Form::is_load_from_memory(const char *opType) const {
if( strcmp(opType,"LoadB")==0 ) return Form::idealB;
if( strcmp(opType,"LoadC")==0 ) return Form::idealC;
if( strcmp(opType,"LoadUS")==0 ) return Form::idealC;
if( strcmp(opType,"LoadD")==0 ) return Form::idealD;
if( strcmp(opType,"LoadD_unaligned")==0 ) return Form::idealD;
if( strcmp(opType,"LoadF")==0 ) return Form::idealF;

View File

@ -3314,7 +3314,7 @@ int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
"StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
"StoreB","StoreC","Store" ,"StoreFP",
"LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
"LoadB" ,"LoadC" ,"LoadS" ,"Load" ,
"LoadB" ,"LoadUS" ,"LoadS" ,"Load" ,
"Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
"Store8B","Store4B","Store8C","Store4C","Store2C",
"Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,

View File

@ -123,6 +123,10 @@ CodeBuffer::~CodeBuffer() {
// addresses constructed before expansions will not be confused.
cb->free_blob();
}
// free any overflow storage
delete _overflow_arena;
#ifdef ASSERT
Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
#endif

View File

@ -846,6 +846,12 @@ klassOop SystemDictionary::find(symbolHandle class_name,
Handle protection_domain,
TRAPS) {
// UseNewReflection
// The result of this call should be consistent with the result
// of the call to resolve_instance_class_or_null().
// See evaluation 6790209 and 4474172 for more details.
class_loader = Handle(THREAD, java_lang_ClassLoader::non_reflection_class_loader(class_loader()));
unsigned int d_hash = dictionary()->compute_hash(class_name, class_loader);
int d_index = dictionary()->hash_to_index(d_hash);

View File

@ -24,7 +24,7 @@
// We need to sort heap regions by collection desirability.
class CSetChooserCache {
class CSetChooserCache VALUE_OBJ_CLASS_SPEC {
private:
enum {
CacheLength = 16

View File

@ -33,7 +33,7 @@ enum PostYieldAction {
PYA_cancel // It's been completed by somebody else: cancel.
};
class ConcurrentG1Refine {
class ConcurrentG1Refine: public CHeapObj {
ConcurrentG1RefineThread* _cg1rThread;
volatile jint _pya;

View File

@ -30,7 +30,7 @@ typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
// A generic CM bit map. This is essentially a wrapper around the BitMap
// class, with one bit per (1<<_shifter) HeapWords.
class CMBitMapRO {
class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
protected:
HeapWord* _bmStartWord; // base address of range covered by map
size_t _bmWordSize; // map size (in #HeapWords covered)
@ -139,7 +139,7 @@ class CMBitMap : public CMBitMapRO {
// Represents a marking stack used by the CM collector.
// Ideally this should be GrowableArray<> just like MSC's marking stack(s).
class CMMarkStack {
class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ConcurrentMark* _cm;
oop* _base; // bottom of stack
jint _index; // one more than last occupied index
@ -237,7 +237,7 @@ class CMMarkStack {
void oops_do(OopClosure* f);
};
class CMRegionStack {
class CMRegionStack VALUE_OBJ_CLASS_SPEC {
MemRegion* _base;
jint _capacity;
jint _index;
@ -312,7 +312,7 @@ typedef enum {
class ConcurrentMarkThread;
class ConcurrentMark {
class ConcurrentMark: public CHeapObj {
friend class ConcurrentMarkThread;
friend class CMTask;
friend class CMBitMapClosure;

View File

@ -141,7 +141,7 @@ YoungList::YoungList(G1CollectedHeap* g1h)
_scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
_length(0), _scan_only_length(0),
_last_sampled_rs_lengths(0),
_survivor_head(NULL), _survivors_tail(NULL), _survivor_length(0)
_survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
{
guarantee( check_list_empty(false), "just making sure..." );
}
@ -159,16 +159,15 @@ void YoungList::push_region(HeapRegion *hr) {
}
void YoungList::add_survivor_region(HeapRegion* hr) {
assert(!hr->is_survivor(), "should not already be for survived");
assert(hr->is_survivor(), "should be flagged as survivor region");
assert(hr->get_next_young_region() == NULL, "cause it should!");
hr->set_next_young_region(_survivor_head);
if (_survivor_head == NULL) {
_survivors_tail = hr;
_survivor_tail = hr;
}
_survivor_head = hr;
hr->set_survivor();
++_survivor_length;
}
@ -239,7 +238,7 @@ void YoungList::empty_list() {
empty_list(_survivor_head);
_survivor_head = NULL;
_survivors_tail = NULL;
_survivor_tail = NULL;
_survivor_length = 0;
_last_sampled_rs_lengths = 0;
@ -391,6 +390,7 @@ YoungList::reset_auxilary_lists() {
// Add survivor regions to SurvRateGroup.
_g1h->g1_policy()->note_start_adding_survivor_regions();
_g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
for (HeapRegion* curr = _survivor_head;
curr != NULL;
curr = curr->get_next_young_region()) {
@ -401,7 +401,7 @@ YoungList::reset_auxilary_lists() {
if (_survivor_head != NULL) {
_head = _survivor_head;
_length = _survivor_length + _scan_only_length;
_survivors_tail->set_next_young_region(_scan_only_head);
_survivor_tail->set_next_young_region(_scan_only_head);
} else {
_head = _scan_only_head;
_length = _scan_only_length;
@ -418,9 +418,9 @@ YoungList::reset_auxilary_lists() {
_curr_scan_only = NULL;
_survivor_head = NULL;
_survivors_tail = NULL;
_survivor_tail = NULL;
_survivor_length = 0;
_g1h->g1_policy()->finished_recalculating_age_indexes();
_g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
assert(check_list_well_formed(), "young list should be well formed");
}
@ -553,7 +553,7 @@ HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
alloc_region = newAllocRegion_work(word_size, true, zero_filled);
if (purpose == GCAllocForSurvived && alloc_region != NULL) {
_young_list->add_survivor_region(alloc_region);
alloc_region->set_survivor();
}
++_gc_alloc_region_counts[purpose];
} else {
@ -949,6 +949,10 @@ void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
GCOverheadReporter::recordSTWEnd(end);
g1_policy()->record_full_collection_end();
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
gc_epilogue(true);
// Abandon concurrent refinement. This must happen last: in the
@ -2593,6 +2597,9 @@ G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
_young_list->print();
#endif // SCAN_ONLY_VERBOSE
g1_policy()->record_survivor_regions(_young_list->survivor_length(),
_young_list->first_survivor_region(),
_young_list->last_survivor_region());
_young_list->reset_auxilary_lists();
}
} else {
@ -2619,7 +2626,9 @@ G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
#endif // SCAN_ONLY_VERBOSE
double end_time_sec = os::elapsedTime();
g1_policy()->record_pause_time((end_time_sec - start_time_sec)*1000.0);
if (!evacuation_failed()) {
g1_policy()->record_pause_time((end_time_sec - start_time_sec)*1000.0);
}
GCOverheadReporter::recordSTWEnd(end_time_sec);
g1_policy()->record_collection_pause_end(popular_region != NULL,
abandoned);
@ -2642,8 +2651,13 @@ G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
}
}
if (mark_in_progress())
if (mark_in_progress()) {
concurrent_mark()->update_g1_committed();
}
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
gc_epilogue(false);
}
@ -2754,6 +2768,13 @@ void G1CollectedHeap::forget_alloc_region_list() {
_gc_alloc_region_list = r->next_gc_alloc_region();
r->set_next_gc_alloc_region(NULL);
r->set_is_gc_alloc_region(false);
if (r->is_survivor()) {
if (r->is_empty()) {
r->set_not_young();
} else {
_young_list->add_survivor_region(r);
}
}
if (r->is_empty()) {
++_free_regions;
}
@ -3150,6 +3171,20 @@ HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
return block;
}
void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
bool par) {
// Another thread might have obtained alloc_region for the given
// purpose, and might be attempting to allocate in it, and might
// succeed. Therefore, we can't do the "finalization" stuff on the
// region below until we're sure the last allocation has happened.
// We ensure this by allocating the remaining space with a garbage
// object.
if (par) par_allocate_remaining_space(alloc_region);
// Now we can do the post-GC stuff on the region.
alloc_region->note_end_of_copying();
g1_policy()->record_after_bytes(alloc_region->used());
}
HeapWord*
G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
HeapRegion* alloc_region,
@ -3167,16 +3202,7 @@ G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
// Otherwise, continue; this new region is empty, too.
}
assert(alloc_region != NULL, "We better have an allocation region");
// Another thread might have obtained alloc_region for the given
// purpose, and might be attempting to allocate in it, and might
// succeed. Therefore, we can't do the "finalization" stuff on the
// region below until we're sure the last allocation has happened.
// We ensure this by allocating the remaining space with a garbage
// object.
if (par) par_allocate_remaining_space(alloc_region);
// Now we can do the post-GC stuff on the region.
alloc_region->note_end_of_copying();
g1_policy()->record_after_bytes(alloc_region->used());
retire_alloc_region(alloc_region, par);
if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
// Cannot allocate more regions for the given purpose.
@ -3185,7 +3211,7 @@ G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
if (purpose != alt_purpose) {
HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
// Has not the alternative region been aliased?
if (alloc_region != alt_region) {
if (alloc_region != alt_region && alt_region != NULL) {
// Try to allocate in the alternative region.
if (par) {
block = alt_region->par_allocate(word_size);
@ -3194,9 +3220,10 @@ G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
}
// Make an alias.
_gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
}
if (block != NULL) {
return block;
if (block != NULL) {
return block;
}
retire_alloc_region(alt_region, par);
}
// Both the allocation region and the alternative one are full
// and aliased, replace them with a new allocation region.
@ -3497,6 +3524,7 @@ protected:
OverflowQueue* _overflowed_refs;
G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
ageTable _age_table;
size_t _alloc_buffer_waste;
size_t _undo_waste;
@ -3538,6 +3566,7 @@ public:
_refs(g1h->task_queue(queue_num)),
_hash_seed(17), _queue_num(queue_num),
_term_attempts(0),
_age_table(false),
#if G1_DETAILED_STATS
_pushes(0), _pops(0), _steals(0),
_steal_attempts(0), _overflow_pushes(0),
@ -3572,8 +3601,9 @@ public:
RefToScanQueue* refs() { return _refs; }
OverflowQueue* overflowed_refs() { return _overflowed_refs; }
ageTable* age_table() { return &_age_table; }
inline G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
return &_alloc_buffers[purpose];
}
@ -3834,7 +3864,9 @@ oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
(!from_region->is_young() && young_index == 0), "invariant" );
G1CollectorPolicy* g1p = _g1->g1_policy();
markOop m = old->mark();
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, m->age(),
int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
: m->age();
GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
word_sz);
HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
oop obj = oop(obj_ptr);
@ -3872,9 +3904,12 @@ oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
obj->incr_age();
} else {
m = m->incr_age();
obj->set_mark(m);
}
_par_scan_state->age_table()->add(obj, word_sz);
} else {
obj->set_mark(m);
}
obj->set_mark(m);
// preserve "next" mark bit
if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
@ -4129,6 +4164,9 @@ public:
_g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
_g1h->g1_policy()->record_termination_time(i, term_ms);
}
if (G1UseSurvivorSpace) {
_g1h->g1_policy()->record_thread_age_table(pss.age_table());
}
_g1h->update_surviving_young_words(pss.surviving_young_words()+1);
// Clean up any par-expanded rem sets.
@ -4368,7 +4406,7 @@ void G1CollectedHeap::evacuate_collection_set() {
// Is this the right thing to do here? We don't save marks
// on individual heap regions when we allocate from
// them in parallel, so this seems like the correct place for this.
all_alloc_regions_note_end_of_copying();
retire_all_alloc_regions();
{
G1IsAliveClosure is_alive(this);
G1KeepAliveClosure keep_alive(this);
@ -5008,7 +5046,7 @@ bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
return no_allocs;
}
void G1CollectedHeap::all_alloc_regions_note_end_of_copying() {
void G1CollectedHeap::retire_all_alloc_regions() {
for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
HeapRegion* r = _gc_alloc_regions[ap];
if (r != NULL) {
@ -5021,8 +5059,7 @@ void G1CollectedHeap::all_alloc_regions_note_end_of_copying() {
}
}
if (!has_processed_alias) {
r->note_end_of_copying();
g1_policy()->record_after_bytes(r->used());
retire_alloc_region(r, false /* par */);
}
}
}

View File

@ -90,7 +90,7 @@ private:
HeapRegion* _curr_scan_only;
HeapRegion* _survivor_head;
HeapRegion* _survivors_tail;
HeapRegion* _survivor_tail;
size_t _survivor_length;
void empty_list(HeapRegion* list);
@ -105,6 +105,7 @@ public:
bool is_empty() { return _length == 0; }
size_t length() { return _length; }
size_t scan_only_length() { return _scan_only_length; }
size_t survivor_length() { return _survivor_length; }
void rs_length_sampling_init();
bool rs_length_sampling_more();
@ -120,6 +121,7 @@ public:
HeapRegion* first_region() { return _head; }
HeapRegion* first_scan_only_region() { return _scan_only_head; }
HeapRegion* first_survivor_region() { return _survivor_head; }
HeapRegion* last_survivor_region() { return _survivor_tail; }
HeapRegion* par_get_next_scan_only_region() {
MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
HeapRegion* ret = _curr_scan_only;
@ -219,7 +221,7 @@ private:
// The to-space memory regions into which objects are being copied during
// a GC.
HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
uint _gc_alloc_region_counts[GCAllocPurposeCount];
size_t _gc_alloc_region_counts[GCAllocPurposeCount];
// A list of the regions that have been set to be alloc regions in the
// current collection.
@ -281,8 +283,8 @@ protected:
// Returns "true" iff none of the gc alloc regions have any allocations
// since the last call to "save_marks".
bool all_alloc_regions_no_allocs_since_save_marks();
// Calls "note_end_of_copying on all gc alloc_regions.
void all_alloc_regions_note_end_of_copying();
// Perform finalization stuff on all allocation regions.
void retire_all_alloc_regions();
// The number of regions allocated to hold humongous objects.
int _num_humongous_regions;
@ -351,6 +353,10 @@ protected:
// that parallel threads might be attempting allocations.
void par_allocate_remaining_space(HeapRegion* r);
// Retires an allocation region when it is full or at the end of a
// GC pause.
void retire_alloc_region(HeapRegion* alloc_region, bool par);
// Helper function for two callbacks below.
// "full", if true, indicates that the GC is for a System.gc() request,
// and should collect the entire heap. If "clear_all_soft_refs" is true,

View File

@ -196,8 +196,13 @@ G1CollectorPolicy::G1CollectorPolicy() :
_short_lived_surv_rate_group(new SurvRateGroup(this, "Short Lived",
G1YoungSurvRateNumRegionsSummary)),
_survivor_surv_rate_group(new SurvRateGroup(this, "Survivor",
G1YoungSurvRateNumRegionsSummary))
G1YoungSurvRateNumRegionsSummary)),
// add here any more surv rate groups
_recorded_survivor_regions(0),
_recorded_survivor_head(NULL),
_recorded_survivor_tail(NULL),
_survivors_age_table(true)
{
_recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
_prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
@ -272,6 +277,15 @@ G1CollectorPolicy::G1CollectorPolicy() :
_concurrent_mark_cleanup_times_ms->add(0.20);
_tenuring_threshold = MaxTenuringThreshold;
if (G1UseSurvivorSpace) {
// if G1FixedSurvivorSpaceSize is 0 which means the size is not
// fixed, then _max_survivor_regions will be calculated at
// calculate_young_list_target_config during initialization
_max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
} else {
_max_survivor_regions = 0;
}
initialize_all();
}
@ -283,6 +297,9 @@ static void inc_mod(int& i, int len) {
void G1CollectorPolicy::initialize_flags() {
set_min_alignment(HeapRegion::GrainBytes);
set_max_alignment(GenRemSet::max_alignment_constraint(rem_set_name()));
if (SurvivorRatio < 1) {
vm_exit_during_initialization("Invalid survivor ratio specified");
}
CollectorPolicy::initialize_flags();
}
@ -301,6 +318,8 @@ void G1CollectorPolicy::init() {
"-XX:+UseConcMarkSweepGC.");
}
initialize_gc_policy_counters();
if (G1Gen) {
_in_young_gc_mode = true;
@ -322,6 +341,12 @@ void G1CollectorPolicy::init() {
}
}
// Create the jstat counters for the policy.
void G1CollectorPolicy::initialize_gc_policy_counters()
{
_gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 2 + G1Gen);
}
void G1CollectorPolicy::calculate_young_list_min_length() {
_young_list_min_length = 0;
@ -352,6 +377,7 @@ void G1CollectorPolicy::calculate_young_list_target_config() {
guarantee( so_length < _young_list_target_length, "invariant" );
_young_list_so_prefix_length = so_length;
}
calculate_survivors_policy();
}
// This method calculate the optimal scan-only set for a fixed young
@ -448,6 +474,9 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
if (full_young_gcs() && _free_regions_at_end_of_collection > 0) {
// we are in fully-young mode and there are free regions in the heap
double survivor_regions_evac_time =
predict_survivor_regions_evac_time();
size_t min_so_length = 0;
size_t max_so_length = 0;
@ -497,9 +526,8 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
scanned_cards = predict_non_young_card_num(adj_rs_lengths);
// calculate this once, so that we don't have to recalculate it in
// the innermost loop
double base_time_ms = predict_base_elapsed_time_ms(pending_cards,
scanned_cards);
double base_time_ms = predict_base_elapsed_time_ms(pending_cards, scanned_cards)
+ survivor_regions_evac_time;
// the result
size_t final_young_length = 0;
size_t final_so_length = 0;
@ -548,14 +576,14 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
bool done = false;
// this is the outermost loop
while (!done) {
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr("searching between " SIZE_FORMAT " and " SIZE_FORMAT
", incr " SIZE_FORMAT ", pass %s",
from_so_length, to_so_length, so_length_incr,
(pass == pass_type_coarse) ? "coarse" :
(pass == pass_type_fine) ? "fine" : "final");
#endif // 0
#endif // TRACE_CALC_YOUNG_CONFIG
size_t so_length = from_so_length;
size_t init_free_regions =
@ -651,11 +679,11 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
guarantee( so_length_incr == so_coarse_increments, "invariant" );
guarantee( final_so_length >= min_so_length, "invariant" );
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr(" coarse pass: SO length " SIZE_FORMAT,
final_so_length);
#endif // 0
#endif // TRACE_CALC_YOUNG_CONFIG
from_so_length =
(final_so_length - min_so_length > so_coarse_increments) ?
@ -687,12 +715,12 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
// of the optimal
size_t new_so_length = 950 * final_so_length / 1000;
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr(" fine pass: SO length " SIZE_FORMAT
", setting it to " SIZE_FORMAT,
final_so_length, new_so_length);
#endif // 0
#endif // TRACE_CALC_YOUNG_CONFIG
from_so_length = new_so_length;
to_so_length = new_so_length;
@ -719,7 +747,8 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
}
// we should have at least one region in the target young length
_young_list_target_length = MAX2((size_t) 1, final_young_length);
_young_list_target_length =
MAX2((size_t) 1, final_young_length + _recorded_survivor_regions);
if (final_so_length >= final_young_length)
// and we need to ensure that the S-O length is not greater than
// the target young length (this is being a bit careful)
@ -734,7 +763,7 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
double end_time_sec = os::elapsedTime();
double elapsed_time_ms = (end_time_sec - start_time_sec) * 1000.0;
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr("target = %1.1lf ms, young = " SIZE_FORMAT
", SO = " SIZE_FORMAT ", "
@ -747,9 +776,9 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
calculations,
full_young_gcs() ? "full" : "partial",
should_initiate_conc_mark() ? " i-m" : "",
in_marking_window(),
in_marking_window_im());
#endif // 0
_in_marking_window,
_in_marking_window_im);
#endif // TRACE_CALC_YOUNG_CONFIG
if (_young_list_target_length < _young_list_min_length) {
// bummer; this means that, if we do a pause when the optimal
@ -768,14 +797,14 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
// S-O length
so_length = calculate_optimal_so_length(_young_list_min_length);
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr("adjusted target length from "
SIZE_FORMAT " to " SIZE_FORMAT
", SO " SIZE_FORMAT,
_young_list_target_length, _young_list_min_length,
so_length);
#endif // 0
#endif // TRACE_CALC_YOUNG_CONFIG
_young_list_target_length =
MAX2(_young_list_min_length, (size_t)1);
@ -785,12 +814,12 @@ void G1CollectorPolicy::calculate_young_list_target_config(size_t rs_lengths) {
// we are in a partially-young mode or we've run out of regions (due
// to evacuation failure)
#if 0
#ifdef TRACE_CALC_YOUNG_CONFIG
// leave this in for debugging, just in case
gclog_or_tty->print_cr("(partial) setting target to " SIZE_FORMAT
", SO " SIZE_FORMAT,
_young_list_min_length, 0);
#endif // 0
#endif // TRACE_CALC_YOUNG_CONFIG
// we'll do the pause as soon as possible and with no S-O prefix
// (see above for the reasons behind the latter)
@ -884,6 +913,16 @@ G1CollectorPolicy::predict_gc_eff(size_t young_length,
return true;
}
double G1CollectorPolicy::predict_survivor_regions_evac_time() {
double survivor_regions_evac_time = 0.0;
for (HeapRegion * r = _recorded_survivor_head;
r != NULL && r != _recorded_survivor_tail->get_next_young_region();
r = r->get_next_young_region()) {
survivor_regions_evac_time += predict_region_elapsed_time_ms(r, true);
}
return survivor_regions_evac_time;
}
void G1CollectorPolicy::check_prediction_validity() {
guarantee( adaptive_young_list_length(), "should not call this otherwise" );
@ -995,11 +1034,15 @@ void G1CollectorPolicy::record_full_collection_end() {
_short_lived_surv_rate_group->start_adding_regions();
// also call this on any additional surv rate groups
record_survivor_regions(0, NULL, NULL);
_prev_region_num_young = _region_num_young;
_prev_region_num_tenured = _region_num_tenured;
_free_regions_at_end_of_collection = _g1->free_regions();
_scan_only_regions_at_end_of_collection = 0;
// Reset survivors SurvRateGroup.
_survivor_surv_rate_group->reset();
calculate_young_list_min_length();
calculate_young_list_target_config();
}
@ -1104,6 +1147,10 @@ void G1CollectorPolicy::record_collection_pause_start(double start_time_sec,
_short_lived_surv_rate_group->record_scan_only_prefix(short_lived_so_length);
tag_scan_only(short_lived_so_length);
if (G1UseSurvivorSpace) {
_survivors_age_table.clear();
}
assert( verify_young_ages(), "region age verification" );
}
@ -1965,9 +2012,6 @@ void G1CollectorPolicy::record_collection_pause_end(bool popular,
// </NEW PREDICTION>
_target_pause_time_ms = -1.0;
// TODO: calculate tenuring threshold
_tenuring_threshold = MaxTenuringThreshold;
}
// <NEW PREDICTION>
@ -2058,7 +2102,7 @@ G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
guarantee( hr->is_young() && hr->age_in_surv_rate_group() != -1,
"invariant" );
int age = hr->age_in_surv_rate_group();
double yg_surv_rate = predict_yg_surv_rate(age);
double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
}
@ -2091,7 +2135,7 @@ G1CollectorPolicy::record_cset_region(HeapRegion* hr, bool young) {
}
#if PREDICTIONS_VERBOSE
if (young) {
_recorded_young_bytes += hr->asSpace()->used();
_recorded_young_bytes += hr->used();
} else {
_recorded_marked_bytes += hr->max_live_bytes();
}
@ -2119,11 +2163,6 @@ G1CollectorPolicy::end_recording_regions() {
predict_non_young_card_num(_predicted_rs_lengths);
_recorded_region_num = _recorded_young_regions + _recorded_non_young_regions;
_predicted_young_survival_ratio = 0.0;
for (int i = 0; i < _recorded_young_regions; ++i)
_predicted_young_survival_ratio += predict_yg_surv_rate(i);
_predicted_young_survival_ratio /= (double) _recorded_young_regions;
_predicted_scan_only_scan_time_ms =
predict_scan_only_time_ms(_recorded_scan_only_regions);
_predicted_rs_update_time_ms =
@ -2673,8 +2712,11 @@ G1CollectorPolicy::should_add_next_region_to_young_list() {
assert(in_young_gc_mode(), "should be in young GC mode");
bool ret;
size_t young_list_length = _g1->young_list_length();
if (young_list_length < _young_list_target_length) {
size_t young_list_max_length = _young_list_target_length;
if (G1FixedEdenSize) {
young_list_max_length -= _max_survivor_regions;
}
if (young_list_length < young_list_max_length) {
ret = true;
++_region_num_young;
} else {
@ -2710,17 +2752,39 @@ G1CollectorPolicy::checkpoint_conc_overhead() {
}
uint G1CollectorPolicy::max_regions(int purpose) {
size_t G1CollectorPolicy::max_regions(int purpose) {
switch (purpose) {
case GCAllocForSurvived:
return G1MaxSurvivorRegions;
return _max_survivor_regions;
case GCAllocForTenured:
return UINT_MAX;
return REGIONS_UNLIMITED;
default:
return UINT_MAX;
ShouldNotReachHere();
return REGIONS_UNLIMITED;
};
}
// Calculates survivor space parameters.
void G1CollectorPolicy::calculate_survivors_policy()
{
if (!G1UseSurvivorSpace) {
return;
}
if (G1FixedSurvivorSpaceSize == 0) {
_max_survivor_regions = _young_list_target_length / SurvivorRatio;
} else {
_max_survivor_regions = G1FixedSurvivorSpaceSize / HeapRegion::GrainBytes;
}
if (G1FixedTenuringThreshold) {
_tenuring_threshold = MaxTenuringThreshold;
} else {
_tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
HeapRegion::GrainWords * _max_survivor_regions);
}
}
void
G1CollectorPolicy_BestRegionsFirst::
set_single_region_collection_set(HeapRegion* hr) {
@ -2743,7 +2807,11 @@ G1CollectorPolicy_BestRegionsFirst::should_do_collection_pause(size_t
double max_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
size_t young_list_length = _g1->young_list_length();
bool reached_target_length = young_list_length >= _young_list_target_length;
size_t young_list_max_length = _young_list_target_length;
if (G1FixedEdenSize) {
young_list_max_length -= _max_survivor_regions;
}
bool reached_target_length = young_list_length >= young_list_max_length;
if (in_young_gc_mode()) {
if (reached_target_length) {

View File

@ -49,7 +49,7 @@ public: \
class MainBodySummary;
class PopPreambleSummary;
class PauseSummary {
class PauseSummary: public CHeapObj {
define_num_seq(total)
define_num_seq(other)
@ -58,7 +58,7 @@ public:
virtual PopPreambleSummary* pop_preamble_summary() { return NULL; }
};
class MainBodySummary {
class MainBodySummary: public CHeapObj {
define_num_seq(satb_drain) // optional
define_num_seq(parallel) // parallel only
define_num_seq(ext_root_scan)
@ -75,7 +75,7 @@ class MainBodySummary {
define_num_seq(clear_ct) // parallel only
};
class PopPreambleSummary {
class PopPreambleSummary: public CHeapObj {
define_num_seq(pop_preamble)
define_num_seq(pop_update_rs)
define_num_seq(pop_scan_rs)
@ -557,6 +557,8 @@ public:
return get_new_neg_prediction(_young_gc_eff_seq);
}
double predict_survivor_regions_evac_time();
// </NEW PREDICTION>
public:
@ -599,8 +601,8 @@ public:
// Returns an estimate of the survival rate of the region at yg-age
// "yg_age".
double predict_yg_surv_rate(int age) {
TruncatedSeq* seq = _short_lived_surv_rate_group->get_seq(age);
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
TruncatedSeq* seq = surv_rate_group->get_seq(age);
if (seq->num() == 0)
gclog_or_tty->print("BARF! age is %d", age);
guarantee( seq->num() > 0, "invariant" );
@ -610,6 +612,10 @@ public:
return pred;
}
double predict_yg_surv_rate(int age) {
return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
}
double accum_yg_surv_rate_pred(int age) {
return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
}
@ -822,6 +828,9 @@ public:
virtual void init();
// Create jstat counters for the policy.
virtual void initialize_gc_policy_counters();
virtual HeapWord* mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
@ -1047,8 +1056,12 @@ public:
// Print stats on young survival ratio
void print_yg_surv_rate_info() const;
void finished_recalculating_age_indexes() {
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
void finished_recalculating_age_indexes(bool is_survivors) {
if (is_survivors) {
_survivor_surv_rate_group->finished_recalculating_age_indexes();
} else {
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
}
// do that for any other surv rate groups
}
@ -1097,6 +1110,17 @@ protected:
// maximum amount of suvivors regions.
int _tenuring_threshold;
// The limit on the number of regions allocated for survivors.
size_t _max_survivor_regions;
// The amount of survor regions after a collection.
size_t _recorded_survivor_regions;
// List of survivor regions.
HeapRegion* _recorded_survivor_head;
HeapRegion* _recorded_survivor_tail;
ageTable _survivors_age_table;
public:
inline GCAllocPurpose
@ -1116,7 +1140,9 @@ public:
return GCAllocForTenured;
}
uint max_regions(int purpose);
static const size_t REGIONS_UNLIMITED = ~(size_t)0;
size_t max_regions(int purpose);
// The limit on regions for a particular purpose is reached.
void note_alloc_region_limit_reached(int purpose) {
@ -1132,6 +1158,23 @@ public:
void note_stop_adding_survivor_regions() {
_survivor_surv_rate_group->stop_adding_regions();
}
void record_survivor_regions(size_t regions,
HeapRegion* head,
HeapRegion* tail) {
_recorded_survivor_regions = regions;
_recorded_survivor_head = head;
_recorded_survivor_tail = tail;
}
void record_thread_age_table(ageTable* age_table)
{
_survivors_age_table.merge_par(age_table);
}
// Calculates survivor space parameters.
void calculate_survivors_policy();
};
// This encapsulates a particular strategy for a g1 Collector.

View File

@ -28,7 +28,7 @@
/***** ALL TIMES ARE IN SECS!!!!!!! *****/
// this is the "interface"
class G1MMUTracker {
class G1MMUTracker: public CHeapObj {
protected:
double _time_slice;
double _max_gc_time; // this is per time slice
@ -67,7 +67,7 @@ public:
}
};
class G1MMUTrackerQueueElem {
class G1MMUTrackerQueueElem VALUE_OBJ_CLASS_SPEC {
private:
double _start_time;
double _end_time;

View File

@ -572,6 +572,9 @@ prepare_for_oops_into_collection_set_do() {
}
guarantee( _cards_scanned == NULL, "invariant" );
_cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers());
for (uint i = 0; i < n_workers(); ++i) {
_cards_scanned[i] = 0;
}
_total_cards_scanned = 0;
}

View File

@ -30,7 +30,7 @@ class CardTableModRefBarrierSet;
class HRInto_G1RemSet;
class ConcurrentG1Refine;
class G1RemSet {
class G1RemSet: public CHeapObj {
protected:
G1CollectedHeap* _g1;

View File

@ -281,7 +281,17 @@
develop(bool, G1HRRSFlushLogBuffersOnVerify, false, \
"Forces flushing of log buffers before verification.") \
\
product(intx, G1MaxSurvivorRegions, 0, \
"The maximum number of survivor regions")
product(bool, G1UseSurvivorSpace, true, \
"When true, use survivor space.") \
\
product(bool, G1FixedTenuringThreshold, false, \
"When set, G1 will not adjust the tenuring threshold") \
\
product(bool, G1FixedEdenSize, false, \
"When set, G1 will not allocate unused survivor space regions") \
\
product(uintx, G1FixedSurvivorSpaceSize, 0, \
"If non-0 is the size of the G1 survivor space, " \
"otherwise SurvivorRatio is used to determine the size")
G1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_DIAGNOSTIC_FLAG, DECLARE_EXPERIMENTAL_FLAG, DECLARE_NOTPRODUCT_FLAG, DECLARE_MANAGEABLE_FLAG, DECLARE_PRODUCT_RW_FLAG)

View File

@ -566,7 +566,11 @@ class HeapRegion: public G1OffsetTableContigSpace {
void note_end_of_copying() {
assert(top() >= _next_top_at_mark_start,
"Increase only");
_next_top_at_mark_start = top();
// Survivor regions will be scanned on the start of concurrent
// marking.
if (!is_survivor()) {
_next_top_at_mark_start = top();
}
}
// Returns "false" iff no object in the region was allocated when the
@ -829,7 +833,7 @@ class HeapRegionClosure : public StackObj {
// A linked lists of heap regions. It leaves the "next" field
// unspecified; that's up to subtypes.
class RegionList {
class RegionList VALUE_OBJ_CLASS_SPEC {
protected:
virtual HeapRegion* get_next(HeapRegion* chr) = 0;
virtual void set_next(HeapRegion* chr,

View File

@ -65,9 +65,11 @@ protected:
// We need access in order to union things into the base table.
BitMap* bm() { return &_bm; }
#if PRT_COUNT_OCCUPIED
void recount_occupied() {
_occupied = (jint) bm()->count_one_bits();
}
#endif
PerRegionTable(HeapRegion* hr) :
_hr(hr),
@ -1144,7 +1146,9 @@ void HeapRegionRemSet::clear_outgoing_entries() {
size_t i = _outgoing_region_map.get_next_one_offset(0);
while (i < _outgoing_region_map.size()) {
HeapRegion* to_region = g1h->region_at(i);
to_region->rem_set()->clear_incoming_entry(hr());
if (!to_region->in_collection_set()) {
to_region->rem_set()->clear_incoming_entry(hr());
}
i = _outgoing_region_map.get_next_one_offset(i+1);
}
}

View File

@ -58,7 +58,7 @@ class SparsePRT;
// is represented. If a deleted PRT is re-used, a thread adding a bit,
// thinking the PRT is for a different region, does no harm.
class OtherRegionsTable: public CHeapObj {
class OtherRegionsTable VALUE_OBJ_CLASS_SPEC {
friend class HeapRegionRemSetIterator;
G1CollectedHeap* _g1h;

View File

@ -29,7 +29,7 @@
class PtrQueueSet;
class PtrQueue: public CHeapObj {
class PtrQueue VALUE_OBJ_CLASS_SPEC {
protected:
// The ptr queue set to which this queue belongs.
@ -130,7 +130,7 @@ public:
// In particular, the individual queues allocate buffers from this shared
// set, and return completed buffers to the set.
// All these variables are are protected by the TLOQ_CBL_mon. XXX ???
class PtrQueueSet: public CHeapObj {
class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
protected:

View File

@ -33,7 +33,7 @@
// old versions synchronously.
class SparsePRTEntry {
class SparsePRTEntry: public CHeapObj {
public:
enum SomePublicConstants {
CardsPerEntry = (short)4,
@ -167,7 +167,7 @@ public:
};
// ValueObj because will be embedded in HRRS iterator.
class RSHashTableIter: public CHeapObj {
class RSHashTableIter VALUE_OBJ_CLASS_SPEC {
short _tbl_ind;
short _bl_ind;
short _card_ind;
@ -213,7 +213,7 @@ class RSHashTableIter: public CHeapObj {
class SparsePRTIter;
class SparsePRT : public CHeapObj {
class SparsePRT VALUE_OBJ_CLASS_SPEC {
// Iterations are done on the _cur hash table, since they only need to
// see entries visible at the start of a collection pause.
// All other operations are done using the _next hash table.

View File

@ -29,23 +29,14 @@ SurvRateGroup::SurvRateGroup(G1CollectorPolicy* g1p,
const char* name,
size_t summary_surv_rates_len) :
_g1p(g1p), _name(name),
_all_regions_allocated(0),
_curr_length(0), _scan_only_prefix(0), _setup_seq_num(0),
_array_length(0), _surv_rate(NULL), _accum_surv_rate_pred(NULL),
_accum_surv_rate(0.0), _surv_rate_pred(NULL), _last_pred(0.0),
_summary_surv_rates_len(summary_surv_rates_len),
_summary_surv_rates_max_len(0),
_summary_surv_rates(NULL) {
// the following will set up the arrays with length 1
_curr_length = 1;
stop_adding_regions();
guarantee( _array_length == 1, "invariant" );
guarantee( _surv_rate_pred[0] != NULL, "invariant" );
_surv_rate_pred[0]->add(0.4);
all_surviving_words_recorded(false);
_curr_length = 0;
_summary_surv_rates(NULL),
_surv_rate(NULL),
_accum_surv_rate_pred(NULL),
_surv_rate_pred(NULL)
{
reset();
if (summary_surv_rates_len > 0) {
size_t length = summary_surv_rates_len;
_summary_surv_rates = NEW_C_HEAP_ARRAY(NumberSeq*, length);
@ -60,61 +51,80 @@ SurvRateGroup::SurvRateGroup(G1CollectorPolicy* g1p,
start_adding_regions();
}
void SurvRateGroup::reset()
{
_all_regions_allocated = 0;
_scan_only_prefix = 0;
_setup_seq_num = 0;
_stats_arrays_length = 0;
_accum_surv_rate = 0.0;
_last_pred = 0.0;
// the following will set up the arrays with length 1
_region_num = 1;
stop_adding_regions();
guarantee( _stats_arrays_length == 1, "invariant" );
guarantee( _surv_rate_pred[0] != NULL, "invariant" );
_surv_rate_pred[0]->add(0.4);
all_surviving_words_recorded(false);
_region_num = 0;
}
void
SurvRateGroup::start_adding_regions() {
_setup_seq_num = _array_length;
_curr_length = _scan_only_prefix;
_setup_seq_num = _stats_arrays_length;
_region_num = _scan_only_prefix;
_accum_surv_rate = 0.0;
#if 0
gclog_or_tty->print_cr("start adding regions, seq num %d, length %d",
_setup_seq_num, _curr_length);
gclog_or_tty->print_cr("[%s] start adding regions, seq num %d, length %d",
_name, _setup_seq_num, _region_num);
#endif // 0
}
void
SurvRateGroup::stop_adding_regions() {
size_t length = _curr_length;
#if 0
gclog_or_tty->print_cr("stop adding regions, length %d", length);
gclog_or_tty->print_cr("[%s] stop adding regions, length %d", _name, _region_num);
#endif // 0
if (length > _array_length) {
if (_region_num > _stats_arrays_length) {
double* old_surv_rate = _surv_rate;
double* old_accum_surv_rate_pred = _accum_surv_rate_pred;
TruncatedSeq** old_surv_rate_pred = _surv_rate_pred;
_surv_rate = NEW_C_HEAP_ARRAY(double, length);
_surv_rate = NEW_C_HEAP_ARRAY(double, _region_num);
if (_surv_rate == NULL) {
vm_exit_out_of_memory(sizeof(double) * length,
vm_exit_out_of_memory(sizeof(double) * _region_num,
"Not enough space for surv rate array.");
}
_accum_surv_rate_pred = NEW_C_HEAP_ARRAY(double, length);
_accum_surv_rate_pred = NEW_C_HEAP_ARRAY(double, _region_num);
if (_accum_surv_rate_pred == NULL) {
vm_exit_out_of_memory(sizeof(double) * length,
vm_exit_out_of_memory(sizeof(double) * _region_num,
"Not enough space for accum surv rate pred array.");
}
_surv_rate_pred = NEW_C_HEAP_ARRAY(TruncatedSeq*, length);
_surv_rate_pred = NEW_C_HEAP_ARRAY(TruncatedSeq*, _region_num);
if (_surv_rate == NULL) {
vm_exit_out_of_memory(sizeof(TruncatedSeq*) * length,
vm_exit_out_of_memory(sizeof(TruncatedSeq*) * _region_num,
"Not enough space for surv rate pred array.");
}
for (size_t i = 0; i < _array_length; ++i)
for (size_t i = 0; i < _stats_arrays_length; ++i)
_surv_rate_pred[i] = old_surv_rate_pred[i];
#if 0
gclog_or_tty->print_cr("stop adding regions, new seqs %d to %d",
_array_length, length - 1);
gclog_or_tty->print_cr("[%s] stop adding regions, new seqs %d to %d",
_name, _array_length, _region_num - 1);
#endif // 0
for (size_t i = _array_length; i < length; ++i) {
for (size_t i = _stats_arrays_length; i < _region_num; ++i) {
_surv_rate_pred[i] = new TruncatedSeq(10);
// _surv_rate_pred[i]->add(last_pred);
}
_array_length = length;
_stats_arrays_length = _region_num;
if (old_surv_rate != NULL)
FREE_C_HEAP_ARRAY(double, old_surv_rate);
@ -124,7 +134,7 @@ SurvRateGroup::stop_adding_regions() {
FREE_C_HEAP_ARRAY(NumberSeq*, old_surv_rate_pred);
}
for (size_t i = 0; i < _array_length; ++i)
for (size_t i = 0; i < _stats_arrays_length; ++i)
_surv_rate[i] = 0.0;
}
@ -135,7 +145,7 @@ SurvRateGroup::accum_surv_rate(size_t adjustment) {
double ret = _accum_surv_rate;
if (adjustment > 0) {
TruncatedSeq* seq = get_seq(_curr_length+1);
TruncatedSeq* seq = get_seq(_region_num+1);
double surv_rate = _g1p->get_new_prediction(seq);
ret += surv_rate;
}
@ -145,23 +155,23 @@ SurvRateGroup::accum_surv_rate(size_t adjustment) {
int
SurvRateGroup::next_age_index() {
TruncatedSeq* seq = get_seq(_curr_length);
TruncatedSeq* seq = get_seq(_region_num);
double surv_rate = _g1p->get_new_prediction(seq);
_accum_surv_rate += surv_rate;
++_curr_length;
++_region_num;
return (int) ++_all_regions_allocated;
}
void
SurvRateGroup::record_scan_only_prefix(size_t scan_only_prefix) {
guarantee( scan_only_prefix <= _curr_length, "pre-condition" );
guarantee( scan_only_prefix <= _region_num, "pre-condition" );
_scan_only_prefix = scan_only_prefix;
}
void
SurvRateGroup::record_surviving_words(int age_in_group, size_t surv_words) {
guarantee( 0 <= age_in_group && (size_t) age_in_group < _curr_length,
guarantee( 0 <= age_in_group && (size_t) age_in_group < _region_num,
"pre-condition" );
guarantee( _surv_rate[age_in_group] <= 0.00001,
"should only update each slot once" );
@ -178,15 +188,15 @@ SurvRateGroup::record_surviving_words(int age_in_group, size_t surv_words) {
void
SurvRateGroup::all_surviving_words_recorded(bool propagate) {
if (propagate && _curr_length > 0) { // conservative
double surv_rate = _surv_rate_pred[_curr_length-1]->last();
if (propagate && _region_num > 0) { // conservative
double surv_rate = _surv_rate_pred[_region_num-1]->last();
#if 0
gclog_or_tty->print_cr("propagating %1.2lf from %d to %d",
surv_rate, _curr_length, _array_length - 1);
#endif // 0
for (size_t i = _curr_length; i < _array_length; ++i) {
for (size_t i = _region_num; i < _stats_arrays_length; ++i) {
guarantee( _surv_rate[i] <= 0.00001,
"the slot should not have been updated" );
_surv_rate_pred[i]->add(surv_rate);
@ -195,7 +205,7 @@ SurvRateGroup::all_surviving_words_recorded(bool propagate) {
double accum = 0.0;
double pred = 0.0;
for (size_t i = 0; i < _array_length; ++i) {
for (size_t i = 0; i < _stats_arrays_length; ++i) {
pred = _g1p->get_new_prediction(_surv_rate_pred[i]);
if (pred > 1.0) pred = 1.0;
accum += pred;
@ -209,8 +219,8 @@ SurvRateGroup::all_surviving_words_recorded(bool propagate) {
void
SurvRateGroup::print() {
gclog_or_tty->print_cr("Surv Rate Group: %s (%d entries, %d scan-only)",
_name, _curr_length, _scan_only_prefix);
for (size_t i = 0; i < _curr_length; ++i) {
_name, _region_num, _scan_only_prefix);
for (size_t i = 0; i < _region_num; ++i) {
gclog_or_tty->print_cr(" age %4d surv rate %6.2lf %% pred %6.2lf %%%s",
i, _surv_rate[i] * 100.0,
_g1p->get_new_prediction(_surv_rate_pred[i]) * 100.0,

View File

@ -29,7 +29,7 @@ private:
G1CollectorPolicy* _g1p;
const char* _name;
size_t _array_length;
size_t _stats_arrays_length;
double* _surv_rate;
double* _accum_surv_rate_pred;
double _last_pred;
@ -40,7 +40,7 @@ private:
size_t _summary_surv_rates_max_len;
int _all_regions_allocated;
size_t _curr_length;
size_t _region_num;
size_t _scan_only_prefix;
size_t _setup_seq_num;
@ -48,6 +48,7 @@ public:
SurvRateGroup(G1CollectorPolicy* g1p,
const char* name,
size_t summary_surv_rates_len);
void reset();
void start_adding_regions();
void stop_adding_regions();
void record_scan_only_prefix(size_t scan_only_prefix);
@ -55,22 +56,21 @@ public:
void all_surviving_words_recorded(bool propagate);
const char* name() { return _name; }
size_t region_num() { return _curr_length; }
size_t region_num() { return _region_num; }
size_t scan_only_length() { return _scan_only_prefix; }
double accum_surv_rate_pred(int age) {
assert(age >= 0, "must be");
if ((size_t)age < _array_length)
if ((size_t)age < _stats_arrays_length)
return _accum_surv_rate_pred[age];
else {
double diff = (double) (age - _array_length + 1);
return _accum_surv_rate_pred[_array_length-1] + diff * _last_pred;
double diff = (double) (age - _stats_arrays_length + 1);
return _accum_surv_rate_pred[_stats_arrays_length-1] + diff * _last_pred;
}
}
double accum_surv_rate(size_t adjustment);
TruncatedSeq* get_seq(size_t age) {
guarantee( 0 <= age, "pre-condition" );
if (age >= _setup_seq_num) {
guarantee( _setup_seq_num > 0, "invariant" );
age = _setup_seq_num-1;

View File

@ -48,6 +48,7 @@ concurrentG1Refine.cpp g1RemSet.hpp
concurrentG1Refine.cpp space.inline.hpp
concurrentG1Refine.hpp globalDefinitions.hpp
concurrentG1Refine.hpp allocation.hpp
concurrentG1RefineThread.cpp concurrentG1Refine.hpp
concurrentG1RefineThread.cpp concurrentG1RefineThread.hpp
@ -172,6 +173,7 @@ g1CollectorPolicy.cpp g1CollectedHeap.inline.hpp
g1CollectorPolicy.cpp g1CollectorPolicy.hpp
g1CollectorPolicy.cpp heapRegionRemSet.hpp
g1CollectorPolicy.cpp mutexLocker.hpp
g1CollectorPolicy.cpp gcPolicyCounters.hpp
g1CollectorPolicy.hpp collectorPolicy.hpp
g1CollectorPolicy.hpp collectionSetChooser.hpp
@ -228,7 +230,7 @@ g1MMUTracker.cpp ostream.hpp
g1MMUTracker.cpp mutexLocker.hpp
g1MMUTracker.hpp debug.hpp
g1MMUTracker.hpp allocation.hpp
g1RemSet.cpp bufferingOopClosure.hpp
g1RemSet.cpp concurrentG1Refine.hpp
g1RemSet.cpp concurrentG1RefineThread.hpp
@ -272,6 +274,7 @@ heapRegion.hpp g1BlockOffsetTable.inline.hpp
heapRegion.hpp watermark.hpp
heapRegion.hpp g1_specialized_oop_closures.hpp
heapRegion.hpp survRateGroup.hpp
heapRegion.hpp ageTable.hpp
heapRegionRemSet.hpp sparsePRT.hpp

View File

@ -362,6 +362,10 @@ void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
if (PrintHeapAtGC) {
Universe::print_heap_after_gc();
}
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
}
bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,

View File

@ -2203,6 +2203,10 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
collection_exit.ticks());
gc_task_manager()->print_task_time_stamps();
}
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
}
bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,

View File

@ -615,6 +615,10 @@ bool PSScavenge::invoke_no_policy() {
gc_task_manager()->print_task_time_stamps();
}
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
return !promotion_failure_occurred;
}

View File

@ -67,6 +67,12 @@ void ageTable::merge(ageTable* subTable) {
}
}
void ageTable::merge_par(ageTable* subTable) {
for (int i = 0; i < table_size; i++) {
Atomic::add_ptr(subTable->sizes[i], &sizes[i]);
}
}
int ageTable::compute_tenuring_threshold(size_t survivor_capacity) {
size_t desired_survivor_size = (size_t)((((double) survivor_capacity)*TargetSurvivorRatio)/100);
size_t total = 0;

View File

@ -56,6 +56,7 @@ class ageTable VALUE_OBJ_CLASS_SPEC {
// Merge another age table with the current one. Used
// for parallel young generation gc.
void merge(ageTable* subTable);
void merge_par(ageTable* subTable);
// calculate new tenuring threshold based on age information
int compute_tenuring_threshold(size_t survivor_capacity);

View File

@ -42,6 +42,7 @@ class Thread;
class CollectedHeap : public CHeapObj {
friend class VMStructs;
friend class IsGCActiveMark; // Block structured external access to _is_gc_active
friend class constantPoolCacheKlass; // allocate() method inserts is_conc_safe
#ifdef ASSERT
static int _fire_out_of_memory_count;
@ -82,8 +83,6 @@ class CollectedHeap : public CHeapObj {
// Reinitialize tlabs before resuming mutators.
virtual void resize_all_tlabs();
debug_only(static void check_for_valid_allocation_state();)
protected:
// Allocate from the current thread's TLAB, with broken-out slow path.
inline static HeapWord* allocate_from_tlab(Thread* thread, size_t size);
@ -142,6 +141,7 @@ class CollectedHeap : public CHeapObj {
PRODUCT_RETURN;
virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
PRODUCT_RETURN;
debug_only(static void check_for_valid_allocation_state();)
public:
enum Name {

View File

@ -48,9 +48,14 @@ void Rewriter::compute_index_maps(constantPoolHandle pool, intArray*& index_map,
// Creates a constant pool cache given an inverse_index_map
// This creates the constant pool cache initially in a state
// that is unsafe for concurrent GC processing but sets it to
// a safe mode before the constant pool cache is returned.
constantPoolCacheHandle Rewriter::new_constant_pool_cache(intArray& inverse_index_map, TRAPS) {
const int length = inverse_index_map.length();
constantPoolCacheOop cache = oopFactory::new_constantPoolCache(length, CHECK_(constantPoolCacheHandle()));
constantPoolCacheOop cache = oopFactory::new_constantPoolCache(length,
methodOopDesc::IsUnsafeConc,
CHECK_(constantPoolCacheHandle()));
cache->initialize(inverse_index_map);
return constantPoolCacheHandle(THREAD, cache);
}

View File

@ -346,9 +346,12 @@ int32 cmpstr(const void *k1, const void *k2) {
return strcmp((const char *)k1,(const char *)k2);
}
// Slimey cheap key comparator.
// Cheap key comparator.
int32 cmpkey(const void *key1, const void *key2) {
return (int32)((intptr_t)key1 - (intptr_t)key2);
if (key1 == key2) return 0;
intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
if (delta > 0) return 1;
return -1;
}
//=============================================================================

View File

@ -610,6 +610,10 @@ void GenCollectedHeap::do_collection(bool full,
Universe::print_heap_after_gc();
}
#ifdef TRACESPINNING
ParallelTaskTerminator::print_termination_counts();
#endif
if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
vm_exit(-1);

View File

@ -90,9 +90,11 @@ constantPoolOop oopFactory::new_constantPool(int length,
}
constantPoolCacheOop oopFactory::new_constantPoolCache(int length, TRAPS) {
constantPoolCacheOop oopFactory::new_constantPoolCache(int length,
bool is_conc_safe,
TRAPS) {
constantPoolCacheKlass* ck = constantPoolCacheKlass::cast(Universe::constantPoolCacheKlassObj());
return ck->allocate(length, CHECK_NULL);
return ck->allocate(length, is_conc_safe, CHECK_NULL);
}

View File

@ -84,7 +84,9 @@ class oopFactory: AllStatic {
static constantPoolOop new_constantPool (int length,
bool is_conc_safe,
TRAPS);
static constantPoolCacheOop new_constantPoolCache(int length, TRAPS);
static constantPoolCacheOop new_constantPoolCache(int length,
bool is_conc_safe,
TRAPS);
// Instance classes
static klassOop new_instanceKlass(int vtable_len, int itable_len, int static_field_size,

View File

@ -32,13 +32,43 @@ int constantPoolCacheKlass::oop_size(oop obj) const {
}
constantPoolCacheOop constantPoolCacheKlass::allocate(int length, TRAPS) {
constantPoolCacheOop constantPoolCacheKlass::allocate(int length,
bool is_conc_safe,
TRAPS) {
// allocate memory
int size = constantPoolCacheOopDesc::object_size(length);
KlassHandle klass (THREAD, as_klassOop());
constantPoolCacheOop cache = (constantPoolCacheOop)
CollectedHeap::permanent_obj_allocate(klass, size, CHECK_NULL);
// This is the original code. The code from permanent_obj_allocate()
// was in-lined to allow the setting of is_conc_safe before the klass
// is installed.
// constantPoolCacheOop cache = (constantPoolCacheOop)
// CollectedHeap::permanent_obj_allocate(klass, size, CHECK_NULL);
oop obj = CollectedHeap::permanent_obj_allocate_no_klass_install(klass, size, CHECK_NULL);
constantPoolCacheOop cache = (constantPoolCacheOop) obj;
cache->set_is_conc_safe(is_conc_safe);
// The store to is_conc_safe must be visible before the klass
// is set. This should be done safely because _is_conc_safe has
// been declared volatile. If there are any problems, consider adding
// OrderAccess::storestore();
CollectedHeap::post_allocation_install_obj_klass(klass, obj, size);
NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value((HeapWord*) obj,
size));
// The length field affects the size of the object. The allocation
// above allocates the correct size (see calculation of "size") but
// the size() method of the constant pool cache oop will not reflect
// that size until the correct length is set.
cache->set_length(length);
// The store of the length must be visible before is_conc_safe is
// set to a safe state.
// This should be done safely because _is_conc_safe has
// been declared volatile. If there are any problems, consider adding
// OrderAccess::storestore();
cache->set_is_conc_safe(methodOopDesc::IsSafeConc);
cache->set_constant_pool(NULL);
return cache;
}
@ -114,7 +144,6 @@ int constantPoolCacheKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegio
return size;
}
int constantPoolCacheKlass::oop_adjust_pointers(oop obj) {
assert(obj->is_constantPoolCache(), "obj must be constant pool cache");
constantPoolCacheOop cache = (constantPoolCacheOop)obj;
@ -131,6 +160,11 @@ int constantPoolCacheKlass::oop_adjust_pointers(oop obj) {
return size;
}
bool constantPoolCacheKlass::oop_is_conc_safe(oop obj) const {
assert(obj->is_constantPoolCache(), "should be constant pool");
return constantPoolCacheOop(obj)->is_conc_safe();
}
#ifndef SERIALGC
void constantPoolCacheKlass::oop_copy_contents(PSPromotionManager* pm,
oop obj) {

View File

@ -32,7 +32,7 @@ class constantPoolCacheKlass: public Klass {
// Allocation
DEFINE_ALLOCATE_PERMANENT(constantPoolCacheKlass);
constantPoolCacheOop allocate(int length, TRAPS);
constantPoolCacheOop allocate(int length, bool is_conc_safe, TRAPS);
static klassOop create_klass(TRAPS);
// Casting from klassOop
@ -48,6 +48,7 @@ class constantPoolCacheKlass: public Klass {
// Garbage collection
void oop_follow_contents(oop obj);
int oop_adjust_pointers(oop obj);
virtual bool oop_is_conc_safe(oop obj) const;
// Parallel Scavenge and Parallel Old
PARALLEL_GC_DECLS

View File

@ -291,6 +291,9 @@ class constantPoolCacheOopDesc: public oopDesc {
private:
int _length;
constantPoolOop _constant_pool; // the corresponding constant pool
// If true, safe for concurrent GC processing,
// Set unconditionally in constantPoolCacheKlass::allocate()
volatile bool _is_conc_safe;
// Sizing
debug_only(friend class ClassVerifier;)
@ -316,6 +319,12 @@ class constantPoolCacheOopDesc: public oopDesc {
constantPoolOop constant_pool() const { return _constant_pool; }
ConstantPoolCacheEntry* entry_at(int i) const { assert(0 <= i && i < length(), "index out of bounds"); return base() + i; }
// GC support
// If the _length field has not been set, the size of the
// constantPoolCache cannot be correctly calculated.
bool is_conc_safe() { return _is_conc_safe; }
void set_is_conc_safe(bool v) { _is_conc_safe = v; }
// Code generation
static ByteSize base_offset() { return in_ByteSize(sizeof(constantPoolCacheOopDesc)); }

View File

@ -880,6 +880,7 @@ void PhaseCFG::dump_headers() {
}
void PhaseCFG::verify( ) const {
#ifdef ASSERT
// Verify sane CFG
for( uint i = 0; i < _num_blocks; i++ ) {
Block *b = _blocks[i];
@ -894,10 +895,20 @@ void PhaseCFG::verify( ) const {
"CreateEx must be first instruction in block" );
}
for( uint k = 0; k < n->req(); k++ ) {
Node *use = n->in(k);
if( use && use != n ) {
assert( _bbs[use->_idx] || use->is_Con(),
Node *def = n->in(k);
if( def && def != n ) {
assert( _bbs[def->_idx] || def->is_Con(),
"must have block; constants for debug info ok" );
// Verify that instructions in the block is in correct order.
// Uses must follow their definition if they are at the same block.
// Mostly done to check that MachSpillCopy nodes are placed correctly
// when CreateEx node is moved in build_ifg_physical().
if( _bbs[def->_idx] == b &&
!(b->head()->is_Loop() && n->is_Phi()) &&
// See (+++) comment in reg_split.cpp
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k)) ) {
assert( b->find_node(def) < j, "uses must follow definitions" );
}
}
}
}
@ -914,6 +925,7 @@ void PhaseCFG::verify( ) const {
assert( b->_num_succs == 2, "Conditional branch must have two targets");
}
}
#endif
}
#endif

View File

@ -191,6 +191,9 @@
notproduct(bool, VerifyHashTableKeys, true, \
"Verify the immutability of keys in the VN hash tables") \
\
notproduct(bool, VerifyRegisterAllocator , false, \
"Verify Register Allocator") \
\
develop_pd(intx, FLOATPRESSURE, \
"Number of float LRG's that constitute high register pressure") \
\

View File

@ -858,12 +858,18 @@ const Type *PhiNode::Value( PhaseTransform *phase ) const {
// convert the one to the other.
const TypePtr* ttp = _type->make_ptr();
const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
bool is_intf = false;
if (ttip != NULL) {
ciKlass* k = ttip->klass();
if (k->is_loaded() && k->is_interface())
is_intf = true;
}
if (ttkp != NULL) {
ciKlass* k = ttkp->klass();
if (k->is_loaded() && k->is_interface())
is_intf = true;
}
// Default case: merge all inputs
const Type *t = Type::TOP; // Merged type starting value
@ -921,6 +927,8 @@ const Type *PhiNode::Value( PhaseTransform *phase ) const {
// uplift the type.
if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
{ assert(ft == _type, ""); } // Uplift to interface
else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
{ assert(ft == _type, ""); } // Uplift to interface
// Otherwise it's something stupid like non-overlapping int ranges
// found on dying counted loops.
else
@ -936,6 +944,7 @@ const Type *PhiNode::Value( PhaseTransform *phase ) const {
// because the type system doesn't interact well with interfaces.
const TypePtr *jtp = jt->make_ptr();
const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
if( jtip && ttip ) {
if( jtip->is_loaded() && jtip->klass()->is_interface() &&
ttip->is_loaded() && !ttip->klass()->is_interface() ) {
@ -945,6 +954,14 @@ const Type *PhiNode::Value( PhaseTransform *phase ) const {
jt = ft;
}
}
if( jtkp && ttkp ) {
if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
ft->isa_narrowoop() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
jt = ft;
}
}
if (jt != ft && jt->base() == ft->base()) {
if (jt->isa_int() &&
jt->is_int()->_lo == ft->is_int()->_lo &&

View File

@ -228,6 +228,11 @@ void PhaseChaitin::Register_Allocate() {
// them for real.
de_ssa();
#ifdef ASSERT
// Veify the graph before RA.
verify(&live_arena);
#endif
{
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
_live = NULL; // Mark live as being not available
@ -306,12 +311,6 @@ void PhaseChaitin::Register_Allocate() {
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
if (C->failing()) return;
#ifdef ASSERT
if( VerifyOpto ) {
_cfg.verify();
verify_base_ptrs(&live_arena);
}
#endif
NOT_PRODUCT( C->verify_graph_edges(); )
compact(); // Compact LRGs; return new lower max lrg
@ -340,7 +339,7 @@ void PhaseChaitin::Register_Allocate() {
compress_uf_map_for_nodes();
#ifdef ASSERT
if( VerifyOpto ) _ifg->verify(this);
verify(&live_arena, true);
#endif
} else {
ifg.SquareUp();
@ -376,12 +375,6 @@ void PhaseChaitin::Register_Allocate() {
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
if (C->failing()) return;
#ifdef ASSERT
if( VerifyOpto ) {
_cfg.verify();
verify_base_ptrs(&live_arena);
}
#endif
compact(); // Compact LRGs; return new lower max lrg
@ -412,7 +405,7 @@ void PhaseChaitin::Register_Allocate() {
}
compress_uf_map_for_nodes();
#ifdef ASSERT
if( VerifyOpto ) _ifg->verify(this);
verify(&live_arena, true);
#endif
cache_lrg_info(); // Count degree of LRGs
@ -432,6 +425,11 @@ void PhaseChaitin::Register_Allocate() {
// Peephole remove copies
post_allocate_copy_removal();
#ifdef ASSERT
// Veify the graph after RA.
verify(&live_arena);
#endif
// max_reg is past the largest *register* used.
// Convert that to a frame_slot number.
if( _max_reg <= _matcher._new_SP )
@ -956,7 +954,7 @@ void PhaseChaitin::Simplify( ) {
while ((neighbor = elements.next()) != 0) {
LRG *n = &lrgs(neighbor);
#ifdef ASSERT
if( VerifyOpto ) {
if( VerifyOpto || VerifyRegisterAllocator ) {
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
}
#endif

View File

@ -491,6 +491,8 @@ private:
// Verify that base pointers and derived pointers are still sane
void verify_base_ptrs( ResourceArea *a ) const;
void verify( ResourceArea *a, bool verify_ifg = false ) const;
void dump_for_spill_split_recycle() const;
public:

View File

@ -129,7 +129,7 @@ macro(JumpProj)
macro(LShiftI)
macro(LShiftL)
macro(LoadB)
macro(LoadC)
macro(LoadUS)
macro(LoadD)
macro(LoadD_unaligned)
macro(LoadF)

View File

@ -2005,7 +2005,7 @@ static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &fpu ) {
case Op_StoreP:
case Op_StoreN:
case Op_LoadB:
case Op_LoadC:
case Op_LoadUS:
case Op_LoadI:
case Op_LoadKlass:
case Op_LoadNKlass:

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -244,42 +244,73 @@ static bool magic_long_divide_constants(jlong d, jlong &M, jint &s) {
//---------------------long_by_long_mulhi--------------------------------------
// Generate ideal node graph for upper half of a 64 bit x 64 bit multiplication
static Node *long_by_long_mulhi( PhaseGVN *phase, Node *dividend, jlong magic_const) {
static Node* long_by_long_mulhi(PhaseGVN* phase, Node* dividend, jlong magic_const) {
// If the architecture supports a 64x64 mulhi, there is
// no need to synthesize it in ideal nodes.
if (Matcher::has_match_rule(Op_MulHiL)) {
Node *v = phase->longcon(magic_const);
Node* v = phase->longcon(magic_const);
return new (phase->C, 3) MulHiLNode(dividend, v);
}
// Taken from Hacker's Delight, Fig. 8-2. Multiply high signed.
// (http://www.hackersdelight.org/HDcode/mulhs.c)
//
// int mulhs(int u, int v) {
// unsigned u0, v0, w0;
// int u1, v1, w1, w2, t;
//
// u0 = u & 0xFFFF; u1 = u >> 16;
// v0 = v & 0xFFFF; v1 = v >> 16;
// w0 = u0*v0;
// t = u1*v0 + (w0 >> 16);
// w1 = t & 0xFFFF;
// w2 = t >> 16;
// w1 = u0*v1 + w1;
// return u1*v1 + w2 + (w1 >> 16);
// }
//
// Note: The version above is for 32x32 multiplications, while the
// following inline comments are adapted to 64x64.
const int N = 64;
Node *u_hi = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
Node *u_lo = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
// u0 = u & 0xFFFFFFFF; u1 = u >> 32;
Node* u0 = phase->transform(new (phase->C, 3) AndLNode(dividend, phase->longcon(0xFFFFFFFF)));
Node* u1 = phase->transform(new (phase->C, 3) RShiftLNode(dividend, phase->intcon(N / 2)));
Node *v_hi = phase->longcon(magic_const >> N/2);
Node *v_lo = phase->longcon(magic_const & 0XFFFFFFFF);
// v0 = v & 0xFFFFFFFF; v1 = v >> 32;
Node* v0 = phase->longcon(magic_const & 0xFFFFFFFF);
Node* v1 = phase->longcon(magic_const >> (N / 2));
Node *hihi_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_hi));
Node *hilo_product = phase->transform(new (phase->C, 3) MulLNode(u_hi, v_lo));
Node *lohi_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_hi));
Node *lolo_product = phase->transform(new (phase->C, 3) MulLNode(u_lo, v_lo));
// w0 = u0*v0;
Node* w0 = phase->transform(new (phase->C, 3) MulLNode(u0, v0));
Node *t1 = phase->transform(new (phase->C, 3) URShiftLNode(lolo_product, phase->intcon(N / 2)));
Node *t2 = phase->transform(new (phase->C, 3) AddLNode(hilo_product, t1));
// t = u1*v0 + (w0 >> 32);
Node* u1v0 = phase->transform(new (phase->C, 3) MulLNode(u1, v0));
Node* temp = phase->transform(new (phase->C, 3) URShiftLNode(w0, phase->intcon(N / 2)));
Node* t = phase->transform(new (phase->C, 3) AddLNode(u1v0, temp));
// Construct both t3 and t4 before transforming so t2 doesn't go dead
// prematurely.
Node *t3 = new (phase->C, 3) RShiftLNode(t2, phase->intcon(N / 2));
Node *t4 = new (phase->C, 3) AndLNode(t2, phase->longcon(0xFFFFFFFF));
t3 = phase->transform(t3);
t4 = phase->transform(t4);
// w1 = t & 0xFFFFFFFF;
Node* w1 = new (phase->C, 3) AndLNode(t, phase->longcon(0xFFFFFFFF));
Node *t5 = phase->transform(new (phase->C, 3) AddLNode(t4, lohi_product));
Node *t6 = phase->transform(new (phase->C, 3) RShiftLNode(t5, phase->intcon(N / 2)));
Node *t7 = phase->transform(new (phase->C, 3) AddLNode(t3, hihi_product));
// w2 = t >> 32;
Node* w2 = new (phase->C, 3) RShiftLNode(t, phase->intcon(N / 2));
return new (phase->C, 3) AddLNode(t7, t6);
// 6732154: Construct both w1 and w2 before transforming, so t
// doesn't go dead prematurely.
w1 = phase->transform(w1);
w2 = phase->transform(w2);
// w1 = u0*v1 + w1;
Node* u0v1 = phase->transform(new (phase->C, 3) MulLNode(u0, v1));
w1 = phase->transform(new (phase->C, 3) AddLNode(u0v1, w1));
// return u1*v1 + w2 + (w1 >> 32);
Node* u1v1 = phase->transform(new (phase->C, 3) MulLNode(u1, v1));
Node* temp1 = phase->transform(new (phase->C, 3) AddLNode(u1v1, w2));
Node* temp2 = phase->transform(new (phase->C, 3) RShiftLNode(w1, phase->intcon(N / 2)));
return new (phase->C, 3) AddLNode(temp1, temp2);
}
@ -976,7 +1007,7 @@ Node *ModLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Expand mod
if( con >= 0 && con < max_jlong && is_power_of_2_long(con+1) ) {
uint k = log2_long(con); // Extract k
uint k = exact_log2_long(con+1); // Extract k
// Basic algorithm by David Detlefs. See fastmod_long.java for gory details.
// Used to help a popular random number generator which does a long-mod

View File

@ -29,6 +29,9 @@
#include "incls/_precompiled.incl"
#include "incls/_gcm.cpp.incl"
// To avoid float value underflow
#define MIN_BLOCK_FREQUENCY 1.e-35f
//----------------------------schedule_node_into_block-------------------------
// Insert node n into block b. Look for projections of n and make sure they
// are in b also.
@ -1380,6 +1383,13 @@ void PhaseCFG::Estimate_Block_Frequency() {
}
}
#ifdef ASSERT
for (uint i = 0; i < _num_blocks; i++ ) {
Block *b = _blocks[i];
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requiers meaningful block frequency");
}
#endif
#ifndef PRODUCT
if (PrintCFGBlockFreq) {
tty->print_cr("CFG Block Frequencies");
@ -1877,7 +1887,9 @@ void CFGLoop::scale_freq() {
float loop_freq = _freq * trip_count();
for (int i = 0; i < _members.length(); i++) {
CFGElement* s = _members.at(i);
s->_freq *= loop_freq;
float block_freq = s->_freq * loop_freq;
if (block_freq < MIN_BLOCK_FREQUENCY) block_freq = MIN_BLOCK_FREQUENCY;
s->_freq = block_freq;
}
CFGLoop* ch = _child;
while (ch != NULL) {

View File

@ -1836,10 +1836,7 @@ void GraphKit::write_barrier_post(Node* oop_store, Node* obj, Node* adr,
(CardTableModRefBS*)(Universe::heap()->barrier_set());
Node *b = _gvn.transform(new (C, 3) URShiftXNode( cast, _gvn.intcon(CardTableModRefBS::card_shift) ));
// We store into a byte array, so do not bother to left-shift by zero
// Get base of card map
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte),
"adjust this code");
Node *c = makecon(TypeRawPtr::make((address)ct->byte_map_base));
Node *c = byte_map_base_node();
// Combine
Node *sb_ctl = control();
Node *sb_adr = _gvn.transform(new (C, 4) AddPNode( top()/*no base ptr*/, c, b ));
@ -2945,16 +2942,10 @@ Node* GraphKit::new_instance(Node* klass_node,
// Now generate allocation code
// With escape analysis, the entire memory state is needed to be able to
// eliminate the allocation. If the allocations cannot be eliminated, this
// will be optimized to the raw slice when the allocation is expanded.
Node *mem;
if (C->do_escape_analysis()) {
mem = reset_memory();
set_all_memory(mem);
} else {
mem = memory(Compile::AliasIdxRaw);
}
// The entire memory state is needed for slow path of the allocation
// since GC and deoptimization can happened.
Node *mem = reset_memory();
set_all_memory(mem); // Create new memory state
AllocateNode* alloc
= new (C, AllocateNode::ParmLimit)
@ -3091,16 +3082,10 @@ Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
// Now generate allocation code
// With escape analysis, the entire memory state is needed to be able to
// eliminate the allocation. If the allocations cannot be eliminated, this
// will be optimized to the raw slice when the allocation is expanded.
Node *mem;
if (C->do_escape_analysis()) {
mem = reset_memory();
set_all_memory(mem);
} else {
mem = memory(Compile::AliasIdxRaw);
}
// The entire memory state is needed for slow path of the allocation
// since GC and deoptimization can happened.
Node *mem = reset_memory();
set_all_memory(mem); // Create new memory state
// Create the AllocateArrayNode and its result projections
AllocateArrayNode* alloc
@ -3233,12 +3218,11 @@ void GraphKit::g1_write_barrier_pre(Node* obj,
// Now some of the values
Node* marking = __ load(no_ctrl, marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
Node* index = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
// if (!marking)
__ if_then(marking, BoolTest::ne, zero); {
Node* index = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
const Type* t1 = adr->bottom_type();
const Type* t2 = val->bottom_type();
@ -3246,6 +3230,7 @@ void GraphKit::g1_write_barrier_pre(Node* obj,
Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
// if (orig != NULL)
__ if_then(orig, BoolTest::ne, null()); {
Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
// load original value
// alias_idx correct??
@ -3365,14 +3350,6 @@ void GraphKit::g1_write_barrier_post(Node* store,
const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
// Get the address of the card table
CardTableModRefBS* ct =
(CardTableModRefBS*)(Universe::heap()->barrier_set());
Node *card_table = __ makecon(TypeRawPtr::make((address)ct->byte_map_base));
// Get base of card map
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
// Offsets into the thread
const int index_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_index());
@ -3402,7 +3379,7 @@ void GraphKit::g1_write_barrier_post(Node* store,
Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
// Combine card table base and card offset
Node *card_adr = __ AddP(no_base, card_table, card_offset );
Node *card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
// If we know the value being stored does it cross regions?

View File

@ -83,6 +83,18 @@ class GraphKit : public Phase {
Node* zerocon(BasicType bt) const { return _gvn.zerocon(bt); }
// (See also macro MakeConX in type.hpp, which uses intcon or longcon.)
// Helper for byte_map_base
Node* byte_map_base_node() {
// Get base of card map
CardTableModRefBS* ct = (CardTableModRefBS*)(Universe::heap()->barrier_set());
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust users of this code");
if (ct->byte_map_base != NULL) {
return makecon(TypeRawPtr::make((address)ct->byte_map_base));
} else {
return null();
}
}
jint find_int_con(Node* n, jint value_if_unknown) {
return _gvn.find_int_con(n, value_if_unknown);
}

View File

@ -471,12 +471,28 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// for the "collect_gc_info" phase later.
IndexSet liveout(_live->live(b));
uint last_inst = b->end_idx();
// Compute last phi index
uint last_phi;
for( last_phi = 1; last_phi < last_inst; last_phi++ )
if( !b->_nodes[last_phi]->is_Phi() )
// Compute first nonphi node index
uint first_inst;
for( first_inst = 1; first_inst < last_inst; first_inst++ )
if( !b->_nodes[first_inst]->is_Phi() )
break;
// Spills could be inserted before CreateEx node which should be
// first instruction in block after Phis. Move CreateEx up.
for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
Node *ex = b->_nodes[insidx];
if( ex->is_SpillCopy() ) continue;
if( insidx > first_inst && ex->is_Mach() &&
ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
// If the CreateEx isn't above all the MachSpillCopies
// then move it to the top.
b->_nodes.remove(insidx);
b->_nodes.insert(first_inst, ex);
}
// Stop once a CreateEx or any other node is found
break;
}
// Reset block's register pressure values for each ifg construction
uint pressure[2], hrp_index[2];
pressure[0] = pressure[1] = 0;
@ -485,7 +501,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// Liveout things are presumed live for the whole block. We accumulate
// 'area' accordingly. If they get killed in the block, we'll subtract
// the unused part of the block from the area.
int inst_count = last_inst - last_phi;
int inst_count = last_inst - first_inst;
double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
assert(!(cost < 0.0), "negative spill cost" );
IndexSetIterator elements(&liveout);

View File

@ -107,7 +107,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
was_store = false;
switch( mach->ideal_Opcode() ) {
case Op_LoadB:
case Op_LoadC:
case Op_LoadUS:
case Op_LoadD:
case Op_LoadF:
case Op_LoadI:

View File

@ -271,9 +271,9 @@ void PhaseLive::dump( const Block *b ) const {
//------------------------------verify_base_ptrs-------------------------------
// Verify that base pointers and derived pointers are still sane.
// Basically, if a derived pointer is live at a safepoint, then its
// base pointer must be live also.
void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
#ifdef ASSERT
Unique_Node_List worklist(a);
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
Block *b = _cfg._blocks[i];
for( uint j = b->end_idx() + 1; j > 1; j-- ) {
@ -287,28 +287,81 @@ void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
// Now scan for a live derived pointer
if (jvms->oopoff() < sfpt->req()) {
// Check each derived/base pair
for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx += 2) {
for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
Node *check = sfpt->in(idx);
uint j = 0;
bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
// search upwards through spills and spill phis for AddP
while(true) {
if( !check ) break;
int idx = check->is_Copy();
if( idx ) {
check = check->in(idx);
} else if( check->is_Phi() && check->_idx >= _oldphi ) {
check = check->in(1);
} else
break;
j++;
assert(j < 100000,"Derived pointer checking in infinite loop");
worklist.clear();
worklist.push(check);
uint k = 0;
while( k < worklist.size() ) {
check = worklist.at(k);
assert(check,"Bad base or derived pointer");
// See PhaseChaitin::find_base_for_derived() for all cases.
int isc = check->is_Copy();
if( isc ) {
worklist.push(check->in(isc));
} else if( check->is_Phi() ) {
for (uint m = 1; m < check->req(); m++)
worklist.push(check->in(m));
} else if( check->is_Con() ) {
if (is_derived) {
// Derived is NULL+offset
assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer");
} else {
assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer");
// Base either ConP(NULL) or loadConP
if (check->is_Mach()) {
assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer");
} else {
assert(check->Opcode() == Op_ConP &&
check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer");
}
}
} else if( check->bottom_type()->is_ptr()->_offset == 0 ) {
if(check->is_Proj() || check->is_Mach() &&
(check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
#ifdef _LP64
UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP ||
UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN ||
#endif
check->as_Mach()->ideal_Opcode() == Op_LoadP ||
check->as_Mach()->ideal_Opcode() == Op_LoadKlass)) {
// Valid nodes
} else {
check->dump();
assert(false,"Bad base or derived pointer");
}
} else {
assert(is_derived,"Bad base pointer");
assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer");
}
k++;
assert(k < 100000,"Derived pointer checking in infinite loop");
} // End while
assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer")
}
} // End of check for derived pointers
} // End of Kcheck for debug info
} // End of if found a safepoint
} // End of forall instructions in block
} // End of forall blocks
}
#endif
}
//------------------------------verify-------------------------------------
// Verify that graphs and base pointers are still sane.
void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const {
#ifdef ASSERT
if( VerifyOpto || VerifyRegisterAllocator ) {
_cfg.verify();
verify_base_ptrs(a);
if(verify_ifg)
_ifg->verify(this);
}
#endif
}
#endif

View File

@ -2654,7 +2654,7 @@ void PhaseIdealLoop::build_loop_late_post( Node *n, const PhaseIdealLoop *verify
case Op_ModF:
case Op_ModD:
case Op_LoadB: // Same with Loads; they can sink
case Op_LoadC: // during loop optimizations.
case Op_LoadUS: // during loop optimizations.
case Op_LoadD:
case Op_LoadF:
case Op_LoadI:

View File

@ -952,13 +952,6 @@ void PhaseMacroExpand::expand_allocate_common(
Node* klass_node = alloc->in(AllocateNode::KlassNode);
Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
// With escape analysis, the entire memory state was needed to be able to
// eliminate the allocation. Since the allocations cannot be eliminated,
// optimize it to the raw slice.
if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
}
assert(ctrl != NULL, "must have control");
// We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
// they will not be used if "always_slow" is set
@ -1016,6 +1009,11 @@ void PhaseMacroExpand::expand_allocate_common(
Node *slow_mem = mem; // save the current memory state for slow path
// generate the fast allocation code unless we know that the initial test will always go slow
if (!always_slow) {
// Fast path modifies only raw memory.
if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
}
Node* eden_top_adr;
Node* eden_end_adr;
@ -1239,8 +1237,6 @@ void PhaseMacroExpand::expand_allocate_common(
}
}
mem = result_phi_rawmem;
// An allocate node has separate i_o projections for the uses on the control and i_o paths
// Replace uses of the control i_o projection with result_phi_i_o (unless we are only generating a slow call)
if (_ioproj_fallthrough == NULL) {

View File

@ -1824,7 +1824,7 @@ void Matcher::find_shared( Node *n ) {
mem_op = true;
break;
case Op_LoadB:
case Op_LoadC:
case Op_LoadUS:
case Op_LoadD:
case Op_LoadF:
case Op_LoadI:

View File

@ -779,14 +779,14 @@ Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const Type
"use LoadRangeNode instead");
switch (bt) {
case T_BOOLEAN:
case T_BYTE: return new (C, 3) LoadBNode(ctl, mem, adr, adr_type, rt->is_int() );
case T_INT: return new (C, 3) LoadINode(ctl, mem, adr, adr_type, rt->is_int() );
case T_CHAR: return new (C, 3) LoadCNode(ctl, mem, adr, adr_type, rt->is_int() );
case T_SHORT: return new (C, 3) LoadSNode(ctl, mem, adr, adr_type, rt->is_int() );
case T_LONG: return new (C, 3) LoadLNode(ctl, mem, adr, adr_type, rt->is_long() );
case T_FLOAT: return new (C, 3) LoadFNode(ctl, mem, adr, adr_type, rt );
case T_DOUBLE: return new (C, 3) LoadDNode(ctl, mem, adr, adr_type, rt );
case T_ADDRESS: return new (C, 3) LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr() );
case T_BYTE: return new (C, 3) LoadBNode (ctl, mem, adr, adr_type, rt->is_int() );
case T_INT: return new (C, 3) LoadINode (ctl, mem, adr, adr_type, rt->is_int() );
case T_CHAR: return new (C, 3) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int() );
case T_SHORT: return new (C, 3) LoadSNode (ctl, mem, adr, adr_type, rt->is_int() );
case T_LONG: return new (C, 3) LoadLNode (ctl, mem, adr, adr_type, rt->is_long() );
case T_FLOAT: return new (C, 3) LoadFNode (ctl, mem, adr, adr_type, rt );
case T_DOUBLE: return new (C, 3) LoadDNode (ctl, mem, adr, adr_type, rt );
case T_ADDRESS: return new (C, 3) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr() );
case T_OBJECT:
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
@ -1076,13 +1076,14 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
// of the original value.
Node* mem_phi = in(Memory);
Node* offset = in(Address)->in(AddPNode::Offset);
Node* region = base->in(0);
Node* in1 = clone();
Node* in1_addr = in1->in(Address)->clone();
in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
in1_addr->set_req(AddPNode::Offset, offset);
in1->set_req(0, base->in(allocation_index));
in1->set_req(0, region->in(allocation_index));
in1->set_req(Address, in1_addr);
in1->set_req(Memory, mem_phi->in(allocation_index));
@ -1091,7 +1092,7 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
in2_addr->set_req(AddPNode::Base, base->in(load_index));
in2_addr->set_req(AddPNode::Address, base->in(load_index));
in2_addr->set_req(AddPNode::Offset, offset);
in2->set_req(0, base->in(load_index));
in2->set_req(0, region->in(load_index));
in2->set_req(Address, in2_addr);
in2->set_req(Memory, mem_phi->in(load_index));
@ -1100,7 +1101,7 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
in2_addr = phase->transform(in2_addr);
in2 = phase->transform(in2);
PhiNode* result = PhiNode::make_blank(base->in(0), this);
PhiNode* result = PhiNode::make_blank(region, this);
result->set_req(allocation_index, in1);
result->set_req(load_index, in2);
return result;
@ -1303,6 +1304,7 @@ Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
if (base != NULL
&& phase->type(base)->higher_equal(TypePtr::NOTNULL)
&& phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw
&& all_controls_dominate(base, phase->C->start())) {
// A method-invariant, non-null address (constant or 'this' argument).
set_req(MemNode::Control, NULL);
@ -1356,7 +1358,7 @@ Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Steps (a), (b): Walk past independent stores to find an exact match.
if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
// (c) See if we can fold up on the spot, but don't fold up here.
// Fold-up might require truncation (for LoadB/LoadS/LoadC) or
// Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
// just return a prior value, which is done by Identity calls.
if (can_see_stored_value(prev_mem, phase)) {
// Make ready for step (d):
@ -1605,14 +1607,14 @@ Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
return LoadNode::Ideal(phase, can_reshape);
}
//--------------------------LoadCNode::Ideal--------------------------------------
//--------------------------LoadUSNode::Ideal-------------------------------------
//
// If the previous store is to the same address as this load,
// and the value stored was larger than a char, replace this load
// with the value stored truncated to a char. If no truncation is
// needed, the replacement is done in LoadNode::Identity().
//
Node *LoadCNode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
Node* mem = in(MemNode::Memory);
Node* value = can_see_stored_value(mem,phase);
if( value && !phase->type(value)->higher_equal( _type ) )

View File

@ -207,11 +207,11 @@ public:
virtual BasicType memory_type() const { return T_BYTE; }
};
//------------------------------LoadCNode--------------------------------------
// Load a char (16bits unsigned) from memory
class LoadCNode : public LoadNode {
//------------------------------LoadUSNode-------------------------------------
// Load an unsigned short/char (16bits unsigned) from memory
class LoadUSNode : public LoadNode {
public:
LoadCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
: LoadNode(c,mem,adr,at,ti) {}
virtual int Opcode() const;
virtual uint ideal_reg() const { return Op_RegI; }

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -442,16 +442,17 @@ Node *AndINode::Identity( PhaseTransform *phase ) {
return load;
}
uint lop = load->Opcode();
if( lop == Op_LoadC &&
if( lop == Op_LoadUS &&
con == 0x0000FFFF ) // Already zero-extended
return load;
// Masking off the high bits of a unsigned-shift-right is not
// needed either.
if( lop == Op_URShiftI ) {
const TypeInt *t12 = phase->type( load->in(2) )->isa_int();
if( t12 && t12->is_con() ) {
int shift_con = t12->get_con();
int mask = max_juint >> shift_con;
if( t12 && t12->is_con() ) { // Shift is by a constant
int shift = t12->get_con();
shift &= BitsPerJavaInteger - 1; // semantics of Java shifts
int mask = max_juint >> shift;
if( (mask&con) == mask ) // If AND is useless, skip it
return load;
}
@ -470,19 +471,19 @@ Node *AndINode::Ideal(PhaseGVN *phase, bool can_reshape) {
uint lop = load->Opcode();
// Masking bits off of a Character? Hi bits are already zero.
if( lop == Op_LoadC &&
if( lop == Op_LoadUS &&
(mask & 0xFFFF0000) ) // Can we make a smaller mask?
return new (phase->C, 3) AndINode(load,phase->intcon(mask&0xFFFF));
// Masking bits off of a Short? Loading a Character does some masking
if( lop == Op_LoadS &&
(mask & 0xFFFF0000) == 0 ) {
Node *ldc = new (phase->C, 3) LoadCNode(load->in(MemNode::Control),
Node *ldus = new (phase->C, 3) LoadUSNode(load->in(MemNode::Control),
load->in(MemNode::Memory),
load->in(MemNode::Address),
load->adr_type());
ldc = phase->transform(ldc);
return new (phase->C, 3) AndINode(ldc,phase->intcon(mask&0xFFFF));
ldus = phase->transform(ldus);
return new (phase->C, 3) AndINode(ldus, phase->intcon(mask&0xFFFF));
}
// Masking sign bits off of a Byte? Let the matcher use an unsigned load
@ -579,9 +580,10 @@ Node *AndLNode::Identity( PhaseTransform *phase ) {
// needed either.
if( lop == Op_URShiftL ) {
const TypeInt *t12 = phase->type( usr->in(2) )->isa_int();
if( t12 && t12->is_con() ) {
int shift_con = t12->get_con();
jlong mask = max_julong >> shift_con;
if( t12 && t12->is_con() ) { // Shift is by a constant
int shift = t12->get_con();
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
jlong mask = max_julong >> shift;
if( (mask&con) == mask ) // If AND is useless, skip it
return usr;
}
@ -605,8 +607,8 @@ Node *AndLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
const TypeInt *t12 = phase->type(rsh->in(2))->isa_int();
if( t12 && t12->is_con() ) { // Shift is by a constant
int shift = t12->get_con();
shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - shift)) -1);
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
const jlong sign_bits_mask = ~(((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - shift)) -1);
// If the AND'ing of the 2 masks has no bits, then only original shifted
// bits survive. NO sign-extension bits survive the maskings.
if( (sign_bits_mask & mask) == 0 ) {
@ -786,7 +788,7 @@ Node *LShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// Check for ((x & ((CONST64(1)<<(64-c0))-1)) << c0) which ANDs off high bits
// before shifting them away.
const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) - CONST64(1);
const jlong bits_mask = ((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) - CONST64(1);
if( add1_op == Op_AndL &&
phase->type(add1->in(2)) == TypeLong::make( bits_mask ) )
return new (phase->C, 3) LShiftLNode( add1->in(1), in(2) );
@ -820,7 +822,7 @@ const Type *LShiftLNode::Value( PhaseTransform *phase ) const {
return TypeLong::LONG;
uint shift = r2->get_con();
shift &= (BitsPerJavaInteger*2)-1; // semantics of Java shifts
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
// Shift by a multiple of 64 does nothing:
if (shift == 0) return t1;
@ -913,7 +915,7 @@ Node *RShiftINode::Ideal(PhaseGVN *phase, bool can_reshape) {
set_req(2, phase->intcon(0));
return this;
}
else if( ld->Opcode() == Op_LoadC )
else if( ld->Opcode() == Op_LoadUS )
// Replace zero-extension-load with sign-extension-load
return new (phase->C, 3) LoadSNode( ld->in(MemNode::Control),
ld->in(MemNode::Memory),
@ -1235,7 +1237,7 @@ Node *URShiftLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
if ( con == 0 ) return NULL; // let Identity() handle a 0 shift count
// note: mask computation below does not work for 0 shift count
// We'll be wanting the right-shift amount as a mask of that many bits
const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaInteger*2 - con)) -1);
const jlong mask = (((jlong)CONST64(1) << (jlong)(BitsPerJavaLong - con)) -1);
// Check for ((x << z) + Y) >>> z. Replace with x + con>>>z
// The idiom for rounding to a power of 2 is "(Q+(2^z-1)) >>> z".
@ -1302,7 +1304,7 @@ const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
if (r2->is_con()) {
uint shift = r2->get_con();
shift &= (2*BitsPerJavaInteger)-1; // semantics of Java shifts
shift &= BitsPerJavaLong - 1; // semantics of Java shifts
// Shift by a multiple of 64 does nothing:
if (shift == 0) return t1;
// Calculate reasonably aggressive bounds for the result.
@ -1325,7 +1327,7 @@ const Type *URShiftLNode::Value( PhaseTransform *phase ) const {
const TypeLong* tl = TypeLong::make(lo, hi, MAX2(r1->_widen,r2->_widen));
#ifdef ASSERT
// Make sure we get the sign-capture idiom correct.
if (shift == (2*BitsPerJavaInteger)-1) {
if (shift == BitsPerJavaLong - 1) {
if (r1->_lo >= 0) assert(tl == TypeLong::ZERO, ">>>63 of + is 0");
if (r1->_hi < 0) assert(tl == TypeLong::ONE, ">>>63 of - is +1");
}

View File

@ -1444,7 +1444,7 @@ const Type* SuperWord::container_type(const Type* t) {
// (Start, end] half-open range defining which operands are vector
void SuperWord::vector_opd_range(Node* n, uint* start, uint* end) {
switch (n->Opcode()) {
case Op_LoadB: case Op_LoadC:
case Op_LoadB: case Op_LoadUS:
case Op_LoadI: case Op_LoadL:
case Op_LoadF: case Op_LoadD:
case Op_LoadP:

View File

@ -2471,6 +2471,8 @@ const Type *TypeOopPtr::filter( const Type *kills ) const {
const Type* ft = join(kills);
const TypeInstPtr* ftip = ft->isa_instptr();
const TypeInstPtr* ktip = kills->isa_instptr();
const TypeKlassPtr* ftkp = ft->isa_klassptr();
const TypeKlassPtr* ktkp = kills->isa_klassptr();
if (ft->empty()) {
// Check for evil case of 'this' being a class and 'kills' expecting an
@ -2484,6 +2486,8 @@ const Type *TypeOopPtr::filter( const Type *kills ) const {
// uplift the type.
if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
return kills; // Uplift to interface
if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
return kills; // Uplift to interface
return Type::TOP; // Canonical empty value
}
@ -2499,6 +2503,12 @@ const Type *TypeOopPtr::filter( const Type *kills ) const {
// Happens in a CTW of rt.jar, 320-341, no extra flags
return ktip->cast_to_ptr_type(ftip->ptr());
}
if (ftkp != NULL && ktkp != NULL &&
ftkp->is_loaded() && ftkp->klass()->is_interface() &&
ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
// Happens in a CTW of rt.jar, 320-341, no extra flags
return ktkp->cast_to_ptr_type(ftkp->ptr());
}
return ft;
}
@ -3657,7 +3667,7 @@ const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
//------------------------------cast_to_ptr_type-------------------------------
const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
if( ptr == _ptr ) return this;
return make(ptr, _klass, _offset);
}

View File

@ -882,6 +882,8 @@ class TypeKlassPtr : public TypeOopPtr {
public:
ciSymbol* name() const { return _klass->name(); }
bool is_loaded() const { return _klass->is_loaded(); }
// ptr to klass 'k'
static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
// ptr to klass 'k' with offset

View File

@ -239,7 +239,7 @@ int VectorNode::opcode(int sopc, uint vlen, const Type* opd_t) {
return Op_XorV;
case Op_LoadB:
case Op_LoadC:
case Op_LoadUS:
case Op_LoadS:
case Op_LoadI:
case Op_LoadL:
@ -269,7 +269,7 @@ int VectorLoadNode::opcode(int sopc, uint vlen) {
case 16: return Op_Load16B;
}
break;
case Op_LoadC:
case Op_LoadUS:
switch (vlen) {
case 2: return Op_Load2C;
case 4: return Op_Load4C;

View File

@ -2489,7 +2489,7 @@ jint Arguments::parse_options_environment_variable(const char* name, SysClassPat
vm_args.version = JNI_VERSION_1_2;
vm_args.options = options;
vm_args.nOptions = i;
vm_args.ignoreUnrecognized = false;
vm_args.ignoreUnrecognized = IgnoreUnrecognizedVMOptions;
if (PrintVMOptions) {
const char* tail;
@ -2536,13 +2536,12 @@ jint Arguments::parse(const JavaVMInitArgs* args) {
// If flag "-XX:Flags=flags-file" is used it will be the first option to be processed.
bool settings_file_specified = false;
const char* flags_file;
int index;
for (index = 0; index < args->nOptions; index++) {
const JavaVMOption *option = args->options + index;
if (match_option(option, "-XX:Flags=", &tail)) {
if (!process_settings_file(tail, true, args->ignoreUnrecognized)) {
return JNI_EINVAL;
}
flags_file = tail;
settings_file_specified = true;
}
if (match_option(option, "-XX:+PrintVMOptions", &tail)) {
@ -2551,6 +2550,24 @@ jint Arguments::parse(const JavaVMInitArgs* args) {
if (match_option(option, "-XX:-PrintVMOptions", &tail)) {
PrintVMOptions = false;
}
if (match_option(option, "-XX:+IgnoreUnrecognizedVMOptions", &tail)) {
IgnoreUnrecognizedVMOptions = true;
}
if (match_option(option, "-XX:-IgnoreUnrecognizedVMOptions", &tail)) {
IgnoreUnrecognizedVMOptions = false;
}
}
if (IgnoreUnrecognizedVMOptions) {
// uncast const to modify the flag args->ignoreUnrecognized
*(jboolean*)(&args->ignoreUnrecognized) = true;
}
// Parse specified settings file
if (settings_file_specified) {
if (!process_settings_file(flags_file, true, args->ignoreUnrecognized)) {
return JNI_EINVAL;
}
}
// Parse default .hotspotrc settings file

View File

@ -1426,10 +1426,10 @@ class CommandLineFlags {
develop(bool, CMSOverflowEarlyRestoration, false, \
"Whether preserved marks should be restored early") \
\
product(uintx, CMSMarkStackSize, 32*K, \
product(uintx, CMSMarkStackSize, NOT_LP64(32*K) LP64_ONLY(4*M), \
"Size of CMS marking stack") \
\
product(uintx, CMSMarkStackSizeMax, 4*M, \
product(uintx, CMSMarkStackSizeMax, NOT_LP64(4*M) LP64_ONLY(512*M), \
"Max size of CMS marking stack") \
\
notproduct(bool, CMSMarkStackOverflowALot, false, \
@ -1655,6 +1655,13 @@ class CommandLineFlags {
develop(uintx, WorkStealingYieldsBeforeSleep, 1000, \
"Number of yields before a sleep is done during workstealing") \
\
develop(uintx, WorkStealingHardSpins, 4096, \
"Number of iterations in a spin loop between checks on " \
"time out of hard spin") \
\
develop(uintx, WorkStealingSpinToYieldRatio, 10, \
"Ratio of hard spins to calls to yield") \
\
product(uintx, PreserveMarkStackSize, 1024, \
"Size for stack used in promotion failure handling") \
\
@ -2187,6 +2194,9 @@ class CommandLineFlags {
product(bool, PrintVMOptions, trueInDebug, \
"print VM flag settings") \
\
product(bool, IgnoreUnrecognizedVMOptions, false, \
"Ignore unrecognized VM options") \
\
diagnostic(bool, SerializeVMOutput, true, \
"Use a mutex to serialize output to tty and hotspot.log") \
\

View File

@ -74,13 +74,11 @@ char* os::iso8601_time(char* buffer, size_t buffer_length) {
const int milliseconds_after_second =
milliseconds_since_19700101 % milliseconds_per_microsecond;
// Convert the time value to a tm and timezone variable
const struct tm *time_struct_temp = localtime(&seconds_since_19700101);
if (time_struct_temp == NULL) {
assert(false, "Failed localtime");
struct tm time_struct;
if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
assert(false, "Failed localtime_pd");
return NULL;
}
// Save the results of localtime
const struct tm time_struct = *time_struct_temp;
const time_t zone = timezone;
// If daylight savings time is in effect,
@ -93,10 +91,10 @@ char* os::iso8601_time(char* buffer, size_t buffer_length) {
UTC_to_local = UTC_to_local - seconds_per_hour;
}
// Compute the time zone offset.
// localtime(3C) sets timezone to the difference (in seconds)
// localtime_pd() sets timezone to the difference (in seconds)
// between UTC and and local time.
// ISO 8601 says we need the difference between local time and UTC,
// we change the sign of the localtime(3C) result.
// we change the sign of the localtime_pd() result.
const time_t local_to_UTC = -(UTC_to_local);
// Then we have to figure out if if we are ahead (+) or behind (-) UTC.
char sign_local_to_UTC = '+';

View File

@ -120,7 +120,8 @@ class os: AllStatic {
// Return current local time in a string (YYYY-MM-DD HH:MM:SS).
// It is MT safe, but not async-safe, as reading time zone
// information may require a lock on some platforms.
static char* local_time_string(char *buf, size_t buflen);
static char* local_time_string(char *buf, size_t buflen);
static struct tm* localtime_pd (const time_t* clock, struct tm* res);
// Fill in buffer with current local time as an ISO-8601 string.
// E.g., YYYY-MM-DDThh:mm:ss.mmm+zzzz.
// Returns buffer, or NULL if it failed.

View File

@ -1,5 +1,5 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -74,6 +74,7 @@ extern int BytesPerHeapOop;
extern int BitsPerHeapOop;
const int BitsPerJavaInteger = 32;
const int BitsPerJavaLong = 64;
const int BitsPerSize_t = size_tSize * BitsPerByte;
// Size of a char[] needed to represent a jint as a string in decimal.
@ -906,6 +907,14 @@ inline int exact_log2(intptr_t x) {
return log2_intptr(x);
}
//* the argument must be exactly a power of 2
inline int exact_log2_long(jlong x) {
#ifdef ASSERT
if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
#endif
return log2_long(x);
}
// returns integer round-up to the nearest multiple of s (s must be a power of two)
inline intptr_t round_to(intptr_t x, uintx s) {

View File

@ -25,6 +25,12 @@
# include "incls/_precompiled.incl"
# include "incls/_taskqueue.cpp.incl"
#ifdef TRACESPINNING
uint ParallelTaskTerminator::_total_yields = 0;
uint ParallelTaskTerminator::_total_spins = 0;
uint ParallelTaskTerminator::_total_peeks = 0;
#endif
bool TaskQueueSuper::peek() {
return _bottom != _age.top();
}
@ -69,15 +75,62 @@ bool
ParallelTaskTerminator::offer_termination(TerminatorTerminator* terminator) {
Atomic::inc(&_offered_termination);
juint yield_count = 0;
uint yield_count = 0;
// Number of hard spin loops done since last yield
uint hard_spin_count = 0;
// Number of iterations in the hard spin loop.
uint hard_spin_limit = WorkStealingHardSpins;
// If WorkStealingSpinToYieldRatio is 0, no hard spinning is done.
// If it is greater than 0, then start with a small number
// of spins and increase number with each turn at spinning until
// the count of hard spins exceeds WorkStealingSpinToYieldRatio.
// Then do a yield() call and start spinning afresh.
if (WorkStealingSpinToYieldRatio > 0) {
hard_spin_limit = WorkStealingHardSpins >> WorkStealingSpinToYieldRatio;
hard_spin_limit = MAX2(hard_spin_limit, 1U);
}
// Remember the initial spin limit.
uint hard_spin_start = hard_spin_limit;
// Loop waiting for all threads to offer termination or
// more work.
while (true) {
// Are all threads offering termination?
if (_offered_termination == _n_threads) {
//inner_termination_loop();
return true;
} else {
// Look for more work.
// Periodically sleep() instead of yield() to give threads
// waiting on the cores the chance to grab this code
if (yield_count <= WorkStealingYieldsBeforeSleep) {
// Do a yield or hardspin. For purposes of deciding whether
// to sleep, count this as a yield.
yield_count++;
yield();
// Periodically call yield() instead spinning
// After WorkStealingSpinToYieldRatio spins, do a yield() call
// and reset the counts and starting limit.
if (hard_spin_count > WorkStealingSpinToYieldRatio) {
yield();
hard_spin_count = 0;
hard_spin_limit = hard_spin_start;
#ifdef TRACESPINNING
_total_yields++;
#endif
} else {
// Hard spin this time
// Increase the hard spinning period but only up to a limit.
hard_spin_limit = MIN2(2*hard_spin_limit,
(uint) WorkStealingHardSpins);
for (uint j = 0; j < hard_spin_limit; j++) {
SpinPause();
}
hard_spin_count++;
#ifdef TRACESPINNING
_total_spins++;
#endif
}
} else {
if (PrintGCDetails && Verbose) {
gclog_or_tty->print_cr("ParallelTaskTerminator::offer_termination() "
@ -92,6 +145,9 @@ ParallelTaskTerminator::offer_termination(TerminatorTerminator* terminator) {
sleep(WorkStealingSleepMillis);
}
#ifdef TRACESPINNING
_total_peeks++;
#endif
if (peek_in_queue_set() ||
(terminator != NULL && terminator->should_exit_termination())) {
Atomic::dec(&_offered_termination);
@ -101,6 +157,16 @@ ParallelTaskTerminator::offer_termination(TerminatorTerminator* terminator) {
}
}
#ifdef TRACESPINNING
void ParallelTaskTerminator::print_termination_counts() {
gclog_or_tty->print_cr("ParallelTaskTerminator Total yields: %lld "
"Total spins: %lld Total peeks: %lld",
total_yields(),
total_spins(),
total_peeks());
}
#endif
void ParallelTaskTerminator::reset_for_reuse() {
if (_offered_termination != 0) {
assert(_offered_termination == _n_threads,

View File

@ -22,67 +22,76 @@
*
*/
#ifdef LP64
typedef juint TAG_TYPE;
// for a taskqueue size of 4M
#define LOG_TASKQ_SIZE 22
#else
typedef jushort TAG_TYPE;
// for a taskqueue size of 16K
#define LOG_TASKQ_SIZE 14
#endif
class TaskQueueSuper: public CHeapObj {
protected:
// The first free element after the last one pushed (mod _n).
// (For now we'll assume only 32-bit CAS).
volatile juint _bottom;
volatile uint _bottom;
// log2 of the size of the queue.
enum SomeProtectedConstants {
Log_n = 14
Log_n = LOG_TASKQ_SIZE
};
#undef LOG_TASKQ_SIZE
// Size of the queue.
juint n() { return (1 << Log_n); }
uint n() { return (1 << Log_n); }
// For computing "x mod n" efficiently.
juint n_mod_mask() { return n() - 1; }
uint n_mod_mask() { return n() - 1; }
struct Age {
jushort _top;
jushort _tag;
TAG_TYPE _top;
TAG_TYPE _tag;
jushort tag() const { return _tag; }
jushort top() const { return _top; }
TAG_TYPE tag() const { return _tag; }
TAG_TYPE top() const { return _top; }
Age() { _tag = 0; _top = 0; }
friend bool operator ==(const Age& a1, const Age& a2) {
return a1.tag() == a2.tag() && a1.top() == a2.top();
}
};
Age _age;
// These make sure we do single atomic reads and writes.
Age get_age() {
jint res = *(volatile jint*)(&_age);
uint res = *(volatile uint*)(&_age);
return *(Age*)(&res);
}
void set_age(Age a) {
*(volatile jint*)(&_age) = *(int*)(&a);
*(volatile uint*)(&_age) = *(uint*)(&a);
}
jushort get_top() {
TAG_TYPE get_top() {
return get_age().top();
}
// These both operate mod _n.
juint increment_index(juint ind) {
uint increment_index(uint ind) {
return (ind + 1) & n_mod_mask();
}
juint decrement_index(juint ind) {
uint decrement_index(uint ind) {
return (ind - 1) & n_mod_mask();
}
// Returns a number in the range [0.._n). If the result is "n-1", it
// should be interpreted as 0.
juint dirty_size(juint bot, juint top) {
return ((jint)bot - (jint)top) & n_mod_mask();
uint dirty_size(uint bot, uint top) {
return ((int)bot - (int)top) & n_mod_mask();
}
// Returns the size corresponding to the given "bot" and "top".
juint size(juint bot, juint top) {
juint sz = dirty_size(bot, top);
uint size(uint bot, uint top) {
uint sz = dirty_size(bot, top);
// Has the queue "wrapped", so that bottom is less than top?
// There's a complicated special case here. A pair of threads could
// perform pop_local and pop_global operations concurrently, starting
@ -94,7 +103,7 @@ protected:
// owner performs pop_local's, and several concurrent threads
// attempting to perform the pop_global will all perform the same CAS,
// and only one can succeed. Any stealing thread that reads after
// either the increment or decrement will seen an empty queue, and will
// either the increment or decrement will see an empty queue, and will
// not join the competitors. The "sz == -1 || sz == _n-1" state will
// not be modified by concurrent queues, so the owner thread can reset
// the state to _bottom == top so subsequent pushes will be performed
@ -112,11 +121,11 @@ public:
// Return an estimate of the number of elements in the queue.
// The "careful" version admits the possibility of pop_local/pop_global
// races.
juint size() {
uint size() {
return size(_bottom, get_top());
}
juint dirty_size() {
uint dirty_size() {
return dirty_size(_bottom, get_top());
}
@ -127,15 +136,15 @@ public:
// Maximum number of elements allowed in the queue. This is two less
// than the actual queue size, for somewhat complicated reasons.
juint max_elems() { return n() - 2; }
uint max_elems() { return n() - 2; }
};
template<class E> class GenericTaskQueue: public TaskQueueSuper {
private:
// Slow paths for push, pop_local. (pop_global has no fast path.)
bool push_slow(E t, juint dirty_n_elems);
bool pop_local_slow(juint localBot, Age oldAge);
bool push_slow(E t, uint dirty_n_elems);
bool pop_local_slow(uint localBot, Age oldAge);
public:
// Initializes the queue to empty.
@ -170,7 +179,7 @@ private:
template<class E>
GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
assert(sizeof(Age) == sizeof(jint), "Depends on this.");
assert(sizeof(Age) == sizeof(int), "Depends on this.");
}
template<class E>
@ -182,9 +191,9 @@ void GenericTaskQueue<E>::initialize() {
template<class E>
void GenericTaskQueue<E>::oops_do(OopClosure* f) {
// tty->print_cr("START OopTaskQueue::oops_do");
int iters = size();
juint index = _bottom;
for (int i = 0; i < iters; ++i) {
uint iters = size();
uint index = _bottom;
for (uint i = 0; i < iters; ++i) {
index = decrement_index(index);
// tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
// index, &_elems[index], _elems[index]);
@ -198,10 +207,10 @@ void GenericTaskQueue<E>::oops_do(OopClosure* f) {
template<class E>
bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
if (dirty_n_elems == n() - 1) {
// Actually means 0, so do the push.
juint localBot = _bottom;
uint localBot = _bottom;
_elems[localBot] = t;
_bottom = increment_index(localBot);
return true;
@ -211,7 +220,7 @@ bool GenericTaskQueue<E>::push_slow(E t, juint dirty_n_elems) {
template<class E>
bool GenericTaskQueue<E>::
pop_local_slow(juint localBot, Age oldAge) {
pop_local_slow(uint localBot, Age oldAge) {
// This queue was observed to contain exactly one element; either this
// thread will claim it, or a competing "pop_global". In either case,
// the queue will be logically empty afterwards. Create a new Age value
@ -230,9 +239,8 @@ pop_local_slow(juint localBot, Age oldAge) {
Age tempAge;
// No competing pop_global has yet incremented "top"; we'll try to
// install new_age, thus claiming the element.
assert(sizeof(Age) == sizeof(jint) && sizeof(jint) == sizeof(juint),
"Assumption about CAS unit.");
*(jint*)&tempAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
assert(sizeof(Age) == sizeof(int), "Assumption about CAS unit.");
*(uint*)&tempAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
if (tempAge == oldAge) {
// We win.
assert(dirty_size(localBot, get_top()) != n() - 1,
@ -253,8 +261,8 @@ template<class E>
bool GenericTaskQueue<E>::pop_global(E& t) {
Age newAge;
Age oldAge = get_age();
juint localBot = _bottom;
juint n_elems = size(localBot, oldAge.top());
uint localBot = _bottom;
uint n_elems = size(localBot, oldAge.top());
if (n_elems == 0) {
return false;
}
@ -263,7 +271,7 @@ bool GenericTaskQueue<E>::pop_global(E& t) {
newAge._top = increment_index(newAge.top());
if ( newAge._top == 0 ) newAge._tag++;
Age resAge;
*(jint*)&resAge = Atomic::cmpxchg(*(jint*)&newAge, (volatile jint*)&_age, *(jint*)&oldAge);
*(uint*)&resAge = Atomic::cmpxchg(*(uint*)&newAge, (volatile uint*)&_age, *(uint*)&oldAge);
// Note that using "_bottom" here might fail, since a pop_local might
// have decremented it.
assert(dirty_size(localBot, newAge._top) != n() - 1,
@ -287,7 +295,7 @@ public:
template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
private:
int _n;
uint _n;
GenericTaskQueue<E>** _queues;
public:
@ -300,51 +308,51 @@ public:
}
}
bool steal_1_random(int queue_num, int* seed, E& t);
bool steal_best_of_2(int queue_num, int* seed, E& t);
bool steal_best_of_all(int queue_num, int* seed, E& t);
bool steal_1_random(uint queue_num, int* seed, E& t);
bool steal_best_of_2(uint queue_num, int* seed, E& t);
bool steal_best_of_all(uint queue_num, int* seed, E& t);
void register_queue(int i, GenericTaskQueue<E>* q);
void register_queue(uint i, GenericTaskQueue<E>* q);
GenericTaskQueue<E>* queue(int n);
GenericTaskQueue<E>* queue(uint n);
// The thread with queue number "queue_num" (and whose random number seed
// is at "seed") is trying to steal a task from some other queue. (It
// may try several queues, according to some configuration parameter.)
// If some steal succeeds, returns "true" and sets "t" the stolen task,
// otherwise returns false.
bool steal(int queue_num, int* seed, E& t);
bool steal(uint queue_num, int* seed, E& t);
bool peek();
};
template<class E>
void GenericTaskQueueSet<E>::register_queue(int i, GenericTaskQueue<E>* q) {
assert(0 <= i && i < _n, "index out of range.");
void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
assert(i < _n, "index out of range.");
_queues[i] = q;
}
template<class E>
GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(int i) {
GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
return _queues[i];
}
template<class E>
bool GenericTaskQueueSet<E>::steal(int queue_num, int* seed, E& t) {
for (int i = 0; i < 2 * _n; i++)
bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
for (uint i = 0; i < 2 * _n; i++)
if (steal_best_of_2(queue_num, seed, t))
return true;
return false;
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
if (_n > 2) {
int best_k;
jint best_sz = 0;
for (int k = 0; k < _n; k++) {
uint best_sz = 0;
for (uint k = 0; k < _n; k++) {
if (k == queue_num) continue;
jint sz = _queues[k]->size();
uint sz = _queues[k]->size();
if (sz > best_sz) {
best_sz = sz;
best_k = k;
@ -362,9 +370,9 @@ bool GenericTaskQueueSet<E>::steal_best_of_all(int queue_num, int* seed, E& t) {
}
template<class E>
bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
if (_n > 2) {
int k = queue_num;
uint k = queue_num;
while (k == queue_num) k = randomParkAndMiller(seed) % _n;
return _queues[2]->pop_global(t);
} else if (_n == 2) {
@ -378,20 +386,20 @@ bool GenericTaskQueueSet<E>::steal_1_random(int queue_num, int* seed, E& t) {
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
if (_n > 2) {
int k1 = queue_num;
uint k1 = queue_num;
while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
int k2 = queue_num;
uint k2 = queue_num;
while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
// Sample both and try the larger.
juint sz1 = _queues[k1]->size();
juint sz2 = _queues[k2]->size();
uint sz1 = _queues[k1]->size();
uint sz2 = _queues[k2]->size();
if (sz2 > sz1) return _queues[k2]->pop_global(t);
else return _queues[k1]->pop_global(t);
} else if (_n == 2) {
// Just try the other one.
int k = (queue_num + 1) % 2;
uint k = (queue_num + 1) % 2;
return _queues[k]->pop_global(t);
} else {
assert(_n == 1, "can't be zero.");
@ -402,7 +410,7 @@ bool GenericTaskQueueSet<E>::steal_best_of_2(int queue_num, int* seed, E& t) {
template<class E>
bool GenericTaskQueueSet<E>::peek() {
// Try all the queues.
for (int j = 0; j < _n; j++) {
for (uint j = 0; j < _n; j++) {
if (_queues[j]->peek())
return true;
}
@ -418,11 +426,19 @@ public:
// A class to aid in the termination of a set of parallel tasks using
// TaskQueueSet's for work stealing.
#undef TRACESPINNING
class ParallelTaskTerminator: public StackObj {
private:
int _n_threads;
TaskQueueSetSuper* _queue_set;
jint _offered_termination;
int _offered_termination;
#ifdef TRACESPINNING
static uint _total_yields;
static uint _total_spins;
static uint _total_peeks;
#endif
bool peek_in_queue_set();
protected:
@ -454,13 +470,19 @@ public:
// the terminator is finished.
void reset_for_reuse();
#ifdef TRACESPINNING
static uint total_yields() { return _total_yields; }
static uint total_spins() { return _total_spins; }
static uint total_peeks() { return _total_peeks; }
static void print_termination_counts();
#endif
};
#define SIMPLE_STACK 0
template<class E> inline bool GenericTaskQueue<E>::push(E t) {
#if SIMPLE_STACK
juint localBot = _bottom;
uint localBot = _bottom;
if (_bottom < max_elems()) {
_elems[localBot] = t;
_bottom = localBot + 1;
@ -469,10 +491,10 @@ template<class E> inline bool GenericTaskQueue<E>::push(E t) {
return false;
}
#else
juint localBot = _bottom;
uint localBot = _bottom;
assert((localBot >= 0) && (localBot < n()), "_bottom out of range.");
jushort top = get_top();
juint dirty_n_elems = dirty_size(localBot, top);
TAG_TYPE top = get_top();
uint dirty_n_elems = dirty_size(localBot, top);
assert((dirty_n_elems >= 0) && (dirty_n_elems < n()),
"n_elems out of range.");
if (dirty_n_elems < max_elems()) {
@ -487,19 +509,19 @@ template<class E> inline bool GenericTaskQueue<E>::push(E t) {
template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
#if SIMPLE_STACK
juint localBot = _bottom;
uint localBot = _bottom;
assert(localBot > 0, "precondition.");
localBot--;
t = _elems[localBot];
_bottom = localBot;
return true;
#else
juint localBot = _bottom;
uint localBot = _bottom;
// This value cannot be n-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
// resets the size( to 0 before the next call (which is sequential,
// since this is pop_local.)
juint dirty_n_elems = dirty_size(localBot, get_top());
uint dirty_n_elems = dirty_size(localBot, get_top());
assert(dirty_n_elems != n() - 1, "Shouldn't be possible...");
if (dirty_n_elems == 0) return false;
localBot = decrement_index(localBot);
@ -512,7 +534,7 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
// If there's still at least one element in the queue, based on the
// "_bottom" and "age" we've read, then there can be no interference with
// a "pop_global" operation, and we're done.
juint tp = get_top();
TAG_TYPE tp = get_top(); // XXX
if (size(localBot, tp) > 0) {
assert(dirty_size(localBot, tp) != n() - 1,
"Shouldn't be possible...");
@ -581,7 +603,7 @@ class RegionTaskQueueWithOverflow: public CHeapObj {
bool is_empty();
bool stealable_is_empty();
bool overflow_is_empty();
juint stealable_size() { return _region_queue.size(); }
uint stealable_size() { return _region_queue.size(); }
RegionTaskQueue* task_queue() { return &_region_queue; }
};

View File

@ -32,7 +32,7 @@ class WorkData;
// An abstract task to be worked on by a gang.
// You subclass this to supply your own work() method
class AbstractGangTask: public CHeapObj {
class AbstractGangTask VALUE_OBJ_CLASS_SPEC {
public:
// The abstract work method.
// The argument tells you which member of the gang you are.

View File

@ -28,9 +28,9 @@
# Get OS/ARCH specifics
OSNAME = $(shell uname -s)
SLASH_JAVA = /java
ifeq ($(OSNAME), SunOS)
PLATFORM = solaris
SLASH_JAVA = /java
ARCH = $(shell uname -p)
ifeq ($(ARCH), i386)
ARCH=i586
@ -38,6 +38,7 @@ ifeq ($(OSNAME), SunOS)
endif
ifeq ($(OSNAME), Linux)
PLATFORM = linux
SLASH_JAVA = /java
ARCH = $(shell uname -m)
ifeq ($(ARCH), i386)
ARCH = i586
@ -62,6 +63,10 @@ ifeq ($(OSNAME), Windows_NT)
EXESUFFIX = .exe
endif
ifdef ALT_SLASH_JAVA
SLASH_JAVA = $(ALT_SLASH_JAVA)
endif
# Utilities used
CD = cd
CP = cp

View File

@ -0,0 +1,220 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/**
* @test
* @bug 6603011
* @summary long/int division by constant
*
* @run main/othervm -Xcomp -Xbatch -XX:-Inline Test
*/
//
// -XX:-Inline is essential to this test so that verification functions
// divi, modi, divl and modl generate "plain" divides.
// -Xcomp -Xbatch are also useful to ensure the full range of
// dividend and divisor combinations are tested
//
import java.net.*;
class s {
static int divi(int dividend, int divisor) { return dividend / divisor; }
static int modi(int dividend, int divisor) { return dividend % divisor; }
static long divl(long dividend, long divisor) { return dividend / divisor; }
static long modl(long dividend, long divisor) { return dividend % divisor; }
}
public class Test implements Runnable {
// Report verbose messages on failure; turn off to suppress
// too much output with gross numbers of failures.
static final boolean VERBOSE = true;
// Initailize DIVISOR so that it is final in this class.
static final int DIVISOR;
static {
int value = 0;
try {
value = Integer.decode(System.getProperty("divisor"));
} catch (Throwable e) {
}
DIVISOR = value;
}
// The methods of interest. We want the JIT to compile these
// and convert the divide into a multiply.
public int divbyI (int dividend) { return dividend / DIVISOR; }
public int modbyI (int dividend) { return dividend % DIVISOR; }
public long divbyL (long dividend) { return dividend / DIVISOR; }
public long modbyL (long dividend) { return dividend % DIVISOR; }
public int divisor() { return DIVISOR; }
public boolean checkI (int dividend) {
int quo = divbyI(dividend);
int rem = modbyI(dividend);
int quo0 = s.divi(dividend, divisor());
int rem0 = s.modi(dividend, divisor());
if (quo != quo0 || rem != rem0) {
if (VERBOSE) {
System.out.println("Computed: " + dividend + " / " + divisor() + " = " +
quo + ", " + dividend + " % " + divisor() + " = " + rem );
System.out.println("expected: " + dividend + " / " + divisor() + " = " +
quo0 + ", " + dividend + " % " + divisor() + " = " + rem0);
// Report sign of rem failure
if (rem != 0 && (rem ^ dividend) < 0) {
System.out.println(" rem & dividend have different signs");
}
// Report range of rem failure
if (java.lang.Math.abs(rem) >= java.lang.Math.abs(divisor())) {
System.out.println(" remainder out of range");
}
// Report quo/rem identity relationship failure
if ((quo * divisor()) + rem != dividend) {
System.out.println(" quotien/remainder invariant broken");
}
}
return false;
}
return true;
}
public boolean checkL (long dividend) {
long quo = divbyL(dividend);
long rem = modbyL(dividend);
long quo0 = s.divl(dividend, divisor());
long rem0 = s.modl(dividend, divisor());
if (quo != quo0 || rem != rem0) {
if (VERBOSE) {
System.out.println(" " + dividend + " / " + divisor() + " = " +
quo + ", " + dividend + " % " + divisor() + " = " + rem);
// Report sign of rem failure
if (rem != 0 && (rem ^ dividend) < 0) {
System.out.println(" rem & dividend have different signs");
}
// Report range of rem failure
if (java.lang.Math.abs(rem) >= java.lang.Math.abs(divisor())) {
System.out.println(" remainder out of range");
}
// Report quo/rem identity relationship failure
if ((quo * divisor()) + rem != dividend) {
System.out.println(" (" + quo + " * " + divisor() + ") + " + rem + " != "
+ dividend);
}
}
return false;
}
return true;
}
public void run() {
// Don't try to divide by zero
if (divisor() == 0) return;
// Range of dividends to check. Try dividends from start to end
// inclusive, as well as variations on those values as shifted
// left.
int start = -1024;
int end = 1024;
// Test int division using a variety of dividends.
int wrong = 0;
int total = 0;
outerloop:
for (int i = start; i <= end; i++) {
for (int s = 0; s < 32; s += 4) {
total++;
int dividend = i << s;
if (!checkI(dividend)) {
wrong++;
// Stop on the first failure
// break outerloop;
}
}
}
if (wrong > 0) {
System.out.println("divisor " + divisor() + ": " +
wrong + "/" + total + " wrong int divisions");
}
// Test long division using a variety of dividends.
wrong = 0;
total = 0;
outerloop:
for (int i = start; i <= end; i++) {
for (int s = 0; s < 64; s += 4) {
total++;
long dividend = i << s;
if (!checkL(dividend)) {
wrong++;
// Stop on the first failure
// break outerloop;
}
}
}
if (wrong > 0) {
System.out.println("divisor " + divisor() + ": " +
wrong + "/" + total + " wrong long divisions");
}
}
// Reload this class with the "divisor" property set to the input parameter.
// This allows the JIT to see q.DIVISOR as a final constant, and change
// any divisions or mod operations into multiplies.
public static void test_divisor(int divisor,
URLClassLoader apploader) throws Exception {
System.setProperty("divisor", "" + divisor);
ClassLoader loader = new URLClassLoader(apploader.getURLs(),
apploader.getParent());
Class c = loader.loadClass("Test");
Runnable r = (Runnable)c.newInstance();
r.run();
}
public static void main(String[] args) throws Exception {
Class cl = Class.forName("Test");
URLClassLoader apploader = (URLClassLoader)cl.getClassLoader();
// Test every divisor between -100 and 100.
for (int i = -100; i <= 100; i++) {
test_divisor(i, apploader);
}
// Try a few divisors outside the typical range.
// The values below have been observed in rt.jar.
test_divisor(101, apploader);
test_divisor(400, apploader);
test_divisor(1000, apploader);
test_divisor(3600, apploader);
test_divisor(9973, apploader);
test_divisor(86400, apploader);
test_divisor(1000000, apploader);
}
}

View File

@ -27,7 +27,7 @@
* @bug 6775880
* @summary EA +DeoptimizeALot: assert(mon_info->owner()->is_locked(),"object must be locked now")
* @compile -source 1.4 -target 1.4 Test.java
* @run main/othervm -server -Xbatch -XX:+DoEscapeAnalysis -XX:+DeoptimizeALot -XX:CompileCommand=exclude,java.lang.AbstractStringBuilder::append Test
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -Xbatch -XX:+DoEscapeAnalysis -XX:+DeoptimizeALot -XX:CompileCommand=exclude,java.lang.AbstractStringBuilder::append Test
*/
public class Test {

View File

@ -0,0 +1,60 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
/*
* @test
* @bug 6795161
* @summary Escape analysis leads to data corruption
* @run main/othervm -server -Xcomp -XX:CompileOnly=Test -XX:+DoEscapeAnalysis Test
*/
class Test_Class_1 {
static String var_1;
static void badFunc(int size)
{
try {
for (int i = 0; i < 1; (new byte[size-i])[0] = 0, i++) {}
} catch (Exception e) {
// don't comment it out, it will lead to correct results ;)
//System.out.println("Got exception: " + e);
}
}
}
public class Test {
static String var_1_copy = Test_Class_1.var_1;
static byte var_check;
public static void main(String[] args)
{
var_check = 1;
Test_Class_1.badFunc(-1);
System.out.println("EATester.var_check = " + Test.var_check + " (expected 1)\n");
}
}

View File

@ -0,0 +1,48 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/**
* @test
* @bug 6795362
* @summary 32bit server compiler leads to wrong results on solaris-x86
*
* @run main/othervm -Xcomp -XX:CompileOnly=Test6795362.sub Test6795362
*/
public class Test6795362 {
public static void main(String[] args)
{
sub();
if (var_bad != 0)
throw new InternalError(var_bad + " != 0");
}
static long var_bad = -1L;
static void sub()
{
var_bad >>= 65;
var_bad /= 65;
}
}

View File

@ -0,0 +1,47 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
/*
* @test
* @bug 6799693
* @summary Server compiler leads to data corruption when expression throws an Exception
* @run main/othervm -Xcomp -XX:CompileOnly=Test Test
*/
public class Test {
static int var_bad = 1;
public static void main(String[] args)
{
var_bad++;
try {
for (int i = 0; i < 10; i++) (new byte[((byte)-1 << i)])[0] = 0;
}
catch (Exception e) { System.out.println("Got " + e); }
System.out.println("Test.var_bad = " + var_bad + " (expected 2)\n");
}
}

View File

@ -0,0 +1,109 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/**
* @test
* @bug 6800154
* @summary Add comments to long_by_long_mulhi() for better understandability
*
* @run main/othervm -Xcomp -XX:CompileOnly=Test6800154.divcomp Test6800154
*/
import java.net.URLClassLoader;
public class Test6800154 implements Runnable {
static final long[] DIVIDENDS = {
0,
1,
2,
1423487,
4444441,
4918923241323L,
-1,
-24351,
0x3333,
0x0000000080000000L,
0x7fffffffffffffffL,
0x8000000000000000L
};
static final long[] DIVISORS = {
1,
2,
17,
12342,
24123,
143444,
123444442344L,
-1,
-2,
-4423423234231423L,
0x0000000080000000L,
0x7fffffffffffffffL,
0x8000000000000000L
};
// Initialize DIVISOR so that it is final in this class.
static final long DIVISOR;
static {
long value = 0;
try {
value = Long.decode(System.getProperty("divisor"));
} catch (Throwable e) {
}
DIVISOR = value;
}
public static void main(String[] args) throws Exception
{
Class cl = Class.forName("Test6800154");
URLClassLoader apploader = (URLClassLoader) cl.getClassLoader();
// Iterate over all divisors.
for (int i = 0; i < DIVISORS.length; i++) {
System.setProperty("divisor", "" + DIVISORS[i]);
ClassLoader loader = new URLClassLoader(apploader.getURLs(), apploader.getParent());
Class c = loader.loadClass("Test6800154");
Runnable r = (Runnable) c.newInstance();
r.run();
}
}
public void run()
{
// Iterate over all dividends.
for (int i = 0; i < DIVIDENDS.length; i++) {
long dividend = DIVIDENDS[i];
long expected = divint(dividend);
long result = divcomp(dividend);
if (result != expected)
throw new InternalError(dividend + " / " + DIVISOR + " failed: " + result + " != " + expected);
}
}
static long divint(long a) { return a / DIVISOR; }
static long divcomp(long a) { return a / DIVISOR; }
}

View File

@ -0,0 +1,80 @@
/*
* Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*/
/**
* @test
* @bug 6805724
* @summary ModLNode::Ideal() generates functionally incorrect graph when divisor is any (2^k-1) constant.
*
* @run main/othervm -Xcomp -XX:CompileOnly=Test6805724.fcomp Test6805724
*/
import java.net.URLClassLoader;
public class Test6805724 implements Runnable {
// Initialize DIVISOR so that it is final in this class.
static final long DIVISOR; // 2^k-1 constant
static {
long value = 0;
try {
value = Long.decode(System.getProperty("divisor"));
} catch (Throwable t) {
// This one is required for the Class.forName() in main.
}
DIVISOR = value;
}
static long fint(long x) {
return x % DIVISOR;
}
static long fcomp(long x) {
return x % DIVISOR;
}
public void run() {
long a = 0x617981E1L;
long expected = fint(a);
long result = fcomp(a);
if (result != expected)
throw new InternalError(result + " != " + expected);
}
public static void main(String args[]) throws Exception {
Class cl = Class.forName("Test6805724");
URLClassLoader apploader = (URLClassLoader) cl.getClassLoader();
// Iterate over all 2^k-1 divisors.
for (int k = 1; k < Long.SIZE; k++) {
long divisor = (1L << k) - 1;
System.setProperty("divisor", "" + divisor);
ClassLoader loader = new URLClassLoader(apploader.getURLs(), apploader.getParent());
Class c = loader.loadClass("Test6805724");
Runnable r = (Runnable) c.newInstance();
r.run();
}
}
}