8235710: Remove the legacy elliptic curves

Reviewed-by: xuelei, erikj
This commit is contained in:
Anthony Scarpino 2020-09-25 02:40:36 +00:00
parent 8239b67d4f
commit 0b83fc0150
77 changed files with 107 additions and 20127 deletions

View File

@ -242,7 +242,6 @@ HOTSPOT_SETUP_MISC
#
###############################################################################
JDKOPT_DETECT_INTREE_EC
JDKOPT_ENABLE_DISABLE_FAILURE_HANDLER
JDKOPT_ENABLE_DISABLE_GENERATE_CLASSLIST
JDKOPT_EXCLUDE_TRANSLATIONS

View File

@ -228,23 +228,6 @@ AC_DEFUN_ONCE([JDKOPT_SETUP_JDK_OPTIONS],
])
###############################################################################
#
# Enable or disable the elliptic curve crypto implementation
#
AC_DEFUN_ONCE([JDKOPT_DETECT_INTREE_EC],
[
AC_MSG_CHECKING([if elliptic curve crypto implementation is present])
if test -d "${TOPDIR}/src/jdk.crypto.ec/share/native/libsunec/impl"; then
ENABLE_INTREE_EC=true
AC_MSG_RESULT([yes])
else
ENABLE_INTREE_EC=false
AC_MSG_RESULT([no])
fi
AC_SUBST(ENABLE_INTREE_EC)
])
AC_DEFUN_ONCE([JDKOPT_SETUP_DEBUG_SYMBOLS],
[

View File

@ -53,11 +53,6 @@ public class CurveDB {
private static Collection<? extends NamedCurve> specCollection;
// Used by SunECEntries
public static Collection<? extends NamedCurve>getSupportedCurves() {
return specCollection;
}
// Return a NamedCurve for the specified OID/name or null if unknown.
public static NamedCurve lookup(String name) {
NamedCurve spec = oidMap.get(name);

View File

@ -495,16 +495,7 @@ sun.security.krb5.maxReferrals=5
# in the jdk.[tls|certpath|jar].disabledAlgorithms properties. To include this
# list in any of the disabledAlgorithms properties, add the property name as
# an entry.
jdk.disabled.namedCurves = secp112r1, secp112r2, secp128r1, secp128r2, \
secp160k1, secp160r1, secp160r2, secp192k1, secp192r1, secp224k1, \
secp224r1, secp256k1, sect113r1, sect113r2, sect131r1, sect131r2, \
sect163k1, sect163r1, sect163r2, sect193r1, sect193r2, sect233k1, \
sect233r1, sect239k1, sect283k1, sect283r1, sect409k1, sect409r1, \
sect571k1, sect571r1, X9.62 c2tnb191v1, X9.62 c2tnb191v2, \
X9.62 c2tnb191v3, X9.62 c2tnb239v1, X9.62 c2tnb239v2, X9.62 c2tnb239v3, \
X9.62 c2tnb359v1, X9.62 c2tnb431r1, X9.62 prime192v2, X9.62 prime192v3, \
X9.62 prime239v1, X9.62 prime239v2, X9.62 prime239v3, brainpoolP256r1, \
brainpoolP320r1, brainpoolP384r1, brainpoolP512r1
#jdk.disabled.namedCurves=
#
# Algorithm restrictions for certification path (CertPath) processing
@ -642,8 +633,7 @@ jdk.disabled.namedCurves = secp112r1, secp112r2, secp128r1, secp128r2, \
#
#
jdk.certpath.disabledAlgorithms=MD2, MD5, SHA1 jdkCA & usage TLSServer, \
RSA keySize < 1024, DSA keySize < 1024, EC keySize < 224, \
include jdk.disabled.namedCurves
RSA keySize < 1024, DSA keySize < 1024, EC keySize < 224
#
# Legacy algorithms for certification path (CertPath) processing and
@ -707,7 +697,7 @@ jdk.security.legacyAlgorithms=SHA1, \
# See "jdk.certpath.disabledAlgorithms" for syntax descriptions.
#
jdk.jar.disabledAlgorithms=MD2, MD5, RSA keySize < 1024, \
DSA keySize < 1024, include jdk.disabled.namedCurves
DSA keySize < 1024
#
# Algorithm restrictions for Secure Socket Layer/Transport Layer Security
@ -742,8 +732,7 @@ jdk.jar.disabledAlgorithms=MD2, MD5, RSA keySize < 1024, \
# jdk.tls.disabledAlgorithms=MD5, SSLv3, DSA, RSA keySize < 2048, \
# rsa_pkcs1_sha1, secp224r1
jdk.tls.disabledAlgorithms=SSLv3, RC4, DES, MD5withRSA, DH keySize < 1024, \
EC keySize < 224, 3DES_EDE_CBC, anon, NULL, \
include jdk.disabled.namedCurves
EC keySize < 224, 3DES_EDE_CBC, anon, NULL
#
# Legacy algorithms for Secure Socket Layer/Transport Layer Security (SSL/TLS)

View File

@ -169,22 +169,12 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
}
byte[] result;
Optional<byte[]> resultOpt = deriveKeyImpl(privateKey, publicKey);
if (resultOpt.isPresent()) {
result = resultOpt.get();
} else {
if (SunEC.isNativeDisabled()) {
NamedCurve privNC = CurveDB.lookup(privateKey.getParams());
NamedCurve pubNC = CurveDB.lookup(publicKey.getParams());
if (resultOpt.isEmpty()) {
throw new IllegalStateException(
new InvalidAlgorithmParameterException("Legacy SunEC " +
"curve disabled, one or both keys: " +
"Private: " + ((privNC != null) ?
privNC.toString() : " unknown") +
", PublicKey:" + ((pubNC != null) ?
pubNC.toString() : " unknown")));
}
result = deriveKeyNative(privateKey, publicKey);
new InvalidAlgorithmParameterException("Curve not supported: " +
publicKey.getParams().toString()));
}
result = resultOpt.get();
publicKey = null;
return result;
}
@ -263,42 +253,4 @@ public final class ECDHKeyAgreement extends KeyAgreementSpi {
return Optional.of(result);
}
private static
byte[] deriveKeyNative(ECPrivateKey privateKey, ECPublicKey publicKey) {
ECParameterSpec params = privateKey.getParams();
byte[] s = privateKey.getS().toByteArray();
byte[] encodedParams = // DER OID
ECUtil.encodeECParameterSpec(null, params);
byte[] publicValue;
if (publicKey instanceof ECPublicKeyImpl) {
ECPublicKeyImpl ecPub = (ECPublicKeyImpl) publicKey;
publicValue = ecPub.getEncodedPublicValue();
} else { // instanceof ECPublicKey
publicValue =
ECUtil.encodePoint(publicKey.getW(), params.getCurve());
}
try {
return deriveKey(s, publicValue, encodedParams);
} catch (GeneralSecurityException e) {
throw new ProviderException("Could not derive key", e);
}
}
/**
* Generates a secret key using the public and private keys.
*
* @param s the private key's S value.
* @param w the public key's W point (in uncompressed form).
* @param encodedParams the curve's DER encoded object identifier.
*
* @return byte[] the secret key.
*/
private static native byte[] deriveKey(byte[] s, byte[] w,
byte[] encodedParams) throws GeneralSecurityException;
}

View File

@ -466,53 +466,6 @@ abstract class ECDSASignature extends SignatureSpi {
}
private Optional<byte[]> signDigestAvailable(ECPrivateKey privateKey,
byte[] digest, SecureRandom random) throws SignatureException {
ECParameterSpec params = privateKey.getParams();
// seed is the key size + 64 bits
int seedBits = params.getOrder().bitLength() + 64;
Optional<ECDSAOperations> opsOpt =
ECDSAOperations.forParameters(params);
if (opsOpt.isEmpty()) {
return Optional.empty();
} else {
byte[] sig = signDigestImpl(opsOpt.get(), seedBits, digest,
privateKey, random);
return Optional.of(sig);
}
}
private byte[] signDigestNative(ECPrivateKey privateKey, byte[] digest,
SecureRandom random) throws SignatureException {
byte[] s = privateKey.getS().toByteArray();
ECParameterSpec params = privateKey.getParams();
// DER OID
byte[] encodedParams = ECUtil.encodeECParameterSpec(null, params);
int orderLength = params.getOrder().bitLength();
// seed is twice the order length (in bytes) plus 1
byte[] seed = new byte[(((orderLength + 7) >> 3) + 1) * 2];
random.nextBytes(seed);
// random bits needed for timing countermeasures
int timingArgument = random.nextInt();
// values must be non-zero to enable countermeasures
timingArgument |= 1;
try {
return signDigest(digest, s, encodedParams, seed,
timingArgument);
} catch (GeneralSecurityException e) {
throw new SignatureException("Could not sign data", e);
}
}
// sign the data and return the signature. See JCA doc
@Override
protected byte[] engineSign() throws SignatureException {
@ -522,21 +475,18 @@ abstract class ECDSASignature extends SignatureSpi {
}
byte[] digest = getDigestValue();
Optional<byte[]> sigOpt = signDigestAvailable(privateKey, digest, random);
byte[] sig;
if (sigOpt.isPresent()) {
sig = sigOpt.get();
} else {
if (SunEC.isNativeDisabled()) {
NamedCurve nc = CurveDB.lookup(privateKey.getParams());
throw new SignatureException(
new InvalidAlgorithmParameterException(
"Legacy SunEC curve disabled: " +
(nc != null ? nc.toString()
: "unknown")));
}
sig = signDigestNative(privateKey, digest, random);
ECParameterSpec params = privateKey.getParams();
// seed is the key size + 64 bits
int seedBits = params.getOrder().bitLength() + 64;
Optional<ECDSAOperations> opsOpt =
ECDSAOperations.forParameters(params);
if (opsOpt.isEmpty()) {
throw new SignatureException("Curve not supported: " +
params.toString());
}
byte[] sig = signDigestImpl(opsOpt.get(), seedBits, digest, privateKey,
random);
if (p1363Format) {
return sig;
@ -557,59 +507,14 @@ abstract class ECDSASignature extends SignatureSpi {
}
byte[] digest = getDigestValue();
Optional<Boolean> verifyOpt
= verifySignedDigestAvailable(publicKey, sig, digest);
if (verifyOpt.isPresent()) {
return verifyOpt.get();
} else {
if (SunEC.isNativeDisabled()) {
NamedCurve nc = CurveDB.lookup(publicKey.getParams());
throw new SignatureException(
new InvalidAlgorithmParameterException(
"Legacy SunEC curve disabled: " +
(nc != null ? nc.toString()
: "unknown")));
}
byte[] w;
ECParameterSpec params = publicKey.getParams();
// DER OID
byte[] encodedParams = ECUtil.encodeECParameterSpec(null, params);
if (publicKey instanceof ECPublicKeyImpl) {
w = ((ECPublicKeyImpl) publicKey).getEncodedPublicValue();
} else { // instanceof ECPublicKey
w = ECUtil.encodePoint(publicKey.getW(), params.getCurve());
}
try {
return verifySignedDigest(sig, digest, w, encodedParams);
} catch (GeneralSecurityException e) {
throw new SignatureException("Could not verify signature", e);
}
}
}
private Optional<Boolean> verifySignedDigestAvailable(
ECPublicKey publicKey, byte[] sig, byte[] digestValue) {
ECParameterSpec params = publicKey.getParams();
Optional<ECDSAOperations> opsOpt =
ECDSAOperations.forParameters(params);
ECDSAOperations.forParameters(publicKey.getParams());
if (opsOpt.isEmpty()) {
return Optional.empty();
} else {
boolean result = verifySignedDigestImpl(opsOpt.get(), digestValue,
publicKey, sig);
return Optional.of(result);
throw new SignatureException("Curve not supported: " +
publicKey.getParams().toString());
}
}
private boolean verifySignedDigestImpl(ECDSAOperations ops,
byte[] digest, ECPublicKey pub, byte[] sig) {
return ops.verifySignedDigest(digest, sig, pub.getW());
return opsOpt.get().verifySignedDigest(digest, sig, publicKey.getW());
}
// set parameter, not supported. See JCA doc
@ -657,40 +562,4 @@ abstract class ECDSASignature extends SignatureSpi {
throw new ProviderException("Error retrieving EC parameters", e);
}
}
/**
* Signs the digest using the private key.
*
* @param digest the digest to be signed.
* @param s the private key's S value.
* @param encodedParams the curve's DER encoded object identifier.
* @param seed the random seed.
* @param timing When non-zero, the implmentation will use timing
* countermeasures to hide secrets from timing channels. The EC
* implementation will disable the countermeasures when this value is
* zero, because the underlying EC functions are shared by several
* crypto operations, some of which do not use the countermeasures.
* The high-order 31 bits must be uniformly random. The entropy from
* these bits is used by the countermeasures.
*
* @return byte[] the signature.
*/
private static native byte[] signDigest(byte[] digest, byte[] s,
byte[] encodedParams, byte[] seed, int timing)
throws GeneralSecurityException;
/**
* Verifies the signed digest using the public key.
*
* @param signature the signature to be verified. It is encoded
* as a concatenation of the key's R and S values.
* @param digest the digest to be used.
* @param w the public key's W point (in uncompressed form).
* @param encodedParams the curve's DER encoded object identifier.
*
* @return boolean true if the signature is successfully verified.
*/
private static native boolean verifySignedDigest(byte[] signature,
byte[] digest, byte[] w, byte[] encodedParams)
throws GeneralSecurityException;
}

View File

@ -95,7 +95,7 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
ecSpec = ECUtil.getECParameterSpec(null, ecParams);
if (ecSpec == null) {
throw new InvalidAlgorithmParameterException(
"Unsupported curve: " + params);
"Curve not supported: " + params);
}
} else if (params instanceof ECGenParameterSpec) {
String name = ((ECGenParameterSpec) params).getName();
@ -126,29 +126,13 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
ecParams.init(ecSpec);
} catch (InvalidParameterSpecException ex) {
throw new InvalidAlgorithmParameterException(
"Unsupported curve: " + ecSpec.toString());
"Curve not supported: " + ecSpec.toString());
}
// Check if the java implementation supports this curve
if (ECOperations.forParameters(ecSpec).isPresent()) {
return;
}
// Check if the native library supported this curve, if available
if (SunEC.isNativeDisabled()) {
if (ECOperations.forParameters(ecSpec).isEmpty()) {
throw new InvalidAlgorithmParameterException(
"Unsupported curve: " + ecSpec.toString());
}
byte[] encodedParams;
try {
encodedParams = ecParams.getEncoded();
} catch (IOException ex) {
throw new RuntimeException(ex);
}
if (!isCurveSupported(encodedParams)) {
throw new InvalidAlgorithmParameterException(
"Unsupported curve: " + ecParams.toString());
"Curve not supported: " + ecSpec.toString());
}
}
@ -168,16 +152,9 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
} catch (Exception ex) {
throw new ProviderException(ex);
}
if (SunEC.isNativeDisabled()) {
throw new ProviderException("Legacy SunEC curve disabled: " +
throw new ProviderException("Curve not supported: " +
params.toString());
}
try {
return generateKeyPairNative(random);
} catch (Exception ex) {
throw new ProviderException(ex);
}
}
private byte[] generatePrivateScalar(SecureRandom random,
ECOperations ecOps, int seedSize) {
@ -231,32 +208,6 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
return Optional.of(new KeyPair(publicKey, privateKey));
}
private KeyPair generateKeyPairNative(SecureRandom random)
throws Exception {
ECParameterSpec ecParams = (ECParameterSpec) params;
byte[] encodedParams = ECUtil.encodeECParameterSpec(null, ecParams);
// seed is twice the key size (in bytes) plus 1
byte[] seed = new byte[(((keySize + 7) >> 3) + 1) * 2];
random.nextBytes(seed);
Object[] keyBytes = generateECKeyPair(keySize, encodedParams, seed);
// The 'params' object supplied above is equivalent to the native
// one so there is no need to fetch it.
// keyBytes[0] is the encoding of the native private key
BigInteger s = new BigInteger(1, (byte[]) keyBytes[0]);
PrivateKey privateKey = new ECPrivateKeyImpl(s, ecParams);
// keyBytes[1] is the encoding of the native public key
byte[] pubKey = (byte[]) keyBytes[1];
ECPoint w = ECUtil.decodePoint(pubKey, ecParams.getCurve());
PublicKey publicKey = new ECPublicKeyImpl(w, ecParams);
return new KeyPair(publicKey, privateKey);
}
private void checkKeySize(int keySize) throws InvalidParameterException {
if (keySize < KEY_SIZE_MIN) {
throw new InvalidParameterException
@ -268,24 +219,4 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
}
this.keySize = keySize;
}
/**
* Checks whether the curve in the encoded parameters is supported by the
* native implementation. Some curve operations will be performed by the
* Java implementation, but not all of them. So native support is still
* required for all curves.
*
* @param encodedParams encoded parameters in the same form accepted
* by generateECKeyPair
* @return true if and only if generateECKeyPair will succeed for
* the supplied parameters
*/
private static native boolean isCurveSupported(byte[] encodedParams);
/*
* Generates the keypair and returns a 2-element array of encoding bytes.
* The first one is for the private key, the second for the public key.
*/
private static native Object[] generateECKeyPair(int keySize,
byte[] encodedParams, byte[] seed) throws GeneralSecurityException;
}

View File

@ -31,9 +31,11 @@ import java.security.NoSuchAlgorithmException;
import java.security.PrivilegedAction;
import java.security.Provider;
import java.security.ProviderException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import sun.security.ec.ed.EdDSAAlgorithmParameters;
@ -41,6 +43,7 @@ import sun.security.ec.ed.EdDSAKeyFactory;
import sun.security.ec.ed.EdDSAKeyPairGenerator;
import sun.security.ec.ed.EdDSASignature;
import sun.security.util.CurveDB;
import sun.security.util.KnownOIDs;
import sun.security.util.NamedCurve;
import static sun.security.util.SecurityConstants.PROVIDER_VER;
@ -48,54 +51,11 @@ import static sun.security.util.SecurityProviderConstants.*;
/**
* Provider class for the Elliptic Curve provider.
* Supports EC keypair and parameter generation, ECDSA signing and
* ECDH key agreement.
*
* IMPLEMENTATION NOTE:
* The Java classes in this provider access a native ECC implementation
* via JNI to a C++ wrapper class which in turn calls C functions.
* The Java classes are packaged into the jdk.crypto.sunec module and the
* C++ and C functions are packaged into libsunec.so or sunec.dll in the
* JRE native libraries directory. If the native library is not present
* then this provider is registered with support for fewer ECC algorithms
* (KeyPairGenerator, Signature and KeyAgreement are omitted).
*
* @since 1.7
*/
public final class SunEC extends Provider {
private static final long serialVersionUID = -2279741672933606418L;
// This flag is true if the native library is disabled or not loaded.
private static boolean disableNative = true;
static {
String s = sun.security.action.GetPropertyAction.privilegedGetProperty(
"jdk.sunec.disableNative");
if (s != null && s.equalsIgnoreCase("false")) {
disableNative = false;
}
// If native is enabled, verify the library is available.
if (!disableNative) {
try {
AccessController.doPrivileged(new PrivilegedAction<Void>() {
public Void run() {
System.loadLibrary("sunec"); // check for native library
return null;
}
});
} catch (UnsatisfiedLinkError e) {
disableNative = true;
}
}
}
// Check if native library support is disabled.
static boolean isNativeDisabled() {
return SunEC.disableNative;
}
private static class ProviderServiceA extends ProviderService {
ProviderServiceA(Provider p, String type, String algo, String cn,
HashMap<String, String> attrs) {
@ -258,17 +218,11 @@ public final class SunEC extends Provider {
boolean firstCurve = true;
StringBuilder names = new StringBuilder();
Collection<? extends NamedCurve> supportedCurves;
if (SunEC.isNativeDisabled()) {
supportedCurves = Collections.unmodifiableList(List.of(
for (NamedCurve namedCurve :
List.of(
CurveDB.lookup("secp256r1"),
CurveDB.lookup("secp384r1"),
CurveDB.lookup("secp521r1")));
} else {
supportedCurves = CurveDB.getSupportedCurves();
}
for (NamedCurve namedCurve : supportedCurves) {
CurveDB.lookup("secp521r1"))) {
if (!firstCurve) {
names.append("|");
} else {
@ -380,7 +334,6 @@ public final class SunEC extends Provider {
HashMap<String, String> ATTRS = new HashMap<>(1);
ATTRS.put("ImplementedIn", "Software");
/* XDH does not require native implementation */
putService(new ProviderService(this, "KeyFactory",
"XDH", "sun.security.ec.XDHKeyFactory", null, ATTRS));
putService(new ProviderServiceA(this, "KeyFactory",
@ -414,7 +367,6 @@ public final class SunEC extends Provider {
HashMap<String, String> ATTRS = new HashMap<>(1);
ATTRS.put("ImplementedIn", "Software");
/* EdDSA does not require native implementation */
putService(new ProviderService(this, "KeyFactory",
"EdDSA", "sun.security.ec.ed.EdDSAKeyFactory", null, ATTRS));
putService(new ProviderServiceA(this, "KeyFactory",

View File

@ -1,599 +0,0 @@
## Mozilla Elliptic Curve Cryptography (ECC)
### Mozilla ECC Notice
You are receiving a
[copy](http://hg.openjdk.java.net/jdk/jdk/file/tip/src/jdk.crypto.ec/share/native/libsunec/impl)
of the Elliptic Curve Cryptography library in source form or object code.
```
The terms of the Oracle license do NOT apply to the Elliptic Curve Cryptography
library; it is licensed under the following license, separately from the Oracle
programs you received. If you do not wish to install the Elliptic Curve
Cryptography library, you may delete the Elliptic Curve Cryptography library by
removing:
Linux: $(JAVA_HOME)/lib/libsunec.so
macOS: $(JAVA_HOME)/lib/libsunec.dylib
Windows: $(JAVA_HOME)\bin\sunec.dll
```
#### Mozilla ECC Library Removal Impact
```
The Java Cryptographic Service SunEC Provider uses the Mozilla ECC library. If
this native library is removed, the following algorithms will no longer be
available from the SunEC provider using the JCA/JCE APIs:
KeyPairGenerator: EC
KeyAgreement: ECDH
Signature: names that include *withECDSA*
```
#### Written Offer for Source Code
```
For third party technology that you receive from Oracle in binary form which
is licensed under an open source license that gives you the right to receive
the source code for that binary, you can also receive a copy of the source
code on physical media by submitting a written request to:
Oracle America, Inc.
Attn: Associate General Counsel,
Development and Engineering Legal
500 Oracle Parkway, 10th Floor
Redwood Shores, CA 94065
Your request should include:
```
* The name of the component or binary file(s) for which you are requesting
the source code
* The name and version number of the Oracle product containing the binary
* The date you received the Oracle product
* Your name
* Your company name (if applicable)
* Your return mailing address and email and
* A telephone number in the event we need to reach you.
```
We may charge you a fee to cover the cost of physical media and processing.
Your request must be sent (i) within three (3) years of the date you received
the Oracle product that included the component or binary file(s) that are the
subject of your request, or (ii) in the case of code licensed under the GPL
v3, for as long as Oracle offers spare parts or customer support for that
product model.
```
### Mozilla ECC License
```
Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.
The Original Code is the Elliptic Curve Cryptography library.
The Initial Developer of the Original Code is
Sun Microsystems, Inc.
Portions created by the Initial Developer are Copyright (C) 2003
the Initial Developer. All Rights Reserved.
Contributor(s):
Dr Vipul Gupta and
Douglas Stebila, Sun Microsystems Laboratories
The Elliptic Curve Cryptography Library is subject to GNU Lesser Public License
Version 2.1.
```
#### LGPL 2.1
```
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!
```

View File

@ -1,527 +0,0 @@
/*
* Copyright (c) 2009, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include <jni.h>
#include "jni_util.h"
#include "impl/ecc_impl.h"
#include "sun_security_ec_ECDHKeyAgreement.h"
#include "sun_security_ec_ECKeyPairGenerator.h"
#include "sun_security_ec_ECDSASignature.h"
#define ILLEGAL_STATE_EXCEPTION "java/lang/IllegalStateException"
#define INVALID_ALGORITHM_PARAMETER_EXCEPTION \
"java/security/InvalidAlgorithmParameterException"
#define INVALID_PARAMETER_EXCEPTION \
"java/security/InvalidParameterException"
#define KEY_EXCEPTION "java/security/KeyException"
extern "C" {
/*
* Declare library specific JNI_Onload entry if static build
*/
DEF_STATIC_JNI_OnLoad
/*
* Throws an arbitrary Java exception.
*/
void ThrowException(JNIEnv *env, const char *exceptionName)
{
jclass exceptionClazz = env->FindClass(exceptionName);
if (exceptionClazz != NULL) {
env->ThrowNew(exceptionClazz, NULL);
}
}
/*
* Deep free of the ECParams struct
*/
void FreeECParams(ECParams *ecparams, jboolean freeStruct)
{
// Use B_FALSE to free the SECItem->data element, but not the SECItem itself
// Use B_TRUE to free both
SECITEM_FreeItem(&ecparams->fieldID.u.prime, B_FALSE);
SECITEM_FreeItem(&ecparams->curve.a, B_FALSE);
SECITEM_FreeItem(&ecparams->curve.b, B_FALSE);
SECITEM_FreeItem(&ecparams->curve.seed, B_FALSE);
SECITEM_FreeItem(&ecparams->base, B_FALSE);
SECITEM_FreeItem(&ecparams->order, B_FALSE);
SECITEM_FreeItem(&ecparams->DEREncoding, B_FALSE);
SECITEM_FreeItem(&ecparams->curveOID, B_FALSE);
if (freeStruct)
free(ecparams);
}
jbyteArray getEncodedBytes(JNIEnv *env, SECItem *hSECItem)
{
SECItem *s = (SECItem *)hSECItem;
jbyteArray jEncodedBytes = env->NewByteArray(s->len);
if (jEncodedBytes == NULL) {
return NULL;
}
// Copy bytes from a native SECItem buffer to Java byte array
env->SetByteArrayRegion(jEncodedBytes, 0, s->len, (jbyte *)s->data);
if (env->ExceptionCheck()) { // should never happen
return NULL;
}
return jEncodedBytes;
}
/*
* Class: sun_security_ec_ECKeyPairGenerator
* Method: isCurveSupported
* Signature: ([B)Z
*/
JNIEXPORT jboolean
JNICALL Java_sun_security_ec_ECKeyPairGenerator_isCurveSupported
(JNIEnv *env, jclass clazz, jbyteArray encodedParams)
{
SECKEYECParams params_item;
ECParams *ecparams = NULL;
jboolean result = JNI_FALSE;
// The curve is supported if we can get parameters for it
params_item.len = env->GetArrayLength(encodedParams);
params_item.data =
(unsigned char *) env->GetByteArrayElements(encodedParams, 0);
if (params_item.data == NULL) {
goto cleanup;
}
// Fill a new ECParams using the supplied OID
if (EC_DecodeParams(&params_item, &ecparams, 0) != SECSuccess) {
/* bad curve OID */
goto cleanup;
}
// If we make it to here, then the curve is supported
result = JNI_TRUE;
cleanup:
{
if (params_item.data) {
env->ReleaseByteArrayElements(encodedParams,
(jbyte *) params_item.data, JNI_ABORT);
}
if (ecparams) {
FreeECParams(ecparams, true);
}
}
return result;
}
/*
* Class: sun_security_ec_ECKeyPairGenerator
* Method: generateECKeyPair
* Signature: (I[B[B)[[B
*/
JNIEXPORT jobjectArray
JNICALL Java_sun_security_ec_ECKeyPairGenerator_generateECKeyPair
(JNIEnv *env, jclass clazz, jint keySize, jbyteArray encodedParams, jbyteArray seed)
{
ECPrivateKey *privKey = NULL; // contains both public and private values
ECParams *ecparams = NULL;
SECKEYECParams params_item;
jint jSeedLength;
jbyte* pSeedBuffer = NULL;
jobjectArray result = NULL;
jclass baCls = NULL;
jbyteArray jba;
// Initialize the ECParams struct
params_item.len = env->GetArrayLength(encodedParams);
params_item.data =
(unsigned char *) env->GetByteArrayElements(encodedParams, 0);
if (params_item.data == NULL) {
goto cleanup;
}
// Fill a new ECParams using the supplied OID
if (EC_DecodeParams(&params_item, &ecparams, 0) != SECSuccess) {
/* bad curve OID */
ThrowException(env, INVALID_ALGORITHM_PARAMETER_EXCEPTION);
goto cleanup;
}
// Copy seed from Java to native buffer
jSeedLength = env->GetArrayLength(seed);
pSeedBuffer = new jbyte[jSeedLength];
env->GetByteArrayRegion(seed, 0, jSeedLength, pSeedBuffer);
// Generate the new keypair (using the supplied seed)
if (EC_NewKey(ecparams, &privKey, (unsigned char *) pSeedBuffer,
jSeedLength, 0) != SECSuccess) {
ThrowException(env, KEY_EXCEPTION);
goto cleanup;
}
jboolean isCopy;
baCls = env->FindClass("[B");
if (baCls == NULL) {
goto cleanup;
}
result = env->NewObjectArray(2, baCls, NULL);
if (result == NULL) {
goto cleanup;
}
jba = getEncodedBytes(env, &(privKey->privateValue));
if (jba == NULL) {
result = NULL;
goto cleanup;
}
env->SetObjectArrayElement(result, 0, jba); // big integer
if (env->ExceptionCheck()) { // should never happen
result = NULL;
goto cleanup;
}
jba = getEncodedBytes(env, &(privKey->publicValue));
if (jba == NULL) {
result = NULL;
goto cleanup;
}
env->SetObjectArrayElement(result, 1, jba); // encoded ec point
if (env->ExceptionCheck()) { // should never happen
result = NULL;
goto cleanup;
}
cleanup:
{
if (params_item.data) {
env->ReleaseByteArrayElements(encodedParams,
(jbyte *) params_item.data, JNI_ABORT);
}
if (ecparams) {
FreeECParams(ecparams, true);
}
if (privKey) {
FreeECParams(&privKey->ecParams, false);
SECITEM_FreeItem(&privKey->version, B_FALSE);
SECITEM_FreeItem(&privKey->privateValue, B_FALSE);
SECITEM_FreeItem(&privKey->publicValue, B_FALSE);
free(privKey);
}
if (pSeedBuffer) {
delete [] pSeedBuffer;
}
}
return result;
}
/*
* Class: sun_security_ec_ECDSASignature
* Method: signDigest
* Signature: ([B[B[B[B)[B
*/
JNIEXPORT jbyteArray
JNICALL Java_sun_security_ec_ECDSASignature_signDigest
(JNIEnv *env, jclass clazz, jbyteArray digest, jbyteArray privateKey, jbyteArray encodedParams, jbyteArray seed, jint timing)
{
jbyte* pDigestBuffer = NULL;
jint jDigestLength = env->GetArrayLength(digest);
jbyteArray jSignedDigest = NULL;
SECItem signature_item;
jbyte* pSignedDigestBuffer = NULL;
jbyteArray temp;
jint jSeedLength = env->GetArrayLength(seed);
jbyte* pSeedBuffer = NULL;
// Copy digest from Java to native buffer
pDigestBuffer = new jbyte[jDigestLength];
env->GetByteArrayRegion(digest, 0, jDigestLength, pDigestBuffer);
SECItem digest_item;
digest_item.data = (unsigned char *) pDigestBuffer;
digest_item.len = jDigestLength;
ECPrivateKey privKey;
privKey.privateValue.data = NULL;
// Initialize the ECParams struct
ECParams *ecparams = NULL;
SECKEYECParams params_item;
params_item.len = env->GetArrayLength(encodedParams);
params_item.data =
(unsigned char *) env->GetByteArrayElements(encodedParams, 0);
if (params_item.data == NULL) {
goto cleanup;
}
// Fill a new ECParams using the supplied OID
if (EC_DecodeParams(&params_item, &ecparams, 0) != SECSuccess) {
/* bad curve OID */
ThrowException(env, INVALID_ALGORITHM_PARAMETER_EXCEPTION);
goto cleanup;
}
// Extract private key data
privKey.ecParams = *ecparams; // struct assignment
privKey.privateValue.len = env->GetArrayLength(privateKey);
privKey.privateValue.data =
(unsigned char *) env->GetByteArrayElements(privateKey, 0);
if (privKey.privateValue.data == NULL) {
goto cleanup;
}
// Prepare a buffer for the signature (twice the key length)
pSignedDigestBuffer = new jbyte[ecparams->order.len * 2];
signature_item.data = (unsigned char *) pSignedDigestBuffer;
signature_item.len = ecparams->order.len * 2;
// Copy seed from Java to native buffer
pSeedBuffer = new jbyte[jSeedLength];
env->GetByteArrayRegion(seed, 0, jSeedLength, pSeedBuffer);
// Sign the digest (using the supplied seed)
if (ECDSA_SignDigest(&privKey, &signature_item, &digest_item,
(unsigned char *) pSeedBuffer, jSeedLength, 0, timing) != SECSuccess) {
ThrowException(env, KEY_EXCEPTION);
goto cleanup;
}
// Create new byte array
temp = env->NewByteArray(signature_item.len);
if (temp == NULL) {
goto cleanup;
}
// Copy data from native buffer
env->SetByteArrayRegion(temp, 0, signature_item.len, pSignedDigestBuffer);
jSignedDigest = temp;
cleanup:
{
if (params_item.data) {
env->ReleaseByteArrayElements(encodedParams,
(jbyte *) params_item.data, JNI_ABORT);
}
if (privKey.privateValue.data) {
env->ReleaseByteArrayElements(privateKey,
(jbyte *) privKey.privateValue.data, JNI_ABORT);
}
if (pDigestBuffer) {
delete [] pDigestBuffer;
}
if (pSignedDigestBuffer) {
delete [] pSignedDigestBuffer;
}
if (pSeedBuffer) {
delete [] pSeedBuffer;
}
if (ecparams) {
FreeECParams(ecparams, true);
}
}
return jSignedDigest;
}
/*
* Class: sun_security_ec_ECDSASignature
* Method: verifySignedDigest
* Signature: ([B[B[B[B)Z
*/
JNIEXPORT jboolean
JNICALL Java_sun_security_ec_ECDSASignature_verifySignedDigest
(JNIEnv *env, jclass clazz, jbyteArray signedDigest, jbyteArray digest, jbyteArray publicKey, jbyteArray encodedParams)
{
jboolean isValid = false;
// Copy signedDigest from Java to native buffer
jbyte* pSignedDigestBuffer = NULL;
jint jSignedDigestLength = env->GetArrayLength(signedDigest);
pSignedDigestBuffer = new jbyte[jSignedDigestLength];
env->GetByteArrayRegion(signedDigest, 0, jSignedDigestLength,
pSignedDigestBuffer);
SECItem signature_item;
signature_item.data = (unsigned char *) pSignedDigestBuffer;
signature_item.len = jSignedDigestLength;
// Copy digest from Java to native buffer
jbyte* pDigestBuffer = NULL;
jint jDigestLength = env->GetArrayLength(digest);
pDigestBuffer = new jbyte[jDigestLength];
env->GetByteArrayRegion(digest, 0, jDigestLength, pDigestBuffer);
SECItem digest_item;
digest_item.data = (unsigned char *) pDigestBuffer;
digest_item.len = jDigestLength;
// Extract public key data
ECPublicKey pubKey;
pubKey.publicValue.data = NULL;
ECParams *ecparams = NULL;
SECKEYECParams params_item;
// Initialize the ECParams struct
params_item.len = env->GetArrayLength(encodedParams);
params_item.data =
(unsigned char *) env->GetByteArrayElements(encodedParams, 0);
if (params_item.data == NULL) {
goto cleanup;
}
// Fill a new ECParams using the supplied OID
if (EC_DecodeParams(&params_item, &ecparams, 0) != SECSuccess) {
/* bad curve OID */
ThrowException(env, INVALID_ALGORITHM_PARAMETER_EXCEPTION);
goto cleanup;
}
pubKey.ecParams = *ecparams; // struct assignment
pubKey.publicValue.len = env->GetArrayLength(publicKey);
pubKey.publicValue.data =
(unsigned char *) env->GetByteArrayElements(publicKey, 0);
if (ECDSA_VerifyDigest(&pubKey, &signature_item, &digest_item, 0)
!= SECSuccess) {
goto cleanup;
}
isValid = true;
cleanup:
{
if (params_item.data)
env->ReleaseByteArrayElements(encodedParams,
(jbyte *) params_item.data, JNI_ABORT);
if (pubKey.publicValue.data)
env->ReleaseByteArrayElements(publicKey,
(jbyte *) pubKey.publicValue.data, JNI_ABORT);
if (ecparams)
FreeECParams(ecparams, true);
if (pSignedDigestBuffer)
delete [] pSignedDigestBuffer;
if (pDigestBuffer)
delete [] pDigestBuffer;
}
return isValid;
}
/*
* Class: sun_security_ec_ECDHKeyAgreement
* Method: deriveKey
* Signature: ([B[B[B)[B
*/
JNIEXPORT jbyteArray
JNICALL Java_sun_security_ec_ECDHKeyAgreement_deriveKey
(JNIEnv *env, jclass clazz, jbyteArray privateKey, jbyteArray publicKey, jbyteArray encodedParams)
{
jbyteArray jSecret = NULL;
ECParams *ecparams = NULL;
SECItem privateValue_item;
privateValue_item.data = NULL;
SECItem publicValue_item;
publicValue_item.data = NULL;
SECKEYECParams params_item;
params_item.data = NULL;
// Extract private key value
privateValue_item.len = env->GetArrayLength(privateKey);
privateValue_item.data =
(unsigned char *) env->GetByteArrayElements(privateKey, 0);
if (privateValue_item.data == NULL) {
goto cleanup;
}
// Extract public key value
publicValue_item.len = env->GetArrayLength(publicKey);
publicValue_item.data =
(unsigned char *) env->GetByteArrayElements(publicKey, 0);
if (publicValue_item.data == NULL) {
goto cleanup;
}
// Initialize the ECParams struct
params_item.len = env->GetArrayLength(encodedParams);
params_item.data =
(unsigned char *) env->GetByteArrayElements(encodedParams, 0);
if (params_item.data == NULL) {
goto cleanup;
}
// Fill a new ECParams using the supplied OID
if (EC_DecodeParams(&params_item, &ecparams, 0) != SECSuccess) {
/* bad curve OID */
ThrowException(env, INVALID_ALGORITHM_PARAMETER_EXCEPTION);
goto cleanup;
}
// Prepare a buffer for the secret
SECItem secret_item;
secret_item.data = NULL;
secret_item.len = ecparams->order.len * 2;
if (ECDH_Derive(&publicValue_item, ecparams, &privateValue_item, B_FALSE,
&secret_item, 0) != SECSuccess) {
ThrowException(env, ILLEGAL_STATE_EXCEPTION);
goto cleanup;
}
// Create new byte array
jSecret = env->NewByteArray(secret_item.len);
if (jSecret == NULL) {
goto cleanup;
}
// Copy bytes from the SECItem buffer to a Java byte array
env->SetByteArrayRegion(jSecret, 0, secret_item.len,
(jbyte *)secret_item.data);
// Free the SECItem data buffer
SECITEM_FreeItem(&secret_item, B_FALSE);
cleanup:
{
if (privateValue_item.data)
env->ReleaseByteArrayElements(privateKey,
(jbyte *) privateValue_item.data, JNI_ABORT);
if (publicValue_item.data)
env->ReleaseByteArrayElements(publicKey,
(jbyte *) publicValue_item.data, JNI_ABORT);
if (params_item.data)
env->ReleaseByteArrayElements(encodedParams,
(jbyte *) params_item.data, JNI_ABORT);
if (ecparams)
FreeECParams(ecparams, true);
}
return jSecret;
}
} /* extern "C" */

File diff suppressed because it is too large Load Diff

View File

@ -1,52 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Elliptic Curve Cryptography library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
*********************************************************************** */
#ifndef __ec_h_
#define __ec_h_
#define EC_DEBUG 0
#define EC_POINT_FORM_COMPRESSED_Y0 0x02
#define EC_POINT_FORM_COMPRESSED_Y1 0x03
#define EC_POINT_FORM_UNCOMPRESSED 0x04
#define EC_POINT_FORM_HYBRID_Y0 0x06
#define EC_POINT_FORM_HYBRID_Y1 0x07
#define ANSI_X962_CURVE_OID_TOTAL_LEN 10
#define SECG_CURVE_OID_TOTAL_LEN 7
#define BRAINPOOL_CURVE_OID_TOTAL_LEN 11
#endif /* __ec_h_ */

View File

@ -1,126 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _EC2_H
#define _EC2_H
#include "ecl-priv.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
* qy). Uses affine coordinates. */
mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = 2P. Uses affine coordinates. */
mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Validates a point on a GF2m curve. */
mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses affine coordinates. */
mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the irreducible that
* determines the field GF2m. Uses Montgomery projective coordinates. */
mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing);
#ifdef ECL_ENABLE_GF2M_PROJ
/* Converts a point P(px, py) from affine coordinates to projective
* coordinates R(rx, ry, rz). */
mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group);
/* Converts a point P(px, py, pz) from projective coordinates to affine
* coordinates R(rx, ry). */
mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Checks if point P(px, py, pz) is at infinity. Uses projective
* coordinates. */
mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses projective
* coordinates. */
mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, qz). Uses projective coordinates. */
mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = 2P. Uses projective coordinates. */
mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GF2m. Uses projective coordinates. */
mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
#endif /* _EC2_H */

View File

@ -1,260 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
*********************************************************************** */
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
u = MP_DIGITS(r);
MP_USED(r) = 6;
/* u[5] only has 6 significant bits */
z = u[5];
u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[4];
u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[3];
u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
z = u[2] >> 35; /* z only has 29 significant bits */
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[5] = u[4] = u[3] = 0;
u[2] ^= z << 35;
#else
if (MP_USED(r) < 11) {
MP_CHECKOK(s_mp_pad(r, 11));
}
u = MP_DIGITS(r);
MP_USED(r) = 11;
/* u[11] only has 6 significant bits */
z = u[10];
u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[4] ^= (z << 29);
z = u[9];
u[5] ^= (z >> 28) ^ (z >> 29);
u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[3] ^= (z << 29);
z = u[8];
u[4] ^= (z >> 28) ^ (z >> 29);
u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[2] ^= (z << 29);
z = u[7];
u[3] ^= (z >> 28) ^ (z >> 29);
u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[1] ^= (z << 29);
z = u[6];
u[2] ^= (z >> 28) ^ (z >> 29);
u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
u[0] ^= (z << 29);
z = u[5] >> 3; /* z only has 29 significant bits */
u[1] ^= (z >> 25) ^ (z >> 26);
u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
/* clear bits above 163 */
u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
u[5] ^= z << 3;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
* polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 3) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 6) {
MP_CHECKOK(s_mp_pad(r, 6));
}
MP_USED(r) = 6;
#else
if (MP_USED(a) < 6) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 12) {
MP_CHECKOK(s_mp_pad(r, 12));
}
MP_USED(r) = 12;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
u[7] = gf2m_SQR1(v[3]);
u[6] = gf2m_SQR0(v[3]);
#endif
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_163_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 163-bit curve. Assumes
* reduction polynomial with terms {163, 7, 6, 3, 0}. */
mp_err
ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
mp_digit rm[6];
#endif
if (a == b) {
return ec_GF2m_163_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
case 4:
a3 = MP_DIGIT(a, 3);
#endif
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
case 4:
b3 = MP_DIGIT(b, 3);
#endif
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 6));
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
MP_USED(r) = 6;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 12));
s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
b3 ^ b0);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
MP_DIGIT(r, 8) ^= rm[5];
MP_DIGIT(r, 7) ^= rm[4];
MP_DIGIT(r, 6) ^= rm[3];
MP_DIGIT(r, 5) ^= rm[2];
MP_DIGIT(r, 4) ^= rm[1];
MP_DIGIT(r, 3) ^= rm[0];
MP_USED(r) = 12;
s_mp_clamp(r);
#endif
return ec_GF2m_163_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 163-bit curves. */
mp_err
ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_163_mod;
group->meth->field_mul = &ec_GF2m_163_mul;
group->meth->field_sqr = &ec_GF2m_163_sqr;
return MP_OKAY;
}

View File

@ -1,277 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
*********************************************************************** */
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
* polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 7) {
MP_CHECKOK(s_mp_pad(r, 7));
}
u = MP_DIGITS(r);
MP_USED(r) = 7;
/* u[6] only has 2 significant bits */
z = u[6];
u[3] ^= (z << 14) ^ (z >> 1);
u[2] ^= (z << 63);
z = u[5];
u[3] ^= (z >> 50);
u[2] ^= (z << 14) ^ (z >> 1);
u[1] ^= (z << 63);
z = u[4];
u[2] ^= (z >> 50);
u[1] ^= (z << 14) ^ (z >> 1);
u[0] ^= (z << 63);
z = u[3] >> 1; /* z only has 63 significant bits */
u[1] ^= (z >> 49);
u[0] ^= (z << 15) ^ z;
/* clear bits above 193 */
u[6] = u[5] = u[4] = 0;
u[3] ^= z << 1;
#else
if (MP_USED(r) < 13) {
MP_CHECKOK(s_mp_pad(r, 13));
}
u = MP_DIGITS(r);
MP_USED(r) = 13;
/* u[12] only has 2 significant bits */
z = u[12];
u[6] ^= (z << 14) ^ (z >> 1);
u[5] ^= (z << 31);
z = u[11];
u[6] ^= (z >> 18);
u[5] ^= (z << 14) ^ (z >> 1);
u[4] ^= (z << 31);
z = u[10];
u[5] ^= (z >> 18);
u[4] ^= (z << 14) ^ (z >> 1);
u[3] ^= (z << 31);
z = u[9];
u[4] ^= (z >> 18);
u[3] ^= (z << 14) ^ (z >> 1);
u[2] ^= (z << 31);
z = u[8];
u[3] ^= (z >> 18);
u[2] ^= (z << 14) ^ (z >> 1);
u[1] ^= (z << 31);
z = u[7];
u[2] ^= (z >> 18);
u[1] ^= (z << 14) ^ (z >> 1);
u[0] ^= (z << 31);
z = u[6] >> 1; /* z only has 31 significant bits */
u[1] ^= (z >> 17);
u[0] ^= (z << 15) ^ z;
/* clear bits above 193 */
u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0;
u[6] ^= z << 1;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
* polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 4) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 7) {
MP_CHECKOK(s_mp_pad(r, 7));
}
MP_USED(r) = 7;
#else
if (MP_USED(a) < 7) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 13) {
MP_CHECKOK(s_mp_pad(r, 13));
}
MP_USED(r) = 13;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[12] = gf2m_SQR0(v[6]);
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
u[7] = gf2m_SQR1(v[3]);
#endif
u[6] = gf2m_SQR0(v[3]);
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_193_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 193-bit curve. Assumes
* reduction polynomial with terms {193, 15, 0}. */
mp_err
ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0;
mp_digit rm[8];
#endif
if (a == b) {
return ec_GF2m_193_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 7:
a6 = MP_DIGIT(a, 6);
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
#endif
case 4:
a3 = MP_DIGIT(a, 3);
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 7:
b6 = MP_DIGIT(b, 6);
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
#endif
case 4:
b3 = MP_DIGIT(b, 3);
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 8));
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
MP_USED(r) = 8;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 14));
s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4);
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1,
b4 ^ b0);
rm[7] ^= MP_DIGIT(r, 7);
rm[6] ^= MP_DIGIT(r, 6);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
MP_DIGIT(r, 11) ^= rm[7];
MP_DIGIT(r, 10) ^= rm[6];
MP_DIGIT(r, 9) ^= rm[5];
MP_DIGIT(r, 8) ^= rm[4];
MP_DIGIT(r, 7) ^= rm[3];
MP_DIGIT(r, 6) ^= rm[2];
MP_DIGIT(r, 5) ^= rm[1];
MP_DIGIT(r, 4) ^= rm[0];
MP_USED(r) = 14;
s_mp_clamp(r);
#endif
return ec_GF2m_193_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 193-bit curves. */
mp_err
ec_group_set_gf2m193(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_193_mod;
group->meth->field_mul = &ec_GF2m_193_mul;
group->meth->field_sqr = &ec_GF2m_193_sqr;
return MP_OKAY;
}

View File

@ -1,300 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
*********************************************************************** */
#include "ec2.h"
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mpi.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast reduction for polynomials over a 233-bit curve. Assumes reduction
* polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, z;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(r) < 8) {
MP_CHECKOK(s_mp_pad(r, 8));
}
u = MP_DIGITS(r);
MP_USED(r) = 8;
/* u[7] only has 18 significant bits */
z = u[7];
u[4] ^= (z << 33) ^ (z >> 41);
u[3] ^= (z << 23);
z = u[6];
u[4] ^= (z >> 31);
u[3] ^= (z << 33) ^ (z >> 41);
u[2] ^= (z << 23);
z = u[5];
u[3] ^= (z >> 31);
u[2] ^= (z << 33) ^ (z >> 41);
u[1] ^= (z << 23);
z = u[4];
u[2] ^= (z >> 31);
u[1] ^= (z << 33) ^ (z >> 41);
u[0] ^= (z << 23);
z = u[3] >> 41; /* z only has 23 significant bits */
u[1] ^= (z << 10);
u[0] ^= z;
/* clear bits above 233 */
u[7] = u[6] = u[5] = u[4] = 0;
u[3] ^= z << 41;
#else
if (MP_USED(r) < 15) {
MP_CHECKOK(s_mp_pad(r, 15));
}
u = MP_DIGITS(r);
MP_USED(r) = 15;
/* u[14] only has 18 significant bits */
z = u[14];
u[9] ^= (z << 1);
u[7] ^= (z >> 9);
u[6] ^= (z << 23);
z = u[13];
u[9] ^= (z >> 31);
u[8] ^= (z << 1);
u[6] ^= (z >> 9);
u[5] ^= (z << 23);
z = u[12];
u[8] ^= (z >> 31);
u[7] ^= (z << 1);
u[5] ^= (z >> 9);
u[4] ^= (z << 23);
z = u[11];
u[7] ^= (z >> 31);
u[6] ^= (z << 1);
u[4] ^= (z >> 9);
u[3] ^= (z << 23);
z = u[10];
u[6] ^= (z >> 31);
u[5] ^= (z << 1);
u[3] ^= (z >> 9);
u[2] ^= (z << 23);
z = u[9];
u[5] ^= (z >> 31);
u[4] ^= (z << 1);
u[2] ^= (z >> 9);
u[1] ^= (z << 23);
z = u[8];
u[4] ^= (z >> 31);
u[3] ^= (z << 1);
u[1] ^= (z >> 9);
u[0] ^= (z << 23);
z = u[7] >> 9; /* z only has 23 significant bits */
u[3] ^= (z >> 22);
u[2] ^= (z << 10);
u[0] ^= z;
/* clear bits above 233 */
u[14] = u[13] = u[12] = u[11] = u[10] = u[9] = u[8] = 0;
u[7] ^= z << 9;
#endif
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Fast squaring for polynomials over a 233-bit curve. Assumes reduction
* polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit *u, *v;
v = MP_DIGITS(a);
#ifdef ECL_SIXTY_FOUR_BIT
if (MP_USED(a) < 4) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 8) {
MP_CHECKOK(s_mp_pad(r, 8));
}
MP_USED(r) = 8;
#else
if (MP_USED(a) < 8) {
return mp_bsqrmod(a, meth->irr_arr, r);
}
if (MP_USED(r) < 15) {
MP_CHECKOK(s_mp_pad(r, 15));
}
MP_USED(r) = 15;
#endif
u = MP_DIGITS(r);
#ifdef ECL_THIRTY_TWO_BIT
u[14] = gf2m_SQR0(v[7]);
u[13] = gf2m_SQR1(v[6]);
u[12] = gf2m_SQR0(v[6]);
u[11] = gf2m_SQR1(v[5]);
u[10] = gf2m_SQR0(v[5]);
u[9] = gf2m_SQR1(v[4]);
u[8] = gf2m_SQR0(v[4]);
#endif
u[7] = gf2m_SQR1(v[3]);
u[6] = gf2m_SQR0(v[3]);
u[5] = gf2m_SQR1(v[2]);
u[4] = gf2m_SQR0(v[2]);
u[3] = gf2m_SQR1(v[1]);
u[2] = gf2m_SQR0(v[1]);
u[1] = gf2m_SQR1(v[0]);
u[0] = gf2m_SQR0(v[0]);
return ec_GF2m_233_mod(r, r, meth);
CLEANUP:
return res;
}
/* Fast multiplication for polynomials over a 233-bit curve. Assumes
* reduction polynomial with terms {233, 74, 0}. */
mp_err
ec_GF2m_233_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a7 = 0, a6 = 0, a5 = 0, a4 = 0, b7 = 0, b6 = 0, b5 = 0, b4 =
0;
mp_digit rm[8];
#endif
if (a == b) {
return ec_GF2m_233_sqr(a, r, meth);
} else {
switch (MP_USED(a)) {
#ifdef ECL_THIRTY_TWO_BIT
case 8:
a7 = MP_DIGIT(a, 7);
case 7:
a6 = MP_DIGIT(a, 6);
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
#endif
case 4:
a3 = MP_DIGIT(a, 3);
case 3:
a2 = MP_DIGIT(a, 2);
case 2:
a1 = MP_DIGIT(a, 1);
default:
a0 = MP_DIGIT(a, 0);
}
switch (MP_USED(b)) {
#ifdef ECL_THIRTY_TWO_BIT
case 8:
b7 = MP_DIGIT(b, 7);
case 7:
b6 = MP_DIGIT(b, 6);
case 6:
b5 = MP_DIGIT(b, 5);
case 5:
b4 = MP_DIGIT(b, 4);
#endif
case 4:
b3 = MP_DIGIT(b, 3);
case 3:
b2 = MP_DIGIT(b, 2);
case 2:
b1 = MP_DIGIT(b, 1);
default:
b0 = MP_DIGIT(b, 0);
}
#ifdef ECL_SIXTY_FOUR_BIT
MP_CHECKOK(s_mp_pad(r, 8));
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
MP_USED(r) = 8;
s_mp_clamp(r);
#else
MP_CHECKOK(s_mp_pad(r, 16));
s_bmul_4x4(MP_DIGITS(r) + 8, a7, a6, a5, a4, b7, b6, b5, b4);
s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
s_bmul_4x4(rm, a7 ^ a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b7 ^ b3,
b6 ^ b2, b5 ^ b1, b4 ^ b0);
rm[7] ^= MP_DIGIT(r, 7) ^ MP_DIGIT(r, 15);
rm[6] ^= MP_DIGIT(r, 6) ^ MP_DIGIT(r, 14);
rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
MP_DIGIT(r, 11) ^= rm[7];
MP_DIGIT(r, 10) ^= rm[6];
MP_DIGIT(r, 9) ^= rm[5];
MP_DIGIT(r, 8) ^= rm[4];
MP_DIGIT(r, 7) ^= rm[3];
MP_DIGIT(r, 6) ^= rm[2];
MP_DIGIT(r, 5) ^= rm[1];
MP_DIGIT(r, 4) ^= rm[0];
MP_USED(r) = 16;
s_mp_clamp(r);
#endif
return ec_GF2m_233_mod(r, r, meth);
}
CLEANUP:
return res;
}
/* Wire in fast field arithmetic for 233-bit curves. */
mp_err
ec_group_set_gf2m233(ECGroup *group, ECCurveName name)
{
group->meth->field_mod = &ec_GF2m_233_mod;
group->meth->field_mul = &ec_GF2m_233_mul;
group->meth->field_sqr = &ec_GF2m_233_sqr;
return MP_OKAY;
}

View File

@ -1,349 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.2. Elliptic curve points P,
* Q, and R can all be identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int lambda, tempx, tempy;
MP_DIGITS(&lambda) = 0;
MP_DIGITS(&tempx) = 0;
MP_DIGITS(&tempy) = 0;
MP_CHECKOK(mp_init(&lambda, FLAG(px)));
MP_CHECKOK(mp_init(&tempx, FLAG(px)));
MP_CHECKOK(mp_init(&tempy, FLAG(px)));
/* if P = inf, then R = Q */
if (ec_GF2m_pt_is_inf_aff(px, py) == 0) {
MP_CHECKOK(mp_copy(qx, rx));
MP_CHECKOK(mp_copy(qy, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if Q = inf, then R = P */
if (ec_GF2m_pt_is_inf_aff(qx, qy) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if px != qx, then lambda = (py+qy) / (px+qx), tempx = a + lambda^2
* + lambda + px + qx */
if (mp_cmp(px, qx) != 0) {
MP_CHECKOK(group->meth->field_add(py, qy, &tempy, group->meth));
MP_CHECKOK(group->meth->field_add(px, qx, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempy, &tempx, &lambda, group->meth));
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, px, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, qx, &tempx, group->meth));
} else {
/* if py != qy or qx = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qx) == 0)) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* lambda = qx + qy / qx */
MP_CHECKOK(group->meth->field_div(qy, qx, &lambda, group->meth));
MP_CHECKOK(group->meth->
field_add(&lambda, qx, &lambda, group->meth));
/* tempx = a + lambda^2 + lambda */
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
}
/* ry = (qx + tempx) * lambda + tempx + qy */
MP_CHECKOK(group->meth->field_add(qx, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_mul(&tempy, &lambda, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempy, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->field_add(&tempy, qy, ry, group->meth));
/* rx = tempx */
MP_CHECKOK(mp_copy(&tempx, rx));
CLEANUP:
mp_clear(&lambda);
mp_clear(&tempx);
mp_clear(&tempy);
return res;
}
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
* identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
MP_CHECKOK(mp_init(&nqy, FLAG(px)));
/* nqy = qx+qy */
MP_CHECKOK(group->meth->field_add(qx, qy, &nqy, group->meth));
MP_CHECKOK(group->point_add(px, py, qx, &nqy, rx, ry, group));
CLEANUP:
mp_clear(&nqy);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* affine coordinates. */
mp_err
ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group)
{
return group->point_add(px, py, px, py, rx, ry, group);
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GF2M_PT_MUL_AFF
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
* R can be identical. Uses affine coordinates. */
mp_err
ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&k));
MP_CHECKOK(mp_init(&k3));
MP_CHECKOK(mp_init(&qx));
MP_CHECKOK(mp_init(&qy));
MP_CHECKOK(mp_init(&sx));
MP_CHECKOK(mp_init(&sy));
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* Q = P, k = n */
MP_CHECKOK(mp_copy(px, &qx));
MP_CHECKOK(mp_copy(py, &qy));
MP_CHECKOK(mp_copy(n, &k));
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
MP_CHECKOK(group->meth->field_add(&qx, &qy, &qy, group->meth));
MP_CHECKOK(mp_neg(&k, &k));
}
#ifdef ECL_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
for (i = l - 1; i >= 0; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#else /* double and add/subtract method from
* standard */
/* k3 = 3 * k */
MP_CHECKOK(mp_set_int(&k3, 3));
MP_CHECKOK(mp_mul(&k, &k3, &k3));
/* S = Q */
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
MP_CHECKOK(group->
point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#endif
/* output S */
MP_CHECKOK(mp_copy(&sx, rx));
MP_CHECKOK(mp_copy(&sy, ry));
CLEANUP:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
return res;
}
#endif
/* Validates a point on a GF2m curve. */
mp_err
ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
{
mp_err res = MP_NO;
mp_int accl, accr, tmp, pxt, pyt;
MP_DIGITS(&accl) = 0;
MP_DIGITS(&accr) = 0;
MP_DIGITS(&tmp) = 0;
MP_DIGITS(&pxt) = 0;
MP_DIGITS(&pyt) = 0;
MP_CHECKOK(mp_init(&accl, FLAG(px)));
MP_CHECKOK(mp_init(&accr, FLAG(px)));
MP_CHECKOK(mp_init(&tmp, FLAG(px)));
MP_CHECKOK(mp_init(&pxt, FLAG(px)));
MP_CHECKOK(mp_init(&pyt, FLAG(px)));
/* 1: Verify that publicValue is not the point at infinity */
if (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES) {
res = MP_NO;
goto CLEANUP;
}
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
res = MP_NO;
goto CLEANUP;
}
/* 3: Verify that publicValue is on the curve. */
if (group->meth->field_enc) {
group->meth->field_enc(px, &pxt, group->meth);
group->meth->field_enc(py, &pyt, group->meth);
} else {
mp_copy(px, &pxt);
mp_copy(py, &pyt);
}
/* left-hand side: y^2 + x*y */
MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &pyt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&accl, &tmp, &accl, group->meth) );
/* right-hand side: x^3 + a*x^2 + b */
MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
MP_CHECKOK( group->meth->field_mul(&group->curvea, &tmp, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
/* check LHS - RHS == 0 */
MP_CHECKOK( group->meth->field_add(&accl, &accr, &accr, group->meth) );
if (mp_cmp_z(&accr) != 0) {
res = MP_NO;
goto CLEANUP;
}
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
/* timing mitigation is not supported */
MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt, /*timing*/ 0) );
if (ec_GF2m_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
res = MP_NO;
goto CLEANUP;
}
res = MP_YES;
CLEANUP:
mp_clear(&accl);
mp_clear(&accr);
mp_clear(&tmp);
mp_clear(&pxt);
mp_clear(&pyt);
return res;
}

View File

@ -1,278 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for binary polynomial field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "ec2.h"
#include "mplogic.h"
#include "mp_gf2m.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
* projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
* and Dahab, R. "Fast multiplication on elliptic curves over GF(2^m)
* without precomputation". modified to not require precomputation of
* c=b^{2^{m-1}}. */
static mp_err
gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
{
mp_err res = MP_OKAY;
mp_int t1;
MP_DIGITS(&t1) = 0;
MP_CHECKOK(mp_init(&t1, kmflag));
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
MP_CHECKOK(group->meth->
field_mul(&group->curveb, &t1, &t1, group->meth));
MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
CLEANUP:
mp_clear(&t1);
return res;
}
/* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
* Montgomery projective coordinates. Uses algorithm Madd in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation". */
static mp_err
gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
const ECGroup *group, int kmflag)
{
mp_err res = MP_OKAY;
mp_int t1, t2;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&t2) = 0;
MP_CHECKOK(mp_init(&t1, kmflag));
MP_CHECKOK(mp_init(&t2, kmflag));
MP_CHECKOK(mp_copy(x, &t1));
MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
CLEANUP:
mp_clear(&t1);
mp_clear(&t2);
return res;
}
/* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
* using Montgomery point multiplication algorithm Mxy() in appendix of
* Lopex, J. and Dahab, R. "Fast multiplication on elliptic curves over
* GF(2^m) without precomputation". Returns: 0 on error 1 if return value
* should be the point at infinity 2 otherwise */
static int
gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
mp_int *x2, mp_int *z2, const ECGroup *group)
{
mp_err res = MP_OKAY;
int ret = 0;
mp_int t3, t4, t5;
MP_DIGITS(&t3) = 0;
MP_DIGITS(&t4) = 0;
MP_DIGITS(&t5) = 0;
MP_CHECKOK(mp_init(&t3, FLAG(x2)));
MP_CHECKOK(mp_init(&t4, FLAG(x2)));
MP_CHECKOK(mp_init(&t5, FLAG(x2)));
if (mp_cmp_z(z1) == 0) {
mp_zero(x2);
mp_zero(z2);
ret = 1;
goto CLEANUP;
}
if (mp_cmp_z(z2) == 0) {
MP_CHECKOK(mp_copy(x, x2));
MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
ret = 2;
goto CLEANUP;
}
MP_CHECKOK(mp_set_int(&t5, 1));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
}
MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
ret = 2;
CLEANUP:
mp_clear(&t3);
mp_clear(&t4);
mp_clear(&t5);
if (res == MP_OKAY) {
return ret;
} else {
return 0;
}
}
/* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R. "Fast
* multiplication on elliptic curves over GF(2^m) without
* precomputation". Elliptic curve points P and R can be identical. Uses
* Montgomery projective coordinates. The timing parameter is ignored
* because this algorithm resists timing attacks by default. */
mp_err
ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group,
int timing)
{
mp_err res = MP_OKAY;
mp_int x1, x2, z1, z2;
int i, j;
mp_digit top_bit, mask;
MP_DIGITS(&x1) = 0;
MP_DIGITS(&x2) = 0;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
MP_CHECKOK(mp_init(&x1, FLAG(n)));
MP_CHECKOK(mp_init(&x2, FLAG(n)));
MP_CHECKOK(mp_init(&z1, FLAG(n)));
MP_CHECKOK(mp_init(&z2, FLAG(n)));
/* if result should be point at infinity */
if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
goto CLEANUP;
}
MP_CHECKOK(mp_copy(px, &x1)); /* x1 = px */
MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth)); /* z2 =
* x1^2 =
* px^2 */
MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth)); /* x2
* =
* px^4
* +
* b
*/
/* find top-most bit and go one past it */
i = MP_USED(n) - 1;
j = MP_DIGIT_BIT - 1;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
mask = top_bit;
while (!(MP_DIGITS(n)[i] & mask)) {
mask >>= 1;
j--;
}
mask >>= 1;
j--;
/* if top most bit was at word break, go to next word */
if (!mask) {
i--;
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
for (; i >= 0; i--) {
for (; j >= 0; j--) {
if (MP_DIGITS(n)[i] & mask) {
MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
} else {
MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
}
mask >>= 1;
}
j = MP_DIGIT_BIT - 1;
mask = top_bit;
}
/* convert out of "projective" coordinates */
i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
if (i == 0) {
res = MP_BADARG;
goto CLEANUP;
} else if (i == 1) {
MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
} else {
MP_CHECKOK(mp_copy(&x2, rx));
MP_CHECKOK(mp_copy(&z2, ry));
}
CLEANUP:
mp_clear(&x1);
mp_clear(&x2);
mp_clear(&z1);
mp_clear(&z2);
return res;
}

View File

@ -1,102 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecl-priv.h"
/* Returns 2^e as an integer. This is meant to be used for small powers of
* two. */
int
ec_twoTo(int e)
{
int a = 1;
int i;
for (i = 0; i < e; i++) {
a *= 2;
}
return a;
}
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
mp_err
ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in, int w)
{
mp_int k;
mp_err res = MP_OKAY;
int i, twowm1, mask;
twowm1 = ec_twoTo(w - 1);
mask = 2 * twowm1 - 1;
MP_DIGITS(&k) = 0;
MP_CHECKOK(mp_init_copy(&k, in));
i = 0;
/* Compute wNAF form */
while (mp_cmp_z(&k) > 0) {
if (mp_isodd(&k)) {
out[i] = MP_DIGIT(&k, 0) & mask;
if (out[i] >= twowm1)
out[i] -= 2 * twowm1;
/* Subtract off out[i]. Note mp_sub_d only works with
* unsigned digits */
if (out[i] >= 0) {
mp_sub_d(&k, out[i], &k);
} else {
mp_add_d(&k, -(out[i]), &k);
}
} else {
out[i] = 0;
}
mp_div_2(&k, &k);
i++;
}
/* Zero out the remaining elements of the out array. */
for (; i < bitsize + 1; i++) {
out[i] = 0;
}
CLEANUP:
mp_clear(&k);
return res;
}

View File

@ -1,271 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _ECC_IMPL_H
#define _ECC_IMPL_H
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/types.h>
#include "ecl-exp.h"
/*
* Multi-platform definitions
*/
#ifdef __linux__
#define B_FALSE FALSE
#define B_TRUE TRUE
typedef unsigned char uint8_t;
typedef unsigned long ulong_t;
typedef enum { B_FALSE, B_TRUE } boolean_t;
#endif /* __linux__ */
#ifdef _ALLBSD_SOURCE
#include <stdint.h>
#define B_FALSE FALSE
#define B_TRUE TRUE
typedef unsigned long ulong_t;
typedef enum boolean { B_FALSE, B_TRUE } boolean_t;
#endif /* _ALLBSD_SOURCE */
#ifdef AIX
#define B_FALSE FALSE
#define B_TRUE TRUE
typedef unsigned char uint8_t;
typedef unsigned long ulong_t;
#endif /* AIX */
#ifdef _WIN32
typedef unsigned char uint8_t;
typedef unsigned long ulong_t;
typedef enum boolean { B_FALSE, B_TRUE } boolean_t;
#define strdup _strdup /* Replace POSIX name with ISO C++ name */
#endif /* _WIN32 */
#ifndef _KERNEL
#include <stdlib.h>
#endif /* _KERNEL */
#define EC_MAX_DIGEST_LEN 1024 /* max digest that can be signed */
#define EC_MAX_POINT_LEN 145 /* max len of DER encoded Q */
#define EC_MAX_VALUE_LEN 72 /* max len of ANSI X9.62 private value d */
#define EC_MAX_SIG_LEN 144 /* max signature len for supported curves */
#define EC_MIN_KEY_LEN 112 /* min key length in bits */
#define EC_MAX_KEY_LEN 571 /* max key length in bits */
#define EC_MAX_OID_LEN 10 /* max length of OID buffer */
/*
* Various structures and definitions from NSS are here.
*/
#ifdef _KERNEL
#define PORT_ArenaAlloc(a, n, f) kmem_alloc((n), (f))
#define PORT_ArenaZAlloc(a, n, f) kmem_zalloc((n), (f))
#define PORT_ArenaGrow(a, b, c, d) NULL
#define PORT_ZAlloc(n, f) kmem_zalloc((n), (f))
#define PORT_Alloc(n, f) kmem_alloc((n), (f))
#else
#define PORT_ArenaAlloc(a, n, f) malloc((n))
#define PORT_ArenaZAlloc(a, n, f) calloc(1, (n))
#define PORT_ArenaGrow(a, b, c, d) NULL
#define PORT_ZAlloc(n, f) calloc(1, (n))
#define PORT_Alloc(n, f) malloc((n))
#endif
#define PORT_NewArena(b) (char *)12345
#define PORT_ArenaMark(a) NULL
#define PORT_ArenaUnmark(a, b)
#define PORT_ArenaRelease(a, m)
#define PORT_FreeArena(a, b)
#define PORT_Strlen(s) strlen((s))
#define PORT_SetError(e)
#define PRBool boolean_t
#define PR_TRUE B_TRUE
#define PR_FALSE B_FALSE
#ifdef _KERNEL
#define PORT_Assert ASSERT
#define PORT_Memcpy(t, f, l) bcopy((f), (t), (l))
#else
#define PORT_Assert assert
#define PORT_Memcpy(t, f, l) memcpy((t), (f), (l))
#endif
#define CHECK_OK(func) if (func == NULL) goto cleanup
#define CHECK_SEC_OK(func) if (SECSuccess != (rv = func)) goto cleanup
typedef enum {
siBuffer = 0,
siClearDataBuffer = 1,
siCipherDataBuffer = 2,
siDERCertBuffer = 3,
siEncodedCertBuffer = 4,
siDERNameBuffer = 5,
siEncodedNameBuffer = 6,
siAsciiNameString = 7,
siAsciiString = 8,
siDEROID = 9,
siUnsignedInteger = 10,
siUTCTime = 11,
siGeneralizedTime = 12
} SECItemType;
typedef struct SECItemStr SECItem;
struct SECItemStr {
SECItemType type;
unsigned char *data;
unsigned int len;
};
typedef SECItem SECKEYECParams;
typedef enum { ec_params_explicit,
ec_params_named
} ECParamsType;
typedef enum { ec_field_GFp = 1,
ec_field_GF2m
} ECFieldType;
struct ECFieldIDStr {
int size; /* field size in bits */
ECFieldType type;
union {
SECItem prime; /* prime p for (GFp) */
SECItem poly; /* irreducible binary polynomial for (GF2m) */
} u;
int k1; /* first coefficient of pentanomial or
* the only coefficient of trinomial
*/
int k2; /* two remaining coefficients of pentanomial */
int k3;
};
typedef struct ECFieldIDStr ECFieldID;
struct ECCurveStr {
SECItem a; /* contains octet stream encoding of
* field element (X9.62 section 4.3.3)
*/
SECItem b;
SECItem seed;
};
typedef struct ECCurveStr ECCurve;
typedef void PRArenaPool;
struct ECParamsStr {
PRArenaPool * arena;
ECParamsType type;
ECFieldID fieldID;
ECCurve curve;
SECItem base;
SECItem order;
int cofactor;
SECItem DEREncoding;
ECCurveName name;
SECItem curveOID;
};
typedef struct ECParamsStr ECParams;
struct ECPublicKeyStr {
ECParams ecParams;
SECItem publicValue; /* elliptic curve point encoded as
* octet stream.
*/
};
typedef struct ECPublicKeyStr ECPublicKey;
struct ECPrivateKeyStr {
ECParams ecParams;
SECItem publicValue; /* encoded ec point */
SECItem privateValue; /* private big integer */
SECItem version; /* As per SEC 1, Appendix C, Section C.4 */
};
typedef struct ECPrivateKeyStr ECPrivateKey;
typedef enum _SECStatus {
SECBufferTooSmall = -3,
SECWouldBlock = -2,
SECFailure = -1,
SECSuccess = 0
} SECStatus;
#ifdef _KERNEL
#define RNG_GenerateGlobalRandomBytes(p,l) ecc_knzero_random_generator((p), (l))
#else
/*
This function is no longer required because the random bytes are now
supplied by the caller. Force a failure.
*/
#define RNG_GenerateGlobalRandomBytes(p,l) SECFailure
#endif
#define CHECK_MPI_OK(func) if (MP_OKAY > (err = func)) goto cleanup
#define MP_TO_SEC_ERROR(err)
#define SECITEM_TO_MPINT(it, mp) \
CHECK_MPI_OK(mp_read_unsigned_octets((mp), (it).data, (it).len))
extern int ecc_knzero_random_generator(uint8_t *, size_t);
extern ulong_t soft_nzero_random_generator(uint8_t *, ulong_t);
extern SECStatus EC_DecodeParams(const SECItem *, ECParams **, int);
extern SECItem * SECITEM_AllocItem(PRArenaPool *, SECItem *, unsigned int, int);
extern SECStatus SECITEM_CopyItem(PRArenaPool *, SECItem *, const SECItem *,
int);
extern void SECITEM_FreeItem(SECItem *, boolean_t);
/* This function has been modified to accept an array of random bytes */
extern SECStatus EC_NewKey(ECParams *ecParams, ECPrivateKey **privKey,
const unsigned char* random, int randomlen, int);
/* This function has been modified to accept an array of random bytes */
extern SECStatus ECDSA_SignDigest(ECPrivateKey *, SECItem *, const SECItem *,
const unsigned char* random, int randomlen, int, int timing);
extern SECStatus ECDSA_VerifyDigest(ECPublicKey *, const SECItem *,
const SECItem *, int);
extern SECStatus ECDH_Derive(SECItem *, ECParams *, SECItem *, boolean_t,
SECItem *, int);
#ifdef __cplusplus
}
#endif
#endif /* _ECC_IMPL_H */

View File

@ -1,642 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Elliptic Curve Cryptography library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: Nov 2016
*********************************************************************** */
#include <sys/types.h>
#ifndef _WIN32
#if !defined(__linux__) && !defined(_ALLBSD_SOURCE)
#include <sys/systm.h>
#endif /* __linux__ || _ALLBSD_SOURCE */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <stdio.h>
#include <string.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
#define MAX_ECKEY_LEN 72
#define SEC_ASN1_OBJECT_ID 0x06
/*
* Initializes a SECItem from a hexadecimal string
*
* Warning: This function ignores leading 00's, so any leading 00's
* in the hexadecimal string must be optional.
*/
static SECItem *
hexString2SECItem(PRArenaPool *arena, SECItem *item, const char *str,
int kmflag)
{
int i = 0;
int byteval = 0;
int tmp = (int)strlen(str);
if ((tmp % 2) != 0) return NULL;
/* skip leading 00's unless the hex string is "00" */
while ((tmp > 2) && (str[0] == '0') && (str[1] == '0')) {
str += 2;
tmp -= 2;
}
item->data = (unsigned char *) PORT_ArenaAlloc(arena, tmp/2, kmflag);
if (item->data == NULL) return NULL;
item->len = tmp/2;
while (str[i]) {
if ((str[i] >= '0') && (str[i] <= '9'))
tmp = str[i] - '0';
else if ((str[i] >= 'a') && (str[i] <= 'f'))
tmp = str[i] - 'a' + 10;
else if ((str[i] >= 'A') && (str[i] <= 'F'))
tmp = str[i] - 'A' + 10;
else
return NULL;
byteval = byteval * 16 + tmp;
if ((i % 2) != 0) {
item->data[i/2] = byteval;
byteval = 0;
}
i++;
}
return item;
}
static SECStatus
gf_populate_params(ECCurveName name, ECFieldType field_type, ECParams *params,
int kmflag)
{
SECStatus rv = SECFailure;
const ECCurveParams *curveParams;
/* 2 ['0'+'4'] + MAX_ECKEY_LEN * 2 [x,y] * 2 [hex string] + 1 ['\0'] */
char genenc[3 + 2 * 2 * MAX_ECKEY_LEN];
if (((int)name < ECCurve_noName) || (name > ECCurve_pastLastCurve))
goto cleanup;
params->name = name;
curveParams = ecCurve_map[params->name];
CHECK_OK(curveParams);
if ((strlen(curveParams->genx) + strlen(curveParams->geny)) > 2 * 2 * MAX_ECKEY_LEN) {
goto cleanup;
}
params->fieldID.size = curveParams->size;
params->fieldID.type = field_type;
if (field_type == ec_field_GFp) {
CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.prime,
curveParams->irr, kmflag));
} else {
CHECK_OK(hexString2SECItem(NULL, &params->fieldID.u.poly,
curveParams->irr, kmflag));
}
CHECK_OK(hexString2SECItem(NULL, &params->curve.a,
curveParams->curvea, kmflag));
CHECK_OK(hexString2SECItem(NULL, &params->curve.b,
curveParams->curveb, kmflag));
genenc[0] = '0';
genenc[1] = '4';
genenc[2] = '\0';
strcat(genenc, curveParams->genx);
strcat(genenc, curveParams->geny);
CHECK_OK(hexString2SECItem(NULL, &params->base, genenc, kmflag));
CHECK_OK(hexString2SECItem(NULL, &params->order,
curveParams->order, kmflag));
params->cofactor = curveParams->cofactor;
rv = SECSuccess;
cleanup:
return rv;
}
ECCurveName SECOID_FindOIDTag(const SECItem *);
SECStatus
EC_FillParams(PRArenaPool *arena, const SECItem *encodedParams,
ECParams *params, int kmflag)
{
SECStatus rv = SECFailure;
ECCurveName tag;
SECItem oid = { siBuffer, NULL, 0};
#if EC_DEBUG
int i;
printf("Encoded params in EC_DecodeParams: ");
for (i = 0; i < encodedParams->len; i++) {
printf("%02x:", encodedParams->data[i]);
}
printf("\n");
#endif
if ((encodedParams->len != ANSI_X962_CURVE_OID_TOTAL_LEN) &&
(encodedParams->len != SECG_CURVE_OID_TOTAL_LEN) &&
(encodedParams->len != BRAINPOOL_CURVE_OID_TOTAL_LEN)) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
return SECFailure;
};
oid.len = encodedParams->len - 2;
oid.data = encodedParams->data + 2;
if ((encodedParams->data[0] != SEC_ASN1_OBJECT_ID) ||
((tag = SECOID_FindOIDTag(&oid)) == ECCurve_noName)) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
return SECFailure;
}
params->arena = arena;
params->cofactor = 0;
params->type = ec_params_named;
params->name = ECCurve_noName;
/* For named curves, fill out curveOID */
params->curveOID.len = oid.len;
params->curveOID.data = (unsigned char *) PORT_ArenaAlloc(NULL, oid.len,
kmflag);
if (params->curveOID.data == NULL) goto cleanup;
memcpy(params->curveOID.data, oid.data, oid.len);
#if EC_DEBUG
#ifndef SECOID_FindOIDTagDescription
printf("Curve: %s\n", ecCurve_map[tag]->text);
#else
printf("Curve: %s\n", SECOID_FindOIDTagDescription(tag));
#endif
#endif
switch (tag) {
/* Binary curves */
case ECCurve_X9_62_CHAR2_PNB163V1:
/* Populate params for c2pnb163v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB163V2:
/* Populate params for c2pnb163v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB163V3:
/* Populate params for c2pnb163v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB163V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB176V1:
/* Populate params for c2pnb176v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB176V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V1:
/* Populate params for c2tnb191v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V2:
/* Populate params for c2tnb191v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB191V3:
/* Populate params for c2tnb191v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB191V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB208W1:
/* Populate params for c2pnb208w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB208W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V1:
/* Populate params for c2tnb239v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V2:
/* Populate params for c2tnb239v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB239V3:
/* Populate params for c2tnb239v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB239V3, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB272W1:
/* Populate params for c2pnb272w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB272W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB304W1:
/* Populate params for c2pnb304w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB304W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB359V1:
/* Populate params for c2tnb359v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB359V1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_PNB368W1:
/* Populate params for c2pnb368w1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_PNB368W1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_X9_62_CHAR2_TNB431R1:
/* Populate params for c2tnb431r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_CHAR2_TNB431R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_113R1:
/* Populate params for sect113r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_113R2:
/* Populate params for sect113r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_113R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_131R1:
/* Populate params for sect131r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_131R2:
/* Populate params for sect131r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_131R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163K1:
/* Populate params for sect163k1
* (the NIST K-163 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163R1:
/* Populate params for sect163r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_163R2:
/* Populate params for sect163r2
* (the NIST B-163 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_163R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_193R1:
/* Populate params for sect193r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_193R2:
/* Populate params for sect193r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_193R2, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_233K1:
/* Populate params for sect233k1
* (the NIST K-233 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_233R1:
/* Populate params for sect233r1
* (the NIST B-233 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_233R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_239K1:
/* Populate params for sect239k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_239K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_283K1:
/* Populate params for sect283k1
* (the NIST K-283 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_283R1:
/* Populate params for sect283r1
* (the NIST B-283 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_283R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_409K1:
/* Populate params for sect409k1
* (the NIST K-409 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_409R1:
/* Populate params for sect409r1
* (the NIST B-409 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_409R1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_571K1:
/* Populate params for sect571k1
* (the NIST K-571 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571K1, ec_field_GF2m,
params, kmflag) );
break;
case ECCurve_SECG_CHAR2_571R1:
/* Populate params for sect571r1
* (the NIST B-571 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_CHAR2_571R1, ec_field_GF2m,
params, kmflag) );
break;
/* Prime curves */
case ECCurve_X9_62_PRIME_192V1:
/* Populate params for prime192v1 aka secp192r1
* (the NIST P-192 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_192V2:
/* Populate params for prime192v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_192V3:
/* Populate params for prime192v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_192V3, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V1:
/* Populate params for prime239v1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V2:
/* Populate params for prime239v2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_239V3:
/* Populate params for prime239v3 */
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_239V3, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_X9_62_PRIME_256V1:
/* Populate params for prime256v1 aka secp256r1
* (the NIST P-256 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_X9_62_PRIME_256V1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_112R1:
/* Populate params for secp112r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_112R2:
/* Populate params for secp112r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_112R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_128R1:
/* Populate params for secp128r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_128R2:
/* Populate params for secp128r2 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_128R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160K1:
/* Populate params for secp160k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160R1:
/* Populate params for secp160r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_160R2:
/* Populate params for secp160r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_160R2, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_192K1:
/* Populate params for secp192k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_192K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_224K1:
/* Populate params for secp224k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_224R1:
/* Populate params for secp224r1
* (the NIST P-224 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_224R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_256K1:
/* Populate params for secp256k1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_256K1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_384R1:
/* Populate params for secp384r1
* (the NIST P-384 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_384R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_SECG_PRIME_521R1:
/* Populate params for secp521r1
* (the NIST P-521 curve)
*/
CHECK_SEC_OK( gf_populate_params(ECCurve_SECG_PRIME_521R1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_BrainpoolP256r1:
/* Populate params for brainpoolP256r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_BrainpoolP256r1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_BrainpoolP320r1:
/* Populate params for brainpoolP320r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_BrainpoolP320r1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_BrainpoolP384r1:
/* Populate params for brainpoolP384r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_BrainpoolP384r1, ec_field_GFp,
params, kmflag) );
break;
case ECCurve_BrainpoolP512r1:
/* Populate params for brainpoolP512r1 */
CHECK_SEC_OK( gf_populate_params(ECCurve_BrainpoolP512r1, ec_field_GFp,
params, kmflag) );
break;
default:
break;
};
cleanup:
if (!params->cofactor) {
PORT_SetError(SEC_ERROR_UNSUPPORTED_ELLIPTIC_CURVE);
#if EC_DEBUG
printf("Unrecognized curve, returning NULL params\n");
#endif
}
return rv;
}
SECStatus
EC_DecodeParams(const SECItem *encodedParams, ECParams **ecparams, int kmflag)
{
PRArenaPool *arena;
ECParams *params;
SECStatus rv = SECFailure;
/* Initialize an arena for the ECParams structure */
if (!(arena = PORT_NewArena(NSS_FREEBL_DEFAULT_CHUNKSIZE)))
return SECFailure;
params = (ECParams *)PORT_ArenaZAlloc(NULL, sizeof(ECParams), kmflag);
if (!params) {
PORT_FreeArena(NULL, B_TRUE);
return SECFailure;
}
/* Copy the encoded params */
SECITEM_AllocItem(arena, &(params->DEREncoding), encodedParams->len,
kmflag);
memcpy(params->DEREncoding.data, encodedParams->data, encodedParams->len);
/* Fill out the rest of the ECParams structure based on
* the encoded params
*/
rv = EC_FillParams(NULL, encodedParams, params, kmflag);
if (rv == SECFailure) {
PORT_FreeArena(NULL, B_TRUE);
return SECFailure;
} else {
*ecparams = params;;
return SECSuccess;
}
}

View File

@ -1,733 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#ifndef _ECL_CURVE_H
#define _ECL_CURVE_H
#include "ecl-exp.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* NIST prime curves */
static const ECCurveParams ecCurve_NIST_P192 = {
"NIST-P192", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1",
"188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012",
"07192B95FFC8DA78631011ED6B24CDD573F977A11E794811",
"FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831", 1
};
static const ECCurveParams ecCurve_NIST_P224 = {
"NIST-P224", ECField_GFp, 224,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE",
"B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4",
"B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21",
"BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D", 1
};
static const ECCurveParams ecCurve_NIST_P256 = {
"NIST-P256", ECField_GFp, 256,
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
"FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
"5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
"6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
"4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
"FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", 1
};
static const ECCurveParams ecCurve_NIST_P384 = {
"NIST-P384", ECField_GFp, 384,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC",
"B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF",
"AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7",
"3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973",
1
};
static const ECCurveParams ecCurve_NIST_P521 = {
"NIST-P521", ECField_GFp, 521,
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC",
"0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00",
"00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66",
"011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409",
1
};
/* NIST binary curves */
static const ECCurveParams ecCurve_NIST_K163 = {
"NIST-K163", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"000000000000000000000000000000000000000001",
"000000000000000000000000000000000000000001",
"02FE13C0537BBC11ACAA07D793DE4E6D5E5C94EEE8",
"0289070FB05D38FF58321F2E800536D538CCDAA3D9",
"04000000000000000000020108A2E0CC0D99F8A5EF", 2
};
static const ECCurveParams ecCurve_NIST_B163 = {
"NIST-B163", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"000000000000000000000000000000000000000001",
"020A601907B8C953CA1481EB10512F78744A3205FD",
"03F0EBA16286A2D57EA0991168D4994637E8343E36",
"00D51FBC6C71A0094FA2CDD545B11C5C0C797324F1",
"040000000000000000000292FE77E70C12A4234C33", 2
};
static const ECCurveParams ecCurve_NIST_K233 = {
"NIST-K233", ECField_GF2m, 233,
"020000000000000000000000000000000000000004000000000000000001",
"000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000001",
"017232BA853A7E731AF129F22FF4149563A419C26BF50A4C9D6EEFAD6126",
"01DB537DECE819B7F70F555A67C427A8CD9BF18AEB9B56E0C11056FAE6A3",
"008000000000000000000000000000069D5BB915BCD46EFB1AD5F173ABDF", 4
};
static const ECCurveParams ecCurve_NIST_B233 = {
"NIST-B233", ECField_GF2m, 233,
"020000000000000000000000000000000000000004000000000000000001",
"000000000000000000000000000000000000000000000000000000000001",
"0066647EDE6C332C7F8C0923BB58213B333B20E9CE4281FE115F7D8F90AD",
"00FAC9DFCBAC8313BB2139F1BB755FEF65BC391F8B36F8F8EB7371FD558B",
"01006A08A41903350678E58528BEBF8A0BEFF867A7CA36716F7E01F81052",
"01000000000000000000000000000013E974E72F8A6922031D2603CFE0D7", 2
};
static const ECCurveParams ecCurve_NIST_K283 = {
"NIST-K283", ECField_GF2m, 283,
"0800000000000000000000000000000000000000000000000000000000000000000010A1",
"000000000000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000000000000000001",
"0503213F78CA44883F1A3B8162F188E553CD265F23C1567A16876913B0C2AC2458492836",
"01CCDA380F1C9E318D90F95D07E5426FE87E45C0E8184698E45962364E34116177DD2259",
"01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE9AE2ED07577265DFF7F94451E061E163C61", 4
};
static const ECCurveParams ecCurve_NIST_B283 = {
"NIST-B283", ECField_GF2m, 283,
"0800000000000000000000000000000000000000000000000000000000000000000010A1",
"000000000000000000000000000000000000000000000000000000000000000000000001",
"027B680AC8B8596DA5A4AF8A19A0303FCA97FD7645309FA2A581485AF6263E313B79A2F5",
"05F939258DB7DD90E1934F8C70B0DFEC2EED25B8557EAC9C80E2E198F8CDBECD86B12053",
"03676854FE24141CB98FE6D4B20D02B4516FF702350EDDB0826779C813F0DF45BE8112F4",
"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEF90399660FC938A90165B042A7CEFADB307", 2
};
static const ECCurveParams ecCurve_NIST_K409 = {
"NIST-K409", ECField_GF2m, 409,
"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"0060F05F658F49C1AD3AB1890F7184210EFD0987E307C84C27ACCFB8F9F67CC2C460189EB5AAAA62EE222EB1B35540CFE9023746",
"01E369050B7C4E42ACBA1DACBF04299C3460782F918EA427E6325165E9EA10E3DA5F6C42E9C55215AA9CA27A5863EC48D8E0286B",
"007FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE5F83B2D4EA20400EC4557D5ED3E3E7CA5B4B5C83B8E01E5FCF", 4
};
static const ECCurveParams ecCurve_NIST_B409 = {
"NIST-B409", ECField_GF2m, 409,
"02000000000000000000000000000000000000000000000000000000000000000000000000000000008000000000000000000001",
"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"0021A5C2C8EE9FEB5C4B9A753B7B476B7FD6422EF1F3DD674761FA99D6AC27C8A9A197B272822F6CD57A55AA4F50AE317B13545F",
"015D4860D088DDB3496B0C6064756260441CDE4AF1771D4DB01FFE5B34E59703DC255A868A1180515603AEAB60794E54BB7996A7",
"0061B1CFAB6BE5F32BBFA78324ED106A7636B9C5A7BD198D0158AA4F5488D08F38514F1FDF4B4F40D2181B3681C364BA0273C706",
"010000000000000000000000000000000000000000000000000001E2AAD6A612F33307BE5FA47C3C9E052F838164CD37D9A21173", 2
};
static const ECCurveParams ecCurve_NIST_K571 = {
"NIST-K571", ECField_GF2m, 571,
"080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"026EB7A859923FBC82189631F8103FE4AC9CA2970012D5D46024804801841CA44370958493B205E647DA304DB4CEB08CBBD1BA39494776FB988B47174DCA88C7E2945283A01C8972",
"0349DC807F4FBF374F4AEADE3BCA95314DD58CEC9F307A54FFC61EFC006D8A2C9D4979C0AC44AEA74FBEBBB9F772AEDCB620B01A7BA7AF1B320430C8591984F601CD4C143EF1C7A3",
"020000000000000000000000000000000000000000000000000000000000000000000000131850E1F19A63E4B391A8DB917F4138B630D84BE5D639381E91DEB45CFE778F637C1001", 4
};
static const ECCurveParams ecCurve_NIST_B571 = {
"NIST-B571", ECField_GF2m, 571,
"080000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425",
"000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001",
"02F40E7E2221F295DE297117B7F3D62F5C6A97FFCB8CEFF1CD6BA8CE4A9A18AD84FFABBD8EFA59332BE7AD6756A66E294AFD185A78FF12AA520E4DE739BACA0C7FFEFF7F2955727A",
"0303001D34B856296C16C0D40D3CD7750A93D1D2955FA80AA5F40FC8DB7B2ABDBDE53950F4C0D293CDD711A35B67FB1499AE60038614F1394ABFA3B4C850D927E1E7769C8EEC2D19",
"037BF27342DA639B6DCCFFFEB73D69D78C6C27A6009CBBCA1980F8533921E8A684423E43BAB08A576291AF8F461BB2A8B3531D2F0485C19B16E2F1516E23DD3C1A4827AF1B8AC15B",
"03FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE661CE18FF55987308059B186823851EC7DD9CA1161DE93D5174D66E8382E9BB2FE84E47", 2
};
/* ANSI X9.62 prime curves */
static const ECCurveParams ecCurve_X9_62_PRIME_192V2 = {
"X9.62 P-192V2", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"CC22D6DFB95C6B25E49C0D6364A4E5980C393AA21668D953",
"EEA2BAE7E1497842F2DE7769CFE9C989C072AD696F48034A",
"6574D11D69B6EC7A672BB82A083DF2F2B0847DE970B2DE15",
"FFFFFFFFFFFFFFFFFFFFFFFE5FB1A724DC80418648D8DD31", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_192V3 = {
"X9.62 P-192V3", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC",
"22123DC2395A05CAA7423DAECCC94760A7D462256BD56916",
"7D29778100C65A1DA1783716588DCE2B8B4AEE8E228F1896",
"38A90F22637337334B49DCB66A6DC8F9978ACA7648A943B0",
"FFFFFFFFFFFFFFFFFFFFFFFF7A62D031C83F4294F640EC13", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V1 = {
"X9.62 P-239V1", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"6B016C3BDCF18941D0D654921475CA71A9DB2FB27D1D37796185C2942C0A",
"0FFA963CDCA8816CCC33B8642BEDF905C3D358573D3F27FBBD3B3CB9AAAF",
"7DEBE8E4E90A5DAE6E4054CA530BA04654B36818CE226B39FCCB7B02F1AE",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF9E5E9A9F5D9071FBD1522688909D0B", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V2 = {
"X9.62 P-239V2", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"617FAB6832576CBBFED50D99F0249C3FEE58B94BA0038C7AE84C8C832F2C",
"38AF09D98727705120C921BB5E9E26296A3CDCF2F35757A0EAFD87B830E7",
"5B0125E4DBEA0EC7206DA0FC01D9B081329FB555DE6EF460237DFF8BE4BA",
"7FFFFFFFFFFFFFFFFFFFFFFF800000CFA7E8594377D414C03821BC582063", 1
};
static const ECCurveParams ecCurve_X9_62_PRIME_239V3 = {
"X9.62 P-239V3", ECField_GFp, 239,
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFF",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFFFFFFFF8000000000007FFFFFFFFFFC",
"255705FA2A306654B1F4CB03D6A750A30C250102D4988717D9BA15AB6D3E",
"6768AE8E18BB92CFCF005C949AA2C6D94853D0E660BBF854B1C9505FE95A",
"1607E6898F390C06BC1D552BAD226F3B6FCFE48B6E818499AF18E3ED6CF3",
"7FFFFFFFFFFFFFFFFFFFFFFF7FFFFF975DEB41B3A6057C3C432146526551", 1
};
/* ANSI X9.62 binary curves */
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V1 = {
"X9.62 C2-PNB163V1", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"072546B5435234A422E0789675F432C89435DE5242",
"00C9517D06D5240D3CFF38C74B20B6CD4D6F9DD4D9",
"07AF69989546103D79329FCC3D74880F33BBE803CB",
"01EC23211B5966ADEA1D3F87F7EA5848AEF0B7CA9F",
"0400000000000000000001E60FC8821CC74DAEAFC1", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V2 = {
"X9.62 C2-PNB163V2", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"0108B39E77C4B108BED981ED0E890E117C511CF072",
"0667ACEB38AF4E488C407433FFAE4F1C811638DF20",
"0024266E4EB5106D0A964D92C4860E2671DB9B6CC5",
"079F684DDF6684C5CD258B3890021B2386DFD19FC5",
"03FFFFFFFFFFFFFFFFFFFDF64DE1151ADBB78F10A7", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB163V3 = {
"X9.62 C2-PNB163V3", ECField_GF2m, 163,
"080000000000000000000000000000000000000107",
"07A526C63D3E25A256A007699F5447E32AE456B50E",
"03F7061798EB99E238FD6F1BF95B48FEEB4854252B",
"02F9F87B7C574D0BDECF8A22E6524775F98CDEBDCB",
"05B935590C155E17EA48EB3FF3718B893DF59A05D0",
"03FFFFFFFFFFFFFFFFFFFE1AEE140F110AFF961309", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB176V1 = {
"X9.62 C2-PNB176V1", ECField_GF2m, 176,
"0100000000000000000000000000000000080000000007",
"E4E6DB2995065C407D9D39B8D0967B96704BA8E9C90B",
"5DDA470ABE6414DE8EC133AE28E9BBD7FCEC0AE0FFF2",
"8D16C2866798B600F9F08BB4A8E860F3298CE04A5798",
"6FA4539C2DADDDD6BAB5167D61B436E1D92BB16A562C",
"00010092537397ECA4F6145799D62B0A19CE06FE26AD", 0xFF6E
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V1 = {
"X9.62 C2-TNB191V1", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"2866537B676752636A68F56554E12640276B649EF7526267",
"2E45EF571F00786F67B0081B9495A3D95462F5DE0AA185EC",
"36B3DAF8A23206F9C4F299D7B21A9C369137F2C84AE1AA0D",
"765BE73433B3F95E332932E70EA245CA2418EA0EF98018FB",
"40000000000000000000000004A20E90C39067C893BBB9A5", 2
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V2 = {
"X9.62 C2-TNB191V2", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"401028774D7777C7B7666D1366EA432071274F89FF01E718",
"0620048D28BCBD03B6249C99182B7C8CD19700C362C46A01",
"3809B2B7CC1B28CC5A87926AAD83FD28789E81E2C9E3BF10",
"17434386626D14F3DBF01760D9213A3E1CF37AEC437D668A",
"20000000000000000000000050508CB89F652824E06B8173", 4
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB191V3 = {
"X9.62 C2-TNB191V3", ECField_GF2m, 191,
"800000000000000000000000000000000000000000000201",
"6C01074756099122221056911C77D77E77A777E7E7E77FCB",
"71FE1AF926CF847989EFEF8DB459F66394D90F32AD3F15E8",
"375D4CE24FDE434489DE8746E71786015009E66E38A926DD",
"545A39176196575D985999366E6AD34CE0A77CD7127B06BE",
"155555555555555555555555610C0B196812BFB6288A3EA3", 6
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB208W1 = {
"X9.62 C2-PNB208W1", ECField_GF2m, 208,
"010000000000000000000000000000000800000000000000000007",
"0000000000000000000000000000000000000000000000000000",
"C8619ED45A62E6212E1160349E2BFA844439FAFC2A3FD1638F9E",
"89FDFBE4ABE193DF9559ECF07AC0CE78554E2784EB8C1ED1A57A",
"0F55B51A06E78E9AC38A035FF520D8B01781BEB1A6BB08617DE3",
"000101BAF95C9723C57B6C21DA2EFF2D5ED588BDD5717E212F9D", 0xFE48
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V1 = {
"X9.62 C2-TNB239V1", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"32010857077C5431123A46B808906756F543423E8D27877578125778AC76",
"790408F2EEDAF392B012EDEFB3392F30F4327C0CA3F31FC383C422AA8C16",
"57927098FA932E7C0A96D3FD5B706EF7E5F5C156E16B7E7C86038552E91D",
"61D8EE5077C33FECF6F1A16B268DE469C3C7744EA9A971649FC7A9616305",
"2000000000000000000000000000000F4D42FFE1492A4993F1CAD666E447", 4
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V2 = {
"X9.62 C2-TNB239V2", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"4230017757A767FAE42398569B746325D45313AF0766266479B75654E65F",
"5037EA654196CFF0CD82B2C14A2FCF2E3FF8775285B545722F03EACDB74B",
"28F9D04E900069C8DC47A08534FE76D2B900B7D7EF31F5709F200C4CA205",
"5667334C45AFF3B5A03BAD9DD75E2C71A99362567D5453F7FA6E227EC833",
"1555555555555555555555555555553C6F2885259C31E3FCDF154624522D", 6
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB239V3 = {
"X9.62 C2-TNB239V3", ECField_GF2m, 239,
"800000000000000000000000000000000000000000000000001000000001",
"01238774666A67766D6676F778E676B66999176666E687666D8766C66A9F",
"6A941977BA9F6A435199ACFC51067ED587F519C5ECB541B8E44111DE1D40",
"70F6E9D04D289C4E89913CE3530BFDE903977D42B146D539BF1BDE4E9C92",
"2E5A0EAF6E5E1305B9004DCE5C0ED7FE59A35608F33837C816D80B79F461",
"0CCCCCCCCCCCCCCCCCCCCCCCCCCCCCAC4912D2D9DF903EF9888B8A0E4CFF", 0xA
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB272W1 = {
"X9.62 C2-PNB272W1", ECField_GF2m, 272,
"010000000000000000000000000000000000000000000000000000010000000000000B",
"91A091F03B5FBA4AB2CCF49C4EDD220FB028712D42BE752B2C40094DBACDB586FB20",
"7167EFC92BB2E3CE7C8AAAFF34E12A9C557003D7C73A6FAF003F99F6CC8482E540F7",
"6108BABB2CEEBCF787058A056CBE0CFE622D7723A289E08A07AE13EF0D10D171DD8D",
"10C7695716851EEF6BA7F6872E6142FBD241B830FF5EFCACECCAB05E02005DDE9D23",
"000100FAF51354E0E39E4892DF6E319C72C8161603FA45AA7B998A167B8F1E629521",
0xFF06
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB304W1 = {
"X9.62 C2-PNB304W1", ECField_GF2m, 304,
"010000000000000000000000000000000000000000000000000000000000000000000000000807",
"FD0D693149A118F651E6DCE6802085377E5F882D1B510B44160074C1288078365A0396C8E681",
"BDDB97E555A50A908E43B01C798EA5DAA6788F1EA2794EFCF57166B8C14039601E55827340BE",
"197B07845E9BE2D96ADB0F5F3C7F2CFFBD7A3EB8B6FEC35C7FD67F26DDF6285A644F740A2614",
"E19FBEB76E0DA171517ECF401B50289BF014103288527A9B416A105E80260B549FDC1B92C03B",
"000101D556572AABAC800101D556572AABAC8001022D5C91DD173F8FB561DA6899164443051D", 0xFE2E
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB359V1 = {
"X9.62 C2-TNB359V1", ECField_GF2m, 359,
"800000000000000000000000000000000000000000000000000000000000000000000000100000000000000001",
"5667676A654B20754F356EA92017D946567C46675556F19556A04616B567D223A5E05656FB549016A96656A557",
"2472E2D0197C49363F1FE7F5B6DB075D52B6947D135D8CA445805D39BC345626089687742B6329E70680231988",
"3C258EF3047767E7EDE0F1FDAA79DAEE3841366A132E163ACED4ED2401DF9C6BDCDE98E8E707C07A2239B1B097",
"53D7E08529547048121E9C95F3791DD804963948F34FAE7BF44EA82365DC7868FE57E4AE2DE211305A407104BD",
"01AF286BCA1AF286BCA1AF286BCA1AF286BCA1AF286BC9FB8F6B85C556892C20A7EB964FE7719E74F490758D3B", 0x4C
};
static const ECCurveParams ecCurve_X9_62_CHAR2_PNB368W1 = {
"X9.62 C2-PNB368W1", ECField_GF2m, 368,
"0100000000000000000000000000000000000000000000000000000000000000000000002000000000000000000007",
"E0D2EE25095206F5E2A4F9ED229F1F256E79A0E2B455970D8D0D865BD94778C576D62F0AB7519CCD2A1A906AE30D",
"FC1217D4320A90452C760A58EDCD30C8DD069B3C34453837A34ED50CB54917E1C2112D84D164F444F8F74786046A",
"1085E2755381DCCCE3C1557AFA10C2F0C0C2825646C5B34A394CBCFA8BC16B22E7E789E927BE216F02E1FB136A5F",
"7B3EB1BDDCBA62D5D8B2059B525797FC73822C59059C623A45FF3843CEE8F87CD1855ADAA81E2A0750B80FDA2310",
"00010090512DA9AF72B08349D98A5DD4C7B0532ECA51CE03E2D10F3B7AC579BD87E909AE40A6F131E9CFCE5BD967", 0xFF70
};
static const ECCurveParams ecCurve_X9_62_CHAR2_TNB431R1 = {
"X9.62 C2-TNB431R1", ECField_GF2m, 431,
"800000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000001",
"1A827EF00DD6FC0E234CAF046C6A5D8A85395B236CC4AD2CF32A0CADBDC9DDF620B0EB9906D0957F6C6FEACD615468DF104DE296CD8F",
"10D9B4A3D9047D8B154359ABFB1B7F5485B04CEB868237DDC9DEDA982A679A5A919B626D4E50A8DD731B107A9962381FB5D807BF2618",
"120FC05D3C67A99DE161D2F4092622FECA701BE4F50F4758714E8A87BBF2A658EF8C21E7C5EFE965361F6C2999C0C247B0DBD70CE6B7",
"20D0AF8903A96F8D5FA2C255745D3C451B302C9346D9B7E485E7BCE41F6B591F3E8F6ADDCBB0BC4C2F947A7DE1A89B625D6A598B3760",
"0340340340340340340340340340340340340340340340340340340323C313FAB50589703B5EC68D3587FEC60D161CC149C1AD4A91", 0x2760
};
/* SEC2 prime curves */
static const ECCurveParams ecCurve_SECG_PRIME_112R1 = {
"SECP-112R1", ECField_GFp, 112,
"DB7C2ABF62E35E668076BEAD208B",
"DB7C2ABF62E35E668076BEAD2088",
"659EF8BA043916EEDE8911702B22",
"09487239995A5EE76B55F9C2F098",
"A89CE5AF8724C0A23E0E0FF77500",
"DB7C2ABF62E35E7628DFAC6561C5", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_112R2 = {
"SECP-112R2", ECField_GFp, 112,
"DB7C2ABF62E35E668076BEAD208B",
"6127C24C05F38A0AAAF65C0EF02C",
"51DEF1815DB5ED74FCC34C85D709",
"4BA30AB5E892B4E1649DD0928643",
"adcd46f5882e3747def36e956e97",
"36DF0AAFD8B8D7597CA10520D04B", 4
};
static const ECCurveParams ecCurve_SECG_PRIME_128R1 = {
"SECP-128R1", ECField_GFp, 128,
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFC",
"E87579C11079F43DD824993C2CEE5ED3",
"161FF7528B899B2D0C28607CA52C5B86",
"CF5AC8395BAFEB13C02DA292DDED7A83",
"FFFFFFFE0000000075A30D1B9038A115", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_128R2 = {
"SECP-128R2", ECField_GFp, 128,
"FFFFFFFDFFFFFFFFFFFFFFFFFFFFFFFF",
"D6031998D1B3BBFEBF59CC9BBFF9AEE1",
"5EEEFCA380D02919DC2C6558BB6D8A5D",
"7B6AA5D85E572983E6FB32A7CDEBC140",
"27B6916A894D3AEE7106FE805FC34B44",
"3FFFFFFF7FFFFFFFBE0024720613B5A3", 4
};
static const ECCurveParams ecCurve_SECG_PRIME_160K1 = {
"SECP-160K1", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
"0000000000000000000000000000000000000000",
"0000000000000000000000000000000000000007",
"3B4C382CE37AA192A4019E763036F4F5DD4D7EBB",
"938CF935318FDCED6BC28286531733C3F03C4FEE",
"0100000000000000000001B8FA16DFAB9ACA16B6B3", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_160R1 = {
"SECP-160R1", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFF",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF7FFFFFFC",
"1C97BEFC54BD7A8B65ACF89F81D4D4ADC565FA45",
"4A96B5688EF573284664698968C38BB913CBFC82",
"23A628553168947D59DCC912042351377AC5FB32",
"0100000000000000000001F4C8F927AED3CA752257", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_160R2 = {
"SECP-160R2", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC73",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFAC70",
"B4E134D3FB59EB8BAB57274904664D5AF50388BA",
"52DCB034293A117E1F4FF11B30F7199D3144CE6D",
"FEAFFEF2E331F296E071FA0DF9982CFEA7D43F2E",
"0100000000000000000000351EE786A818F3A1A16B", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_192K1 = {
"SECP-192K1", ECField_GFp, 192,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37",
"000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000003",
"DB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D",
"9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D",
"FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_224K1 = {
"SECP-224K1", ECField_GFp, 224,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D",
"00000000000000000000000000000000000000000000000000000000",
"00000000000000000000000000000000000000000000000000000005",
"A1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C",
"7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5",
"010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7", 1
};
static const ECCurveParams ecCurve_SECG_PRIME_256K1 = {
"SECP-256K1", ECField_GFp, 256,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F",
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000007",
"79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798",
"483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8",
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 1
};
/* SEC2 binary curves */
static const ECCurveParams ecCurve_SECG_CHAR2_113R1 = {
"SECT-113R1", ECField_GF2m, 113,
"020000000000000000000000000201",
"003088250CA6E7C7FE649CE85820F7",
"00E8BEE4D3E2260744188BE0E9C723",
"009D73616F35F4AB1407D73562C10F",
"00A52830277958EE84D1315ED31886",
"0100000000000000D9CCEC8A39E56F", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_113R2 = {
"SECT-113R2", ECField_GF2m, 113,
"020000000000000000000000000201",
"00689918DBEC7E5A0DD6DFC0AA55C7",
"0095E9A9EC9B297BD4BF36E059184F",
"01A57A6A7B26CA5EF52FCDB8164797",
"00B3ADC94ED1FE674C06E695BABA1D",
"010000000000000108789B2496AF93", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_131R1 = {
"SECT-131R1", ECField_GF2m, 131,
"080000000000000000000000000000010D",
"07A11B09A76B562144418FF3FF8C2570B8",
"0217C05610884B63B9C6C7291678F9D341",
"0081BAF91FDF9833C40F9C181343638399",
"078C6E7EA38C001F73C8134B1B4EF9E150",
"0400000000000000023123953A9464B54D", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_131R2 = {
"SECT-131R2", ECField_GF2m, 131,
"080000000000000000000000000000010D",
"03E5A88919D7CAFCBF415F07C2176573B2",
"04B8266A46C55657AC734CE38F018F2192",
"0356DCD8F2F95031AD652D23951BB366A8",
"0648F06D867940A5366D9E265DE9EB240F",
"0400000000000000016954A233049BA98F", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_163R1 = {
"SECT-163R1", ECField_GF2m, 163,
"0800000000000000000000000000000000000000C9",
"07B6882CAAEFA84F9554FF8428BD88E246D2782AE2",
"0713612DCDDCB40AAB946BDA29CA91F73AF958AFD9",
"0369979697AB43897789566789567F787A7876A654",
"00435EDB42EFAFB2989D51FEFCE3C80988F41FF883",
"03FFFFFFFFFFFFFFFFFFFF48AAB689C29CA710279B", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_193R1 = {
"SECT-193R1", ECField_GF2m, 193,
"02000000000000000000000000000000000000000000008001",
"0017858FEB7A98975169E171F77B4087DE098AC8A911DF7B01",
"00FDFB49BFE6C3A89FACADAA7A1E5BBC7CC1C2E5D831478814",
"01F481BC5F0FF84A74AD6CDF6FDEF4BF6179625372D8C0C5E1",
"0025E399F2903712CCF3EA9E3A1AD17FB0B3201B6AF7CE1B05",
"01000000000000000000000000C7F34A778F443ACC920EBA49", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_193R2 = {
"SECT-193R2", ECField_GF2m, 193,
"02000000000000000000000000000000000000000000008001",
"0163F35A5137C2CE3EA6ED8667190B0BC43ECD69977702709B",
"00C9BB9E8927D4D64C377E2AB2856A5B16E3EFB7F61D4316AE",
"00D9B67D192E0367C803F39E1A7E82CA14A651350AAE617E8F",
"01CE94335607C304AC29E7DEFBD9CA01F596F927224CDECF6C",
"010000000000000000000000015AAB561B005413CCD4EE99D5", 2
};
static const ECCurveParams ecCurve_SECG_CHAR2_239K1 = {
"SECT-239K1", ECField_GF2m, 239,
"800000000000000000004000000000000000000000000000000000000001",
"000000000000000000000000000000000000000000000000000000000000",
"000000000000000000000000000000000000000000000000000000000001",
"29A0B6A887A983E9730988A68727A8B2D126C44CC2CC7B2A6555193035DC",
"76310804F12E549BDB011C103089E73510ACB275FC312A5DC6B76553F0CA",
"2000000000000000000000000000005A79FEC67CB6E91F1C1DA800E478A5", 4
};
/* WTLS curves */
static const ECCurveParams ecCurve_WTLS_1 = {
"WTLS-1", ECField_GF2m, 113,
"020000000000000000000000000201",
"000000000000000000000000000001",
"000000000000000000000000000001",
"01667979A40BA497E5D5C270780617",
"00F44B4AF1ECC2630E08785CEBCC15",
"00FFFFFFFFFFFFFFFDBF91AF6DEA73", 2
};
static const ECCurveParams ecCurve_WTLS_8 = {
"WTLS-8", ECField_GFp, 112,
"FFFFFFFFFFFFFFFFFFFFFFFFFDE7",
"0000000000000000000000000000",
"0000000000000000000000000003",
"0000000000000000000000000001",
"0000000000000000000000000002",
"0100000000000001ECEA551AD837E9", 1
};
static const ECCurveParams ecCurve_WTLS_9 = {
"WTLS-9", ECField_GFp, 160,
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC808F",
"0000000000000000000000000000000000000000",
"0000000000000000000000000000000000000003",
"0000000000000000000000000000000000000001",
"0000000000000000000000000000000000000002",
"0100000000000000000001CDC98AE0E2DE574ABF33", 1
};
static const ECCurveParams ecCurve_BrainpoolP256r1 = {
"brainpoolP256r1", ECField_GFp, 256,
"A9FB57DBA1EEA9BC3E660A909D838D726E3BF623D52620282013481D1F6E5377",
"7D5A0975FC2C3057EEF67530417AFFE7FB8055C126DC5C6CE94A4B44F330B5D9",
"26DC5C6CE94A4B44F330B5D9BBD77CBF958416295CF7E1CE6BCCDC18FF8C07B6",
"8BD2AEB9CB7E57CB2C4B482FFC81B7AFB9DE27E1E3BD23C23A4453BD9ACE3262",
"547EF835C3DAC4FD97F8461A14611DC9C27745132DED8E545C1D54C72F046997",
"A9FB57DBA1EEA9BC3E660A909D838D718C397AA3B561A6F7901E0E82974856A7", 1
};
static const ECCurveParams ecCurve_BrainpoolP320r1 = {
"brainpoolP320r1", ECField_GFp, 320,
"D35E472036BC4FB7E13C785ED201E065F98FCFA6F6F40DEF4F92B9EC7893EC28FCD412B1F1B32E27",
"3EE30B568FBAB0F883CCEBD46D3F3BB8A2A73513F5EB79DA66190EB085FFA9F492F375A97D860EB4",
"520883949DFDBC42D3AD198640688A6FE13F41349554B49ACC31DCCD884539816F5EB4AC8FB1F1A6",
"43BD7E9AFB53D8B85289BCC48EE5BFE6F20137D10A087EB6E7871E2A10A599C710AF8D0D39E20611",
"14FDD05545EC1CC8AB4093247F77275E0743FFED117182EAA9C77877AAAC6AC7D35245D1692E8EE1",
"D35E472036BC4FB7E13C785ED201E065F98FCFA5B68F12A32D482EC7EE8658E98691555B44C59311", 1
};
static const ECCurveParams ecCurve_BrainpoolP384r1 = {
"brainpoolP384r1", ECField_GFp, 384,
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B412B1DA197FB71123ACD3A729901D1A71874700133107EC53",
"7BC382C63D8C150C3C72080ACE05AFA0C2BEA28E4FB22787139165EFBA91F90F8AA5814A503AD4EB04A8C7DD22CE2826",
"04A8C7DD22CE28268B39B55416F0447C2FB77DE107DCD2A62E880EA53EEB62D57CB4390295DBC9943AB78696FA504C11",
"1D1C64F068CF45FFA2A63A81B7C13F6B8847A3E77EF14FE3DB7FCAFE0CBD10E8E826E03436D646AAEF87B2E247D4AF1E",
"8ABE1D7520F9C2A45CB1EB8E95CFD55262B70B29FEEC5864E19C054FF99129280E4646217791811142820341263C5315",
"8CB91E82A3386D280F5D6F7E50E641DF152F7109ED5456B31F166E6CAC0425A7CF3AB6AF6B7FC3103B883202E9046565", 1
};
static const ECCurveParams ecCurve_BrainpoolP512r1 = {
"brainpoolP512r1", ECField_GFp, 512,
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E62881FF2F2D82C68528AA6056583A48F3",
"7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CA",
"3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E67984050B75EBAE5DD2809BD638016F723",
"81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5F7C6D5047406A5E688B352209BCB9F822",
"7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763AED1CA2B2FA8F0540678CD1E0F3AD80892",
"AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC10471DB1D381085DDADDB58796829CA90069", 1
};
/* mapping between ECCurveName enum and pointers to ECCurveParams */
static const ECCurveParams *ecCurve_map[] = {
NULL, /* ECCurve_noName */
&ecCurve_NIST_P192, /* ECCurve_NIST_P192 */
&ecCurve_NIST_P224, /* ECCurve_NIST_P224 */
&ecCurve_NIST_P256, /* ECCurve_NIST_P256 */
&ecCurve_NIST_P384, /* ECCurve_NIST_P384 */
&ecCurve_NIST_P521, /* ECCurve_NIST_P521 */
&ecCurve_NIST_K163, /* ECCurve_NIST_K163 */
&ecCurve_NIST_B163, /* ECCurve_NIST_B163 */
&ecCurve_NIST_K233, /* ECCurve_NIST_K233 */
&ecCurve_NIST_B233, /* ECCurve_NIST_B233 */
&ecCurve_NIST_K283, /* ECCurve_NIST_K283 */
&ecCurve_NIST_B283, /* ECCurve_NIST_B283 */
&ecCurve_NIST_K409, /* ECCurve_NIST_K409 */
&ecCurve_NIST_B409, /* ECCurve_NIST_B409 */
&ecCurve_NIST_K571, /* ECCurve_NIST_K571 */
&ecCurve_NIST_B571, /* ECCurve_NIST_B571 */
&ecCurve_X9_62_PRIME_192V2, /* ECCurve_X9_62_PRIME_192V2 */
&ecCurve_X9_62_PRIME_192V3, /* ECCurve_X9_62_PRIME_192V3 */
&ecCurve_X9_62_PRIME_239V1, /* ECCurve_X9_62_PRIME_239V1 */
&ecCurve_X9_62_PRIME_239V2, /* ECCurve_X9_62_PRIME_239V2 */
&ecCurve_X9_62_PRIME_239V3, /* ECCurve_X9_62_PRIME_239V3 */
&ecCurve_X9_62_CHAR2_PNB163V1, /* ECCurve_X9_62_CHAR2_PNB163V1 */
&ecCurve_X9_62_CHAR2_PNB163V2, /* ECCurve_X9_62_CHAR2_PNB163V2 */
&ecCurve_X9_62_CHAR2_PNB163V3, /* ECCurve_X9_62_CHAR2_PNB163V3 */
&ecCurve_X9_62_CHAR2_PNB176V1, /* ECCurve_X9_62_CHAR2_PNB176V1 */
&ecCurve_X9_62_CHAR2_TNB191V1, /* ECCurve_X9_62_CHAR2_TNB191V1 */
&ecCurve_X9_62_CHAR2_TNB191V2, /* ECCurve_X9_62_CHAR2_TNB191V2 */
&ecCurve_X9_62_CHAR2_TNB191V3, /* ECCurve_X9_62_CHAR2_TNB191V3 */
&ecCurve_X9_62_CHAR2_PNB208W1, /* ECCurve_X9_62_CHAR2_PNB208W1 */
&ecCurve_X9_62_CHAR2_TNB239V1, /* ECCurve_X9_62_CHAR2_TNB239V1 */
&ecCurve_X9_62_CHAR2_TNB239V2, /* ECCurve_X9_62_CHAR2_TNB239V2 */
&ecCurve_X9_62_CHAR2_TNB239V3, /* ECCurve_X9_62_CHAR2_TNB239V3 */
&ecCurve_X9_62_CHAR2_PNB272W1, /* ECCurve_X9_62_CHAR2_PNB272W1 */
&ecCurve_X9_62_CHAR2_PNB304W1, /* ECCurve_X9_62_CHAR2_PNB304W1 */
&ecCurve_X9_62_CHAR2_TNB359V1, /* ECCurve_X9_62_CHAR2_TNB359V1 */
&ecCurve_X9_62_CHAR2_PNB368W1, /* ECCurve_X9_62_CHAR2_PNB368W1 */
&ecCurve_X9_62_CHAR2_TNB431R1, /* ECCurve_X9_62_CHAR2_TNB431R1 */
&ecCurve_SECG_PRIME_112R1, /* ECCurve_SECG_PRIME_112R1 */
&ecCurve_SECG_PRIME_112R2, /* ECCurve_SECG_PRIME_112R2 */
&ecCurve_SECG_PRIME_128R1, /* ECCurve_SECG_PRIME_128R1 */
&ecCurve_SECG_PRIME_128R2, /* ECCurve_SECG_PRIME_128R2 */
&ecCurve_SECG_PRIME_160K1, /* ECCurve_SECG_PRIME_160K1 */
&ecCurve_SECG_PRIME_160R1, /* ECCurve_SECG_PRIME_160R1 */
&ecCurve_SECG_PRIME_160R2, /* ECCurve_SECG_PRIME_160R2 */
&ecCurve_SECG_PRIME_192K1, /* ECCurve_SECG_PRIME_192K1 */
&ecCurve_SECG_PRIME_224K1, /* ECCurve_SECG_PRIME_224K1 */
&ecCurve_SECG_PRIME_256K1, /* ECCurve_SECG_PRIME_256K1 */
&ecCurve_SECG_CHAR2_113R1, /* ECCurve_SECG_CHAR2_113R1 */
&ecCurve_SECG_CHAR2_113R2, /* ECCurve_SECG_CHAR2_113R2 */
&ecCurve_SECG_CHAR2_131R1, /* ECCurve_SECG_CHAR2_131R1 */
&ecCurve_SECG_CHAR2_131R2, /* ECCurve_SECG_CHAR2_131R2 */
&ecCurve_SECG_CHAR2_163R1, /* ECCurve_SECG_CHAR2_163R1 */
&ecCurve_SECG_CHAR2_193R1, /* ECCurve_SECG_CHAR2_193R1 */
&ecCurve_SECG_CHAR2_193R2, /* ECCurve_SECG_CHAR2_193R2 */
&ecCurve_SECG_CHAR2_239K1, /* ECCurve_SECG_CHAR2_239K1 */
&ecCurve_WTLS_1, /* ECCurve_WTLS_1 */
&ecCurve_WTLS_8, /* ECCurve_WTLS_8 */
&ecCurve_WTLS_9, /* ECCurve_WTLS_9 */
&ecCurve_BrainpoolP256r1, /* ECCurve_BrainpoolP256r1 */
&ecCurve_BrainpoolP320r1, /* ECCurve_BrainpoolP320r1 */
&ecCurve_BrainpoolP384r1, /* ECCurve_brainpoolP384r1 */
&ecCurve_BrainpoolP512r1, /* ECCurve_brainpoolP512r1 */
NULL /* ECCurve_pastLastCurve */
};
#endif /* _ECL_CURVE_H */

View File

@ -1,201 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#ifndef _ECL_EXP_H
#define _ECL_EXP_H
/* Curve field type */
typedef enum {
ECField_GFp,
ECField_GF2m
} ECField;
/* Hexadecimal encoding of curve parameters */
struct ECCurveParamsStr {
char *text;
ECField field;
unsigned int size;
char *irr;
char *curvea;
char *curveb;
char *genx;
char *geny;
char *order;
int cofactor;
};
typedef struct ECCurveParamsStr ECCurveParams;
/* Named curve parameters */
typedef enum {
ECCurve_noName = 0,
/* NIST prime curves */
ECCurve_NIST_P192,
ECCurve_NIST_P224,
ECCurve_NIST_P256,
ECCurve_NIST_P384,
ECCurve_NIST_P521,
/* NIST binary curves */
ECCurve_NIST_K163,
ECCurve_NIST_B163,
ECCurve_NIST_K233,
ECCurve_NIST_B233,
ECCurve_NIST_K283,
ECCurve_NIST_B283,
ECCurve_NIST_K409,
ECCurve_NIST_B409,
ECCurve_NIST_K571,
ECCurve_NIST_B571,
/* ANSI X9.62 prime curves */
/* ECCurve_X9_62_PRIME_192V1 == ECCurve_NIST_P192 */
ECCurve_X9_62_PRIME_192V2,
ECCurve_X9_62_PRIME_192V3,
ECCurve_X9_62_PRIME_239V1,
ECCurve_X9_62_PRIME_239V2,
ECCurve_X9_62_PRIME_239V3,
/* ECCurve_X9_62_PRIME_256V1 == ECCurve_NIST_P256 */
/* ANSI X9.62 binary curves */
ECCurve_X9_62_CHAR2_PNB163V1,
ECCurve_X9_62_CHAR2_PNB163V2,
ECCurve_X9_62_CHAR2_PNB163V3,
ECCurve_X9_62_CHAR2_PNB176V1,
ECCurve_X9_62_CHAR2_TNB191V1,
ECCurve_X9_62_CHAR2_TNB191V2,
ECCurve_X9_62_CHAR2_TNB191V3,
ECCurve_X9_62_CHAR2_PNB208W1,
ECCurve_X9_62_CHAR2_TNB239V1,
ECCurve_X9_62_CHAR2_TNB239V2,
ECCurve_X9_62_CHAR2_TNB239V3,
ECCurve_X9_62_CHAR2_PNB272W1,
ECCurve_X9_62_CHAR2_PNB304W1,
ECCurve_X9_62_CHAR2_TNB359V1,
ECCurve_X9_62_CHAR2_PNB368W1,
ECCurve_X9_62_CHAR2_TNB431R1,
/* SEC2 prime curves */
ECCurve_SECG_PRIME_112R1,
ECCurve_SECG_PRIME_112R2,
ECCurve_SECG_PRIME_128R1,
ECCurve_SECG_PRIME_128R2,
ECCurve_SECG_PRIME_160K1,
ECCurve_SECG_PRIME_160R1,
ECCurve_SECG_PRIME_160R2,
ECCurve_SECG_PRIME_192K1,
/* ECCurve_SECG_PRIME_192R1 == ECCurve_NIST_P192 */
ECCurve_SECG_PRIME_224K1,
/* ECCurve_SECG_PRIME_224R1 == ECCurve_NIST_P224 */
ECCurve_SECG_PRIME_256K1,
/* ECCurve_SECG_PRIME_256R1 == ECCurve_NIST_P256 */
/* ECCurve_SECG_PRIME_384R1 == ECCurve_NIST_P384 */
/* ECCurve_SECG_PRIME_521R1 == ECCurve_NIST_P521 */
/* SEC2 binary curves */
ECCurve_SECG_CHAR2_113R1,
ECCurve_SECG_CHAR2_113R2,
ECCurve_SECG_CHAR2_131R1,
ECCurve_SECG_CHAR2_131R2,
/* ECCurve_SECG_CHAR2_163K1 == ECCurve_NIST_K163 */
ECCurve_SECG_CHAR2_163R1,
/* ECCurve_SECG_CHAR2_163R2 == ECCurve_NIST_B163 */
ECCurve_SECG_CHAR2_193R1,
ECCurve_SECG_CHAR2_193R2,
/* ECCurve_SECG_CHAR2_233K1 == ECCurve_NIST_K233 */
/* ECCurve_SECG_CHAR2_233R1 == ECCurve_NIST_B233 */
ECCurve_SECG_CHAR2_239K1,
/* ECCurve_SECG_CHAR2_283K1 == ECCurve_NIST_K283 */
/* ECCurve_SECG_CHAR2_283R1 == ECCurve_NIST_B283 */
/* ECCurve_SECG_CHAR2_409K1 == ECCurve_NIST_K409 */
/* ECCurve_SECG_CHAR2_409R1 == ECCurve_NIST_B409 */
/* ECCurve_SECG_CHAR2_571K1 == ECCurve_NIST_K571 */
/* ECCurve_SECG_CHAR2_571R1 == ECCurve_NIST_B571 */
/* WTLS curves */
ECCurve_WTLS_1,
/* there is no WTLS 2 curve */
/* ECCurve_WTLS_3 == ECCurve_NIST_K163 */
/* ECCurve_WTLS_4 == ECCurve_SECG_CHAR2_113R1 */
/* ECCurve_WTLS_5 == ECCurve_X9_62_CHAR2_PNB163V1 */
/* ECCurve_WTLS_6 == ECCurve_SECG_PRIME_112R1 */
/* ECCurve_WTLS_7 == ECCurve_SECG_PRIME_160R1 */
ECCurve_WTLS_8,
ECCurve_WTLS_9,
/* ECCurve_WTLS_10 == ECCurve_NIST_K233 */
/* ECCurve_WTLS_11 == ECCurve_NIST_B233 */
/* ECCurve_WTLS_12 == ECCurve_NIST_P224 */
/* ECC Brainpool prime curves in RFC 5639*/
ECCurve_BrainpoolP256r1,
ECCurve_BrainpoolP320r1,
ECCurve_BrainpoolP384r1,
ECCurve_BrainpoolP512r1,
ECCurve_pastLastCurve
} ECCurveName;
/* Aliased named curves */
#define ECCurve_X9_62_PRIME_192V1 ECCurve_NIST_P192
#define ECCurve_X9_62_PRIME_256V1 ECCurve_NIST_P256
#define ECCurve_SECG_PRIME_192R1 ECCurve_NIST_P192
#define ECCurve_SECG_PRIME_224R1 ECCurve_NIST_P224
#define ECCurve_SECG_PRIME_256R1 ECCurve_NIST_P256
#define ECCurve_SECG_PRIME_384R1 ECCurve_NIST_P384
#define ECCurve_SECG_PRIME_521R1 ECCurve_NIST_P521
#define ECCurve_SECG_CHAR2_163K1 ECCurve_NIST_K163
#define ECCurve_SECG_CHAR2_163R2 ECCurve_NIST_B163
#define ECCurve_SECG_CHAR2_233K1 ECCurve_NIST_K233
#define ECCurve_SECG_CHAR2_233R1 ECCurve_NIST_B233
#define ECCurve_SECG_CHAR2_283K1 ECCurve_NIST_K283
#define ECCurve_SECG_CHAR2_283R1 ECCurve_NIST_B283
#define ECCurve_SECG_CHAR2_409K1 ECCurve_NIST_K409
#define ECCurve_SECG_CHAR2_409R1 ECCurve_NIST_B409
#define ECCurve_SECG_CHAR2_571K1 ECCurve_NIST_K571
#define ECCurve_SECG_CHAR2_571R1 ECCurve_NIST_B571
#define ECCurve_WTLS_3 ECCurve_NIST_K163
#define ECCurve_WTLS_4 ECCurve_SECG_CHAR2_113R1
#define ECCurve_WTLS_5 ECCurve_X9_62_CHAR2_PNB163V1
#define ECCurve_WTLS_6 ECCurve_SECG_PRIME_112R1
#define ECCurve_WTLS_7 ECCurve_SECG_PRIME_160R1
#define ECCurve_WTLS_10 ECCurve_NIST_K233
#define ECCurve_WTLS_11 ECCurve_NIST_B233
#define ECCurve_WTLS_12 ECCurve_NIST_P224
#endif /* _ECL_EXP_H */

View File

@ -1,300 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com> and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _ECL_PRIV_H
#define _ECL_PRIV_H
#include "ecl.h"
#include "mpi.h"
#include "mplogic.h"
/* MAX_FIELD_SIZE_DIGITS is the maximum size of field element supported */
/* the following needs to go away... */
#if defined(MP_USE_LONG_LONG_DIGIT) || defined(MP_USE_LONG_DIGIT)
#define ECL_SIXTY_FOUR_BIT
#else
#define ECL_THIRTY_TWO_BIT
#endif
#define ECL_CURVE_DIGITS(curve_size_in_bits) \
(((curve_size_in_bits)+(sizeof(mp_digit)*8-1))/(sizeof(mp_digit)*8))
#define ECL_BITS (sizeof(mp_digit)*8)
#define ECL_MAX_FIELD_SIZE_DIGITS (80/sizeof(mp_digit))
/* Gets the i'th bit in the binary representation of a. If i >= length(a),
* then return 0. (The above behaviour differs from mpl_get_bit, which
* causes an error if i >= length(a).) */
#define MP_GET_BIT(a, i) \
((i) >= mpl_significant_bits((a))) ? 0 : mpl_get_bit((a), (i))
#if !defined(MP_NO_MP_WORD) && !defined(MP_NO_ADD_WORD)
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_word w; \
w = ((mp_word)(cin)) + (a1) + (a2); \
s = ACCUM(w); \
cout = CARRYOUT(w); }
/* Handle case when carry-in value is zero */
#define MP_ADD_CARRY_ZERO(a1, a2, s, cout) \
MP_ADD_CARRY(a1, a2, s, 0, cout);
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_word w; \
w = ((mp_word)(a1)) - (a2) - (bin); \
s = ACCUM(w); \
bout = (w >> MP_DIGIT_BIT) & 1; }
#else
/* NOTE,
* cin and cout could be the same variable.
* bin and bout could be the same variable.
* a1 or a2 and s could be the same variable.
* don't trash those outputs until their respective inputs have
* been read. */
#define MP_ADD_CARRY(a1, a2, s, cin, cout) \
{ mp_digit tmp,sum; \
tmp = (a1); \
sum = tmp + (a2); \
tmp = (sum < tmp); /* detect overflow */ \
s = sum += (cin); \
cout = tmp + (sum < (cin)); }
/* Handle case when carry-in value is zero */
#define MP_ADD_CARRY_ZERO(a1, a2, s, cout) \
{ mp_digit tmp,sum; \
tmp = (a1); \
sum = tmp + (a2); \
tmp = (sum < tmp); /* detect overflow */ \
s = sum; \
cout = tmp; }
#define MP_SUB_BORROW(a1, a2, s, bin, bout) \
{ mp_digit tmp; \
tmp = (a1); \
s = tmp - (a2); \
tmp = (s > tmp); /* detect borrow */ \
if ((bin) && !s--) tmp++; \
bout = tmp; }
#endif
struct GFMethodStr;
typedef struct GFMethodStr GFMethod;
struct GFMethodStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Irreducible that defines the field. For prime fields, this is the
* prime p. For binary polynomial fields, this is the bitstring
* representation of the irreducible polynomial. */
mp_int irr;
/* For prime fields, the value irr_arr[0] is the number of bits in the
* field. For binary polynomial fields, the irreducible polynomial
* f(t) is represented as an array of unsigned int[], where f(t) is
* of the form: f(t) = t^p[0] + t^p[1] + ... + t^p[4] where m = p[0]
* > p[1] > ... > p[4] = 0. */
unsigned int irr_arr[5];
/* Field arithmetic methods. All methods (except field_enc and
* field_dec) are assumed to take field-encoded parameters and return
* field-encoded values. All methods (except field_enc and field_dec)
* are required to be implemented. */
mp_err (*field_add) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_neg) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_sub) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_mod) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_mul) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_sqr) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_div) (const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err (*field_enc) (const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err (*field_dec) (const mp_int *a, mp_int *r, const GFMethod *meth);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (GFMethod *meth);
};
/* Construct generic GFMethods. */
GFMethod *GFMethod_consGFp(const mp_int *irr);
GFMethod *GFMethod_consGFp_mont(const mp_int *irr);
GFMethod *GFMethod_consGF2m(const mp_int *irr,
const unsigned int irr_arr[5]);
/* Free the memory allocated (if any) to a GFMethod object. */
void GFMethod_free(GFMethod *meth);
struct ECGroupStr {
/* Indicates whether the structure was constructed from dynamic memory
* or statically created. */
int constructed;
/* Field definition and arithmetic. */
GFMethod *meth;
/* Textual representation of curve name, if any. */
char *text;
#ifdef _KERNEL
int text_len;
#endif
/* Curve parameters, field-encoded. */
mp_int curvea, curveb;
/* x and y coordinates of the base point, field-encoded. */
mp_int genx, geny;
/* Order and cofactor of the base point. */
mp_int order;
int cofactor;
/* Point arithmetic methods. All methods are assumed to take
* field-encoded parameters and return field-encoded values. All
* methods (except base_point_mul and points_mul) are required to be
* implemented. */
mp_err (*point_add) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_sub) (const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_dbl) (const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
mp_err (*point_mul) (const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing);
mp_err (*base_point_mul) (const mp_int *n, mp_int *rx, mp_int *ry,
const ECGroup *group);
mp_err (*points_mul) (const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group,
int timing);
mp_err (*validate_point) (const mp_int *px, const mp_int *py, const ECGroup *group);
/* Extra storage for implementation-specific data. Any memory
* allocated to these extra fields will be cleared by extra_free. */
void *extra1;
void *extra2;
void (*extra_free) (ECGroup *group);
};
/* Wrapper functions for generic prime field arithmetic. */
mp_err ec_GFp_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_sub(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* fixed length in-line adds. Count is in words */
mp_err ec_GFp_add_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_add_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_3(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_4(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_5(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sub_6(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Wrapper functions for generic binary polynomial field arithmetic. */
mp_err ec_GF2m_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_neg(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mod(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GF2m_sqr(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GF2m_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
/* Montgomery prime field arithmetic. */
mp_err ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth);
mp_err ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
mp_err ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth);
void ec_GFp_extra_free_mont(GFMethod *meth);
/* point multiplication */
mp_err ec_pts_mul_basic(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group,
int timing);
mp_err ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group,
int timing);
/* Computes the windowed non-adjacent-form (NAF) of a scalar. Out should
* be an array of signed char's to output to, bitsize should be the number
* of bits of out, in is the original scalar, and w is the window size.
* NAF is discussed in the paper: D. Hankerson, J. Hernandez and A.
* Menezes, "Software implementation of elliptic curve cryptography over
* binary fields", Proc. CHES 2000. */
mp_err ec_compute_wNAF(signed char *out, int bitsize, const mp_int *in,
int w);
/* Optimized field arithmetic */
mp_err ec_group_set_gfp192(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp224(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp256(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp384(ECGroup *group, ECCurveName);
mp_err ec_group_set_gfp521(ECGroup *group, ECCurveName);
mp_err ec_group_set_gf2m163(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name);
mp_err ec_group_set_gf2m233(ECGroup *group, ECCurveName name);
/* Optimized floating-point arithmetic */
#ifdef ECL_USE_FP
mp_err ec_group_set_secp160r1_fp(ECGroup *group);
mp_err ec_group_set_nistp192_fp(ECGroup *group);
mp_err ec_group_set_nistp224_fp(ECGroup *group);
#endif
#endif /* _ECL_PRIV_H */

View File

@ -1,454 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#include "ec2.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#endif
/* Allocate memory for a new ECGroup object. */
ECGroup *
ECGroup_new(int kmflag)
{
mp_err res = MP_OKAY;
ECGroup *group;
#ifdef _KERNEL
group = (ECGroup *) kmem_alloc(sizeof(ECGroup), kmflag);
#else
group = (ECGroup *) malloc(sizeof(ECGroup));
#endif
if (group == NULL)
return NULL;
group->constructed = MP_YES;
group->meth = NULL;
group->text = NULL;
MP_DIGITS(&group->curvea) = 0;
MP_DIGITS(&group->curveb) = 0;
MP_DIGITS(&group->genx) = 0;
MP_DIGITS(&group->geny) = 0;
MP_DIGITS(&group->order) = 0;
group->base_point_mul = NULL;
group->points_mul = NULL;
group->validate_point = NULL;
group->extra1 = NULL;
group->extra2 = NULL;
group->extra_free = NULL;
MP_CHECKOK(mp_init(&group->curvea, kmflag));
MP_CHECKOK(mp_init(&group->curveb, kmflag));
MP_CHECKOK(mp_init(&group->genx, kmflag));
MP_CHECKOK(mp_init(&group->geny, kmflag));
MP_CHECKOK(mp_init(&group->order, kmflag));
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields. */
ECGroup *
ECGroup_consGFp(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct a generic ECGroup for elliptic curves over prime fields with
* field arithmetic implemented in Montgomery coordinates. */
ECGroup *
ECGroup_consGFp_mont(const mp_int *irr, const mp_int *curvea,
const mp_int *curveb, const mp_int *genx,
const mp_int *geny, const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGFp_mont(irr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(group->meth->
field_enc(curvea, &group->curvea, group->meth));
MP_CHECKOK(group->meth->
field_enc(curveb, &group->curveb, group->meth));
MP_CHECKOK(group->meth->field_enc(genx, &group->genx, group->meth));
MP_CHECKOK(group->meth->field_enc(geny, &group->geny, group->meth));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GFp_pt_add_aff;
group->point_sub = &ec_GFp_pt_sub_aff;
group->point_dbl = &ec_GFp_pt_dbl_aff;
group->point_mul = &ec_GFp_pt_mul_jm_wNAF;
group->base_point_mul = NULL;
group->points_mul = &ec_GFp_pts_mul_jac;
group->validate_point = &ec_GFp_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#ifdef NSS_ECC_MORE_THAN_SUITE_B
/* Construct a generic ECGroup for elliptic curves over binary polynomial
* fields. */
ECGroup *
ECGroup_consGF2m(const mp_int *irr, const unsigned int irr_arr[5],
const mp_int *curvea, const mp_int *curveb,
const mp_int *genx, const mp_int *geny,
const mp_int *order, int cofactor)
{
mp_err res = MP_OKAY;
ECGroup *group = NULL;
group = ECGroup_new(FLAG(irr));
if (group == NULL)
return NULL;
group->meth = GFMethod_consGF2m(irr, irr_arr);
if (group->meth == NULL) {
res = MP_MEM;
goto CLEANUP;
}
MP_CHECKOK(mp_copy(curvea, &group->curvea));
MP_CHECKOK(mp_copy(curveb, &group->curveb));
MP_CHECKOK(mp_copy(genx, &group->genx));
MP_CHECKOK(mp_copy(geny, &group->geny));
MP_CHECKOK(mp_copy(order, &group->order));
group->cofactor = cofactor;
group->point_add = &ec_GF2m_pt_add_aff;
group->point_sub = &ec_GF2m_pt_sub_aff;
group->point_dbl = &ec_GF2m_pt_dbl_aff;
group->point_mul = &ec_GF2m_pt_mul_mont;
group->base_point_mul = NULL;
group->points_mul = &ec_pts_mul_basic;
group->validate_point = &ec_GF2m_validate_point;
CLEANUP:
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
#endif
/* Construct ECGroup from hex parameters and name, if any. Called by
* ECGroup_fromHex and ECGroup_fromName. */
ECGroup *
ecgroup_fromNameAndHex(const ECCurveName name,
const ECCurveParams * params, int kmflag)
{
mp_int irr, curvea, curveb, genx, geny, order;
int bits;
ECGroup *group = NULL;
mp_err res = MP_OKAY;
/* initialize values */
MP_DIGITS(&irr) = 0;
MP_DIGITS(&curvea) = 0;
MP_DIGITS(&curveb) = 0;
MP_DIGITS(&genx) = 0;
MP_DIGITS(&geny) = 0;
MP_DIGITS(&order) = 0;
MP_CHECKOK(mp_init(&irr, kmflag));
MP_CHECKOK(mp_init(&curvea, kmflag));
MP_CHECKOK(mp_init(&curveb, kmflag));
MP_CHECKOK(mp_init(&genx, kmflag));
MP_CHECKOK(mp_init(&geny, kmflag));
MP_CHECKOK(mp_init(&order, kmflag));
MP_CHECKOK(mp_read_radix(&irr, params->irr, 16));
MP_CHECKOK(mp_read_radix(&curvea, params->curvea, 16));
MP_CHECKOK(mp_read_radix(&curveb, params->curveb, 16));
MP_CHECKOK(mp_read_radix(&genx, params->genx, 16));
MP_CHECKOK(mp_read_radix(&geny, params->geny, 16));
MP_CHECKOK(mp_read_radix(&order, params->order, 16));
/* determine number of bits */
bits = mpl_significant_bits(&irr) - 1;
if (bits < MP_OKAY) {
res = bits;
goto CLEANUP;
}
/* determine which optimizations (if any) to use */
if (params->field == ECField_GFp) {
#ifdef NSS_ECC_MORE_THAN_SUITE_B
switch (name) {
#ifdef ECL_USE_FP
case ECCurve_SECG_PRIME_160R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_secp160r1_fp(group));
break;
#endif
case ECCurve_SECG_PRIME_192R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp192_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp192(group, name));
#endif
break;
case ECCurve_SECG_PRIME_224R1:
#ifdef ECL_USE_FP
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_nistp224_fp(group));
#else
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp224(group, name));
#endif
break;
case ECCurve_SECG_PRIME_256R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp256(group, name));
break;
case ECCurve_SECG_PRIME_521R1:
group =
ECGroup_consGFp(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
MP_CHECKOK(ec_group_set_gfp521(group, name));
break;
default:
/* use generic arithmetic */
#endif
group =
ECGroup_consGFp_mont(&irr, &curvea, &curveb, &genx, &geny,
&order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
#ifdef NSS_ECC_MORE_THAN_SUITE_B
}
} else if (params->field == ECField_GF2m) {
group = ECGroup_consGF2m(&irr, NULL, &curvea, &curveb, &genx, &geny, &order, params->cofactor);
if (group == NULL) { res = MP_UNDEF; goto CLEANUP; }
if ((name == ECCurve_NIST_K163) ||
(name == ECCurve_NIST_B163) ||
(name == ECCurve_SECG_CHAR2_163R1)) {
MP_CHECKOK(ec_group_set_gf2m163(group, name));
} else if ((name == ECCurve_SECG_CHAR2_193R1) ||
(name == ECCurve_SECG_CHAR2_193R2)) {
MP_CHECKOK(ec_group_set_gf2m193(group, name));
} else if ((name == ECCurve_NIST_K233) ||
(name == ECCurve_NIST_B233)) {
MP_CHECKOK(ec_group_set_gf2m233(group, name));
}
#endif
} else {
res = MP_UNDEF;
goto CLEANUP;
}
/* set name, if any */
if ((group != NULL) && (params->text != NULL)) {
#ifdef _KERNEL
int n = strlen(params->text) + 1;
group->text = kmem_alloc(n, kmflag);
if (group->text == NULL) {
res = MP_MEM;
goto CLEANUP;
}
bcopy(params->text, group->text, n);
group->text_len = n;
#else
group->text = strdup(params->text);
if (group->text == NULL) {
res = MP_MEM;
}
#endif
}
CLEANUP:
mp_clear(&irr);
mp_clear(&curvea);
mp_clear(&curveb);
mp_clear(&genx);
mp_clear(&geny);
mp_clear(&order);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *
ECGroup_fromHex(const ECCurveParams * params, int kmflag)
{
return ecgroup_fromNameAndHex(ECCurve_noName, params, kmflag);
}
/* Construct ECGroup from named parameters. */
ECGroup *
ECGroup_fromName(const ECCurveName name, int kmflag)
{
ECGroup *group = NULL;
ECCurveParams *params = NULL;
mp_err res = MP_OKAY;
params = EC_GetNamedCurveParams(name, kmflag);
if (params == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
/* construct actual group */
group = ecgroup_fromNameAndHex(name, params, kmflag);
if (group == NULL) {
res = MP_UNDEF;
goto CLEANUP;
}
CLEANUP:
EC_FreeCurveParams(params);
if (res != MP_OKAY) {
ECGroup_free(group);
return NULL;
}
return group;
}
/* Validates an EC public key as described in Section 5.2.2 of X9.62. */
mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
mp_int *py)
{
/* 1: Verify that publicValue is not the point at infinity */
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
/* 3: Verify that publicValue is on the curve. */
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
return group->validate_point(px, py, group);
}
/* Free the memory allocated (if any) to an ECGroup object. */
void
ECGroup_free(ECGroup *group)
{
if (group == NULL)
return;
GFMethod_free(group->meth);
if (group->constructed == MP_NO)
return;
mp_clear(&group->curvea);
mp_clear(&group->curveb);
mp_clear(&group->genx);
mp_clear(&group->geny);
mp_clear(&group->order);
if (group->text != NULL)
#ifdef _KERNEL
kmem_free(group->text, group->text_len);
#else
free(group->text);
#endif
if (group->extra_free != NULL)
group->extra_free(group);
#ifdef _KERNEL
kmem_free(group, sizeof (ECGroup));
#else
free(group);
#endif
}

View File

@ -1,92 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _ECL_H
#define _ECL_H
/* Although this is not an exported header file, code which uses elliptic
* curve point operations will need to include it. */
#include "ecl-exp.h"
#include "mpi.h"
struct ECGroupStr;
typedef struct ECGroupStr ECGroup;
/* Construct ECGroup from hexadecimal representations of parameters. */
ECGroup *ECGroup_fromHex(const ECCurveParams * params, int kmflag);
/* Construct ECGroup from named parameters. */
ECGroup *ECGroup_fromName(const ECCurveName name, int kmflag);
/* Free an allocated ECGroup. */
void ECGroup_free(ECGroup *group);
/* Construct ECCurveParams from an ECCurveName */
ECCurveParams *EC_GetNamedCurveParams(const ECCurveName name, int kmflag);
/* Duplicates an ECCurveParams */
ECCurveParams *ECCurveParams_dup(const ECCurveParams * params, int kmflag);
/* Free an allocated ECCurveParams */
void EC_FreeCurveParams(ECCurveParams * params);
/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k * P(x,
* y). If x, y = NULL, then P is assumed to be the generator (base point)
* of the group of points on the elliptic curve. Input and output values
* are assumed to be NOT field-encoded. */
mp_err ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
const mp_int *py, mp_int *qx, mp_int *qy,
int timing);
/* Elliptic curve scalar-point multiplication. Computes Q(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Input and output values are assumed to
* be NOT field-encoded. */
mp_err ECPoints_mul(const ECGroup *group, const mp_int *k1,
const mp_int *k2, const mp_int *px, const mp_int *py,
mp_int *qx, mp_int *qy, int timing);
/* Validates an EC public key as described in Section 5.2.2 of X9.62.
* Returns MP_YES if the public key is valid, MP_NO if the public key
* is invalid, or an error code if the validation could not be
* performed. */
mp_err ECPoint_validate(const ECGroup *group, const mp_int *px, const
mp_int *py);
#endif /* _ECL_H */

View File

@ -1,195 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecl.h"
#include "ecl-curve.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#endif
#define CHECK(func) if ((func) == NULL) { res = 0; goto CLEANUP; }
/* Duplicates an ECCurveParams */
ECCurveParams *
ECCurveParams_dup(const ECCurveParams * params, int kmflag)
{
int res = 1;
ECCurveParams *ret = NULL;
#ifdef _KERNEL
ret = (ECCurveParams *) kmem_zalloc(sizeof(ECCurveParams), kmflag);
#else
CHECK(ret = (ECCurveParams *) calloc(1, sizeof(ECCurveParams)));
#endif
if (params->text != NULL) {
#ifdef _KERNEL
ret->text = kmem_alloc(strlen(params->text) + 1, kmflag);
bcopy(params->text, ret->text, strlen(params->text) + 1);
#else
CHECK(ret->text = strdup(params->text));
#endif
}
ret->field = params->field;
ret->size = params->size;
if (params->irr != NULL) {
#ifdef _KERNEL
ret->irr = kmem_alloc(strlen(params->irr) + 1, kmflag);
bcopy(params->irr, ret->irr, strlen(params->irr) + 1);
#else
CHECK(ret->irr = strdup(params->irr));
#endif
}
if (params->curvea != NULL) {
#ifdef _KERNEL
ret->curvea = kmem_alloc(strlen(params->curvea) + 1, kmflag);
bcopy(params->curvea, ret->curvea, strlen(params->curvea) + 1);
#else
CHECK(ret->curvea = strdup(params->curvea));
#endif
}
if (params->curveb != NULL) {
#ifdef _KERNEL
ret->curveb = kmem_alloc(strlen(params->curveb) + 1, kmflag);
bcopy(params->curveb, ret->curveb, strlen(params->curveb) + 1);
#else
CHECK(ret->curveb = strdup(params->curveb));
#endif
}
if (params->genx != NULL) {
#ifdef _KERNEL
ret->genx = kmem_alloc(strlen(params->genx) + 1, kmflag);
bcopy(params->genx, ret->genx, strlen(params->genx) + 1);
#else
CHECK(ret->genx = strdup(params->genx));
#endif
}
if (params->geny != NULL) {
#ifdef _KERNEL
ret->geny = kmem_alloc(strlen(params->geny) + 1, kmflag);
bcopy(params->geny, ret->geny, strlen(params->geny) + 1);
#else
CHECK(ret->geny = strdup(params->geny));
#endif
}
if (params->order != NULL) {
#ifdef _KERNEL
ret->order = kmem_alloc(strlen(params->order) + 1, kmflag);
bcopy(params->order, ret->order, strlen(params->order) + 1);
#else
CHECK(ret->order = strdup(params->order));
#endif
}
ret->cofactor = params->cofactor;
CLEANUP:
if (res != 1) {
EC_FreeCurveParams(ret);
return NULL;
}
return ret;
}
#undef CHECK
/* Construct ECCurveParams from an ECCurveName */
ECCurveParams *
EC_GetNamedCurveParams(const ECCurveName name, int kmflag)
{
if ((name <= ECCurve_noName) || (ECCurve_pastLastCurve <= name) ||
(ecCurve_map[name] == NULL)) {
return NULL;
} else {
return ECCurveParams_dup(ecCurve_map[name], kmflag);
}
}
/* Free the memory allocated (if any) to an ECCurveParams object. */
void
EC_FreeCurveParams(ECCurveParams * params)
{
if (params == NULL)
return;
if (params->text != NULL)
#ifdef _KERNEL
kmem_free(params->text, strlen(params->text) + 1);
#else
free(params->text);
#endif
if (params->irr != NULL)
#ifdef _KERNEL
kmem_free(params->irr, strlen(params->irr) + 1);
#else
free(params->irr);
#endif
if (params->curvea != NULL)
#ifdef _KERNEL
kmem_free(params->curvea, strlen(params->curvea) + 1);
#else
free(params->curvea);
#endif
if (params->curveb != NULL)
#ifdef _KERNEL
kmem_free(params->curveb, strlen(params->curveb) + 1);
#else
free(params->curveb);
#endif
if (params->genx != NULL)
#ifdef _KERNEL
kmem_free(params->genx, strlen(params->genx) + 1);
#else
free(params->genx);
#endif
if (params->geny != NULL)
#ifdef _KERNEL
kmem_free(params->geny, strlen(params->geny) + 1);
#else
free(params->geny);
#endif
if (params->order != NULL)
#ifdef _KERNEL
kmem_free(params->order, strlen(params->order) + 1);
#else
free(params->order);
#endif
#ifdef _KERNEL
kmem_free(params, sizeof(ECCurveParams));
#else
free(params);
#endif
}

File diff suppressed because it is too large Load Diff

View File

@ -1,362 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
* y). If x, y = NULL, then P is assumed to be the generator (base point)
* of the group of points on the elliptic curve. Input and output values
* are assumed to be NOT field-encoded. */
mp_err
ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
int timing)
{
mp_err res = MP_OKAY;
mp_int kt;
ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
MP_DIGITS(&kt) = 0;
/* want scalar to be less than or equal to group order */
if (mp_cmp(k, &group->order) > 0) {
MP_CHECKOK(mp_init(&kt, FLAG(k)));
MP_CHECKOK(mp_mod(k, &group->order, &kt));
} else {
MP_SIGN(&kt) = MP_ZPOS;
MP_USED(&kt) = MP_USED(k);
MP_ALLOC(&kt) = MP_ALLOC(k);
MP_DIGITS(&kt) = MP_DIGITS(k);
}
if ((px == NULL) || (py == NULL)) {
if (group->base_point_mul) {
MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
} else {
kt.flag = (mp_sign)0;
MP_CHECKOK(group->
point_mul(&kt, &group->genx, &group->geny, rx, ry,
group, timing));
}
} else {
kt.flag = (mp_sign)0;
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group, timing));
} else {
MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group, timing));
}
}
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
mp_clear(&kt);
}
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. */
mp_err
ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing)
{
mp_err res = MP_OKAY;
mp_int sx, sy;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry, timing);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
}
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&sx, FLAG(k1)));
MP_CHECKOK(mp_init(&sy, FLAG(k1)));
MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy, timing));
MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry, timing));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
}
MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
mp_clear(&sx);
mp_clear(&sy);
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. Uses
* algorithm 15 (simultaneous multiple point multiplication) from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST
* Elliptic Curves over Prime Fields. */
mp_err
ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing)
{
mp_err res = MP_OKAY;
mp_int precomp[4][4][2];
const mp_int *a, *b;
int i, j;
int ai, bi, d;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry, timing);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
}
/* initialize precomputation table */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_DIGITS(&precomp[i][j][0]) = 0;
MP_DIGITS(&precomp[i][j][1]) = 0;
}
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_CHECKOK( mp_init_size(&precomp[i][j][0],
ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
MP_CHECKOK( mp_init_size(&precomp[i][j][1],
ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
}
}
/* fill precomputation table */
/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
a = k2;
b = k1;
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[1][0][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[1][0][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
}
MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
} else {
a = k1;
b = k2;
MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[0][1][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[0][1][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
}
}
/* precompute [*][0][*] */
mp_zero(&precomp[0][0][0]);
mp_zero(&precomp[0][0][1]);
MP_CHECKOK(group->
point_dbl(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1], group));
MP_CHECKOK(group->
point_add(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1],
&precomp[3][0][0], &precomp[3][0][1], group));
/* precompute [*][1][*] */
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][1][0], &precomp[i][1][1], group));
}
/* precompute [*][2][*] */
MP_CHECKOK(group->
point_dbl(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][2][0], &precomp[0][2][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][2][0], &precomp[i][2][1], group));
}
/* precompute [*][3][*] */
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1],
&precomp[0][3][0], &precomp[0][3][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][3][0], &precomp[0][3][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][3][0], &precomp[i][3][1], group));
}
d = (mpl_significant_bits(a) + 1) / 2;
/* R = inf */
mp_zero(rx);
mp_zero(ry);
for (i = d - 1; i >= 0; i--) {
ai = MP_GET_BIT(a, 2 * i + 1);
ai <<= 1;
ai |= MP_GET_BIT(a, 2 * i);
bi = MP_GET_BIT(b, 2 * i + 1);
bi <<= 1;
bi |= MP_GET_BIT(b, 2 * i);
/* R = 2^2 * R */
MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
/* R = R + (ai * A + bi * B) */
MP_CHECKOK(group->
point_add(rx, ry, &precomp[ai][bi][0],
&precomp[ai][bi][1], rx, ry, group));
}
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
mp_clear(&precomp[i][j][0]);
mp_clear(&precomp[i][j][1]);
}
}
return res;
}
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Input and output values are assumed to be NOT field-encoded. */
mp_err
ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry,
int timing)
{
mp_err res = MP_OKAY;
mp_int k1t, k2t;
const mp_int *k1p, *k2p;
MP_DIGITS(&k1t) = 0;
MP_DIGITS(&k2t) = 0;
ARGCHK(group != NULL, MP_BADARG);
/* want scalar to be less than or equal to group order */
if (k1 != NULL) {
if (mp_cmp(k1, &group->order) >= 0) {
MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
k1p = &k1t;
} else {
k1p = k1;
}
} else {
k1p = k1;
}
if (k2 != NULL) {
if (mp_cmp(k2, &group->order) >= 0) {
MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
k2p = &k2t;
} else {
k2p = k2;
}
} else {
k2p = k2;
}
/* if points_mul is defined, then use it */
if (group->points_mul) {
res = group->points_mul(k1p, k2p, px, py, rx, ry, group, timing);
} else {
res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group, timing);
}
CLEANUP:
mp_clear(&k1t);
mp_clear(&k2t);
return res;
}

View File

@ -1,144 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#ifndef _ECP_H
#define _ECP_H
#include "ecl-priv.h"
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py);
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py);
/* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx,
* qy). Uses affine coordinates. */
mp_err ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = P - Q. Uses affine coordinates. */
mp_err ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Computes R = 2P. Uses affine coordinates. */
mp_err ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group);
/* Validates a point on a GFp curve. */
mp_err ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses affine coordinates. */
mp_err ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Converts a point P(px, py) from affine coordinates to Jacobian
* projective coordinates R(rx, ry, rz). */
mp_err ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group);
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry). */
mp_err ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
const ECGroup *group);
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py,
const mp_int *pz);
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates. */
mp_err ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz);
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, qz). Uses Jacobian coordinates. */
mp_err ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py,
const mp_int *pz, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
/* Computes R = 2P. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py,
const mp_int *pz, mp_int *rx, mp_int *ry,
mp_int *rz, const ECGroup *group);
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Uses Jacobian coordinates. */
mp_err ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group);
#endif
/* Computes R(x, y) = k1 * G + k2 * P(x, y), where G is the generator
* (base point) of the group of points on the elliptic curve. Allows k1 =
* NULL or { k2, P } = NULL. Implemented using mixed Jacobian-affine
* coordinates. Input and output values are assumed to be NOT
* field-encoded and are in affine form. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing);
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
* curve points P and R can be identical. Uses mixed Modified-Jacobian
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
* additions. Assumes input is already field-encoded using field_enc, and
* returns output that is still field-encoded. Uses 5-bit window NAF
* method (algorithm 11) for scalar-point multiplication from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
* Curves Over Prime Fields. The implementation includes a countermeasure
* that attempts to hide the size of n from timing channels. This counter-
* measure is enabled using the timing argument. The high-rder bits of timing
* must be uniformly random in order for this countermeasure to work. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group,
int timing);
#endif /* _ECP_H */

View File

@ -1,517 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP192_DIGITS ECL_CURVE_DIGITS(192)
/* Fast modular reduction for p192 = 2^192 - 2^64 - 1. a can be r. Uses
* algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
* Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_nistp192_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
mp_digit r3;
#ifndef MPI_AMD64_ADD
mp_digit carry;
#endif
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
mp_digit r0a, r0b, r1a, r1b, r2a, r2b;
#else
mp_digit a5 = 0, a4 = 0, a3 = 0;
mp_digit r0, r1, r2;
#endif
/* reduction not needed if a is not larger than field size */
if (a_used < ECP192_DIGITS) {
if (a == r) {
return MP_OKAY;
}
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size, use regular
* reduction */
if (a_used > ECP192_DIGITS*2) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
/* copy out upper words of a */
#ifdef ECL_THIRTY_TWO_BIT
/* in all the math below,
* nXb is most signifiant, nXa is least significant */
switch (a_used) {
case 12:
a5b = MP_DIGIT(a, 11);
case 11:
a5a = MP_DIGIT(a, 10);
case 10:
a4b = MP_DIGIT(a, 9);
case 9:
a4a = MP_DIGIT(a, 8);
case 8:
a3b = MP_DIGIT(a, 7);
case 7:
a3a = MP_DIGIT(a, 6);
}
r2b= MP_DIGIT(a, 5);
r2a= MP_DIGIT(a, 4);
r1b = MP_DIGIT(a, 3);
r1a = MP_DIGIT(a, 2);
r0b = MP_DIGIT(a, 1);
r0a = MP_DIGIT(a, 0);
/* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
MP_ADD_CARRY(r0a, a3a, r0a, 0, carry);
MP_ADD_CARRY(r0b, a3b, r0b, carry, carry);
MP_ADD_CARRY(r1a, a3a, r1a, carry, carry);
MP_ADD_CARRY(r1b, a3b, r1b, carry, carry);
MP_ADD_CARRY(r2a, a4a, r2a, carry, carry);
MP_ADD_CARRY(r2b, a4b, r2b, carry, carry);
r3 = carry; carry = 0;
MP_ADD_CARRY(r0a, a5a, r0a, 0, carry);
MP_ADD_CARRY(r0b, a5b, r0b, carry, carry);
MP_ADD_CARRY(r1a, a5a, r1a, carry, carry);
MP_ADD_CARRY(r1b, a5b, r1b, carry, carry);
MP_ADD_CARRY(r2a, a5a, r2a, carry, carry);
MP_ADD_CARRY(r2b, a5b, r2b, carry, carry);
r3 += carry;
MP_ADD_CARRY(r1a, a4a, r1a, 0, carry);
MP_ADD_CARRY(r1b, a4b, r1b, carry, carry);
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
r3 += carry;
/* reduce out the carry */
while (r3) {
MP_ADD_CARRY(r0a, r3, r0a, 0, carry);
MP_ADD_CARRY(r0b, 0, r0b, carry, carry);
MP_ADD_CARRY(r1a, r3, r1a, carry, carry);
MP_ADD_CARRY(r1b, 0, r1b, carry, carry);
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
r3 = carry;
}
/* check for final reduction */
/*
* our field is 0xffffffffffffffff, 0xfffffffffffffffe,
* 0xffffffffffffffff. That means we can only be over and need
* one more reduction
* if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
* and
* r1 == 0xffffffffffffffffff or
* r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
* In all cases, we subtract the field (or add the 2's
* complement value (1,1,0)). (r0, r1, r2)
*/
if (((r2b == 0xffffffff) && (r2a == 0xffffffff)
&& (r1b == 0xffffffff) ) &&
((r1a == 0xffffffff) ||
(r1a == 0xfffffffe) && (r0a == 0xffffffff) &&
(r0b == 0xffffffff)) ) {
/* do a quick subtract */
MP_ADD_CARRY(r0a, 1, r0a, 0, carry);
r0b += carry;
r1a = r1b = r2a = r2b = 0;
}
/* set the lower words of r */
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 6));
}
MP_DIGIT(r, 5) = r2b;
MP_DIGIT(r, 4) = r2a;
MP_DIGIT(r, 3) = r1b;
MP_DIGIT(r, 2) = r1a;
MP_DIGIT(r, 1) = r0b;
MP_DIGIT(r, 0) = r0a;
MP_USED(r) = 6;
#else
switch (a_used) {
case 6:
a5 = MP_DIGIT(a, 5);
case 5:
a4 = MP_DIGIT(a, 4);
case 4:
a3 = MP_DIGIT(a, 3);
}
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* implement r = (a2,a1,a0)+(a5,a5,a5)+(a4,a4,0)+(0,a3,a3) */
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY_ZERO(r0, a3, r0, carry);
MP_ADD_CARRY(r1, a3, r1, carry, carry);
MP_ADD_CARRY(r2, a4, r2, carry, carry);
r3 = carry;
MP_ADD_CARRY_ZERO(r0, a5, r0, carry);
MP_ADD_CARRY(r1, a5, r1, carry, carry);
MP_ADD_CARRY(r2, a5, r2, carry, carry);
r3 += carry;
MP_ADD_CARRY_ZERO(r1, a4, r1, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
r3 += carry;
#else
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* set the lower words of r */
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %4,%1 \n\t"
"adcq %5,%2 \n\t"
"adcq $0,%3 \n\t"
"addq %6,%0 \n\t"
"adcq %6,%1 \n\t"
"adcq %6,%2 \n\t"
"adcq $0,%3 \n\t"
"addq %5,%1 \n\t"
"adcq $0,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3),
"=r"(a4), "=r"(a5)
: "0" (r0), "1" (r1), "2" (r2), "3" (r3),
"4" (a3), "5" (a4), "6"(a5)
: "%cc" );
#endif
/* reduce out the carry */
while (r3) {
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY_ZERO(r0, r3, r0, carry);
MP_ADD_CARRY(r1, r3, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
r3 = carry;
#else
a3=r3;
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %4,%1 \n\t"
"adcq $0,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(r3), "=r"(a3)
: "0" (r0), "1" (r1), "2" (r2), "3" (r3), "4"(a3)
: "%cc" );
#endif
}
/* check for final reduction */
/*
* our field is 0xffffffffffffffff, 0xfffffffffffffffe,
* 0xffffffffffffffff. That means we can only be over and need
* one more reduction
* if r2 == 0xffffffffffffffffff (same as r2+1 == 0)
* and
* r1 == 0xffffffffffffffffff or
* r1 == 0xfffffffffffffffffe and r0 = 0xfffffffffffffffff
* In all cases, we subtract the field (or add the 2's
* complement value (1,1,0)). (r0, r1, r2)
*/
if (r3 || ((r2 == MP_DIGIT_MAX) &&
((r1 == MP_DIGIT_MAX) ||
((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
/* do a quick subtract */
r0++;
r1 = r2 = 0;
}
/* set the lower words of r */
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 3));
}
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_USED(r) = 3;
#endif
}
CLEANUP:
return res;
}
#ifndef ECL_THIRTY_TWO_BIT
/* Compute the sum of 192 bit curves. Do the work in-line since the
* number of words are so small, we don't want to overhead of mp function
* calls. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_add(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit a0 = 0, a1 = 0, a2 = 0;
mp_digit r0 = 0, r1 = 0, r2 = 0;
mp_digit carry;
switch(MP_USED(a)) {
case 3:
a2 = MP_DIGIT(a,2);
case 2:
a1 = MP_DIGIT(a,1);
case 1:
a0 = MP_DIGIT(a,0);
}
switch(MP_USED(b)) {
case 3:
r2 = MP_DIGIT(b,2);
case 2:
r1 = MP_DIGIT(b,1);
case 1:
r0 = MP_DIGIT(b,0);
}
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY_ZERO(a0, r0, r0, carry);
MP_ADD_CARRY(a1, r1, r1, carry, carry);
MP_ADD_CARRY(a2, r2, r2, carry, carry);
#else
__asm__ (
"xorq %3,%3 \n\t"
"addq %4,%0 \n\t"
"adcq %5,%1 \n\t"
"adcq %6,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(carry)
: "r" (a0), "r" (a1), "r" (a2), "0" (r0),
"1" (r1), "2" (r2)
: "%cc" );
#endif
/* Do quick 'subract' if we've gone over
* (add the 2's complement of the curve field) */
if (carry || ((r2 == MP_DIGIT_MAX) &&
((r1 == MP_DIGIT_MAX) ||
((r1 == (MP_DIGIT_MAX-1)) && (r0 == MP_DIGIT_MAX))))) {
#ifndef MPI_AMD64_ADD
MP_ADD_CARRY_ZERO(r0, 1, r0, carry);
MP_ADD_CARRY(r1, 1, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
#else
__asm__ (
"addq $1,%0 \n\t"
"adcq $1,%1 \n\t"
"adcq $0,%2 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2)
: "0" (r0), "1" (r1), "2" (r2)
: "%cc" );
#endif
}
MP_CHECKOK(s_mp_pad(r, 3));
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 3;
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Compute the diff of 192 bit curves. Do the work in-line since the
* number of words are so small, we don't want to overhead of mp function
* calls. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_sub(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_digit b0 = 0, b1 = 0, b2 = 0;
mp_digit r0 = 0, r1 = 0, r2 = 0;
mp_digit borrow;
switch(MP_USED(a)) {
case 3:
r2 = MP_DIGIT(a,2);
case 2:
r1 = MP_DIGIT(a,1);
case 1:
r0 = MP_DIGIT(a,0);
}
switch(MP_USED(b)) {
case 3:
b2 = MP_DIGIT(b,2);
case 2:
b1 = MP_DIGIT(b,1);
case 1:
b0 = MP_DIGIT(b,0);
}
#ifndef MPI_AMD64_ADD
MP_SUB_BORROW(r0, b0, r0, 0, borrow);
MP_SUB_BORROW(r1, b1, r1, borrow, borrow);
MP_SUB_BORROW(r2, b2, r2, borrow, borrow);
#else
__asm__ (
"xorq %3,%3 \n\t"
"subq %4,%0 \n\t"
"sbbq %5,%1 \n\t"
"sbbq %6,%2 \n\t"
"adcq $0,%3 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2), "=r"(borrow)
: "r" (b0), "r" (b1), "r" (b2), "0" (r0),
"1" (r1), "2" (r2)
: "%cc" );
#endif
/* Do quick 'add' if we've gone under 0
* (subtract the 2's complement of the curve field) */
if (borrow) {
#ifndef MPI_AMD64_ADD
MP_SUB_BORROW(r0, 1, r0, 0, borrow);
MP_SUB_BORROW(r1, 1, r1, borrow, borrow);
MP_SUB_BORROW(r2, 0, r2, borrow, borrow);
#else
__asm__ (
"subq $1,%0 \n\t"
"sbbq $1,%1 \n\t"
"sbbq $0,%2 \n\t"
: "=r"(r0), "=r"(r1), "=r"(r2)
: "0" (r0), "1" (r1), "2" (r2)
: "%cc" );
#endif
}
MP_CHECKOK(s_mp_pad(r, 3));
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 3;
s_mp_clamp(r);
CLEANUP:
return res;
}
#endif
/* Compute the square of polynomial a, reduce modulo p192. Store the
* result in r. r could be a. Uses optimized modular reduction for p192.
*/
mp_err
ec_GFp_nistp192_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p192.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p192. */
mp_err
ec_GFp_nistp192_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp192_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp192_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp192(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P192) {
group->meth->field_mod = &ec_GFp_nistp192_mod;
group->meth->field_mul = &ec_GFp_nistp192_mul;
group->meth->field_sqr = &ec_GFp_nistp192_sqr;
group->meth->field_div = &ec_GFp_nistp192_div;
#ifndef ECL_THIRTY_TWO_BIT
group->meth->field_add = &ec_GFp_nistp192_add;
group->meth->field_sub = &ec_GFp_nistp192_sub;
#endif
}
return MP_OKAY;
}

View File

@ -1,373 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP224_DIGITS ECL_CURVE_DIGITS(224)
/* Fast modular reduction for p224 = 2^224 - 2^96 + 1. a can be r. Uses
* algorithm 7 from Brown, Hankerson, Lopez, Menezes. Software
* Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_nistp224_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
int r3b;
mp_digit carry;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a6a = 0, a6b = 0,
a5a = 0, a5b = 0, a4a = 0, a4b = 0, a3a = 0, a3b = 0;
mp_digit r0a, r0b, r1a, r1b, r2a, r2b, r3a;
#else
mp_digit a6 = 0, a5 = 0, a4 = 0, a3b = 0, a5a = 0;
mp_digit a6b = 0, a6a_a5b = 0, a5b = 0, a5a_a4b = 0, a4a_a3b = 0;
mp_digit r0, r1, r2, r3;
#endif
/* reduction not needed if a is not larger than field size */
if (a_used < ECP224_DIGITS) {
if (a == r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size, use regular
* reduction */
if (a_used > ECL_CURVE_DIGITS(224*2)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#ifdef ECL_THIRTY_TWO_BIT
/* copy out upper words of a */
switch (a_used) {
case 14:
a6b = MP_DIGIT(a, 13);
case 13:
a6a = MP_DIGIT(a, 12);
case 12:
a5b = MP_DIGIT(a, 11);
case 11:
a5a = MP_DIGIT(a, 10);
case 10:
a4b = MP_DIGIT(a, 9);
case 9:
a4a = MP_DIGIT(a, 8);
case 8:
a3b = MP_DIGIT(a, 7);
}
r3a = MP_DIGIT(a, 6);
r2b= MP_DIGIT(a, 5);
r2a= MP_DIGIT(a, 4);
r1b = MP_DIGIT(a, 3);
r1a = MP_DIGIT(a, 2);
r0b = MP_DIGIT(a, 1);
r0a = MP_DIGIT(a, 0);
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
MP_ADD_CARRY (r1b, a3b, r1b, 0, carry);
MP_ADD_CARRY (r2a, a4a, r2a, carry, carry);
MP_ADD_CARRY (r2b, a4b, r2b, carry, carry);
MP_ADD_CARRY (r3a, a5a, r3a, carry, carry);
r3b = carry;
MP_ADD_CARRY (r1b, a5b, r1b, 0, carry);
MP_ADD_CARRY (r2a, a6a, r2a, carry, carry);
MP_ADD_CARRY (r2b, a6b, r2b, carry, carry);
MP_ADD_CARRY (r3a, 0, r3a, carry, carry);
r3b += carry;
MP_SUB_BORROW(r0a, a3b, r0a, 0, carry);
MP_SUB_BORROW(r0b, a4a, r0b, carry, carry);
MP_SUB_BORROW(r1a, a4b, r1a, carry, carry);
MP_SUB_BORROW(r1b, a5a, r1b, carry, carry);
MP_SUB_BORROW(r2a, a5b, r2a, carry, carry);
MP_SUB_BORROW(r2b, a6a, r2b, carry, carry);
MP_SUB_BORROW(r3a, a6b, r3a, carry, carry);
r3b -= carry;
MP_SUB_BORROW(r0a, a5b, r0a, 0, carry);
MP_SUB_BORROW(r0b, a6a, r0b, carry, carry);
MP_SUB_BORROW(r1a, a6b, r1a, carry, carry);
if (carry) {
MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
r3b -= carry;
}
while (r3b > 0) {
int tmp;
MP_ADD_CARRY(r1b, r3b, r1b, 0, carry);
if (carry) {
MP_ADD_CARRY(r2a, 0, r2a, carry, carry);
MP_ADD_CARRY(r2b, 0, r2b, carry, carry);
MP_ADD_CARRY(r3a, 0, r3a, carry, carry);
}
tmp = carry;
MP_SUB_BORROW(r0a, r3b, r0a, 0, carry);
if (carry) {
MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
MP_SUB_BORROW(r1b, 0, r1b, carry, carry);
MP_SUB_BORROW(r2a, 0, r2a, carry, carry);
MP_SUB_BORROW(r2b, 0, r2b, carry, carry);
MP_SUB_BORROW(r3a, 0, r3a, carry, carry);
tmp -= carry;
}
r3b = tmp;
}
while (r3b < 0) {
mp_digit maxInt = MP_DIGIT_MAX;
MP_ADD_CARRY (r0a, 1, r0a, 0, carry);
MP_ADD_CARRY (r0b, 0, r0b, carry, carry);
MP_ADD_CARRY (r1a, 0, r1a, carry, carry);
MP_ADD_CARRY (r1b, maxInt, r1b, carry, carry);
MP_ADD_CARRY (r2a, maxInt, r2a, carry, carry);
MP_ADD_CARRY (r2b, maxInt, r2b, carry, carry);
MP_ADD_CARRY (r3a, maxInt, r3a, carry, carry);
r3b += carry;
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
if ((r3a == MP_DIGIT_MAX) && (r2b == MP_DIGIT_MAX)
&& (r2a == MP_DIGIT_MAX) && (r1b == MP_DIGIT_MAX) &&
((r1a != 0) || (r0b != 0) || (r0a != 0)) ) {
/* one last subraction */
MP_SUB_BORROW(r0a, 1, r0a, 0, carry);
MP_SUB_BORROW(r0b, 0, r0b, carry, carry);
MP_SUB_BORROW(r1a, 0, r1a, carry, carry);
r1b = r2a = r2b = r3a = 0;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 7));
}
/* set the lower words of r */
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 7;
MP_DIGIT(r, 6) = r3a;
MP_DIGIT(r, 5) = r2b;
MP_DIGIT(r, 4) = r2a;
MP_DIGIT(r, 3) = r1b;
MP_DIGIT(r, 2) = r1a;
MP_DIGIT(r, 1) = r0b;
MP_DIGIT(r, 0) = r0a;
#else
/* copy out upper words of a */
switch (a_used) {
case 7:
a6 = MP_DIGIT(a, 6);
a6b = a6 >> 32;
a6a_a5b = a6 << 32;
case 6:
a5 = MP_DIGIT(a, 5);
a5b = a5 >> 32;
a6a_a5b |= a5b;
a5b = a5b << 32;
a5a_a4b = a5 << 32;
a5a = a5 & 0xffffffff;
case 5:
a4 = MP_DIGIT(a, 4);
a5a_a4b |= a4 >> 32;
a4a_a3b = a4 << 32;
case 4:
a3b = MP_DIGIT(a, 3) >> 32;
a4a_a3b |= a3b;
a3b = a3b << 32;
}
r3 = MP_DIGIT(a, 3) & 0xffffffff;
r2 = MP_DIGIT(a, 2);
r1 = MP_DIGIT(a, 1);
r0 = MP_DIGIT(a, 0);
/* implement r = (a3a,a2,a1,a0)
+(a5a, a4,a3b, 0)
+( 0, a6,a5b, 0)
-( 0 0, 0|a6b, a6a|a5b )
-( a6b, a6a|a5b, a5a|a4b, a4a|a3b ) */
MP_ADD_CARRY_ZERO (r1, a3b, r1, carry);
MP_ADD_CARRY (r2, a4 , r2, carry, carry);
MP_ADD_CARRY (r3, a5a, r3, carry, carry);
MP_ADD_CARRY_ZERO (r1, a5b, r1, carry);
MP_ADD_CARRY (r2, a6 , r2, carry, carry);
MP_ADD_CARRY (r3, 0, r3, carry, carry);
MP_SUB_BORROW(r0, a4a_a3b, r0, 0, carry);
MP_SUB_BORROW(r1, a5a_a4b, r1, carry, carry);
MP_SUB_BORROW(r2, a6a_a5b, r2, carry, carry);
MP_SUB_BORROW(r3, a6b , r3, carry, carry);
MP_SUB_BORROW(r0, a6a_a5b, r0, 0, carry);
MP_SUB_BORROW(r1, a6b , r1, carry, carry);
if (carry) {
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
}
/* if the value is negative, r3 has a 2's complement
* high value */
r3b = (int)(r3 >>32);
while (r3b > 0) {
r3 &= 0xffffffff;
MP_ADD_CARRY_ZERO(r1,((mp_digit)r3b) << 32, r1, carry);
if (carry) {
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, 0, r3, carry, carry);
}
MP_SUB_BORROW(r0, r3b, r0, 0, carry);
if (carry) {
MP_SUB_BORROW(r1, 0, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
}
r3b = (int)(r3 >>32);
}
while (r3b < 0) {
MP_ADD_CARRY_ZERO (r0, 1, r0, carry);
MP_ADD_CARRY (r1, MP_DIGIT_MAX <<32, r1, carry, carry);
MP_ADD_CARRY (r2, MP_DIGIT_MAX, r2, carry, carry);
MP_ADD_CARRY (r3, MP_DIGIT_MAX >> 32, r3, carry, carry);
r3b = (int)(r3 >>32);
}
/* check for final reduction */
/* now the only way we are over is if the top 4 words are all ones */
if ((r3 == (MP_DIGIT_MAX >> 32)) && (r2 == MP_DIGIT_MAX)
&& ((r1 & MP_DIGIT_MAX << 32)== MP_DIGIT_MAX << 32) &&
((r1 != MP_DIGIT_MAX << 32 ) || (r0 != 0)) ) {
/* one last subraction */
MP_SUB_BORROW(r0, 1, r0, 0, carry);
MP_SUB_BORROW(r1, 0, r1, carry, carry);
r2 = r3 = 0;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r, 4));
}
/* set the lower words of r */
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 4;
MP_DIGIT(r, 3) = r3;
MP_DIGIT(r, 2) = r2;
MP_DIGIT(r, 1) = r1;
MP_DIGIT(r, 0) = r0;
#endif
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p224. Store the
* result in r. r could be a. Uses optimized modular reduction for p224.
*/
mp_err
ec_GFp_nistp224_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p224.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p224. */
mp_err
ec_GFp_nistp224_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp224_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp224_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp224(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P224) {
group->meth->field_mod = &ec_GFp_nistp224_mod;
group->meth->field_mul = &ec_GFp_nistp224_mul;
group->meth->field_sqr = &ec_GFp_nistp224_sqr;
group->meth->field_div = &ec_GFp_nistp224_div;
}
return MP_OKAY;
}

View File

@ -1,430 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p256 = 2^256 - 2^224 + 2^192+ 2^96 - 1. a can be r.
* Uses algorithm 2.29 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp256_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_size a_used = MP_USED(a);
int a_bits = mpl_significant_bits(a);
mp_digit carry;
#ifdef ECL_THIRTY_TWO_BIT
mp_digit a8=0, a9=0, a10=0, a11=0, a12=0, a13=0, a14=0, a15=0;
mp_digit r0, r1, r2, r3, r4, r5, r6, r7;
int r8; /* must be a signed value ! */
#else
mp_digit a4=0, a5=0, a6=0, a7=0;
mp_digit a4h, a4l, a5h, a5l, a6h, a6l, a7h, a7l;
mp_digit r0, r1, r2, r3;
int r4; /* must be a signed value ! */
#endif
/* for polynomials larger than twice the field size
* use regular reduction */
if (a_bits < 256) {
if (a == r) return MP_OKAY;
return mp_copy(a,r);
}
if (a_bits > 512) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#ifdef ECL_THIRTY_TWO_BIT
switch (a_used) {
case 16:
a15 = MP_DIGIT(a,15);
case 15:
a14 = MP_DIGIT(a,14);
case 14:
a13 = MP_DIGIT(a,13);
case 13:
a12 = MP_DIGIT(a,12);
case 12:
a11 = MP_DIGIT(a,11);
case 11:
a10 = MP_DIGIT(a,10);
case 10:
a9 = MP_DIGIT(a,9);
case 9:
a8 = MP_DIGIT(a,8);
}
r0 = MP_DIGIT(a,0);
r1 = MP_DIGIT(a,1);
r2 = MP_DIGIT(a,2);
r3 = MP_DIGIT(a,3);
r4 = MP_DIGIT(a,4);
r5 = MP_DIGIT(a,5);
r6 = MP_DIGIT(a,6);
r7 = MP_DIGIT(a,7);
/* sum 1 */
MP_ADD_CARRY(r3, a11, r3, 0, carry);
MP_ADD_CARRY(r4, a12, r4, carry, carry);
MP_ADD_CARRY(r5, a13, r5, carry, carry);
MP_ADD_CARRY(r6, a14, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry);
r8 = carry;
MP_ADD_CARRY(r3, a11, r3, 0, carry);
MP_ADD_CARRY(r4, a12, r4, carry, carry);
MP_ADD_CARRY(r5, a13, r5, carry, carry);
MP_ADD_CARRY(r6, a14, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry);
r8 += carry;
/* sum 2 */
MP_ADD_CARRY(r3, a12, r3, 0, carry);
MP_ADD_CARRY(r4, a13, r4, carry, carry);
MP_ADD_CARRY(r5, a14, r5, carry, carry);
MP_ADD_CARRY(r6, a15, r6, carry, carry);
MP_ADD_CARRY(r7, 0, r7, carry, carry);
r8 += carry;
/* combine last bottom of sum 3 with second sum 2 */
MP_ADD_CARRY(r0, a8, r0, 0, carry);
MP_ADD_CARRY(r1, a9, r1, carry, carry);
MP_ADD_CARRY(r2, a10, r2, carry, carry);
MP_ADD_CARRY(r3, a12, r3, carry, carry);
MP_ADD_CARRY(r4, a13, r4, carry, carry);
MP_ADD_CARRY(r5, a14, r5, carry, carry);
MP_ADD_CARRY(r6, a15, r6, carry, carry);
MP_ADD_CARRY(r7, a15, r7, carry, carry); /* from sum 3 */
r8 += carry;
/* sum 3 (rest of it)*/
MP_ADD_CARRY(r6, a14, r6, 0, carry);
MP_ADD_CARRY(r7, 0, r7, carry, carry);
r8 += carry;
/* sum 4 (rest of it)*/
MP_ADD_CARRY(r0, a9, r0, 0, carry);
MP_ADD_CARRY(r1, a10, r1, carry, carry);
MP_ADD_CARRY(r2, a11, r2, carry, carry);
MP_ADD_CARRY(r3, a13, r3, carry, carry);
MP_ADD_CARRY(r4, a14, r4, carry, carry);
MP_ADD_CARRY(r5, a15, r5, carry, carry);
MP_ADD_CARRY(r6, a13, r6, carry, carry);
MP_ADD_CARRY(r7, a8, r7, carry, carry);
r8 += carry;
/* diff 5 */
MP_SUB_BORROW(r0, a11, r0, 0, carry);
MP_SUB_BORROW(r1, a12, r1, carry, carry);
MP_SUB_BORROW(r2, a13, r2, carry, carry);
MP_SUB_BORROW(r3, 0, r3, carry, carry);
MP_SUB_BORROW(r4, 0, r4, carry, carry);
MP_SUB_BORROW(r5, 0, r5, carry, carry);
MP_SUB_BORROW(r6, a8, r6, carry, carry);
MP_SUB_BORROW(r7, a10, r7, carry, carry);
r8 -= carry;
/* diff 6 */
MP_SUB_BORROW(r0, a12, r0, 0, carry);
MP_SUB_BORROW(r1, a13, r1, carry, carry);
MP_SUB_BORROW(r2, a14, r2, carry, carry);
MP_SUB_BORROW(r3, a15, r3, carry, carry);
MP_SUB_BORROW(r4, 0, r4, carry, carry);
MP_SUB_BORROW(r5, 0, r5, carry, carry);
MP_SUB_BORROW(r6, a9, r6, carry, carry);
MP_SUB_BORROW(r7, a11, r7, carry, carry);
r8 -= carry;
/* diff 7 */
MP_SUB_BORROW(r0, a13, r0, 0, carry);
MP_SUB_BORROW(r1, a14, r1, carry, carry);
MP_SUB_BORROW(r2, a15, r2, carry, carry);
MP_SUB_BORROW(r3, a8, r3, carry, carry);
MP_SUB_BORROW(r4, a9, r4, carry, carry);
MP_SUB_BORROW(r5, a10, r5, carry, carry);
MP_SUB_BORROW(r6, 0, r6, carry, carry);
MP_SUB_BORROW(r7, a12, r7, carry, carry);
r8 -= carry;
/* diff 8 */
MP_SUB_BORROW(r0, a14, r0, 0, carry);
MP_SUB_BORROW(r1, a15, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, a9, r3, carry, carry);
MP_SUB_BORROW(r4, a10, r4, carry, carry);
MP_SUB_BORROW(r5, a11, r5, carry, carry);
MP_SUB_BORROW(r6, 0, r6, carry, carry);
MP_SUB_BORROW(r7, a13, r7, carry, carry);
r8 -= carry;
/* reduce the overflows */
while (r8 > 0) {
mp_digit r8_d = r8;
MP_ADD_CARRY(r0, r8_d, r0, 0, carry);
MP_ADD_CARRY(r1, 0, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, -r8_d, r3, carry, carry);
MP_ADD_CARRY(r4, MP_DIGIT_MAX, r4, carry, carry);
MP_ADD_CARRY(r5, MP_DIGIT_MAX, r5, carry, carry);
MP_ADD_CARRY(r6, -(r8_d+1), r6, carry, carry);
MP_ADD_CARRY(r7, (r8_d-1), r7, carry, carry);
r8 = carry;
}
/* reduce the underflows */
while (r8 < 0) {
mp_digit r8_d = -r8;
MP_SUB_BORROW(r0, r8_d, r0, 0, carry);
MP_SUB_BORROW(r1, 0, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, -r8_d, r3, carry, carry);
MP_SUB_BORROW(r4, MP_DIGIT_MAX, r4, carry, carry);
MP_SUB_BORROW(r5, MP_DIGIT_MAX, r5, carry, carry);
MP_SUB_BORROW(r6, -(r8_d+1), r6, carry, carry);
MP_SUB_BORROW(r7, (r8_d-1), r7, carry, carry);
r8 = -carry;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r,8));
}
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 8;
MP_DIGIT(r,7) = r7;
MP_DIGIT(r,6) = r6;
MP_DIGIT(r,5) = r5;
MP_DIGIT(r,4) = r4;
MP_DIGIT(r,3) = r3;
MP_DIGIT(r,2) = r2;
MP_DIGIT(r,1) = r1;
MP_DIGIT(r,0) = r0;
/* final reduction if necessary */
if ((r7 == MP_DIGIT_MAX) &&
((r6 > 1) || ((r6 == 1) &&
(r5 || r4 || r3 ||
((r2 == MP_DIGIT_MAX) && (r1 == MP_DIGIT_MAX)
&& (r0 == MP_DIGIT_MAX)))))) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
#ifdef notdef
/* smooth the negatives */
while (MP_SIGN(r) != MP_ZPOS) {
MP_CHECKOK(mp_add(r, &meth->irr, r));
}
while (MP_USED(r) > 8) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
/* final reduction if necessary */
if (MP_DIGIT(r,7) >= MP_DIGIT(&meth->irr,7)) {
if (mp_cmp(r,&meth->irr) != MP_LT) {
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
}
#endif
s_mp_clamp(r);
#else
switch (a_used) {
case 8:
a7 = MP_DIGIT(a,7);
case 7:
a6 = MP_DIGIT(a,6);
case 6:
a5 = MP_DIGIT(a,5);
case 5:
a4 = MP_DIGIT(a,4);
}
a7l = a7 << 32;
a7h = a7 >> 32;
a6l = a6 << 32;
a6h = a6 >> 32;
a5l = a5 << 32;
a5h = a5 >> 32;
a4l = a4 << 32;
a4h = a4 >> 32;
r3 = MP_DIGIT(a,3);
r2 = MP_DIGIT(a,2);
r1 = MP_DIGIT(a,1);
r0 = MP_DIGIT(a,0);
/* sum 1 */
MP_ADD_CARRY_ZERO(r1, a5h << 32, r1, carry);
MP_ADD_CARRY(r2, a6, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 = carry;
MP_ADD_CARRY_ZERO(r1, a5h << 32, r1, carry);
MP_ADD_CARRY(r2, a6, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 += carry;
/* sum 2 */
MP_ADD_CARRY_ZERO(r1, a6l, r1, carry);
MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
MP_ADD_CARRY(r3, a7h, r3, carry, carry);
r4 += carry;
MP_ADD_CARRY_ZERO(r1, a6l, r1, carry);
MP_ADD_CARRY(r2, a6h | a7l, r2, carry, carry);
MP_ADD_CARRY(r3, a7h, r3, carry, carry);
r4 += carry;
/* sum 3 */
MP_ADD_CARRY_ZERO(r0, a4, r0, carry);
MP_ADD_CARRY(r1, a5l >> 32, r1, carry, carry);
MP_ADD_CARRY(r2, 0, r2, carry, carry);
MP_ADD_CARRY(r3, a7, r3, carry, carry);
r4 += carry;
/* sum 4 */
MP_ADD_CARRY_ZERO(r0, a4h | a5l, r0, carry);
MP_ADD_CARRY(r1, a5h|(a6h<<32), r1, carry, carry);
MP_ADD_CARRY(r2, a7, r2, carry, carry);
MP_ADD_CARRY(r3, a6h | a4l, r3, carry, carry);
r4 += carry;
/* diff 5 */
MP_SUB_BORROW(r0, a5h | a6l, r0, 0, carry);
MP_SUB_BORROW(r1, a6h, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, (a4l>>32)|a5l,r3, carry, carry);
r4 -= carry;
/* diff 6 */
MP_SUB_BORROW(r0, a6, r0, 0, carry);
MP_SUB_BORROW(r1, a7, r1, carry, carry);
MP_SUB_BORROW(r2, 0, r2, carry, carry);
MP_SUB_BORROW(r3, a4h|(a5h<<32),r3, carry, carry);
r4 -= carry;
/* diff 7 */
MP_SUB_BORROW(r0, a6h|a7l, r0, 0, carry);
MP_SUB_BORROW(r1, a7h|a4l, r1, carry, carry);
MP_SUB_BORROW(r2, a4h|a5l, r2, carry, carry);
MP_SUB_BORROW(r3, a6l, r3, carry, carry);
r4 -= carry;
/* diff 8 */
MP_SUB_BORROW(r0, a7, r0, 0, carry);
MP_SUB_BORROW(r1, a4h<<32, r1, carry, carry);
MP_SUB_BORROW(r2, a5, r2, carry, carry);
MP_SUB_BORROW(r3, a6h<<32, r3, carry, carry);
r4 -= carry;
/* reduce the overflows */
while (r4 > 0) {
mp_digit r4_long = r4;
mp_digit r4l = (r4_long << 32);
MP_ADD_CARRY_ZERO(r0, r4_long, r0, carry);
MP_ADD_CARRY(r1, -r4l, r1, carry, carry);
MP_ADD_CARRY(r2, MP_DIGIT_MAX, r2, carry, carry);
MP_ADD_CARRY(r3, r4l-r4_long-1,r3, carry, carry);
r4 = carry;
}
/* reduce the underflows */
while (r4 < 0) {
mp_digit r4_long = -r4;
mp_digit r4l = (r4_long << 32);
MP_SUB_BORROW(r0, r4_long, r0, 0, carry);
MP_SUB_BORROW(r1, -r4l, r1, carry, carry);
MP_SUB_BORROW(r2, MP_DIGIT_MAX, r2, carry, carry);
MP_SUB_BORROW(r3, r4l-r4_long-1,r3, carry, carry);
r4 = -carry;
}
if (a != r) {
MP_CHECKOK(s_mp_pad(r,4));
}
MP_SIGN(r) = MP_ZPOS;
MP_USED(r) = 4;
MP_DIGIT(r,3) = r3;
MP_DIGIT(r,2) = r2;
MP_DIGIT(r,1) = r1;
MP_DIGIT(r,0) = r0;
/* final reduction if necessary */
if ((r3 > 0xFFFFFFFF00000001ULL) ||
((r3 == 0xFFFFFFFF00000001ULL) &&
(r2 || (r1 >> 32)||
(r1 == 0xFFFFFFFFULL && r0 == MP_DIGIT_MAX)))) {
/* very rare, just use mp_sub */
MP_CHECKOK(mp_sub(r, &meth->irr, r));
}
s_mp_clamp(r);
#endif
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p256. Store the
* result in r. r could be a. Uses optimized modular reduction for p256.
*/
mp_err
ec_GFp_nistp256_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p256.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p256. */
mp_err
ec_GFp_nistp256_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp256_mod(r, r, meth));
CLEANUP:
return res;
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp256(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P256) {
group->meth->field_mod = &ec_GFp_nistp256_mod;
group->meth->field_mul = &ec_GFp_nistp256_mul;
group->meth->field_sqr = &ec_GFp_nistp256_sqr;
}
return MP_OKAY;
}

View File

@ -1,294 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1. a can be r.
* Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
int a_bits = mpl_significant_bits(a);
int i;
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
mp_int m[10];
#ifdef ECL_THIRTY_TWO_BIT
mp_digit s[10][12];
for (i = 0; i < 10; i++) {
MP_SIGN(&m[i]) = MP_ZPOS;
MP_ALLOC(&m[i]) = 12;
MP_USED(&m[i]) = 12;
MP_DIGITS(&m[i]) = s[i];
}
#else
mp_digit s[10][6];
for (i = 0; i < 10; i++) {
MP_SIGN(&m[i]) = MP_ZPOS;
MP_ALLOC(&m[i]) = 6;
MP_USED(&m[i]) = 6;
MP_DIGITS(&m[i]) = s[i];
}
#endif
#ifdef ECL_THIRTY_TWO_BIT
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if ((a_bits > 768) || (a_bits <= 736)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
for (i = 0; i < 12; i++) {
s[0][i] = MP_DIGIT(a, i);
}
s[1][0] = 0;
s[1][1] = 0;
s[1][2] = 0;
s[1][3] = 0;
s[1][4] = MP_DIGIT(a, 21);
s[1][5] = MP_DIGIT(a, 22);
s[1][6] = MP_DIGIT(a, 23);
s[1][7] = 0;
s[1][8] = 0;
s[1][9] = 0;
s[1][10] = 0;
s[1][11] = 0;
for (i = 0; i < 12; i++) {
s[2][i] = MP_DIGIT(a, i+12);
}
s[3][0] = MP_DIGIT(a, 21);
s[3][1] = MP_DIGIT(a, 22);
s[3][2] = MP_DIGIT(a, 23);
for (i = 3; i < 12; i++) {
s[3][i] = MP_DIGIT(a, i+9);
}
s[4][0] = 0;
s[4][1] = MP_DIGIT(a, 23);
s[4][2] = 0;
s[4][3] = MP_DIGIT(a, 20);
for (i = 4; i < 12; i++) {
s[4][i] = MP_DIGIT(a, i+8);
}
s[5][0] = 0;
s[5][1] = 0;
s[5][2] = 0;
s[5][3] = 0;
s[5][4] = MP_DIGIT(a, 20);
s[5][5] = MP_DIGIT(a, 21);
s[5][6] = MP_DIGIT(a, 22);
s[5][7] = MP_DIGIT(a, 23);
s[5][8] = 0;
s[5][9] = 0;
s[5][10] = 0;
s[5][11] = 0;
s[6][0] = MP_DIGIT(a, 20);
s[6][1] = 0;
s[6][2] = 0;
s[6][3] = MP_DIGIT(a, 21);
s[6][4] = MP_DIGIT(a, 22);
s[6][5] = MP_DIGIT(a, 23);
s[6][6] = 0;
s[6][7] = 0;
s[6][8] = 0;
s[6][9] = 0;
s[6][10] = 0;
s[6][11] = 0;
s[7][0] = MP_DIGIT(a, 23);
for (i = 1; i < 12; i++) {
s[7][i] = MP_DIGIT(a, i+11);
}
s[8][0] = 0;
s[8][1] = MP_DIGIT(a, 20);
s[8][2] = MP_DIGIT(a, 21);
s[8][3] = MP_DIGIT(a, 22);
s[8][4] = MP_DIGIT(a, 23);
s[8][5] = 0;
s[8][6] = 0;
s[8][7] = 0;
s[8][8] = 0;
s[8][9] = 0;
s[8][10] = 0;
s[8][11] = 0;
s[9][0] = 0;
s[9][1] = 0;
s[9][2] = 0;
s[9][3] = MP_DIGIT(a, 23);
s[9][4] = MP_DIGIT(a, 23);
s[9][5] = 0;
s[9][6] = 0;
s[9][7] = 0;
s[9][8] = 0;
s[9][9] = 0;
s[9][10] = 0;
s[9][11] = 0;
MP_CHECKOK(mp_add(&m[0], &m[1], r));
MP_CHECKOK(mp_add(r, &m[1], r));
MP_CHECKOK(mp_add(r, &m[2], r));
MP_CHECKOK(mp_add(r, &m[3], r));
MP_CHECKOK(mp_add(r, &m[4], r));
MP_CHECKOK(mp_add(r, &m[5], r));
MP_CHECKOK(mp_add(r, &m[6], r));
MP_CHECKOK(mp_sub(r, &m[7], r));
MP_CHECKOK(mp_sub(r, &m[8], r));
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
s_mp_clamp(r);
}
#else
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if ((a_bits > 768) || (a_bits <= 736)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
for (i = 0; i < 6; i++) {
s[0][i] = MP_DIGIT(a, i);
}
s[1][0] = 0;
s[1][1] = 0;
s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[1][3] = MP_DIGIT(a, 11) >> 32;
s[1][4] = 0;
s[1][5] = 0;
for (i = 0; i < 6; i++) {
s[2][i] = MP_DIGIT(a, i+6);
}
s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
for (i = 2; i < 6; i++) {
s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
}
s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
s[4][1] = MP_DIGIT(a, 10) << 32;
for (i = 2; i < 6; i++) {
s[4][i] = MP_DIGIT(a, i+4);
}
s[5][0] = 0;
s[5][1] = 0;
s[5][2] = MP_DIGIT(a, 10);
s[5][3] = MP_DIGIT(a, 11);
s[5][4] = 0;
s[5][5] = 0;
s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
s[6][2] = MP_DIGIT(a, 11);
s[6][3] = 0;
s[6][4] = 0;
s[6][5] = 0;
s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
for (i = 1; i < 6; i++) {
s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
}
s[8][0] = MP_DIGIT(a, 10) << 32;
s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
s[8][2] = MP_DIGIT(a, 11) >> 32;
s[8][3] = 0;
s[8][4] = 0;
s[8][5] = 0;
s[9][0] = 0;
s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
s[9][2] = MP_DIGIT(a, 11) >> 32;
s[9][3] = 0;
s[9][4] = 0;
s[9][5] = 0;
MP_CHECKOK(mp_add(&m[0], &m[1], r));
MP_CHECKOK(mp_add(r, &m[1], r));
MP_CHECKOK(mp_add(r, &m[2], r));
MP_CHECKOK(mp_add(r, &m[3], r));
MP_CHECKOK(mp_add(r, &m[4], r));
MP_CHECKOK(mp_add(r, &m[5], r));
MP_CHECKOK(mp_add(r, &m[6], r));
MP_CHECKOK(mp_sub(r, &m[7], r));
MP_CHECKOK(mp_sub(r, &m[8], r));
MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
s_mp_clamp(r);
}
#endif
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p384. Store the
* result in r. r could be a. Uses optimized modular reduction for p384.
*/
mp_err
ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p384.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p384. */
mp_err
ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
CLEANUP:
return res;
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp384(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P384) {
group->meth->field_mod = &ec_GFp_nistp384_mod;
group->meth->field_mul = &ec_GFp_nistp384_mul;
group->meth->field_sqr = &ec_GFp_nistp384_sqr;
}
return MP_OKAY;
}

View File

@ -1,171 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>
*
*********************************************************************** */
#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define ECP521_DIGITS ECL_CURVE_DIGITS(521)
/* Fast modular reduction for p521 = 2^521 - 1. a can be r. Uses
* algorithm 2.31 from Hankerson, Menezes, Vanstone. Guide to
* Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp521_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
int a_bits = mpl_significant_bits(a);
unsigned int i;
/* m1, m2 are statically-allocated mp_int of exactly the size we need */
mp_int m1;
mp_digit s1[ECP521_DIGITS] = { 0 };
MP_SIGN(&m1) = MP_ZPOS;
MP_ALLOC(&m1) = ECP521_DIGITS;
MP_USED(&m1) = ECP521_DIGITS;
MP_DIGITS(&m1) = s1;
if (a_bits < 521) {
if (a==r) return MP_OKAY;
return mp_copy(a, r);
}
/* for polynomials larger than twice the field size or polynomials
* not using all words, use regular reduction */
if (a_bits > (521*2)) {
MP_CHECKOK(mp_mod(a, &meth->irr, r));
} else {
#define FIRST_DIGIT (ECP521_DIGITS-1)
for (i = FIRST_DIGIT; i < MP_USED(a)-1; i++) {
s1[i-FIRST_DIGIT] = (MP_DIGIT(a, i) >> 9)
| (MP_DIGIT(a, 1+i) << (MP_DIGIT_BIT-9));
}
s1[i-FIRST_DIGIT] = MP_DIGIT(a, i) >> 9;
if ( a != r ) {
MP_CHECKOK(s_mp_pad(r,ECP521_DIGITS));
for (i = 0; i < ECP521_DIGITS; i++) {
MP_DIGIT(r,i) = MP_DIGIT(a, i);
}
}
MP_USED(r) = ECP521_DIGITS;
MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
MP_CHECKOK(s_mp_add(r, &m1));
if (MP_DIGIT(r, FIRST_DIGIT) & 0x200) {
MP_CHECKOK(s_mp_add_d(r,1));
MP_DIGIT(r,FIRST_DIGIT) &= 0x1FF;
}
s_mp_clamp(r);
}
CLEANUP:
return res;
}
/* Compute the square of polynomial a, reduce modulo p521. Store the
* result in r. r could be a. Uses optimized modular reduction for p521.
*/
mp_err
ec_GFp_nistp521_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_sqr(a, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p521.
* Store the result in r. r could be a or b; a could be b. Uses
* optimized modular reduction for p521. */
mp_err
ec_GFp_nistp521_mul(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
return res;
}
/* Divides two field elements. If a is NULL, then returns the inverse of
* b. */
mp_err
ec_GFp_nistp521_div(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
mp_int t;
/* If a is NULL, then return the inverse of b, otherwise return a/b. */
if (a == NULL) {
return mp_invmod(b, &meth->irr, r);
} else {
/* MPI doesn't support divmod, so we implement it using invmod and
* mulmod. */
MP_CHECKOK(mp_init(&t, FLAG(b)));
MP_CHECKOK(mp_invmod(b, &meth->irr, &t));
MP_CHECKOK(mp_mul(a, &t, r));
MP_CHECKOK(ec_GFp_nistp521_mod(r, r, meth));
CLEANUP:
mp_clear(&t);
return res;
}
}
/* Wire in fast field arithmetic and precomputation of base point for
* named curves. */
mp_err
ec_group_set_gfp521(ECGroup *group, ECCurveName name)
{
if (name == ECCurve_NIST_P521) {
group->meth->field_mod = &ec_GFp_nistp521_mod;
group->meth->field_mul = &ec_GFp_nistp521_mul;
group->meth->field_sqr = &ec_GFp_nistp521_sqr;
group->meth->field_div = &ec_GFp_nistp521_div;
}
return MP_OKAY;
}

View File

@ -1,360 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
* Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
* Nils Larsch <nla@trustcenter.de>, and
* Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "ecp.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
/* Checks if point P(px, py) is at infinity. Uses affine coordinates. */
mp_err
ec_GFp_pt_is_inf_aff(const mp_int *px, const mp_int *py)
{
if ((mp_cmp_z(px) == 0) && (mp_cmp_z(py) == 0)) {
return MP_YES;
} else {
return MP_NO;
}
}
/* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */
mp_err
ec_GFp_pt_set_inf_aff(mp_int *px, mp_int *py)
{
mp_zero(px);
mp_zero(py);
return MP_OKAY;
}
/* Computes R = P + Q based on IEEE P1363 A.10.1. Elliptic curve points P,
* Q, and R can all be identical. Uses affine coordinates. Assumes input
* is already field-encoded using field_enc, and returns output that is
* still field-encoded. */
mp_err
ec_GFp_pt_add_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int lambda, temp, tempx, tempy;
MP_DIGITS(&lambda) = 0;
MP_DIGITS(&temp) = 0;
MP_DIGITS(&tempx) = 0;
MP_DIGITS(&tempy) = 0;
MP_CHECKOK(mp_init(&lambda, FLAG(px)));
MP_CHECKOK(mp_init(&temp, FLAG(px)));
MP_CHECKOK(mp_init(&tempx, FLAG(px)));
MP_CHECKOK(mp_init(&tempy, FLAG(px)));
/* if P = inf, then R = Q */
if (ec_GFp_pt_is_inf_aff(px, py) == 0) {
MP_CHECKOK(mp_copy(qx, rx));
MP_CHECKOK(mp_copy(qy, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if Q = inf, then R = P */
if (ec_GFp_pt_is_inf_aff(qx, qy) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
res = MP_OKAY;
goto CLEANUP;
}
/* if px != qx, then lambda = (py-qy) / (px-qx) */
if (mp_cmp(px, qx) != 0) {
MP_CHECKOK(group->meth->field_sub(py, qy, &tempy, group->meth));
MP_CHECKOK(group->meth->field_sub(px, qx, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempy, &tempx, &lambda, group->meth));
} else {
/* if py != qy or qy = 0, then R = inf */
if (((mp_cmp(py, qy) != 0)) || (mp_cmp_z(qy) == 0)) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* lambda = (3qx^2+a) / (2qy) */
MP_CHECKOK(group->meth->field_sqr(qx, &tempx, group->meth));
MP_CHECKOK(mp_set_int(&temp, 3));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
}
MP_CHECKOK(group->meth->
field_mul(&tempx, &temp, &tempx, group->meth));
MP_CHECKOK(group->meth->
field_add(&tempx, &group->curvea, &tempx, group->meth));
MP_CHECKOK(mp_set_int(&temp, 2));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(&temp, &temp, group->meth));
}
MP_CHECKOK(group->meth->field_mul(qy, &temp, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_div(&tempx, &tempy, &lambda, group->meth));
}
/* rx = lambda^2 - px - qx */
MP_CHECKOK(group->meth->field_sqr(&lambda, &tempx, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempx, px, &tempx, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempx, qx, &tempx, group->meth));
/* ry = (x1-x2) * lambda - y1 */
MP_CHECKOK(group->meth->field_sub(qx, &tempx, &tempy, group->meth));
MP_CHECKOK(group->meth->
field_mul(&tempy, &lambda, &tempy, group->meth));
MP_CHECKOK(group->meth->field_sub(&tempy, qy, &tempy, group->meth));
MP_CHECKOK(mp_copy(&tempx, rx));
MP_CHECKOK(mp_copy(&tempy, ry));
CLEANUP:
mp_clear(&lambda);
mp_clear(&temp);
mp_clear(&tempx);
mp_clear(&tempy);
return res;
}
/* Computes R = P - Q. Elliptic curve points P, Q, and R can all be
* identical. Uses affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_sub_aff(const mp_int *px, const mp_int *py, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry,
const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int nqy;
MP_DIGITS(&nqy) = 0;
MP_CHECKOK(mp_init(&nqy, FLAG(px)));
/* nqy = -qy */
MP_CHECKOK(group->meth->field_neg(qy, &nqy, group->meth));
res = group->point_add(px, py, qx, &nqy, rx, ry, group);
CLEANUP:
mp_clear(&nqy);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* affine coordinates. Assumes input is already field-encoded using
* field_enc, and returns output that is still field-encoded. */
mp_err
ec_GFp_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, const ECGroup *group)
{
return ec_GFp_pt_add_aff(px, py, px, py, rx, ry, group);
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GFP_PT_MUL_AFF
/* Computes R = nP based on IEEE P1363 A.10.3. Elliptic curve points P and
* R can be identical. Uses affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_mul_aff(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int k, k3, qx, qy, sx, sy;
int b1, b3, i, l;
MP_DIGITS(&k) = 0;
MP_DIGITS(&k3) = 0;
MP_DIGITS(&qx) = 0;
MP_DIGITS(&qy) = 0;
MP_DIGITS(&sx) = 0;
MP_DIGITS(&sy) = 0;
MP_CHECKOK(mp_init(&k));
MP_CHECKOK(mp_init(&k3));
MP_CHECKOK(mp_init(&qx));
MP_CHECKOK(mp_init(&qy));
MP_CHECKOK(mp_init(&sx));
MP_CHECKOK(mp_init(&sy));
/* if n = 0 then r = inf */
if (mp_cmp_z(n) == 0) {
mp_zero(rx);
mp_zero(ry);
res = MP_OKAY;
goto CLEANUP;
}
/* Q = P, k = n */
MP_CHECKOK(mp_copy(px, &qx));
MP_CHECKOK(mp_copy(py, &qy));
MP_CHECKOK(mp_copy(n, &k));
/* if n < 0 then Q = -Q, k = -k */
if (mp_cmp_z(n) < 0) {
MP_CHECKOK(group->meth->field_neg(&qy, &qy, group->meth));
MP_CHECKOK(mp_neg(&k, &k));
}
#ifdef ECL_DEBUG /* basic double and add method */
l = mpl_significant_bits(&k) - 1;
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
for (i = l - 1; i >= 0; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
/* if k_i = 1, then S = S + Q */
if (mpl_get_bit(&k, i) != 0) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#else /* double and add/subtract method from
* standard */
/* k3 = 3 * k */
MP_CHECKOK(mp_set_int(&k3, 3));
MP_CHECKOK(mp_mul(&k, &k3, &k3));
/* S = Q */
MP_CHECKOK(mp_copy(&qx, &sx));
MP_CHECKOK(mp_copy(&qy, &sy));
/* l = index of high order bit in binary representation of 3*k */
l = mpl_significant_bits(&k3) - 1;
/* for i = l-1 downto 1 */
for (i = l - 1; i >= 1; i--) {
/* S = 2S */
MP_CHECKOK(group->point_dbl(&sx, &sy, &sx, &sy, group));
b3 = MP_GET_BIT(&k3, i);
b1 = MP_GET_BIT(&k, i);
/* if k3_i = 1 and k_i = 0, then S = S + Q */
if ((b3 == 1) && (b1 == 0)) {
MP_CHECKOK(group->
point_add(&sx, &sy, &qx, &qy, &sx, &sy, group));
/* if k3_i = 0 and k_i = 1, then S = S - Q */
} else if ((b3 == 0) && (b1 == 1)) {
MP_CHECKOK(group->
point_sub(&sx, &sy, &qx, &qy, &sx, &sy, group));
}
}
#endif
/* output S */
MP_CHECKOK(mp_copy(&sx, rx));
MP_CHECKOK(mp_copy(&sy, ry));
CLEANUP:
mp_clear(&k);
mp_clear(&k3);
mp_clear(&qx);
mp_clear(&qy);
mp_clear(&sx);
mp_clear(&sy);
return res;
}
#endif
/* Validates a point on a GFp curve. */
mp_err
ec_GFp_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group)
{
mp_err res = MP_NO;
mp_int accl, accr, tmp, pxt, pyt;
MP_DIGITS(&accl) = 0;
MP_DIGITS(&accr) = 0;
MP_DIGITS(&tmp) = 0;
MP_DIGITS(&pxt) = 0;
MP_DIGITS(&pyt) = 0;
MP_CHECKOK(mp_init(&accl, FLAG(px)));
MP_CHECKOK(mp_init(&accr, FLAG(px)));
MP_CHECKOK(mp_init(&tmp, FLAG(px)));
MP_CHECKOK(mp_init(&pxt, FLAG(px)));
MP_CHECKOK(mp_init(&pyt, FLAG(px)));
/* 1: Verify that publicValue is not the point at infinity */
if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
res = MP_NO;
goto CLEANUP;
}
/* 2: Verify that the coordinates of publicValue are elements
* of the field.
*/
if ((MP_SIGN(px) == MP_NEG) || (mp_cmp(px, &group->meth->irr) >= 0) ||
(MP_SIGN(py) == MP_NEG) || (mp_cmp(py, &group->meth->irr) >= 0)) {
res = MP_NO;
goto CLEANUP;
}
/* 3: Verify that publicValue is on the curve. */
if (group->meth->field_enc) {
group->meth->field_enc(px, &pxt, group->meth);
group->meth->field_enc(py, &pyt, group->meth);
} else {
mp_copy(px, &pxt);
mp_copy(py, &pyt);
}
/* left-hand side: y^2 */
MP_CHECKOK( group->meth->field_sqr(&pyt, &accl, group->meth) );
/* right-hand side: x^3 + a*x + b */
MP_CHECKOK( group->meth->field_sqr(&pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_mul(&pxt, &tmp, &accr, group->meth) );
MP_CHECKOK( group->meth->field_mul(&group->curvea, &pxt, &tmp, group->meth) );
MP_CHECKOK( group->meth->field_add(&tmp, &accr, &accr, group->meth) );
MP_CHECKOK( group->meth->field_add(&accr, &group->curveb, &accr, group->meth) );
/* check LHS - RHS == 0 */
MP_CHECKOK( group->meth->field_sub(&accl, &accr, &accr, group->meth) );
if (mp_cmp_z(&accr) != 0) {
res = MP_NO;
goto CLEANUP;
}
/* 4: Verify that the order of the curve times the publicValue
* is the point at infinity.
*/
/* timing mitigation is not supported */
MP_CHECKOK( ECPoint_mul(group, &group->order, px, py, &pxt, &pyt, /*timing*/ 0) );
if (ec_GFp_pt_is_inf_aff(&pxt, &pyt) != MP_YES) {
res = MP_NO;
goto CLEANUP;
}
res = MP_YES;
CLEANUP:
mp_clear(&accl);
mp_clear(&accr);
mp_clear(&tmp);
mp_clear(&pxt);
mp_clear(&pyt);
return res;
}

View File

@ -1,564 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang-Shantz <sheueling.chang@sun.com>,
* Stephen Fung <fungstep@hotmail.com>, and
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
* Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
* Nils Larsch <nla@trustcenter.de>, and
* Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "ecp.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#ifdef ECL_DEBUG
#include <assert.h>
#endif
/* Converts a point P(px, py) from affine coordinates to Jacobian
* projective coordinates R(rx, ry, rz). Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
} else {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_set_int(rz, 1));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
}
}
CLEANUP:
return res;
}
/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
* affine coordinates R(rx, ry). P and R can share x and y coordinates.
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded. */
mp_err
ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int z1, z2, z3;
MP_DIGITS(&z1) = 0;
MP_DIGITS(&z2) = 0;
MP_DIGITS(&z3) = 0;
MP_CHECKOK(mp_init(&z1, FLAG(px)));
MP_CHECKOK(mp_init(&z2, FLAG(px)));
MP_CHECKOK(mp_init(&z3, FLAG(px)));
/* if point at infinity, then set point at infinity and exit */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
goto CLEANUP;
}
/* transform (px, py, pz) into (px / pz^2, py / pz^3) */
if (mp_cmp_d(pz, 1) == 0) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
} else {
MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
}
CLEANUP:
mp_clear(&z1);
mp_clear(&z2);
mp_clear(&z3);
return res;
}
/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
* coordinates. */
mp_err
ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
{
return mp_cmp_z(pz);
}
/* Sets P(px, py, pz) to be the point at infinity. Uses Jacobian
* coordinates. */
mp_err
ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
{
mp_zero(pz);
return MP_OKAY;
}
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
* Uses mixed Jacobian-affine coordinates. Assumes input is already
* field-encoded using field_enc, and returns output that is still
* field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
* Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
* Fields. */
mp_err
ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *qx, const mp_int *qy, mp_int *rx,
mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int A, B, C, D, C2, C3;
MP_DIGITS(&A) = 0;
MP_DIGITS(&B) = 0;
MP_DIGITS(&C) = 0;
MP_DIGITS(&D) = 0;
MP_DIGITS(&C2) = 0;
MP_DIGITS(&C3) = 0;
MP_CHECKOK(mp_init(&A, FLAG(px)));
MP_CHECKOK(mp_init(&B, FLAG(px)));
MP_CHECKOK(mp_init(&C, FLAG(px)));
MP_CHECKOK(mp_init(&D, FLAG(px)));
MP_CHECKOK(mp_init(&C2, FLAG(px)));
MP_CHECKOK(mp_init(&C3, FLAG(px)));
/* If either P or Q is the point at infinity, then return the other
* point */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
goto CLEANUP;
}
if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_copy(pz, rz));
goto CLEANUP;
}
/* A = qx * pz^2, B = qy * pz^3 */
MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
/*
* Additional checks for point equality and point at infinity
*/
if (mp_cmp(px, &A) == 0 && mp_cmp(py, &B) == 0) {
/* POINT_DOUBLE(P) */
MP_CHECKOK(ec_GFp_pt_dbl_jac(px, py, pz, rx, ry, rz, group));
goto CLEANUP;
}
/* C = A - px, D = B - py */
MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
/* C2 = C^2, C3 = C^3 */
MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
/* rz = pz * C */
MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
/* C = px * C^2 */
MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
/* A = D^2 */
MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
/* C3 = py * C^3 */
MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
/* ry = D * (px * C^2 - rx) - py * C^3 */
MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
CLEANUP:
mp_clear(&A);
mp_clear(&B);
mp_clear(&C);
mp_clear(&D);
mp_clear(&C2);
mp_clear(&C3);
return res;
}
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* Jacobian coordinates.
*
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded.
*
* This routine implements Point Doubling in the Jacobian Projective
* space as described in the paper "Efficient elliptic curve exponentiation
* using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
*/
mp_err
ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int t0, t1, M, S;
MP_DIGITS(&t0) = 0;
MP_DIGITS(&t1) = 0;
MP_DIGITS(&M) = 0;
MP_DIGITS(&S) = 0;
MP_CHECKOK(mp_init(&t0, FLAG(px)));
MP_CHECKOK(mp_init(&t1, FLAG(px)));
MP_CHECKOK(mp_init(&M, FLAG(px)));
MP_CHECKOK(mp_init(&S, FLAG(px)));
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
goto CLEANUP;
}
if (mp_cmp_d(pz, 1) == 0) {
/* M = 3 * px^2 + a */
MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
MP_CHECKOK(group->meth->
field_add(&t0, &group->curvea, &M, group->meth));
} else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
/* M = 3 * (px + pz^2) * (px - pz^2) */
MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
} else {
/* M = 3 * (px^2) + a * (pz^4) */
MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
MP_CHECKOK(group->meth->
field_mul(&M, &group->curvea, &M, group->meth));
MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
}
/* rz = 2 * py * pz */
/* t0 = 4 * py^2 */
if (mp_cmp_d(pz, 1) == 0) {
MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
} else {
MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
}
/* S = 4 * px * py^2 = px * (2 * py)^2 */
MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
/* rx = M^2 - 2 * S */
MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
/* ry = M * (S - rx) - 8 * py^4 */
MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
if (mp_isodd(&t1)) {
MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
}
MP_CHECKOK(mp_div_2(&t1, &t1));
MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
CLEANUP:
mp_clear(&t0);
mp_clear(&t1);
mp_clear(&M);
mp_clear(&S);
return res;
}
/* by default, this routine is unused and thus doesn't need to be compiled */
#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
* a, b and p are the elliptic curve coefficients and the prime that
* determines the field GFp. Elliptic curve points P and R can be
* identical. Uses mixed Jacobian-affine coordinates. Assumes input is
* already field-encoded using field_enc, and returns output that is still
* field-encoded. Uses 4-bit window method. */
mp_err
ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int precomp[16][2], rz;
int i, ni, d;
MP_DIGITS(&rz) = 0;
for (i = 0; i < 16; i++) {
MP_DIGITS(&precomp[i][0]) = 0;
MP_DIGITS(&precomp[i][1]) = 0;
}
ARGCHK(group != NULL, MP_BADARG);
ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
/* initialize precomputation table */
for (i = 0; i < 16; i++) {
MP_CHECKOK(mp_init(&precomp[i][0]));
MP_CHECKOK(mp_init(&precomp[i][1]));
}
/* fill precomputation table */
mp_zero(&precomp[0][0]);
mp_zero(&precomp[0][1]);
MP_CHECKOK(mp_copy(px, &precomp[1][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][1]));
for (i = 2; i < 16; i++) {
MP_CHECKOK(group->
point_add(&precomp[1][0], &precomp[1][1],
&precomp[i - 1][0], &precomp[i - 1][1],
&precomp[i][0], &precomp[i][1], group));
}
d = (mpl_significant_bits(n) + 3) / 4;
/* R = inf */
MP_CHECKOK(mp_init(&rz));
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
for (i = d - 1; i >= 0; i--) {
/* compute window ni */
ni = MP_GET_BIT(n, 4 * i + 3);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i + 2);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i + 1);
ni <<= 1;
ni |= MP_GET_BIT(n, 4 * i);
/* R = 2^4 * R */
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
/* R = R + (ni * P) */
MP_CHECKOK(ec_GFp_pt_add_jac_aff
(rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
&rz, group));
}
/* convert result S to affine coordinates */
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
CLEANUP:
mp_clear(&rz);
for (i = 0; i < 16; i++) {
mp_clear(&precomp[i][0]);
mp_clear(&precomp[i][1]);
}
return res;
}
#endif
/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
* k2 * P(x, y), where G is the generator (base point) of the group of
* points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
* Uses mixed Jacobian-affine coordinates. Input and output values are
* assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
* multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
* Software Implementation of the NIST Elliptic Curves over Prime Fields. */
mp_err
ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
const mp_int *py, mp_int *rx, mp_int *ry,
const ECGroup *group, int timing)
{
mp_err res = MP_OKAY;
mp_int precomp[4][4][2];
mp_int rz;
const mp_int *a, *b;
int i, j;
int ai, bi, d;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_DIGITS(&precomp[i][j][0]) = 0;
MP_DIGITS(&precomp[i][j][1]) = 0;
}
}
MP_DIGITS(&rz) = 0;
ARGCHK(group != NULL, MP_BADARG);
ARGCHK(!((k1 == NULL)
&& ((k2 == NULL) || (px == NULL)
|| (py == NULL))), MP_BADARG);
/* if some arguments are not defined used ECPoint_mul */
if (k1 == NULL) {
return ECPoint_mul(group, k2, px, py, rx, ry, timing);
} else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
return ECPoint_mul(group, k1, NULL, NULL, rx, ry, timing);
}
/* initialize precomputation table */
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
}
}
/* fill precomputation table */
/* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
a = k2;
b = k1;
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[1][0][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[1][0][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
}
MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
} else {
a = k1;
b = k2;
MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
if (group->meth->field_enc) {
MP_CHECKOK(group->meth->
field_enc(px, &precomp[0][1][0], group->meth));
MP_CHECKOK(group->meth->
field_enc(py, &precomp[0][1][1], group->meth));
} else {
MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
}
}
/* precompute [*][0][*] */
mp_zero(&precomp[0][0][0]);
mp_zero(&precomp[0][0][1]);
MP_CHECKOK(group->
point_dbl(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1], group));
MP_CHECKOK(group->
point_add(&precomp[1][0][0], &precomp[1][0][1],
&precomp[2][0][0], &precomp[2][0][1],
&precomp[3][0][0], &precomp[3][0][1], group));
/* precompute [*][1][*] */
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][1][0], &precomp[i][1][1], group));
}
/* precompute [*][2][*] */
MP_CHECKOK(group->
point_dbl(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][2][0], &precomp[0][2][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][2][0], &precomp[i][2][1], group));
}
/* precompute [*][3][*] */
MP_CHECKOK(group->
point_add(&precomp[0][1][0], &precomp[0][1][1],
&precomp[0][2][0], &precomp[0][2][1],
&precomp[0][3][0], &precomp[0][3][1], group));
for (i = 1; i < 4; i++) {
MP_CHECKOK(group->
point_add(&precomp[0][3][0], &precomp[0][3][1],
&precomp[i][0][0], &precomp[i][0][1],
&precomp[i][3][0], &precomp[i][3][1], group));
}
d = (mpl_significant_bits(a) + 1) / 2;
/* R = inf */
MP_CHECKOK(mp_init(&rz, FLAG(k1)));
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
for (i = d - 1; i >= 0; i--) {
ai = MP_GET_BIT(a, 2 * i + 1);
ai <<= 1;
ai |= MP_GET_BIT(a, 2 * i);
bi = MP_GET_BIT(b, 2 * i + 1);
bi <<= 1;
bi |= MP_GET_BIT(b, 2 * i);
/* R = 2^2 * R */
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
/* R = R + (ai * A + bi * B) */
MP_CHECKOK(ec_GFp_pt_add_jac_aff
(rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
rx, ry, &rz, group));
}
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
if (group->meth->field_dec) {
MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
}
CLEANUP:
mp_clear(&rz);
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
mp_clear(&precomp[i][j][0]);
mp_clear(&precomp[i][j][1]);
}
}
return res;
}

View File

@ -1,396 +0,0 @@
/*
* Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library for prime field curves.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Stephen Fung <fungstep@hotmail.com>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: May 2017
*********************************************************************** */
#include "ecp.h"
#include "ecl-priv.h"
#include "mplogic.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif
#define MAX_SCRATCH 6
/* Computes R = 2P. Elliptic curve points P and R can be identical. Uses
* Modified Jacobian coordinates.
*
* Assumes input is already field-encoded using field_enc, and returns
* output that is still field-encoded.
*
*/
mp_err
ec_GFp_pt_dbl_jm(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *paz4, mp_int *rx, mp_int *ry, mp_int *rz,
mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int *t0, *t1, *M, *S;
t0 = &scratch[0];
t1 = &scratch[1];
M = &scratch[2];
S = &scratch[3];
#if MAX_SCRATCH < 4
#error "Scratch array defined too small "
#endif
/* Check for point at infinity */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
/* Set r = pt at infinity by setting rz = 0 */
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
goto CLEANUP;
}
/* M = 3 (px^2) + a*(pz^4) */
MP_CHECKOK(group->meth->field_sqr(px, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, t0, M, group->meth));
MP_CHECKOK(group->meth->field_add(t0, M, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, paz4, M, group->meth));
/* rz = 2 * py * pz */
MP_CHECKOK(group->meth->field_mul(py, pz, S, group->meth));
MP_CHECKOK(group->meth->field_add(S, S, rz, group->meth));
/* t0 = 2y^2 , t1 = 8y^4 */
MP_CHECKOK(group->meth->field_sqr(py, t0, group->meth));
MP_CHECKOK(group->meth->field_add(t0, t0, t0, group->meth));
MP_CHECKOK(group->meth->field_sqr(t0, t1, group->meth));
MP_CHECKOK(group->meth->field_add(t1, t1, t1, group->meth));
/* S = 4 * px * py^2 = 2 * px * t0 */
MP_CHECKOK(group->meth->field_mul(px, t0, S, group->meth));
MP_CHECKOK(group->meth->field_add(S, S, S, group->meth));
/* rx = M^2 - 2S */
MP_CHECKOK(group->meth->field_sqr(M, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(rx, S, rx, group->meth));
/* ry = M * (S - rx) - t1 */
MP_CHECKOK(group->meth->field_sub(S, rx, S, group->meth));
MP_CHECKOK(group->meth->field_mul(S, M, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, t1, ry, group->meth));
/* ra*z^4 = 2*t1*(apz4) */
MP_CHECKOK(group->meth->field_mul(paz4, t1, raz4, group->meth));
MP_CHECKOK(group->meth->field_add(raz4, raz4, raz4, group->meth));
CLEANUP:
return res;
}
/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
* (qx, qy, 1). Elliptic curve points P, Q, and R can all be identical.
* Uses mixed Modified_Jacobian-affine coordinates. Assumes input is
* already field-encoded using field_enc, and returns output that is still
* field-encoded. */
mp_err
ec_GFp_pt_add_jm_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
const mp_int *paz4, const mp_int *qx,
const mp_int *qy, mp_int *rx, mp_int *ry, mp_int *rz,
mp_int *raz4, mp_int scratch[], const ECGroup *group)
{
mp_err res = MP_OKAY;
mp_int *A, *B, *C, *D, *C2, *C3;
A = &scratch[0];
B = &scratch[1];
C = &scratch[2];
D = &scratch[3];
C2 = &scratch[4];
C3 = &scratch[5];
#if MAX_SCRATCH < 6
#error "Scratch array defined too small "
#endif
/* If either P or Q is the point at infinity, then return the other
* point */
if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
MP_CHECKOK(group->meth->
field_mul(raz4, &group->curvea, raz4, group->meth));
goto CLEANUP;
}
if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
MP_CHECKOK(mp_copy(px, rx));
MP_CHECKOK(mp_copy(py, ry));
MP_CHECKOK(mp_copy(pz, rz));
MP_CHECKOK(mp_copy(paz4, raz4));
goto CLEANUP;
}
/* A = qx * pz^2, B = qy * pz^3 */
MP_CHECKOK(group->meth->field_sqr(pz, A, group->meth));
MP_CHECKOK(group->meth->field_mul(A, pz, B, group->meth));
MP_CHECKOK(group->meth->field_mul(A, qx, A, group->meth));
MP_CHECKOK(group->meth->field_mul(B, qy, B, group->meth));
/*
* Additional checks for point equality and point at infinity
*/
if (mp_cmp(px, A) == 0 && mp_cmp(py, B) == 0) {
/* POINT_DOUBLE(P) */
MP_CHECKOK(ec_GFp_pt_dbl_jm(px, py, pz, paz4, rx, ry, rz, raz4,
scratch, group));
goto CLEANUP;
}
/* C = A - px, D = B - py */
MP_CHECKOK(group->meth->field_sub(A, px, C, group->meth));
MP_CHECKOK(group->meth->field_sub(B, py, D, group->meth));
/* C2 = C^2, C3 = C^3 */
MP_CHECKOK(group->meth->field_sqr(C, C2, group->meth));
MP_CHECKOK(group->meth->field_mul(C, C2, C3, group->meth));
/* rz = pz * C */
MP_CHECKOK(group->meth->field_mul(pz, C, rz, group->meth));
/* C = px * C^2 */
MP_CHECKOK(group->meth->field_mul(px, C2, C, group->meth));
/* A = D^2 */
MP_CHECKOK(group->meth->field_sqr(D, A, group->meth));
/* rx = D^2 - (C^3 + 2 * (px * C^2)) */
MP_CHECKOK(group->meth->field_add(C, C, rx, group->meth));
MP_CHECKOK(group->meth->field_add(C3, rx, rx, group->meth));
MP_CHECKOK(group->meth->field_sub(A, rx, rx, group->meth));
/* C3 = py * C^3 */
MP_CHECKOK(group->meth->field_mul(py, C3, C3, group->meth));
/* ry = D * (px * C^2 - rx) - py * C^3 */
MP_CHECKOK(group->meth->field_sub(C, rx, ry, group->meth));
MP_CHECKOK(group->meth->field_mul(D, ry, ry, group->meth));
MP_CHECKOK(group->meth->field_sub(ry, C3, ry, group->meth));
/* raz4 = a * rz^4 */
MP_CHECKOK(group->meth->field_sqr(rz, raz4, group->meth));
MP_CHECKOK(group->meth->field_sqr(raz4, raz4, group->meth));
MP_CHECKOK(group->meth->
field_mul(raz4, &group->curvea, raz4, group->meth));
CLEANUP:
return res;
}
/* Computes R = nP where R is (rx, ry) and P is the base point. Elliptic
* curve points P and R can be identical. Uses mixed Modified-Jacobian
* co-ordinates for doubling and Chudnovsky Jacobian coordinates for
* additions. Assumes input is already field-encoded using field_enc, and
* returns output that is still field-encoded. Uses 5-bit window NAF
* method (algorithm 11) for scalar-point multiplication from Brown,
* Hankerson, Lopez, Menezes. Software Implementation of the NIST Elliptic
* Curves Over Prime Fields. */
mp_err
ec_GFp_pt_mul_jm_wNAF(const mp_int *n, const mp_int *px, const mp_int *py,
mp_int *rx, mp_int *ry, const ECGroup *group,
int timing)
{
mp_err res = MP_OKAY;
mp_int precomp[16][2], rz, tpx, tpy, tpz;
mp_int raz4, tpaz4;
mp_int scratch[MAX_SCRATCH];
signed char *naf = NULL;
int i, orderBitSize;
int numDoubles, numAdds, extraDoubles, extraAdds;
MP_DIGITS(&rz) = 0;
MP_DIGITS(&raz4) = 0;
MP_DIGITS(&tpx) = 0;
MP_DIGITS(&tpy) = 0;
MP_DIGITS(&tpz) = 0;
MP_DIGITS(&tpaz4) = 0;
for (i = 0; i < 16; i++) {
MP_DIGITS(&precomp[i][0]) = 0;
MP_DIGITS(&precomp[i][1]) = 0;
}
for (i = 0; i < MAX_SCRATCH; i++) {
MP_DIGITS(&scratch[i]) = 0;
}
ARGCHK(group != NULL, MP_BADARG);
ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
/* initialize precomputation table */
MP_CHECKOK(mp_init(&tpx, FLAG(n)));
MP_CHECKOK(mp_init(&tpy, FLAG(n)));
MP_CHECKOK(mp_init(&tpz, FLAG(n)));
MP_CHECKOK(mp_init(&tpaz4, FLAG(n)));
MP_CHECKOK(mp_init(&rz, FLAG(n)));
MP_CHECKOK(mp_init(&raz4, FLAG(n)));
for (i = 0; i < 16; i++) {
MP_CHECKOK(mp_init(&precomp[i][0], FLAG(n)));
MP_CHECKOK(mp_init(&precomp[i][1], FLAG(n)));
}
for (i = 0; i < MAX_SCRATCH; i++) {
MP_CHECKOK(mp_init(&scratch[i], FLAG(n)));
}
/* Set out[8] = P */
MP_CHECKOK(mp_copy(px, &precomp[8][0]));
MP_CHECKOK(mp_copy(py, &precomp[8][1]));
/* Set (tpx, tpy) = 2P */
MP_CHECKOK(group->
point_dbl(&precomp[8][0], &precomp[8][1], &tpx, &tpy,
group));
/* Set 3P, 5P, ..., 15P */
for (i = 8; i < 15; i++) {
MP_CHECKOK(group->
point_add(&precomp[i][0], &precomp[i][1], &tpx, &tpy,
&precomp[i + 1][0], &precomp[i + 1][1],
group));
}
/* Set -15P, -13P, ..., -P */
for (i = 0; i < 8; i++) {
MP_CHECKOK(mp_copy(&precomp[15 - i][0], &precomp[i][0]));
MP_CHECKOK(group->meth->
field_neg(&precomp[15 - i][1], &precomp[i][1],
group->meth));
}
/* R = inf */
MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
orderBitSize = mpl_significant_bits(&group->order);
/* Allocate memory for NAF */
#ifdef _KERNEL
naf = (signed char *) kmem_alloc((orderBitSize + 1), FLAG(n));
#else
naf = (signed char *) malloc(sizeof(signed char) * (orderBitSize + 1));
if (naf == NULL) {
res = MP_MEM;
goto CLEANUP;
}
#endif
/* Compute 5NAF */
ec_compute_wNAF(naf, orderBitSize, n, 5);
numAdds = 0;
numDoubles = orderBitSize;
/* wNAF method */
for (i = orderBitSize; i >= 0; i--) {
if (ec_GFp_pt_is_inf_jac(rx, ry, &rz) == MP_YES) {
numDoubles--;
}
/* R = 2R */
ec_GFp_pt_dbl_jm(rx, ry, &rz, &raz4, rx, ry, &rz,
&raz4, scratch, group);
if (naf[i] != 0) {
ec_GFp_pt_add_jm_aff(rx, ry, &rz, &raz4,
&precomp[(naf[i] + 15) / 2][0],
&precomp[(naf[i] + 15) / 2][1], rx, ry,
&rz, &raz4, scratch, group);
numAdds++;
}
}
/* extra operations to make timing less dependent on secrets */
if (timing) {
/* low-order bit of timing argument contains no entropy */
timing >>= 1;
MP_CHECKOK(ec_GFp_pt_set_inf_jac(&tpx, &tpy, &tpz));
mp_zero(&tpaz4);
/* Set the temp value to a non-infinite point */
ec_GFp_pt_add_jm_aff(&tpx, &tpy, &tpz, &tpaz4,
&precomp[8][0],
&precomp[8][1], &tpx, &tpy,
&tpz, &tpaz4, scratch, group);
/* two bits of extra adds */
extraAdds = timing & 0x3;
timing >>= 2;
/* Window size is 5, so the maximum number of additions is ceil(orderBitSize/5) */
/* This is the same as (orderBitSize + 4) / 5 */
for(i = numAdds; i <= (orderBitSize + 4) / 5 + extraAdds; i++) {
ec_GFp_pt_add_jm_aff(&tpx, &tpy, &tpz, &tpaz4,
&precomp[9 + (i % 3)][0],
&precomp[9 + (i % 3)][1], &tpx, &tpy,
&tpz, &tpaz4, scratch, group);
}
/* two bits of extra doubles */
extraDoubles = timing & 0x3;
timing >>= 2;
for(i = numDoubles; i <= orderBitSize + extraDoubles; i++) {
ec_GFp_pt_dbl_jm(&tpx, &tpy, &tpz, &tpaz4, &tpx, &tpy, &tpz,
&tpaz4, scratch, group);
}
}
/* convert result S to affine coordinates */
MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
CLEANUP:
for (i = 0; i < MAX_SCRATCH; i++) {
mp_clear(&scratch[i]);
}
for (i = 0; i < 16; i++) {
mp_clear(&precomp[i][0]);
mp_clear(&precomp[i][1]);
}
mp_clear(&tpx);
mp_clear(&tpy);
mp_clear(&tpz);
mp_clear(&tpaz4);
mp_clear(&rz);
mp_clear(&raz4);
#ifdef _KERNEL
kmem_free(naf, (orderBitSize + 1));
#else
free(naf);
#endif
return res;
}

View File

@ -1,202 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the elliptic curve math library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
*
*********************************************************************** */
/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
* code implementation. */
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#include "ecl-priv.h"
#include "ecp.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <stdio.h>
#endif
/* Construct a generic GFMethod for arithmetic over prime fields with
* irreducible irr. */
GFMethod *
GFMethod_consGFp_mont(const mp_int *irr)
{
mp_err res = MP_OKAY;
int i;
GFMethod *meth = NULL;
mp_mont_modulus *mmm;
meth = GFMethod_consGFp(irr);
if (meth == NULL)
return NULL;
#ifdef _KERNEL
mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
FLAG(irr));
#else
mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
#endif
if (mmm == NULL) {
res = MP_MEM;
goto CLEANUP;
}
meth->field_mul = &ec_GFp_mul_mont;
meth->field_sqr = &ec_GFp_sqr_mont;
meth->field_div = &ec_GFp_div_mont;
meth->field_enc = &ec_GFp_enc_mont;
meth->field_dec = &ec_GFp_dec_mont;
meth->extra1 = mmm;
meth->extra2 = NULL;
meth->extra_free = &ec_GFp_extra_free_mont;
mmm->N = meth->irr;
i = mpl_significant_bits(&meth->irr);
i += MP_DIGIT_BIT - 1;
mmm->b = i - i % MP_DIGIT_BIT;
mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
CLEANUP:
if (res != MP_OKAY) {
GFMethod_free(meth);
return NULL;
}
return meth;
}
/* Wrapper functions for generic prime field arithmetic. */
/* Field multiplication using Montgomery reduction. */
mp_err
ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
#ifdef MP_MONT_USE_MP_MUL
/* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
* is not implemented and we have to use mp_mul and s_mp_redc directly
*/
MP_CHECKOK(mp_mul(a, b, r));
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
#else
mp_int s;
MP_DIGITS(&s) = 0;
/* s_mp_mul_mont doesn't allow source and destination to be the same */
if ((a == r) || (b == r)) {
MP_CHECKOK(mp_init(&s, FLAG(a)));
MP_CHECKOK(s_mp_mul_mont
(a, b, &s, (mp_mont_modulus *) meth->extra1));
MP_CHECKOK(mp_copy(&s, r));
mp_clear(&s);
} else {
return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
}
#endif
CLEANUP:
return res;
}
/* Field squaring using Montgomery reduction. */
mp_err
ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
return ec_GFp_mul_mont(a, a, r, meth);
}
/* Field division using Montgomery reduction. */
mp_err
ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
const GFMethod *meth)
{
mp_err res = MP_OKAY;
/* if A=aZ represents a encoded in montgomery coordinates with Z and #
* and \ respectively represent multiplication and division in
* montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
* (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
MP_CHECKOK(ec_GFp_div(a, b, r, meth));
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
if (a == NULL) {
MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
}
CLEANUP:
return res;
}
/* Encode a field element in Montgomery form. See s_mp_to_mont in
* mpi/mpmontg.c */
mp_err
ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_mont_modulus *mmm;
mp_err res = MP_OKAY;
mmm = (mp_mont_modulus *) meth->extra1;
MP_CHECKOK(mpl_lsh(a, r, mmm->b));
MP_CHECKOK(mp_mod(r, &mmm->N, r));
CLEANUP:
return res;
}
/* Decode a field element from Montgomery form. */
mp_err
ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
{
mp_err res = MP_OKAY;
if (a != r) {
MP_CHECKOK(mp_copy(a, r));
}
MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
CLEANUP:
return res;
}
/* Free the memory allocated to the extra fields of Montgomery GFMethod
* object. */
void
ec_GFp_extra_free_mont(GFMethod *meth)
{
if (meth->extra1 != NULL) {
#ifdef _KERNEL
kmem_free(meth->extra1, sizeof(mp_mont_modulus));
#else
free(meth->extra1);
#endif
meth->extra1 = NULL;
}
}

View File

@ -1,61 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
*********************************************************************** */
#ifndef _LOGTAB_H
#define _LOGTAB_H
const float s_logv_2[] = {
0.000000000f, 0.000000000f, 1.000000000f, 0.630929754f, /* 0 1 2 3 */
0.500000000f, 0.430676558f, 0.386852807f, 0.356207187f, /* 4 5 6 7 */
0.333333333f, 0.315464877f, 0.301029996f, 0.289064826f, /* 8 9 10 11 */
0.278942946f, 0.270238154f, 0.262649535f, 0.255958025f, /* 12 13 14 15 */
0.250000000f, 0.244650542f, 0.239812467f, 0.235408913f, /* 16 17 18 19 */
0.231378213f, 0.227670249f, 0.224243824f, 0.221064729f, /* 20 21 22 23 */
0.218104292f, 0.215338279f, 0.212746054f, 0.210309918f, /* 24 25 26 27 */
0.208014598f, 0.205846832f, 0.203795047f, 0.201849087f, /* 28 29 30 31 */
0.200000000f, 0.198239863f, 0.196561632f, 0.194959022f, /* 32 33 34 35 */
0.193426404f, 0.191958720f, 0.190551412f, 0.189200360f, /* 36 37 38 39 */
0.187901825f, 0.186652411f, 0.185449023f, 0.184288833f, /* 40 41 42 43 */
0.183169251f, 0.182087900f, 0.181042597f, 0.180031327f, /* 44 45 46 47 */
0.179052232f, 0.178103594f, 0.177183820f, 0.176291434f, /* 48 49 50 51 */
0.175425064f, 0.174583430f, 0.173765343f, 0.172969690f, /* 52 53 54 55 */
0.172195434f, 0.171441601f, 0.170707280f, 0.169991616f, /* 56 57 58 59 */
0.169293808f, 0.168613099f, 0.167948779f, 0.167300179f, /* 60 61 62 63 */
0.166666667f
};
#endif /* _LOGTAB_H */

View File

@ -1,101 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
*********************************************************************** */
#ifndef _MP_GF2M_PRIV_H_
#define _MP_GF2M_PRIV_H_
#include "mpi-priv.h"
extern const mp_digit mp_gf2m_sqr_tb[16];
#if defined(MP_USE_UINT_DIGIT)
#define MP_DIGIT_BITS 32
#else
#define MP_DIGIT_BITS 64
#endif
/* Platform-specific macros for fast binary polynomial squaring. */
#if MP_DIGIT_BITS == 32
#define gf2m_SQR1(w) \
mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF]
#define gf2m_SQR0(w) \
mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
#else
#define gf2m_SQR1(w) \
mp_gf2m_sqr_tb[(w) >> 60 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 56 & 0xF] << 48 | \
mp_gf2m_sqr_tb[(w) >> 52 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 48 & 0xF] << 32 | \
mp_gf2m_sqr_tb[(w) >> 44 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 40 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 36 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) >> 32 & 0xF]
#define gf2m_SQR0(w) \
mp_gf2m_sqr_tb[(w) >> 28 & 0xF] << 56 | mp_gf2m_sqr_tb[(w) >> 24 & 0xF] << 48 | \
mp_gf2m_sqr_tb[(w) >> 20 & 0xF] << 40 | mp_gf2m_sqr_tb[(w) >> 16 & 0xF] << 32 | \
mp_gf2m_sqr_tb[(w) >> 12 & 0xF] << 24 | mp_gf2m_sqr_tb[(w) >> 8 & 0xF] << 16 | \
mp_gf2m_sqr_tb[(w) >> 4 & 0xF] << 8 | mp_gf2m_sqr_tb[(w) & 0xF]
#endif
/* Multiply two binary polynomials mp_digits a, b.
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
* Output in two mp_digits rh, rl.
*/
void s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b);
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
* result is a binary polynomial in 4 mp_digits r[4].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
const mp_digit b0);
/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
* result is a binary polynomial in 6 mp_digits r[6].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
const mp_digit b2, const mp_digit b1, const mp_digit b0);
/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
* result is a binary polynomial in 8 mp_digits r[8].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
const mp_digit b0);
#endif /* _MP_GF2M_PRIV_H_ */

View File

@ -1,603 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
*********************************************************************** */
#include "mp_gf2m.h"
#include "mp_gf2m-priv.h"
#include "mplogic.h"
#include "mpi-priv.h"
const mp_digit mp_gf2m_sqr_tb[16] =
{
0, 1, 4, 5, 16, 17, 20, 21,
64, 65, 68, 69, 80, 81, 84, 85
};
/* Multiply two binary polynomials mp_digits a, b.
* Result is a polynomial with degree < 2 * MP_DIGIT_BITS - 1.
* Output in two mp_digits rh, rl.
*/
#if MP_DIGIT_BITS == 32
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[8], top2b = a >> 30;
register mp_digit a1, a2, a4;
a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
s = tab[b & 0x7]; l = s;
s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29;
s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26;
s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23;
s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8;
s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5;
s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2;
/* compensate for the top two bits of a */
if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
*rh = h; *rl = l;
}
#else
void
s_bmul_1x1(mp_digit *rh, mp_digit *rl, const mp_digit a, const mp_digit b)
{
register mp_digit h, l, s;
mp_digit tab[16], top3b = a >> 61;
register mp_digit a1, a2, a4, a8;
a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1;
a4 = a2 << 1; a8 = a4 << 1;
tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2;
tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4;
tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8;
tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
s = tab[b & 0xF]; l = s;
s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60;
s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56;
s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8;
s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4;
/* compensate for the top three bits of a */
if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
*rh = h; *rl = l;
}
#endif
/* Compute xor-multiply of two binary polynomials (a1, a0) x (b1, b0)
* result is a binary polynomial in 4 mp_digits r[4].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void
s_bmul_2x2(mp_digit *r, const mp_digit a1, const mp_digit a0, const mp_digit b1,
const mp_digit b0)
{
mp_digit m1, m0;
/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
s_bmul_1x1(r+3, r+2, a1, b1);
s_bmul_1x1(r+1, r, a0, b0);
s_bmul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
}
/* Compute xor-multiply of two binary polynomials (a2, a1, a0) x (b2, b1, b0)
* result is a binary polynomial in 6 mp_digits r[6].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void
s_bmul_3x3(mp_digit *r, const mp_digit a2, const mp_digit a1, const mp_digit a0,
const mp_digit b2, const mp_digit b1, const mp_digit b0)
{
mp_digit zm[4];
s_bmul_1x1(r+5, r+4, a2, b2); /* fill top 2 words */
s_bmul_2x2(zm, a1, a2^a0, b1, b2^b0); /* fill middle 4 words */
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
zm[3] ^= r[3];
zm[2] ^= r[2];
zm[1] ^= r[1] ^ r[5];
zm[0] ^= r[0] ^ r[4];
r[5] ^= zm[3];
r[4] ^= zm[2];
r[3] ^= zm[1];
r[2] ^= zm[0];
}
/* Compute xor-multiply of two binary polynomials (a3, a2, a1, a0) x (b3, b2, b1, b0)
* result is a binary polynomial in 8 mp_digits r[8].
* The caller MUST ensure that r has the right amount of space allocated.
*/
void s_bmul_4x4(mp_digit *r, const mp_digit a3, const mp_digit a2, const mp_digit a1,
const mp_digit a0, const mp_digit b3, const mp_digit b2, const mp_digit b1,
const mp_digit b0)
{
mp_digit zm[4];
s_bmul_2x2(r+4, a3, a2, b3, b2); /* fill top 4 words */
s_bmul_2x2(zm, a3^a1, a2^a0, b3^b1, b2^b0); /* fill middle 4 words */
s_bmul_2x2(r, a1, a0, b1, b0); /* fill bottom 4 words */
zm[3] ^= r[3] ^ r[7];
zm[2] ^= r[2] ^ r[6];
zm[1] ^= r[1] ^ r[5];
zm[0] ^= r[0] ^ r[4];
r[5] ^= zm[3];
r[4] ^= zm[2];
r[3] ^= zm[1];
r[2] ^= zm[0];
}
/* Compute addition of two binary polynomials a and b,
* store result in c; c could be a or b, a and b could be equal;
* c is the bitwise XOR of a and b.
*/
mp_err
mp_badd(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pa, *pb, *pc;
mp_size ix;
mp_size used_pa, used_pb;
mp_err res = MP_OKAY;
/* Add all digits up to the precision of b. If b had more
* precision than a initially, swap a, b first
*/
if (MP_USED(a) >= MP_USED(b)) {
pa = MP_DIGITS(a);
pb = MP_DIGITS(b);
used_pa = MP_USED(a);
used_pb = MP_USED(b);
} else {
pa = MP_DIGITS(b);
pb = MP_DIGITS(a);
used_pa = MP_USED(b);
used_pb = MP_USED(a);
}
/* Make sure c has enough precision for the output value */
MP_CHECKOK( s_mp_pad(c, used_pa) );
/* Do word-by-word xor */
pc = MP_DIGITS(c);
for (ix = 0; ix < used_pb; ix++) {
(*pc++) = (*pa++) ^ (*pb++);
}
/* Finish the rest of digits until we're actually done */
for (; ix < used_pa; ++ix) {
*pc++ = *pa++;
}
MP_USED(c) = used_pa;
MP_SIGN(c) = ZPOS;
s_mp_clamp(c);
CLEANUP:
return res;
}
#define s_mp_div2(a) MP_CHECKOK( mpl_rsh((a), (a), 1) );
/* Compute binary polynomial multiply d = a * b */
static void
s_bmul_d(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ = a0b0 ^ carry;
carry = a1b1;
}
*d = carry;
}
/* Compute binary polynomial xor multiply accumulate d ^= a * b */
static void
s_bmul_d_add(const mp_digit *a, mp_size a_len, mp_digit b, mp_digit *d)
{
mp_digit a_i, a0b0, a1b1, carry = 0;
while (a_len--) {
a_i = *a++;
s_bmul_1x1(&a1b1, &a0b0, a_i, b);
*d++ ^= a0b0 ^ carry;
carry = a1b1;
}
*d ^= carry;
}
/* Compute binary polynomial xor multiply c = a * b.
* All parameters may be identical.
*/
mp_err
mp_bmul(const mp_int *a, const mp_int *b, mp_int *c)
{
mp_digit *pb, b_i;
mp_int tmp;
mp_size ib, a_used, b_used;
mp_err res = MP_OKAY;
MP_DIGITS(&tmp) = 0;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (a == c) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
if (a == b)
b = &tmp;
a = &tmp;
} else if (b == c) {
MP_CHECKOK( mp_init_copy(&tmp, b) );
b = &tmp;
}
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b if b longer */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
MP_CHECKOK( s_mp_pad(c, USED(a) + USED(b)) );
pb = MP_DIGITS(b);
s_bmul_d(MP_DIGITS(a), MP_USED(a), *pb++, MP_DIGITS(c));
/* Outer loop: Digits of b */
a_used = MP_USED(a);
b_used = MP_USED(b);
MP_USED(c) = a_used + b_used;
for (ib = 1; ib < b_used; ib++) {
b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_bmul_d_add(MP_DIGITS(a), a_used, b_i, MP_DIGITS(c) + ib);
else
MP_DIGIT(c, ib + a_used) = b_i;
}
s_mp_clamp(c);
SIGN(c) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute modular reduction of a and store result in r.
* r could be a.
* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
mp_err
mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
int j, k;
int n, dN, d0, d1;
mp_digit zz, *z, tmp;
mp_size used;
mp_err res = MP_OKAY;
/* The algorithm does the reduction in place in r,
* if a != r, copy a into r first so reduction can be done in r
*/
if (a != r) {
MP_CHECKOK( mp_copy(a, r) );
}
z = MP_DIGITS(r);
/* start reduction */
dN = p[0] / MP_DIGIT_BITS;
used = MP_USED(r);
for (j = used - 1; j > dN;) {
zz = z[j];
if (zz == 0) {
j--; continue;
}
z[j] = 0;
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k] */
n = p[0] - p[k];
d0 = n % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
n /= MP_DIGIT_BITS;
z[j-n] ^= (zz>>d0);
if (d0)
z[j-n-1] ^= (zz<<d1);
}
/* reducing component t^0 */
n = dN;
d0 = p[0] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[j-n] ^= (zz >> d0);
if (d0)
z[j-n-1] ^= (zz << d1);
}
/* final round of reduction */
while (j == dN) {
d0 = p[0] % MP_DIGIT_BITS;
zz = z[dN] >> d0;
if (zz == 0) break;
d1 = MP_DIGIT_BITS - d0;
/* clear up the top d1 bits */
if (d0) z[dN] = (z[dN] << d1) >> d1;
*z ^= zz; /* reduction t^0 component */
for (k = 1; p[k] > 0; k++) {
/* reducing component t^p[k]*/
n = p[k] / MP_DIGIT_BITS;
d0 = p[k] % MP_DIGIT_BITS;
d1 = MP_DIGIT_BITS - d0;
z[n] ^= (zz << d0);
tmp = zz >> d1;
if (d0 && tmp)
z[n+1] ^= tmp;
}
}
s_mp_clamp(r);
CLEANUP:
return res;
}
/* Compute the product of two polynomials a and b, reduce modulo p,
* Store the result in r. r could be a or b; a could be b.
*/
mp_err
mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[], mp_int *r)
{
mp_err res;
if (a == b) return mp_bsqrmod(a, p, r);
if ((res = mp_bmul(a, b, r) ) != MP_OKAY)
return res;
return mp_bmod(r, p, r);
}
/* Compute binary polynomial squaring c = a*a mod p .
* Parameter r and a can be identical.
*/
mp_err
mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r)
{
mp_digit *pa, *pr, a_i;
mp_int tmp;
mp_size ia, a_used;
mp_err res;
ARGCHK(a != NULL && r != NULL, MP_BADARG);
MP_DIGITS(&tmp) = 0;
if (a == r) {
MP_CHECKOK( mp_init_copy(&tmp, a) );
a = &tmp;
}
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
MP_CHECKOK( s_mp_pad(r, 2*USED(a)) );
pa = MP_DIGITS(a);
pr = MP_DIGITS(r);
a_used = MP_USED(a);
MP_USED(r) = 2 * a_used;
for (ia = 0; ia < a_used; ia++) {
a_i = *pa++;
*pr++ = gf2m_SQR0(a_i);
*pr++ = gf2m_SQR1(a_i);
}
MP_CHECKOK( mp_bmod(r, p, r) );
s_mp_clamp(r);
SIGN(r) = ZPOS;
CLEANUP:
mp_clear(&tmp);
return res;
}
/* Compute binary polynomial y/x mod p, y divided by x, reduce modulo p.
* Store the result in r. r could be x or y, and x could equal y.
* Uses algorithm Modular_Division_GF(2^m) from
* Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to
* the Great Divide".
*/
int
mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r)
{
mp_int aa, bb, uu;
mp_int *a, *b, *u, *v;
mp_err res = MP_OKAY;
MP_DIGITS(&aa) = 0;
MP_DIGITS(&bb) = 0;
MP_DIGITS(&uu) = 0;
MP_CHECKOK( mp_init_copy(&aa, x) );
MP_CHECKOK( mp_init_copy(&uu, y) );
MP_CHECKOK( mp_init_copy(&bb, pp) );
MP_CHECKOK( s_mp_pad(r, USED(pp)) );
MP_USED(r) = 1; MP_DIGIT(r, 0) = 0;
a = &aa; b= &bb; u=&uu; v=r;
/* reduce x and y mod p */
MP_CHECKOK( mp_bmod(a, p, a) );
MP_CHECKOK( mp_bmod(u, p, u) );
while (!mp_isodd(a)) {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div2(u);
}
do {
if (mp_cmp_mag(b, a) > 0) {
MP_CHECKOK( mp_badd(b, a, b) );
MP_CHECKOK( mp_badd(v, u, v) );
do {
s_mp_div2(b);
if (mp_isodd(v)) {
MP_CHECKOK( mp_badd(v, pp, v) );
}
s_mp_div2(v);
} while (!mp_isodd(b));
}
else if ((MP_DIGIT(a,0) == 1) && (MP_USED(a) == 1))
break;
else {
MP_CHECKOK( mp_badd(a, b, a) );
MP_CHECKOK( mp_badd(u, v, u) );
do {
s_mp_div2(a);
if (mp_isodd(u)) {
MP_CHECKOK( mp_badd(u, pp, u) );
}
s_mp_div2(u);
} while (!mp_isodd(a));
}
} while (1);
MP_CHECKOK( mp_copy(u, r) );
CLEANUP:
/* XXX this appears to be a memory leak in the NSS code */
mp_clear(&aa);
mp_clear(&bb);
mp_clear(&uu);
return res;
}
/* Convert the bit-string representation of a polynomial a into an array
* of integers corresponding to the bits with non-zero coefficient.
* Up to max elements of the array will be filled. Return value is total
* number of coefficients that would be extracted if array was large enough.
*/
int
mp_bpoly2arr(const mp_int *a, unsigned int p[], int max)
{
int i, j, k;
mp_digit top_bit, mask;
top_bit = 1;
top_bit <<= MP_DIGIT_BIT - 1;
for (k = 0; k < max; k++) p[k] = 0;
k = 0;
for (i = MP_USED(a) - 1; i >= 0; i--) {
mask = top_bit;
for (j = MP_DIGIT_BIT - 1; j >= 0; j--) {
if (MP_DIGITS(a)[i] & mask) {
if (k < max) p[k] = MP_DIGIT_BIT * i + j;
k++;
}
mask >>= 1;
}
}
return k;
}
/* Convert the coefficient array representation of a polynomial to a
* bit-string. The array must be terminated by 0.
*/
mp_err
mp_barr2poly(const unsigned int p[], mp_int *a)
{
mp_err res = MP_OKAY;
int i;
mp_zero(a);
for (i = 0; p[i] > 0; i++) {
MP_CHECKOK( mpl_set_bit(a, p[i], 1) );
}
MP_CHECKOK( mpl_set_bit(a, 0, 1) );
CLEANUP:
return res;
}

View File

@ -1,62 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Multi-precision Binary Polynomial Arithmetic Library.
*
* The Initial Developer of the Original Code is
* Sun Microsystems, Inc.
* Portions created by the Initial Developer are Copyright (C) 2003
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com> and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
*********************************************************************** */
#ifndef _MP_GF2M_H_
#define _MP_GF2M_H_
#include "mpi.h"
mp_err mp_badd(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_bmul(const mp_int *a, const mp_int *b, mp_int *c);
/* For modular arithmetic, the irreducible polynomial f(t) is represented
* as an array of int[], where f(t) is of the form:
* f(t) = t^p[0] + t^p[1] + ... + t^p[k]
* where m = p[0] > p[1] > ... > p[k] = 0.
*/
mp_err mp_bmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bmulmod(const mp_int *a, const mp_int *b, const unsigned int p[],
mp_int *r);
mp_err mp_bsqrmod(const mp_int *a, const unsigned int p[], mp_int *r);
mp_err mp_bdivmod(const mp_int *y, const mp_int *x, const mp_int *pp,
const unsigned int p[], mp_int *r);
int mp_bpoly2arr(const mp_int *a, unsigned int p[], int max);
mp_err mp_barr2poly(const unsigned int p[], mp_int *a);
#endif /* _MP_GF2M_H_ */

View File

@ -1,109 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1997
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
*********************************************************************** */
#ifndef _MPI_CONFIG_H
#define _MPI_CONFIG_H
/* $Id: mpi-config.h,v 1.5 2004/04/25 15:03:10 gerv%gerv.net Exp $ */
/*
For boolean options,
0 = no
1 = yes
Other options are documented individually.
*/
#ifndef MP_IOFUNC
#define MP_IOFUNC 0 /* include mp_print() ? */
#endif
#ifndef MP_MODARITH
#define MP_MODARITH 1 /* include modular arithmetic ? */
#endif
#ifndef MP_NUMTH
#define MP_NUMTH 1 /* include number theoretic functions? */
#endif
#ifndef MP_LOGTAB
#define MP_LOGTAB 1 /* use table of logs instead of log()? */
#endif
#ifndef MP_MEMSET
#define MP_MEMSET 1 /* use memset() to zero buffers? */
#endif
#ifndef MP_MEMCPY
#define MP_MEMCPY 1 /* use memcpy() to copy buffers? */
#endif
#ifndef MP_CRYPTO
#define MP_CRYPTO 1 /* erase memory on free? */
#endif
#ifndef MP_ARGCHK
/*
0 = no parameter checks
1 = runtime checks, continue execution and return an error to caller
2 = assertions; dump core on parameter errors
*/
#ifdef DEBUG
#define MP_ARGCHK 2 /* how to check input arguments */
#else
#define MP_ARGCHK 1 /* how to check input arguments */
#endif
#endif
#ifndef MP_DEBUG
#define MP_DEBUG 0 /* print diagnostic output? */
#endif
#ifndef MP_DEFPREC
#define MP_DEFPREC 64 /* default precision, in digits */
#endif
#ifndef MP_MACRO
#define MP_MACRO 0 /* use macros for frequent calls? */
#endif
#ifndef MP_SQUARE
#define MP_SQUARE 1 /* use separate squaring code? */
#endif
#endif /* _MPI_CONFIG_H */

View File

@ -1,320 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
*********************************************************************** */
/* Arbitrary precision integer arithmetic library
*
* NOTE WELL: the content of this header file is NOT part of the "public"
* API for the MPI library, and may change at any time.
* Application programs that use libmpi should NOT include this header file.
*/
#ifndef _MPI_PRIV_H
#define _MPI_PRIV_H
/* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
#include "mpi.h"
#ifndef _KERNEL
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#endif /* _KERNEL */
#if MP_DEBUG
#include <stdio.h>
#define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
#else
#define DIAG(T,V)
#endif
/* If we aren't using a wired-in logarithm table, we need to include
the math library to get the log() function
*/
/* {{{ s_logv_2[] - log table for 2 in various bases */
#if MP_LOGTAB
/*
A table of the logs of 2 for various bases (the 0 and 1 entries of
this table are meaningless and should not be referenced).
This table is used to compute output lengths for the mp_toradix()
function. Since a number n in radix r takes up about log_r(n)
digits, we estimate the output size by taking the least integer
greater than log_r(n), where:
log_r(n) = log_2(n) * log_r(2)
This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
which are the output bases supported.
*/
extern const float s_logv_2[];
#define LOG_V_2(R) s_logv_2[(R)]
#else
/*
If MP_LOGTAB is not defined, use the math library to compute the
logarithms on the fly. Otherwise, use the table.
Pick which works best for your system.
*/
#include <math.h>
#define LOG_V_2(R) (log(2.0)/log(R))
#endif /* if MP_LOGTAB */
/* }}} */
/* {{{ Digit arithmetic macros */
/*
When adding and multiplying digits, the results can be larger than
can be contained in an mp_digit. Thus, an mp_word is used. These
macros mask off the upper and lower digits of the mp_word (the
mp_word may be more than 2 mp_digits wide, but we only concern
ourselves with the low-order 2 mp_digits)
*/
#define CARRYOUT(W) (mp_digit)((W)>>DIGIT_BIT)
#define ACCUM(W) (mp_digit)(W)
#define MP_MIN(a,b) (((a) < (b)) ? (a) : (b))
#define MP_MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
#define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
/* }}} */
/* {{{ Comparison constants */
#define MP_LT -1
#define MP_EQ 0
#define MP_GT 1
/* }}} */
/* {{{ private function declarations */
/*
If MP_MACRO is false, these will be defined as actual functions;
otherwise, suitable macro definitions will be used. This works
around the fact that ANSI C89 doesn't support an 'inline' keyword
(although I hear C9x will ... about bloody time). At present, the
macro definitions are identical to the function bodies, but they'll
expand in place, instead of generating a function call.
I chose these particular functions to be made into macros because
some profiling showed they are called a lot on a typical workload,
and yet they are primarily housekeeping.
*/
#if MP_MACRO == 0
void s_mp_setz(mp_digit *dp, mp_size count); /* zero digits */
void s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
void *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator */
void s_mp_free(void *ptr, mp_size); /* general free function */
extern unsigned long mp_allocs;
extern unsigned long mp_frees;
extern unsigned long mp_copies;
#else
/* Even if these are defined as macros, we need to respect the settings
of the MP_MEMSET and MP_MEMCPY configuration options...
*/
#if MP_MEMSET == 0
#define s_mp_setz(dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
#else
#define s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
#endif /* MP_MEMSET */
#if MP_MEMCPY == 0
#define s_mp_copy(sp, dp, count) \
{int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
#else
#define s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
#endif /* MP_MEMCPY */
#define s_mp_alloc(nb, ni) calloc(nb, ni)
#define s_mp_free(ptr) {if(ptr) free(ptr);}
#endif /* MP_MACRO */
mp_err s_mp_grow(mp_int *mp, mp_size min); /* increase allocated size */
mp_err s_mp_pad(mp_int *mp, mp_size min); /* left pad with zeroes */
#if MP_MACRO == 0
void s_mp_clamp(mp_int *mp); /* clip leading zeroes */
#else
#define s_mp_clamp(mp)\
{ mp_size used = MP_USED(mp); \
while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
MP_USED(mp) = used; \
}
#endif /* MP_MACRO */
void s_mp_exch(mp_int *a, mp_int *b); /* swap a and b in place */
mp_err s_mp_lshd(mp_int *mp, mp_size p); /* left-shift by p digits */
void s_mp_rshd(mp_int *mp, mp_size p); /* right-shift by p digits */
mp_err s_mp_mul_2d(mp_int *mp, mp_digit d); /* multiply by 2^d in place */
void s_mp_div_2d(mp_int *mp, mp_digit d); /* divide by 2^d in place */
void s_mp_mod_2d(mp_int *mp, mp_digit d); /* modulo 2^d in place */
void s_mp_div_2(mp_int *mp); /* divide by 2 in place */
mp_err s_mp_mul_2(mp_int *mp); /* multiply by 2 in place */
mp_err s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
/* normalize for division */
mp_err s_mp_add_d(mp_int *mp, mp_digit d); /* unsigned digit addition */
mp_err s_mp_sub_d(mp_int *mp, mp_digit d); /* unsigned digit subtract */
mp_err s_mp_mul_d(mp_int *mp, mp_digit d); /* unsigned digit multiply */
mp_err s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
/* unsigned digit divide */
mp_err s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* Barrett reduction */
mp_err s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition */
mp_err s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract */
mp_err s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
mp_err s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
/* a += b * RADIX^offset */
mp_err s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply */
#if MP_SQUARE
mp_err s_mp_sqr(mp_int *a); /* magnitude square */
#else
#define s_mp_sqr(a) s_mp_mul(a, a)
#endif
mp_err s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
mp_err s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err s_mp_2expt(mp_int *a, mp_digit k); /* a = 2^k */
int s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
int s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
int s_mp_ispow2(const mp_int *v); /* is v a power of 2? */
int s_mp_ispow2d(mp_digit d); /* is d a power of 2? */
int s_mp_tovalue(char ch, int r); /* convert ch to value */
char s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
int s_mp_outlen(int bits, int r); /* output length in bytes */
mp_digit s_mp_invmod_radix(mp_digit P); /* returns (P ** -1) mod RADIX */
mp_err s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
mp_err s_mp_invmod_2d( const mp_int *a, mp_size k, mp_int *c);
mp_err s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
#ifdef NSS_USE_COMBA
#define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
#endif /* end NSS_USE_COMBA */
/* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
#if defined (__OS2__) && defined (__IBMC__)
#define MPI_ASM_DECL __cdecl
#else
#define MPI_ASM_DECL
#endif
#ifdef MPI_AMD64
mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
/* c = a * b */
#define s_mpv_mul_d(a, a_len, b, c) \
((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
/* c += a * b */
#define s_mpv_mul_d_add(a, a_len, b, c) \
((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
#else
void MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
mp_digit b, mp_digit *c);
void MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
mp_digit b, mp_digit *c);
#endif
void MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
mp_size a_len, mp_digit b,
mp_digit *c);
void MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
mp_size a_len,
mp_digit *sqrs);
mp_err MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
mp_digit divisor, mp_digit *quot, mp_digit *rem);
/* c += a * b * (MP_RADIX ** offset); */
#define s_mp_mul_d_add_offset(a, b, c, off) \
(s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
typedef struct {
mp_int N; /* modulus N */
mp_digit n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
mp_size b; /* R == 2 ** b, also b = # significant bits in N */
} mp_mont_modulus;
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm);
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
/*
* s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
* if a cache exists, or zero if there is no cache. If more than one
* cache line exists, it should return the smallest line size (which is
* usually the L1 cache).
*
* mp_modexp uses this information to make sure that private key information
* isn't being leaked through the cache.
*
* see mpcpucache.c for the implementation.
*/
unsigned long s_mpi_getProcessorLineSize();
/* }}} */
#endif /* _MPI_PRIV_H */

File diff suppressed because it is too large Load Diff

View File

@ -1,387 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Netscape Communications Corporation
*
*********************************************************************** */
/* Arbitrary precision integer arithmetic library */
#ifndef _MPI_H
#define _MPI_H
/* $Id: mpi.h,v 1.22 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
#include "mpi-config.h"
#ifndef _WIN32
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/debug.h>
#include <sys/systm.h>
#define assert ASSERT
#define labs(a) (a >= 0 ? a : -a)
#define UCHAR_MAX 255
#define memset(s, c, n) bzero(s, n)
#define memcpy(a,b,c) bcopy((caddr_t)b, (caddr_t)a, c)
/*
* Generic #define's to cover missing things in the kernel
*/
#ifndef isdigit
#define isdigit(x) ((x) >= '0' && (x) <= '9')
#endif
#ifndef isupper
#define isupper(x) (((unsigned)(x) >= 'A') && ((unsigned)(x) <= 'Z'))
#endif
#ifndef islower
#define islower(x) (((unsigned)(x) >= 'a') && ((unsigned)(x) <= 'z'))
#endif
#ifndef isalpha
#define isalpha(x) (isupper(x) || islower(x))
#endif
#ifndef toupper
#define toupper(x) (islower(x) ? (x) - 'a' + 'A' : (x))
#endif
#ifndef tolower
#define tolower(x) (isupper(x) ? (x) + 'a' - 'A' : (x))
#endif
#ifndef isspace
#define isspace(x) (((x) == ' ') || ((x) == '\r') || ((x) == '\n') || \
((x) == '\t') || ((x) == '\b'))
#endif
#endif /* _KERNEL */
#if MP_DEBUG
#undef MP_IOFUNC
#define MP_IOFUNC 1
#endif
#if MP_IOFUNC
#include <stdio.h>
#include <ctype.h>
#endif
#ifndef _KERNEL
#include <limits.h>
#endif
#if defined(BSDI)
#undef ULLONG_MAX
#endif
#if defined( macintosh )
#include <Types.h>
#elif defined( _WIN32_WCE)
/* #include <sys/types.h> What do we need here ?? */
#else
#include <sys/types.h>
#endif
#define MP_NEG 1
#define MP_ZPOS 0
#define MP_OKAY 0 /* no error, all is well */
#define MP_YES 0 /* yes (boolean result) */
#define MP_NO -1 /* no (boolean result) */
#define MP_MEM -2 /* out of memory */
#define MP_RANGE -3 /* argument out of range */
#define MP_BADARG -4 /* invalid parameter */
#define MP_UNDEF -5 /* answer is undefined */
#define MP_LAST_CODE MP_UNDEF
typedef unsigned int mp_sign;
typedef unsigned int mp_size;
typedef int mp_err;
typedef int mp_flag;
#define MP_32BIT_MAX 4294967295U
#if !defined(ULONG_MAX)
#error "ULONG_MAX not defined"
#elif !defined(UINT_MAX)
#error "UINT_MAX not defined"
#elif !defined(USHRT_MAX)
#error "USHRT_MAX not defined"
#endif
#if defined(ULONG_LONG_MAX) /* GCC, HPUX */
#define MP_ULONG_LONG_MAX ULONG_LONG_MAX
#elif defined(ULLONG_MAX) /* Solaris */
#define MP_ULONG_LONG_MAX ULLONG_MAX
/* MP_ULONG_LONG_MAX was defined to be ULLONG_MAX */
#elif defined(ULONGLONG_MAX) /* IRIX, AIX */
#define MP_ULONG_LONG_MAX ULONGLONG_MAX
#endif
/* We only use unsigned long for mp_digit iff long is more than 32 bits. */
#if !defined(MP_USE_UINT_DIGIT) && ULONG_MAX > MP_32BIT_MAX
typedef unsigned long mp_digit;
#define MP_DIGIT_MAX ULONG_MAX
#define MP_DIGIT_FMT "%016lX" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX UINT_MAX
#undef MP_NO_MP_WORD
#define MP_NO_MP_WORD 1
#undef MP_USE_LONG_DIGIT
#define MP_USE_LONG_DIGIT 1
#undef MP_USE_LONG_LONG_DIGIT
#elif !defined(MP_USE_UINT_DIGIT) && defined(MP_ULONG_LONG_MAX)
typedef unsigned long long mp_digit;
#define MP_DIGIT_MAX MP_ULONG_LONG_MAX
#define MP_DIGIT_FMT "%016llX" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX UINT_MAX
#undef MP_NO_MP_WORD
#define MP_NO_MP_WORD 1
#undef MP_USE_LONG_LONG_DIGIT
#define MP_USE_LONG_LONG_DIGIT 1
#undef MP_USE_LONG_DIGIT
#else
typedef unsigned int mp_digit;
#define MP_DIGIT_MAX UINT_MAX
#define MP_DIGIT_FMT "%08X" /* printf() format for 1 digit */
#define MP_HALF_DIGIT_MAX USHRT_MAX
#undef MP_USE_UINT_DIGIT
#define MP_USE_UINT_DIGIT 1
#undef MP_USE_LONG_LONG_DIGIT
#undef MP_USE_LONG_DIGIT
#endif
#if !defined(MP_NO_MP_WORD)
#if defined(MP_USE_UINT_DIGIT) && \
(defined(MP_ULONG_LONG_MAX) || (ULONG_MAX > UINT_MAX))
#if (ULONG_MAX > UINT_MAX)
typedef unsigned long mp_word;
typedef long mp_sword;
#define MP_WORD_MAX ULONG_MAX
#else
typedef unsigned long long mp_word;
typedef long long mp_sword;
#define MP_WORD_MAX MP_ULONG_LONG_MAX
#endif
#else
#define MP_NO_MP_WORD 1
#endif
#endif /* !defined(MP_NO_MP_WORD) */
#if !defined(MP_WORD_MAX) && defined(MP_DEFINE_SMALL_WORD)
typedef unsigned int mp_word;
typedef int mp_sword;
#define MP_WORD_MAX UINT_MAX
#endif
#ifndef CHAR_BIT
#define CHAR_BIT 8
#endif
#define MP_DIGIT_BIT (CHAR_BIT*sizeof(mp_digit))
#define MP_WORD_BIT (CHAR_BIT*sizeof(mp_word))
#define MP_RADIX (1+(mp_word)MP_DIGIT_MAX)
#define MP_HALF_DIGIT_BIT (MP_DIGIT_BIT/2)
#define MP_HALF_RADIX (1+(mp_digit)MP_HALF_DIGIT_MAX)
/* MP_HALF_RADIX really ought to be called MP_SQRT_RADIX, but it's named
** MP_HALF_RADIX because it's the radix for MP_HALF_DIGITs, and it's
** consistent with the other _HALF_ names.
*/
/* Macros for accessing the mp_int internals */
#define MP_FLAG(MP) ((MP)->flag)
#define MP_SIGN(MP) ((MP)->sign)
#define MP_USED(MP) ((MP)->used)
#define MP_ALLOC(MP) ((MP)->alloc)
#define MP_DIGITS(MP) ((MP)->dp)
#define MP_DIGIT(MP,N) (MP)->dp[(N)]
/* This defines the maximum I/O base (minimum is 2) */
#define MP_MAX_RADIX 64
typedef struct {
mp_sign flag; /* KM_SLEEP/KM_NOSLEEP */
mp_sign sign; /* sign of this quantity */
mp_size alloc; /* how many digits allocated */
mp_size used; /* how many digits used */
mp_digit *dp; /* the digits themselves */
} mp_int;
/* Default precision */
mp_size mp_get_prec(void);
void mp_set_prec(mp_size prec);
/* Memory management */
mp_err mp_init(mp_int *mp, int kmflag);
mp_err mp_init_size(mp_int *mp, mp_size prec, int kmflag);
mp_err mp_init_copy(mp_int *mp, const mp_int *from);
mp_err mp_copy(const mp_int *from, mp_int *to);
void mp_exch(mp_int *mp1, mp_int *mp2);
void mp_clear(mp_int *mp);
void mp_zero(mp_int *mp);
void mp_set(mp_int *mp, mp_digit d);
mp_err mp_set_int(mp_int *mp, long z);
#define mp_set_long(mp,z) mp_set_int(mp,z)
mp_err mp_set_ulong(mp_int *mp, unsigned long z);
/* Single digit arithmetic */
mp_err mp_add_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_sub_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_d(const mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_2(const mp_int *a, mp_int *c);
mp_err mp_div_d(const mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
mp_err mp_div_2(const mp_int *a, mp_int *c);
mp_err mp_expt_d(const mp_int *a, mp_digit d, mp_int *c);
/* Sign manipulations */
mp_err mp_abs(const mp_int *a, mp_int *b);
mp_err mp_neg(const mp_int *a, mp_int *b);
/* Full arithmetic */
mp_err mp_add(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
mp_err mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
#if MP_SQUARE
mp_err mp_sqr(const mp_int *a, mp_int *b);
#else
#define mp_sqr(a, b) mp_mul(a, a, b)
#endif
mp_err mp_div(const mp_int *a, const mp_int *b, mp_int *q, mp_int *r);
mp_err mp_div_2d(const mp_int *a, mp_digit d, mp_int *q, mp_int *r);
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_2expt(mp_int *a, mp_digit k);
mp_err mp_sqrt(const mp_int *a, mp_int *b);
/* Modular arithmetic */
#if MP_MODARITH
mp_err mp_mod(const mp_int *a, const mp_int *m, mp_int *c);
mp_err mp_mod_d(const mp_int *a, mp_digit d, mp_digit *c);
mp_err mp_addmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_submod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
#if MP_SQUARE
mp_err mp_sqrmod(const mp_int *a, const mp_int *m, mp_int *c);
#else
#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
#endif
mp_err mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
mp_err mp_exptmod_d(const mp_int *a, mp_digit d, const mp_int *m, mp_int *c);
#endif /* MP_MODARITH */
/* Comparisons */
int mp_cmp_z(const mp_int *a);
int mp_cmp_d(const mp_int *a, mp_digit d);
int mp_cmp(const mp_int *a, const mp_int *b);
int mp_cmp_mag(mp_int *a, mp_int *b);
int mp_cmp_int(const mp_int *a, long z, int kmflag);
int mp_isodd(const mp_int *a);
int mp_iseven(const mp_int *a);
/* Number theoretic */
#if MP_NUMTH
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_xgcd(const mp_int *a, const mp_int *b, mp_int *g, mp_int *x, mp_int *y);
mp_err mp_invmod(const mp_int *a, const mp_int *m, mp_int *c);
mp_err mp_invmod_xgcd(const mp_int *a, const mp_int *m, mp_int *c);
#endif /* end MP_NUMTH */
/* Input and output */
#if MP_IOFUNC
void mp_print(mp_int *mp, FILE *ofp);
#endif /* end MP_IOFUNC */
/* Base conversion */
mp_err mp_read_raw(mp_int *mp, char *str, int len);
int mp_raw_size(mp_int *mp);
mp_err mp_toraw(mp_int *mp, char *str);
mp_err mp_read_radix(mp_int *mp, const char *str, int radix);
mp_err mp_read_variable_radix(mp_int *a, const char * str, int default_radix);
int mp_radix_size(mp_int *mp, int radix);
mp_err mp_toradix(mp_int *mp, char *str, int radix);
int mp_tovalue(char ch, int r);
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/* Error strings */
const char *mp_strerror(mp_err ec);
/* Octet string conversion functions */
mp_err mp_read_unsigned_octets(mp_int *mp, const unsigned char *str, mp_size len);
int mp_unsigned_octet_size(const mp_int *mp);
mp_err mp_to_unsigned_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
mp_err mp_to_signed_octets(const mp_int *mp, unsigned char *str, mp_size maxlen);
mp_err mp_to_fixlen_octets(const mp_int *mp, unsigned char *str, mp_size len);
/* Miscellaneous */
mp_size mp_trailing_zeros(const mp_int *mp);
#define MP_CHECKOK(x) if (MP_OKAY > (res = (x))) goto CLEANUP
#define MP_CHECKERR(x) if (MP_OKAY > (res = (x))) goto CLEANUP
#if defined(MP_API_COMPATIBLE)
#define NEG MP_NEG
#define ZPOS MP_ZPOS
#define DIGIT_MAX MP_DIGIT_MAX
#define DIGIT_BIT MP_DIGIT_BIT
#define DIGIT_FMT MP_DIGIT_FMT
#define RADIX MP_RADIX
#define MAX_RADIX MP_MAX_RADIX
#define FLAG(MP) MP_FLAG(MP)
#define SIGN(MP) MP_SIGN(MP)
#define USED(MP) MP_USED(MP)
#define ALLOC(MP) MP_ALLOC(MP)
#define DIGITS(MP) MP_DIGITS(MP)
#define DIGIT(MP,N) MP_DIGIT(MP,N)
#if MP_ARGCHK == 1
#define ARGCHK(X,Y) {if(!(X)){return (Y);}}
#elif MP_ARGCHK == 2
#ifdef _KERNEL
#define ARGCHK(X,Y) ASSERT(X)
#else
#include <assert.h>
#define ARGCHK(X,Y) assert(X)
#endif
#else
#define ARGCHK(X,Y) /* */
#endif
#endif /* defined MP_API_COMPATIBLE */
#endif /* _MPI_H */

View File

@ -1,218 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
*********************************************************************** */
/* Bitwise logical operations on MPI values */
#include "mpi-priv.h"
#include "mplogic.h"
/* {{{ Lookup table for population count */
static unsigned char bitc[] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
};
/* }}} */
/*
mpl_rsh(a, b, d) - b = a >> d
mpl_lsh(a, b, d) - b = a << d
*/
/* {{{ mpl_rsh(a, b, d) */
mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
s_mp_div_2d(b, d);
return MP_OKAY;
} /* end mpl_rsh() */
/* }}} */
/* {{{ mpl_lsh(a, b, d) */
mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d)
{
mp_err res;
ARGCHK(a != NULL && b != NULL, MP_BADARG);
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
return s_mp_mul_2d(b, d);
} /* end mpl_lsh() */
/* }}} */
/*------------------------------------------------------------------------*/
/*
mpl_set_bit
Returns MP_OKAY or some error code.
Grows a if needed to set a bit to 1.
*/
mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value)
{
mp_size ix;
mp_err rv;
mp_digit mask;
ARGCHK(a != NULL, MP_BADARG);
ix = bitNum / MP_DIGIT_BIT;
if (ix + 1 > MP_USED(a)) {
rv = s_mp_pad(a, ix + 1);
if (rv != MP_OKAY)
return rv;
}
bitNum = bitNum % MP_DIGIT_BIT;
mask = (mp_digit)1 << bitNum;
if (value)
MP_DIGIT(a,ix) |= mask;
else
MP_DIGIT(a,ix) &= ~mask;
s_mp_clamp(a);
return MP_OKAY;
}
/*
mpl_get_bit
returns 0 or 1 or some (negative) error code.
*/
mp_err mpl_get_bit(const mp_int *a, mp_size bitNum)
{
mp_size bit, ix;
mp_err rv;
ARGCHK(a != NULL, MP_BADARG);
ix = bitNum / MP_DIGIT_BIT;
ARGCHK(ix <= MP_USED(a) - 1, MP_RANGE);
bit = bitNum % MP_DIGIT_BIT;
rv = (mp_err)(MP_DIGIT(a, ix) >> bit) & 1;
return rv;
}
/*
mpl_get_bits
- Extracts numBits bits from a, where the least significant extracted bit
is bit lsbNum. Returns a negative value if error occurs.
- Because sign bit is used to indicate error, maximum number of bits to
be returned is the lesser of (a) the number of bits in an mp_digit, or
(b) one less than the number of bits in an mp_err.
- lsbNum + numbits can be greater than the number of significant bits in
integer a, as long as bit lsbNum is in the high order digit of a.
*/
mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits)
{
mp_size rshift = (lsbNum % MP_DIGIT_BIT);
mp_size lsWndx = (lsbNum / MP_DIGIT_BIT);
mp_digit * digit = MP_DIGITS(a) + lsWndx;
mp_digit mask = ((1 << numBits) - 1);
ARGCHK(numBits < CHAR_BIT * sizeof mask, MP_BADARG);
ARGCHK(MP_HOWMANY(lsbNum, MP_DIGIT_BIT) <= MP_USED(a), MP_RANGE);
if ((numBits + lsbNum % MP_DIGIT_BIT <= MP_DIGIT_BIT) ||
(lsWndx + 1 >= MP_USED(a))) {
mask &= (digit[0] >> rshift);
} else {
mask &= ((digit[0] >> rshift) | (digit[1] << (MP_DIGIT_BIT - rshift)));
}
return (mp_err)mask;
}
/*
mpl_significant_bits
returns number of significnant bits in abs(a).
returns 1 if value is zero.
*/
mp_err mpl_significant_bits(const mp_int *a)
{
mp_err bits = 0;
int ix;
ARGCHK(a != NULL, MP_BADARG);
ix = MP_USED(a);
for (ix = MP_USED(a); ix > 0; ) {
mp_digit d;
d = MP_DIGIT(a, --ix);
if (d) {
while (d) {
++bits;
d >>= 1;
}
break;
}
}
bits += ix * MP_DIGIT_BIT;
if (!bits)
bits = 1;
return bits;
}
/*------------------------------------------------------------------------*/
/* HERE THERE BE DRAGONS */

View File

@ -1,83 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1998
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
*********************************************************************** */
/* Bitwise logical operations on MPI values */
#ifndef _MPLOGIC_H
#define _MPLOGIC_H
/* $Id: mplogic.h,v 1.7 2004/04/27 23:04:36 gerv%gerv.net Exp $ */
#include "mpi.h"
/*
The logical operations treat an mp_int as if it were a bit vector,
without regard to its sign (an mp_int is represented in a signed
magnitude format). Values are treated as if they had an infinite
string of zeros left of the most-significant bit.
*/
/* Parity results */
#define MP_EVEN MP_YES
#define MP_ODD MP_NO
/* Bitwise functions */
mp_err mpl_not(mp_int *a, mp_int *b); /* one's complement */
mp_err mpl_and(mp_int *a, mp_int *b, mp_int *c); /* bitwise AND */
mp_err mpl_or(mp_int *a, mp_int *b, mp_int *c); /* bitwise OR */
mp_err mpl_xor(mp_int *a, mp_int *b, mp_int *c); /* bitwise XOR */
/* Shift functions */
mp_err mpl_rsh(const mp_int *a, mp_int *b, mp_digit d); /* right shift */
mp_err mpl_lsh(const mp_int *a, mp_int *b, mp_digit d); /* left shift */
/* Bit count and parity */
mp_err mpl_num_set(mp_int *a, int *num); /* count set bits */
mp_err mpl_num_clear(mp_int *a, int *num); /* count clear bits */
mp_err mpl_parity(mp_int *a); /* determine parity */
/* Get & Set the value of a bit */
mp_err mpl_set_bit(mp_int *a, mp_size bitNum, mp_size value);
mp_err mpl_get_bit(const mp_int *a, mp_size bitNum);
mp_err mpl_get_bits(const mp_int *a, mp_size lsbNum, mp_size numBits);
mp_err mpl_significant_bits(const mp_int *a);
#endif /* _MPLOGIC_H */

View File

@ -1,176 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Sheueling Chang Shantz <sheueling.chang@sun.com>,
* Stephen Fung <stephen.fung@sun.com>, and
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
*
*********************************************************************** */
/* This file implements moduluar exponentiation using Montgomery's
* method for modular reduction. This file implements the method
* described as "Improvement 1" in the paper "A Cryptogrpahic Library for
* the Motorola DSP56000" by Stephen R. Dusse' and Burton S. Kaliski Jr.
* published in "Advances in Cryptology: Proceedings of EUROCRYPT '90"
* "Lecture Notes in Computer Science" volume 473, 1991, pg 230-244,
* published by Springer Verlag.
*/
#define MP_USING_CACHE_SAFE_MOD_EXP 1
#ifndef _KERNEL
#include <string.h>
#include <stddef.h> /* ptrdiff_t */
#endif
#include "mpi-priv.h"
#include "mplogic.h"
#include "mpprime.h"
#ifdef MP_USING_MONT_MULF
#include "montmulf.h"
#endif
/* if MP_CHAR_STORE_SLOW is defined, we */
/* need to know endianness of this platform. */
#ifdef MP_CHAR_STORE_SLOW
#if !defined(MP_IS_BIG_ENDIAN) && !defined(MP_IS_LITTLE_ENDIAN)
#error "You must define MP_IS_BIG_ENDIAN or MP_IS_LITTLE_ENDIAN\n" \
" if you define MP_CHAR_STORE_SLOW."
#endif
#endif
#ifndef STATIC
#define STATIC
#endif
#define MAX_ODD_INTS 32 /* 2 ** (WINDOW_BITS - 1) */
#ifndef _KERNEL
#if defined(_WIN32_WCE)
#define ABORT res = MP_UNDEF; goto CLEANUP
#else
#define ABORT abort()
#endif
#else
#define ABORT res = MP_UNDEF; goto CLEANUP
#endif /* _KERNEL */
/* computes T = REDC(T), 2^b == R */
mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm)
{
mp_err res;
mp_size i;
i = MP_USED(T) + MP_USED(&mmm->N) + 2;
MP_CHECKOK( s_mp_pad(T, i) );
for (i = 0; i < MP_USED(&mmm->N); ++i ) {
mp_digit m_i = MP_DIGIT(T, i) * mmm->n0prime;
/* T += N * m_i * (MP_RADIX ** i); */
MP_CHECKOK( s_mp_mul_d_add_offset(&mmm->N, m_i, T, i) );
}
s_mp_clamp(T);
/* T /= R */
s_mp_div_2d(T, mmm->b);
if ((res = s_mp_cmp(T, &mmm->N)) >= 0) {
/* T = T - N */
MP_CHECKOK( s_mp_sub(T, &mmm->N) );
#ifdef DEBUG
if ((res = mp_cmp(T, &mmm->N)) >= 0) {
res = MP_UNDEF;
goto CLEANUP;
}
#endif
}
res = MP_OKAY;
CLEANUP:
return res;
}
#if !defined(MP_ASSEMBLY_MUL_MONT) && !defined(MP_MONT_USE_MP_MUL)
mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
mp_mont_modulus *mmm)
{
mp_digit *pb;
mp_digit m_i;
mp_err res;
mp_size ib;
mp_size useda, usedb;
ARGCHK(a != NULL && b != NULL && c != NULL, MP_BADARG);
if (MP_USED(a) < MP_USED(b)) {
const mp_int *xch = b; /* switch a and b, to do fewer outer loops */
b = a;
a = xch;
}
MP_USED(c) = 1; MP_DIGIT(c, 0) = 0;
ib = MP_USED(a) + MP_MAX(MP_USED(b), MP_USED(&mmm->N)) + 2;
if((res = s_mp_pad(c, ib)) != MP_OKAY)
goto CLEANUP;
useda = MP_USED(a);
pb = MP_DIGITS(b);
s_mpv_mul_d(MP_DIGITS(a), useda, *pb++, MP_DIGITS(c));
s_mp_setz(MP_DIGITS(c) + useda + 1, ib - (useda + 1));
m_i = MP_DIGIT(c, 0) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, 0);
/* Outer loop: Digits of b */
usedb = MP_USED(b);
for (ib = 1; ib < usedb; ib++) {
mp_digit b_i = *pb++;
/* Inner product: Digits of a */
if (b_i)
s_mpv_mul_d_add_prop(MP_DIGITS(a), useda, b_i, MP_DIGITS(c) + ib);
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
if (usedb < MP_USED(&mmm->N)) {
for (usedb = MP_USED(&mmm->N); ib < usedb; ++ib ) {
m_i = MP_DIGIT(c, ib) * mmm->n0prime;
s_mp_mul_d_add_offset(&mmm->N, m_i, c, ib);
}
}
s_mp_clamp(c);
s_mp_div_2d(c, mmm->b);
if (s_mp_cmp(c, &mmm->N) >= 0) {
MP_CHECKOK( s_mp_sub(c, &mmm->N) );
}
res = MP_OKAY;
CLEANUP:
return res;
}
#endif

View File

@ -1,66 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
*
* The Initial Developer of the Original Code is
* Michael J. Fromberger.
* Portions created by the Initial Developer are Copyright (C) 1997
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
*********************************************************************** */
/* Utilities for finding and working with prime and pseudo-prime integers */
#ifndef _MP_PRIME_H
#define _MP_PRIME_H
#include "mpi.h"
extern const int prime_tab_size; /* number of primes available */
extern const mp_digit prime_tab[];
/* Tests for divisibility */
mp_err mpp_divis(mp_int *a, mp_int *b);
mp_err mpp_divis_d(mp_int *a, mp_digit d);
/* Random selection */
mp_err mpp_random(mp_int *a);
mp_err mpp_random_size(mp_int *a, mp_size prec);
/* Pseudo-primality testing */
mp_err mpp_divis_vector(mp_int *a, const mp_digit *vec, int size, int *which);
mp_err mpp_divis_primes(mp_int *a, mp_digit *np);
mp_err mpp_fermat(mp_int *a, mp_digit w);
mp_err mpp_fermat_list(mp_int *a, const mp_digit *primes, mp_size nPrimes);
mp_err mpp_pprime(mp_int *a, int nt);
mp_err mpp_sieve(mp_int *trial, const mp_digit *primes, mp_size nPrimes,
unsigned char *sieve, mp_size nSieve);
mp_err mpp_make_prime(mp_int *start, mp_size nBits, mp_size strong,
unsigned long * nTries);
#endif /* _MP_PRIME_H */

View File

@ -1,538 +0,0 @@
/*
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
* Last Modified Date from the Original Code: March 2012
*********************************************************************** */
#include <sys/types.h>
#ifndef _WIN32
#if !defined(__linux__) && !defined(_ALLBSD_SOURCE)
#include <sys/systm.h>
#endif /* __linux__ || _ALLBSD_SOURCE */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <string.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
#include "secoidt.h"
#define CERTICOM_OID 0x2b, 0x81, 0x04
#define SECG_OID CERTICOM_OID, 0x00
#define ANSI_X962_OID 0x2a, 0x86, 0x48, 0xce, 0x3d
#define ANSI_X962_CURVE_OID ANSI_X962_OID, 0x03
#define ANSI_X962_GF2m_OID ANSI_X962_CURVE_OID, 0x00
#define ANSI_X962_GFp_OID ANSI_X962_CURVE_OID, 0x01
#define TELETRUST_ALGO_OID 0x2b, 0x24, 0x03
#define ECC_BRAINPOOL TELETRUST_ALGO_OID, 0x03, 0x02, 0x08
#define ECC_BRAINPOOL_EC_V1 ECC_BRAINPOOL, 0x01, 0x01
#define CONST_OID static const unsigned char
/* ANSI X9.62 prime curve OIDs */
/* NOTE: prime192v1 is the same as secp192r1, prime256v1 is the
* same as secp256r1
*/
CONST_OID ansiX962prime192v1[] = { ANSI_X962_GFp_OID, 0x01 };
CONST_OID ansiX962prime192v2[] = { ANSI_X962_GFp_OID, 0x02 };
CONST_OID ansiX962prime192v3[] = { ANSI_X962_GFp_OID, 0x03 };
CONST_OID ansiX962prime239v1[] = { ANSI_X962_GFp_OID, 0x04 };
CONST_OID ansiX962prime239v2[] = { ANSI_X962_GFp_OID, 0x05 };
CONST_OID ansiX962prime239v3[] = { ANSI_X962_GFp_OID, 0x06 };
CONST_OID ansiX962prime256v1[] = { ANSI_X962_GFp_OID, 0x07 };
/* SECG prime curve OIDs */
CONST_OID secgECsecp112r1[] = { SECG_OID, 0x06 };
CONST_OID secgECsecp112r2[] = { SECG_OID, 0x07 };
CONST_OID secgECsecp128r1[] = { SECG_OID, 0x1c };
CONST_OID secgECsecp128r2[] = { SECG_OID, 0x1d };
CONST_OID secgECsecp160k1[] = { SECG_OID, 0x09 };
CONST_OID secgECsecp160r1[] = { SECG_OID, 0x08 };
CONST_OID secgECsecp160r2[] = { SECG_OID, 0x1e };
CONST_OID secgECsecp192k1[] = { SECG_OID, 0x1f };
CONST_OID secgECsecp224k1[] = { SECG_OID, 0x20 };
CONST_OID secgECsecp224r1[] = { SECG_OID, 0x21 };
CONST_OID secgECsecp256k1[] = { SECG_OID, 0x0a };
CONST_OID secgECsecp384r1[] = { SECG_OID, 0x22 };
CONST_OID secgECsecp521r1[] = { SECG_OID, 0x23 };
/* SECG characterisitic two curve OIDs */
CONST_OID secgECsect113r1[] = {SECG_OID, 0x04 };
CONST_OID secgECsect113r2[] = {SECG_OID, 0x05 };
CONST_OID secgECsect131r1[] = {SECG_OID, 0x16 };
CONST_OID secgECsect131r2[] = {SECG_OID, 0x17 };
CONST_OID secgECsect163k1[] = {SECG_OID, 0x01 };
CONST_OID secgECsect163r1[] = {SECG_OID, 0x02 };
CONST_OID secgECsect163r2[] = {SECG_OID, 0x0f };
CONST_OID secgECsect193r1[] = {SECG_OID, 0x18 };
CONST_OID secgECsect193r2[] = {SECG_OID, 0x19 };
CONST_OID secgECsect233k1[] = {SECG_OID, 0x1a };
CONST_OID secgECsect233r1[] = {SECG_OID, 0x1b };
CONST_OID secgECsect239k1[] = {SECG_OID, 0x03 };
CONST_OID secgECsect283k1[] = {SECG_OID, 0x10 };
CONST_OID secgECsect283r1[] = {SECG_OID, 0x11 };
CONST_OID secgECsect409k1[] = {SECG_OID, 0x24 };
CONST_OID secgECsect409r1[] = {SECG_OID, 0x25 };
CONST_OID secgECsect571k1[] = {SECG_OID, 0x26 };
CONST_OID secgECsect571r1[] = {SECG_OID, 0x27 };
/* ANSI X9.62 characteristic two curve OIDs */
CONST_OID ansiX962c2pnb163v1[] = { ANSI_X962_GF2m_OID, 0x01 };
CONST_OID ansiX962c2pnb163v2[] = { ANSI_X962_GF2m_OID, 0x02 };
CONST_OID ansiX962c2pnb163v3[] = { ANSI_X962_GF2m_OID, 0x03 };
CONST_OID ansiX962c2pnb176v1[] = { ANSI_X962_GF2m_OID, 0x04 };
CONST_OID ansiX962c2tnb191v1[] = { ANSI_X962_GF2m_OID, 0x05 };
CONST_OID ansiX962c2tnb191v2[] = { ANSI_X962_GF2m_OID, 0x06 };
CONST_OID ansiX962c2tnb191v3[] = { ANSI_X962_GF2m_OID, 0x07 };
CONST_OID ansiX962c2onb191v4[] = { ANSI_X962_GF2m_OID, 0x08 };
CONST_OID ansiX962c2onb191v5[] = { ANSI_X962_GF2m_OID, 0x09 };
CONST_OID ansiX962c2pnb208w1[] = { ANSI_X962_GF2m_OID, 0x0a };
CONST_OID ansiX962c2tnb239v1[] = { ANSI_X962_GF2m_OID, 0x0b };
CONST_OID ansiX962c2tnb239v2[] = { ANSI_X962_GF2m_OID, 0x0c };
CONST_OID ansiX962c2tnb239v3[] = { ANSI_X962_GF2m_OID, 0x0d };
CONST_OID ansiX962c2onb239v4[] = { ANSI_X962_GF2m_OID, 0x0e };
CONST_OID ansiX962c2onb239v5[] = { ANSI_X962_GF2m_OID, 0x0f };
CONST_OID ansiX962c2pnb272w1[] = { ANSI_X962_GF2m_OID, 0x10 };
CONST_OID ansiX962c2pnb304w1[] = { ANSI_X962_GF2m_OID, 0x11 };
CONST_OID ansiX962c2tnb359v1[] = { ANSI_X962_GF2m_OID, 0x12 };
CONST_OID ansiX962c2pnb368w1[] = { ANSI_X962_GF2m_OID, 0x13 };
CONST_OID ansiX962c2tnb431r1[] = { ANSI_X962_GF2m_OID, 0x14 };
/* TeleTrusT ECC Brainpool prime curve OIDs */
CONST_OID brainpoolP160r1[] = { ECC_BRAINPOOL_EC_V1, 0x01 };
CONST_OID brainpoolP160t1[] = { ECC_BRAINPOOL_EC_V1, 0x02 };
CONST_OID brainpoolP192r1[] = { ECC_BRAINPOOL_EC_V1, 0x03 };
CONST_OID brainpoolP192t1[] = { ECC_BRAINPOOL_EC_V1, 0x04 };
CONST_OID brainpoolP224r1[] = { ECC_BRAINPOOL_EC_V1, 0x05 };
CONST_OID brainpoolP224t1[] = { ECC_BRAINPOOL_EC_V1, 0x06 };
CONST_OID brainpoolP256r1[] = { ECC_BRAINPOOL_EC_V1, 0x07 };
CONST_OID brainpoolP256t1[] = { ECC_BRAINPOOL_EC_V1, 0x08 };
CONST_OID brainpoolP320r1[] = { ECC_BRAINPOOL_EC_V1, 0x09 };
CONST_OID brainpoolP320t1[] = { ECC_BRAINPOOL_EC_V1, 0x0a };
CONST_OID brainpoolP384r1[] = { ECC_BRAINPOOL_EC_V1, 0x0b };
CONST_OID brainpoolP384t1[] = { ECC_BRAINPOOL_EC_V1, 0x0c };
CONST_OID brainpoolP512r1[] = { ECC_BRAINPOOL_EC_V1, 0x0d };
CONST_OID brainpoolP512t1[] = { ECC_BRAINPOOL_EC_V1, 0x0e };
#define OI(x) { siDEROID, (unsigned char *)x, sizeof x }
#ifndef SECOID_NO_STRINGS
#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, desc, mech, ext }
#else
#define OD(oid,tag,desc,mech,ext) { OI(oid), tag, 0, mech, ext }
#endif
#define CKM_INVALID_MECHANISM 0xffffffffUL
/* XXX this is incorrect */
#define INVALID_CERT_EXTENSION 1
#define CKM_ECDSA 0x00001041
#define CKM_ECDSA_SHA1 0x00001042
#define CKM_ECDH1_DERIVE 0x00001050
static SECOidData ANSI_prime_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962prime192v1, ECCurve_NIST_P192,
"ANSI X9.62 elliptic curve prime192v1 (aka secp192r1, NIST P-192)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime192v2, ECCurve_X9_62_PRIME_192V2,
"ANSI X9.62 elliptic curve prime192v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime192v3, ECCurve_X9_62_PRIME_192V3,
"ANSI X9.62 elliptic curve prime192v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v1, ECCurve_X9_62_PRIME_239V1,
"ANSI X9.62 elliptic curve prime239v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v2, ECCurve_X9_62_PRIME_239V2,
"ANSI X9.62 elliptic curve prime239v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime239v3, ECCurve_X9_62_PRIME_239V3,
"ANSI X9.62 elliptic curve prime239v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962prime256v1, ECCurve_NIST_P256,
"ANSI X9.62 elliptic curve prime256v1 (aka secp256r1, NIST P-256)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
static SECOidData SECG_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect163k1, ECCurve_NIST_K163,
"SECG elliptic curve sect163k1 (aka NIST K-163)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect163r1, ECCurve_SECG_CHAR2_163R1,
"SECG elliptic curve sect163r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect239k1, ECCurve_SECG_CHAR2_239K1,
"SECG elliptic curve sect239k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect113r1, ECCurve_SECG_CHAR2_113R1,
"SECG elliptic curve sect113r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect113r2, ECCurve_SECG_CHAR2_113R2,
"SECG elliptic curve sect113r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp112r1, ECCurve_SECG_PRIME_112R1,
"SECG elliptic curve secp112r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp112r2, ECCurve_SECG_PRIME_112R2,
"SECG elliptic curve secp112r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160r1, ECCurve_SECG_PRIME_160R1,
"SECG elliptic curve secp160r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160k1, ECCurve_SECG_PRIME_160K1,
"SECG elliptic curve secp160k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp256k1, ECCurve_SECG_PRIME_256K1,
"SECG elliptic curve secp256k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect163r2, ECCurve_NIST_B163,
"SECG elliptic curve sect163r2 (aka NIST B-163)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect283k1, ECCurve_NIST_K283,
"SECG elliptic curve sect283k1 (aka NIST K-283)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect283r1, ECCurve_NIST_B283,
"SECG elliptic curve sect283r1 (aka NIST B-283)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( secgECsect131r1, ECCurve_SECG_CHAR2_131R1,
"SECG elliptic curve sect131r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect131r2, ECCurve_SECG_CHAR2_131R2,
"SECG elliptic curve sect131r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect193r1, ECCurve_SECG_CHAR2_193R1,
"SECG elliptic curve sect193r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect193r2, ECCurve_SECG_CHAR2_193R2,
"SECG elliptic curve sect193r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect233k1, ECCurve_NIST_K233,
"SECG elliptic curve sect233k1 (aka NIST K-233)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect233r1, ECCurve_NIST_B233,
"SECG elliptic curve sect233r1 (aka NIST B-233)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp128r1, ECCurve_SECG_PRIME_128R1,
"SECG elliptic curve secp128r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp128r2, ECCurve_SECG_PRIME_128R2,
"SECG elliptic curve secp128r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp160r2, ECCurve_SECG_PRIME_160R2,
"SECG elliptic curve secp160r2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp192k1, ECCurve_SECG_PRIME_192K1,
"SECG elliptic curve secp192k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp224k1, ECCurve_SECG_PRIME_224K1,
"SECG elliptic curve secp224k1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp224r1, ECCurve_NIST_P224,
"SECG elliptic curve secp224r1 (aka NIST P-224)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp384r1, ECCurve_NIST_P384,
"SECG elliptic curve secp384r1 (aka NIST P-384)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsecp521r1, ECCurve_NIST_P521,
"SECG elliptic curve secp521r1 (aka NIST P-521)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect409k1, ECCurve_NIST_K409,
"SECG elliptic curve sect409k1 (aka NIST K-409)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect409r1, ECCurve_NIST_B409,
"SECG elliptic curve sect409r1 (aka NIST B-409)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect571k1, ECCurve_NIST_K571,
"SECG elliptic curve sect571k1 (aka NIST K-571)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( secgECsect571r1, ECCurve_NIST_B571,
"SECG elliptic curve sect571r1 (aka NIST B-571)",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
static SECOidData ANSI_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
/* ANSI X9.62 named elliptic curves (characteristic two field) */
OD( ansiX962c2pnb163v1, ECCurve_X9_62_CHAR2_PNB163V1,
"ANSI X9.62 elliptic curve c2pnb163v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb163v2, ECCurve_X9_62_CHAR2_PNB163V2,
"ANSI X9.62 elliptic curve c2pnb163v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb163v3, ECCurve_X9_62_CHAR2_PNB163V3,
"ANSI X9.62 elliptic curve c2pnb163v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb176v1, ECCurve_X9_62_CHAR2_PNB176V1,
"ANSI X9.62 elliptic curve c2pnb176v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v1, ECCurve_X9_62_CHAR2_TNB191V1,
"ANSI X9.62 elliptic curve c2tnb191v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v2, ECCurve_X9_62_CHAR2_TNB191V2,
"ANSI X9.62 elliptic curve c2tnb191v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb191v3, ECCurve_X9_62_CHAR2_TNB191V3,
"ANSI X9.62 elliptic curve c2tnb191v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962c2pnb208w1, ECCurve_X9_62_CHAR2_PNB208W1,
"ANSI X9.62 elliptic curve c2pnb208w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v1, ECCurve_X9_62_CHAR2_TNB239V1,
"ANSI X9.62 elliptic curve c2tnb239v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v2, ECCurve_X9_62_CHAR2_TNB239V2,
"ANSI X9.62 elliptic curve c2tnb239v2",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb239v3, ECCurve_X9_62_CHAR2_TNB239V3,
"ANSI X9.62 elliptic curve c2tnb239v3",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( ansiX962c2pnb272w1, ECCurve_X9_62_CHAR2_PNB272W1,
"ANSI X9.62 elliptic curve c2pnb272w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb304w1, ECCurve_X9_62_CHAR2_PNB304W1,
"ANSI X9.62 elliptic curve c2pnb304w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb359v1, ECCurve_X9_62_CHAR2_TNB359V1,
"ANSI X9.62 elliptic curve c2tnb359v1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2pnb368w1, ECCurve_X9_62_CHAR2_PNB368W1,
"ANSI X9.62 elliptic curve c2pnb368w1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
OD( ansiX962c2tnb431r1, ECCurve_X9_62_CHAR2_TNB431R1,
"ANSI X9.62 elliptic curve c2tnb431r1",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION )
};
static SECOidData BRAINPOOL_oids[] = {
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
/* RFC 5639 Brainpool named elliptic curves */
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( brainpoolP256r1, ECCurve_BrainpoolP256r1,
"brainpoolP256r1 domain parameter set",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( brainpoolP320r1, ECCurve_BrainpoolP320r1,
"brainpoolP320r1 domain parameter set",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( brainpoolP384r1, ECCurve_BrainpoolP384r1,
"brainpoolP384r1 domain parameter set",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM, INVALID_CERT_EXTENSION },
OD( brainpoolP512r1, ECCurve_BrainpoolP512r1,
"brainpoolP512r1 domain parameter set",
CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION ),
{ { siDEROID, NULL, 0 }, ECCurve_noName,
"Unknown OID", CKM_INVALID_MECHANISM,
INVALID_CERT_EXTENSION }
};
int
oideql(unsigned char *reqoid, unsigned char *foundoid, size_t reqlen, size_t foundlen)
{
if (!reqoid || !foundoid) {
return 0;
}
if (reqlen != foundlen) {
return 0;
}
return memcmp(reqoid, foundoid, reqlen) == 0;
}
SECOidData *
SECOID_FindOID(const SECItem *oid)
{
SECOidData *po;
SECOidData *ret = NULL;
int reqlen = oid->len;
if (reqlen == 8) {
if (oid->data[6] == 0x00) {
/* XXX bounds check */
po = &ANSI_oids[oid->data[7]];
if (oideql(oid->data, po->oid.data, reqlen, po->oid.len)) {
ret = po;
}
}
if (oid->data[6] == 0x01) {
/* XXX bounds check */
po = &ANSI_prime_oids[oid->data[7]];
if (oideql(oid->data, po->oid.data, reqlen, po->oid.len)) {
ret = po;
}
}
} else if (reqlen == 5) {
/* XXX bounds check */
po = &SECG_oids[oid->data[4]];
if (oideql(oid->data, po->oid.data, reqlen, po->oid.len)) {
ret = po;
}
} else if (reqlen == 9) {
/* XXX bounds check */
po = &BRAINPOOL_oids[oid->data[8]];
if (oideql(oid->data, po->oid.data, reqlen, po->oid.len)) {
ret = po;
}
}
return(ret);
}
ECCurveName
SECOID_FindOIDTag(const SECItem *oid)
{
SECOidData *oiddata;
oiddata = SECOID_FindOID (oid);
if (oiddata == NULL)
return ECCurve_noName;
return oiddata->offset;
}

View File

@ -1,179 +0,0 @@
/*
* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* Last Modified Date from the Original Code: March 2012
*********************************************************************** */
/*
* Support routines for SECItem data structure.
*
* $Id: secitem.c,v 1.14 2006/05/22 22:24:34 wtchang%redhat.com Exp $
*/
#include <sys/types.h>
#ifndef _WIN32
#if !defined(__linux__) && !defined(_ALLBSD_SOURCE)
#include <sys/systm.h>
#endif /* __linux__ || _ALLBSD_SOURCE */
#include <sys/param.h>
#endif /* _WIN32 */
#ifdef _KERNEL
#include <sys/kmem.h>
#else
#include <string.h>
#ifndef _WIN32
#include <strings.h>
#endif /* _WIN32 */
#include <assert.h>
#endif
#include "ec.h"
#include "ecl-curve.h"
#include "ecc_impl.h"
void SECITEM_FreeItem(SECItem *, PRBool);
SECItem *
SECITEM_AllocItem(PRArenaPool *arena, SECItem *item, unsigned int len,
int kmflag)
{
SECItem *result = NULL;
void *mark = NULL;
if (arena != NULL) {
mark = PORT_ArenaMark(arena);
}
if (item == NULL) {
if (arena != NULL) {
result = PORT_ArenaZAlloc(arena, sizeof(SECItem), kmflag);
} else {
result = PORT_ZAlloc(sizeof(SECItem), kmflag);
}
if (result == NULL) {
goto loser;
}
} else {
PORT_Assert(item->data == NULL);
result = item;
}
result->len = len;
if (len) {
if (arena != NULL) {
result->data = PORT_ArenaAlloc(arena, len, kmflag);
} else {
result->data = PORT_Alloc(len, kmflag);
}
if (result->data == NULL) {
goto loser;
}
} else {
result->data = NULL;
}
if (mark) {
PORT_ArenaUnmark(arena, mark);
}
return(result);
loser:
if ( arena != NULL ) {
if (mark) {
PORT_ArenaRelease(arena, mark);
}
if (item != NULL) {
item->data = NULL;
item->len = 0;
}
} else {
if (result != NULL) {
SECITEM_FreeItem(result, (item == NULL) ? PR_TRUE : PR_FALSE);
}
/*
* If item is not NULL, the above has set item->data and
* item->len to 0.
*/
}
return(NULL);
}
SECStatus
SECITEM_CopyItem(PRArenaPool *arena, SECItem *to, const SECItem *from,
int kmflag)
{
to->type = from->type;
if (from->data && from->len) {
if ( arena ) {
to->data = (unsigned char*) PORT_ArenaAlloc(arena, from->len,
kmflag);
} else {
to->data = (unsigned char*) PORT_Alloc(from->len, kmflag);
}
if (!to->data) {
return SECFailure;
}
PORT_Memcpy(to->data, from->data, from->len);
to->len = from->len;
} else {
to->data = 0;
to->len = 0;
}
return SECSuccess;
}
void
SECITEM_FreeItem(SECItem *zap, PRBool freeit)
{
if (zap) {
#ifdef _KERNEL
kmem_free(zap->data, zap->len);
#else
free(zap->data);
#endif
zap->data = 0;
zap->len = 0;
if (freeit) {
#ifdef _KERNEL
kmem_free(zap, sizeof (SECItem));
#else
free(zap);
#endif
}
}
}

View File

@ -1,82 +0,0 @@
/*
* Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* *********************************************************************
*
* The Original Code is the Netscape security libraries.
*
* The Initial Developer of the Original Code is
* Netscape Communications Corporation.
* Portions created by the Initial Developer are Copyright (C) 1994-2000
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Dr Vipul Gupta <vipul.gupta@sun.com>, Sun Microsystems Laboratories
*
*********************************************************************** */
#ifndef _SECOIDT_H_
#define _SECOIDT_H_
/*
* secoidt.h - public data structures for ASN.1 OID functions
*
* $Id: secoidt.h,v 1.23 2007/05/05 22:45:16 nelson%bolyard.com Exp $
*/
typedef struct SECOidDataStr SECOidData;
typedef struct SECAlgorithmIDStr SECAlgorithmID;
/*
** An X.500 algorithm identifier
*/
struct SECAlgorithmIDStr {
SECItem algorithm;
SECItem parameters;
};
#define SEC_OID_SECG_EC_SECP192R1 SEC_OID_ANSIX962_EC_PRIME192V1
#define SEC_OID_SECG_EC_SECP256R1 SEC_OID_ANSIX962_EC_PRIME256V1
#define SEC_OID_PKCS12_KEY_USAGE SEC_OID_X509_KEY_USAGE
/* fake OID for DSS sign/verify */
#define SEC_OID_SHA SEC_OID_MISS_DSS
typedef enum {
INVALID_CERT_EXTENSION = 0,
UNSUPPORTED_CERT_EXTENSION = 1,
SUPPORTED_CERT_EXTENSION = 2
} SECSupportExtenTag;
struct SECOidDataStr {
SECItem oid;
ECCurveName offset;
const char * desc;
unsigned long mechanism;
SECSupportExtenTag supportedExtension;
/* only used for x.509 v3 extensions, so
that we can print the names of those
extensions that we don't even support */
};
#endif /* _SECOIDT_H_ */

View File

@ -31,8 +31,6 @@
* this test file was covered before with JDK-4936763.
* @run main/othervm -Djdk.crypto.KeyAgreement.legacyKDF=true KeyAgreementTest
* DiffieHellman DH SunJCE
* @run main/othervm -Djdk.sunec.disableNative=false KeyAgreementTest
* ECDHNative EC SunEC
* @run main KeyAgreementTest ECDH EC SunEC
* @run main KeyAgreementTest XDH XDH SunEC
*/
@ -56,10 +54,6 @@ public class KeyAgreementTest {
String provider = args[2];
System.out.println("Testing " + kaAlgo);
AlgoSpec aSpec = AlgoSpec.valueOf(AlgoSpec.class, kaAlgo);
// Switch kaAlgo to ECDH as it is used for algorithm names
if (kaAlgo.equals("ECDHNative")) {
kaAlgo = "ECDH";
}
List<AlgorithmParameterSpec> specs = aSpec.getAlgorithmParameterSpecs();
for (AlgorithmParameterSpec spec : specs) {
testKeyAgreement(provider, kaAlgo, kpgAlgo, spec);
@ -74,26 +68,7 @@ public class KeyAgreementTest {
// EC curve supported for KeyGeneration can found between intersection
// of curves define in
// "java.base/share/classes/sun/security/util/CurveDB.java"
// and
// "jdk.crypto.ec/share/native/libsunec/impl/ecdecode.c"
ECDHNative(
// SEC2 prime curves
"secp112r1", "secp112r2", "secp128r1", "secp128r2", "secp160k1",
"secp160r1", "secp192k1", "secp192r1", "secp224k1", "secp224r1",
"secp256k1", "secp256r1", "secp384r1", "secp521r1", "SECP521R1",
// ANSI X9.62 prime curves
"X9.62 prime192v2", "X9.62 prime192v3", "X9.62 prime239v1",
"X9.62 prime239v2", "X9.62 prime239v3",
// SEC2 binary curves
"sect113r1", "sect113r2", "sect131r1", "sect131r2", "sect163k1",
"sect163r1", "sect163r2", "sect193r1", "sect193r2", "sect233k1",
"sect233r1", "sect239k1", "sect283k1", "sect283r1", "sect409k1",
"sect409r1", "sect571k1", "sect571r1",
// ANSI X9.62 binary curves
"X9.62 c2tnb191v1", "X9.62 c2tnb191v2", "X9.62 c2tnb191v3",
"X9.62 c2tnb239v1", "X9.62 c2tnb239v2", "X9.62 c2tnb239v3",
"X9.62 c2tnb359v1", "X9.62 c2tnb431r1"
),
ECDH("secp256r1", "secp384r1", "secp521r1"),
XDH("X25519", "X448", "x25519"),
// There is no curve for DiffieHellman
@ -105,7 +80,6 @@ public class KeyAgreementTest {
// Generate AlgorithmParameterSpec for each KeyExchangeAlgorithm
for (String crv : curves) {
switch (this.name()) {
case "ECDHNative":
case "ECDH":
specs.add(new ECGenParameterSpec(crv));
break;
@ -128,7 +102,7 @@ public class KeyAgreementTest {
}
/**
* Perform KeyAgreement operation using native as well as JCE provider.
* Perform KeyAgreement operation
*/
private static void testKeyAgreement(String provider, String kaAlgo,
String kpgAlgo, AlgorithmParameterSpec spec) throws Exception {

View File

@ -37,9 +37,9 @@
* @run main KeySizeTest DiffieHellman SunJCE DiffieHellman 4096
* @run main KeySizeTest DiffieHellman SunJCE DiffieHellman 6144
* @run main KeySizeTest DiffieHellman SunJCE DiffieHellman 8192
* @run main/othervm -Djdk.sunec.disableNative=false KeySizeTest ECDH SunEC EC 128
* @run main/othervm -Djdk.sunec.disableNative=false KeySizeTest ECDH SunEC EC 192
* @run main/othervm KeySizeTest ECDH SunEC EC 256
* @run main/othervm KeySizeTest ECDH SunEC EC 384
* @run main/othervm KeySizeTest ECDH SunEC EC 521
* @run main KeySizeTest XDH SunEC XDH 255
* @run main KeySizeTest XDH SunEC XDH 448
*/

View File

@ -372,14 +372,12 @@ public class SSLSocketTemplate {
// Trusted certificates.
protected final static Cert[] TRUSTED_CERTS = {
Cert.CA_ECDSA_SECP256R1,
Cert.CA_ECDSA_SECT283R1,
Cert.CA_RSA_2048,
Cert.CA_DSA_2048 };
// End entity certificate.
protected final static Cert[] END_ENTITY_CERTS = {
Cert.EE_ECDSA_SECP256R1,
Cert.EE_ECDSA_SECT283R1,
Cert.EE_RSA_2048,
Cert.EE_EC_RSA_SECP256R1,
Cert.EE_DSA_2048 };
@ -705,32 +703,6 @@ public class SSLSocketTemplate {
"p1YdWENftmDoNTJ3O6TNlXb90jKWgAirCXNBUompPtHKkO592eDyGcT1h8qjrKlm\n" +
"Kw=="),
CA_ECDSA_SECT283R1(
"EC",
// SHA1withECDSA, curve sect283r1
// Validity
// Not Before: May 26 06:06:52 2020 GMT
// Not After : May 21 06:06:52 2040 GMT
// Subject Key Identifier:
// CF:A3:99:ED:4C:6E:04:41:09:21:31:33:B6:80:D5:A7:BF:2B:98:04
"-----BEGIN CERTIFICATE-----\n" +
"MIIB8TCCAY+gAwIBAgIJANQFsBngZ3iMMAsGByqGSM49BAEFADBdMQswCQYDVQQG\n" +
"EwJVUzELMAkGA1UECBMCQ0ExCzAJBgNVBAcTAlNBMQ8wDQYDVQQKEwZPcmFjbGUx\n" +
"DzANBgNVBAsTBkpQR1NRRTESMBAGA1UEAxMJc2VjdDI4M3IxMB4XDTIwMDUyNjE4\n" +
"MDY1MloXDTQwMDUyMTE4MDY1MlowXTELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNB\n" +
"MQswCQYDVQQHEwJTQTEPMA0GA1UEChMGT3JhY2xlMQ8wDQYDVQQLEwZKUEdTUUUx\n" +
"EjAQBgNVBAMTCXNlY3QyODNyMTBeMBAGByqGSM49AgEGBSuBBAARA0oABALatmDt\n" +
"QIhjpK4vJjv4GgC8CUH/VAWLUSQRU7yGGQ3NF8rVBARv0aehiII0nzjDVX5KrP/A\n" +
"w/DmW7q8PfEAIktuaA/tcKv/OKMyMDAwHQYDVR0OBBYEFM+jme1MbgRBCSExM7aA\n" +
"1ae/K5gEMA8GA1UdEwEB/wQFMAMBAf8wCwYHKoZIzj0EAQUAA08AMEwCJAGHsAP8\n" +
"HlcVqszra+fxq35juTxHJIfxTKIr7f54Ywtz7AJowgIkAxydv8g+dkuniOUAj0Xt\n" +
"FnGVp6HzKX5KM1zLpfqmix8ZPP/A\n" +
"-----END CERTIFICATE-----",
"MIGQAgEAMBAGByqGSM49AgEGBSuBBAARBHkwdwIBAQQkAdcyn/FxiNvuTsSgDehq\n" +
"SGFiTxAKNMMJfmsO6GHekzszFqjPoUwDSgAEAtq2YO1AiGOkri8mO/gaALwJQf9U\n" +
"BYtRJBFTvIYZDc0XytUEBG/Rp6GIgjSfOMNVfkqs/8DD8OZburw98QAiS25oD+1w\n" +
"q/84"),
CA_RSA_2048(
"RSA",
// SHA256withRSA, 2048 bits
@ -917,33 +889,6 @@ public class SSLSocketTemplate {
"MEcCAQAwBQYDK2VxBDsEOd6/hRZqkUyTlJSwdN5gO/HnoWYda1fD83YUm5j6m2Bg\n" +
"hAQi+QadFsQLD7R6PI/4Q0twXqlKnxU5Ug=="),
EE_ECDSA_SECT283R1(
"EC",
// SHA1withECDSA, curve sect283r1
// Validity
// Not Before: May 26 06:08:15 2020 GMT
// Not After : May 21 06:08:15 2040 GMT
// Authority Key Identifier:
// CF:A3:99:ED:4C:6E:04:41:09:21:31:33:B6:80:D5:A7:BF:2B:98:04
"-----BEGIN CERTIFICATE-----\n" +
"MIICFTCCAbOgAwIBAgIJAM0Dd9zxR9CeMAsGByqGSM49BAEFADBdMQswCQYDVQQG\n" +
"EwJVUzELMAkGA1UECBMCQ0ExCzAJBgNVBAcTAlNBMQ8wDQYDVQQKEwZPcmFjbGUx\n" +
"DzANBgNVBAsTBkpQR1NRRTESMBAGA1UEAxMJc2VjdDI4M3IxMB4XDTIwMDUyNjE4\n" +
"MDgxNVoXDTQwMDUyMTE4MDgxNVowYDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNB\n" +
"MQswCQYDVQQHEwJTQTEPMA0GA1UEChMGT3JhY2xlMQ8wDQYDVQQLEwZKUEdTUUUx\n" +
"FTATBgNVBAMMDHNlY3QyODNyMV9lZTBeMBAGByqGSM49AgEGBSuBBAARA0oABAMP\n" +
"oaMP2lIiCrNaFSePtZA8nBnqJXSGCz8kosKeYTqz/SPE1AN6BvM4xl0kPQZvJWMz\n" +
"fyTcm2Ar0PdbIh8f22vJfO+0JpfhnqNTMFEwHQYDVR0OBBYEFOzDGNWQhslU5ei4\n" +
"SYda/ro9DickMA8GA1UdEwQIMAYBAf8CAQAwHwYDVR0jBBgwFoAUz6OZ7UxuBEEJ\n" +
"ITEztoDVp78rmAQwCwYHKoZIzj0EAQUAA08AMEwCJALYBWSYdbhRiW4mNulQh6/v\n" +
"dfHG3y/oMjzJEmT/A0WYl96ohgIkAbDC0Ke632RXtCZ4xa2FrmzP41Vb80mSH1iY\n" +
"FCJ3LVoTEUgN\n" +
"-----END CERTIFICATE-----",
"MIGQAgEAMBAGByqGSM49AgEGBSuBBAARBHkwdwIBAQQkAXq9LPYU+XSrImPzgO1e\n" +
"hsgjfTBXlWGveFUtn0OHPtbp7hzpoUwDSgAEAw+how/aUiIKs1oVJ4+1kDycGeol\n" +
"dIYLPySiwp5hOrP9I8TUA3oG8zjGXSQ9Bm8lYzN/JNybYCvQ91siHx/ba8l877Qm\n" +
"l+Ge"),
EE_ECDSA_SECP256R1(
"EC",
// SHA256withECDSA, curve secp256r1

View File

@ -31,7 +31,7 @@
* jdk.jartool
* jdk.crypto.ec
* @build jdk.test.lib.util.JarUtils
* @run main/othervm -Djdk.sunec.disableNative=false Spec
* @run main/othervm Spec
*/
import com.sun.jarsigner.ContentSigner;
@ -190,7 +190,7 @@ public class Spec {
.equals("SHA256withDSA"));
kpg = KeyPairGenerator.getInstance("EC");
kpg.initialize(192);
kpg.initialize(256);
assertTrue(JarSigner.Builder
.getDefaultSignatureAlgorithm(kpg.generateKeyPair().getPrivate())
.equals("SHA256withECDSA"));
@ -198,7 +198,7 @@ public class Spec {
assertTrue(JarSigner.Builder
.getDefaultSignatureAlgorithm(kpg.generateKeyPair().getPrivate())
.equals("SHA384withECDSA"));
kpg.initialize(571);
kpg.initialize(521);
assertTrue(JarSigner.Builder
.getDefaultSignatureAlgorithm(kpg.generateKeyPair().getPrivate())
.equals("SHA512withECDSA"));

View File

@ -66,10 +66,7 @@ public class ECDSAJavaVerify {
"SHA1withECDSA", "SHA256withECDSA", "SHA384withECDSA", "SHA512withECDSA"};
static final String[] ALL_CURVES = new String[] {
"secp128r1", "secp256k1", "secp256r1", "secp384r1", "secp521r1"};
static final List<String> ALL_JAVA_CURVES
= List.of("secp256r1", "secp384r1", "secp521r1");
"secp256r1", "secp384r1", "secp521r1"};
public static void main(String[] args) throws Exception {
if (args.length == 1) {
@ -100,8 +97,7 @@ public class ECDSAJavaVerify {
= launchingConnector.defaultArguments();
arguments.get("main").setValue(ECDSAJavaVerify.class.getName());
arguments.get("options").setValue(
"-cp " + System.getProperty("test.classes") +
" -Djdk.sunec.disableNative=false");
"-cp " + System.getProperty("test.classes"));
VirtualMachine vm = launchingConnector.launch(arguments);
MethodEntryRequest req = vm.eventRequestManager()
@ -117,7 +113,7 @@ public class ECDSAJavaVerify {
int pos = 0;
for (String dummy : ALL_ALGS) {
for (String curve : ALL_CURVES) {
char caller = ALL_JAVA_CURVES.contains(curve) ? 'J' : 'N';
char caller = 'J';
// For each case, Signature::verify is called twice
expected[pos++] = caller;
expected[pos++] = caller;
@ -150,9 +146,6 @@ public class ECDSAJavaVerify {
case "verifySignedDigestImpl": // the java impl
result[pos] = expected[pos] != 'J' ? 'x' : 'v';
break;
case "verifySignedDigest": // the native impl
result[pos] = expected[pos] != 'N' ? 'x' : 'v';
break;
}
}
vm.resume();

View File

@ -36,7 +36,7 @@ import java.util.*;
* group order.
* @library /test/lib
* @build jdk.test.lib.Convert
* @run main/othervm -Djdk.sunec.disableNative=false SignatureDigestTruncate
* @run main/othervm SignatureDigestTruncate
*/
public class SignatureDigestTruncate {
@ -117,12 +117,12 @@ public class SignatureDigestTruncate {
}
public static void main(String[] args) throws Exception {
runTest("SHA384withECDSAinP1363Format", "sect283r1",
runTest("SHA384withECDSAinP1363Format", "secp256r1",
"abcdef10234567", "010203040506070809",
"000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d" +
"1e1f20212223",
"01d7544b5d3935216bd45e2f8042537e1e0296a11e0eb96666199281b409" +
"42abccd5358a035de8a314d3e6c2a97614daebf5fb1313540eec3f9a3272" +
"068aa10922ccae87d255c84c");
"d83534beccde787f9a4c6b0408337d9b9ca2e0a0259228526c15cc17a1d6" +
"4da6b34bf21b3bc4488c591d8ac9c33d93c7c6137e2ab4c503a42da7" +
"2fe0b6dda4c4");
}
}

View File

@ -48,13 +48,12 @@ import java.security.Security;
/*
* Leverage the collection of EC tests used by PKCS11
*
* NOTE: the following 6 files were copied here from the PKCS11 EC Test area
* NOTE: the following 5 files were copied here from the PKCS11 EC Test area
* and must be kept in sync with the originals:
*
* ../pkcs11/ec/p12passwords.txt
* ../pkcs11/ec/certs/sunlabscerts.pem
* ../pkcs11/ec/pkcs12/secp256r1server-secp384r1ca.p12
* ../pkcs11/ec/pkcs12/sect193r1server-rsa1024ca.p12
* ../pkcs11/sslecc/keystore
* ../pkcs11/sslecc/truststore
*/
@ -99,14 +98,21 @@ public class TestEC {
* The entry point used for each test is its instance method
* called main (not its static method called main).
*/
System.out.println("TestECDH");
new TestECDH().main(p);
System.out.println("TestECDSA");
new TestECDSA().main(p);
System.out.println("TestCurves");
new TestCurves().main(p);
System.out.println("TestKeyFactory");
new TestKeyFactory().main(p);
System.out.println("TestECGenSpec");
new TestECGenSpec().main(p);
System.out.println("ReadPKCS12");
new ReadPKCS12().main(p);
System.out.println("ReadCertificate");
new ReadCertificates().main(p);
System.out.println("ClientJSSEServerJSSE");
new ClientJSSEServerJSSE().main(p);
long stop = System.currentTimeMillis();

Binary file not shown.

View File

@ -29,9 +29,9 @@
* @library /test/lib ..
* @library ../../../../java/security/testlibrary
* @key randomness
* @modules jdk.crypto.cryptoki
* @run main/othervm -Djdk.sunec.disableNative=false ReadPKCS12
* @run main/othervm -Djdk.sunec.disableNative=false ReadPKCS12 sm policy
* @modules jdk.crypto.cryptoki jdk.crypto.ec/sun.security.ec
* @run main/othervm ReadPKCS12
* @run main/othervm ReadPKCS12 sm policy
*/
import java.io.BufferedReader;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2006, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -124,9 +124,12 @@ public class TestECDH extends PKCS11Test {
return;
}
if (getSupportedECParameterSpec("secp192r1", p).isPresent()) {
test(p, pub192a, priv192a, pub192b, priv192b, secret192);
}
if (getSupportedECParameterSpec("sect163r1", p).isPresent()) {
test(p, pub163a, priv163a, pub163b, priv163b, secret163);
}
if (getSupportedECParameterSpec("brainpoolP256r1", p).isPresent()) {
test(p, pubBrainpoolP256r1a, privBrainpoolP256r1a, pubBrainpoolP256r1b, privBrainpoolP256r1b, secretBrainpoolP256r1);
}

View File

@ -156,12 +156,14 @@ public class TestECDSA extends PKCS11Test {
return;
}
if (getNSSECC() != ECCState.Basic) {
if (getSupportedECParameterSpec("secp192r1", provider).isPresent()) {
test(provider, pub192, priv192, sig192);
}
if (getSupportedECParameterSpec("sect163r1", provider).isPresent()) {
test(provider, pub163, priv163, sig163);
}
if (getSupportedECParameterSpec("sect571r1", provider).isPresent()) {
test(provider, pub571, priv571, sig571);
} else {
System.out.println("ECC Basic only, skipping 192, 163 and 571.");
}
test(provider, pub521, priv521, sig521);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2006, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -130,17 +130,12 @@ public class TestKeyFactory extends PKCS11Test {
System.out.println("Provider does not support EC, skipping");
return;
}
int[] keyLengths = {192, 163, 409, 521};
int len = 0;
if (getNSSECC() == ECCState.Basic) {
System.out.println("NSS Basic ECC only. Skipping 192, 163, & 409");
len = 3;
}
int[] keyLengths = {256, 521};
KeyFactory kf = KeyFactory.getInstance("EC", p);
for (; keyLengths.length > len ; len++) {
System.out.println("Length "+keyLengths[len]);
for (int len : keyLengths) {
System.out.println("Length " + len);
KeyPairGenerator kpg = KeyPairGenerator.getInstance("EC", p);
kpg.initialize(keyLengths[len]);
kpg.initialize(len);
KeyPair kp = kpg.generateKeyPair();
test(kf, kp.getPrivate());
test(kf, kp.getPublic());

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -52,8 +52,6 @@ public class DKSTest {
new KeyStore.PasswordProtection("test12".toCharArray()));
put("eckeystore1",
new KeyStore.PasswordProtection("password".toCharArray()));
put("eckeystore2",
new KeyStore.PasswordProtection("password".toCharArray()));
put("truststore",
new KeyStore.PasswordProtection("changeit".toCharArray()));
put("empty",
@ -69,8 +67,6 @@ public class DKSTest {
new KeyStore.PasswordProtection("wrong".toCharArray()));
put("eckeystore1",
new KeyStore.PasswordProtection("wrong".toCharArray()));
put("eckeystore2",
new KeyStore.PasswordProtection("wrong".toCharArray()));
}};
public static void main(String[] args) throws Exception {
@ -154,7 +150,7 @@ public class DKSTest {
* domain keystore: keystores
*/
config = new URI(CONFIG + "#keystores");
expected = 2 + 1 + 1 + 1;
expected = 2 + 1 + 1;
keystore = KeyStore.getInstance("DKS");
// load entries
keystore.load(new DomainLoadStoreParameter(config, PASSWORDS));

View File

@ -25,8 +25,6 @@ domain keystores
keystoreType="CaseExactJKS"
keystoreURI="${test.src}/pw.jks";
keystore eckeystore1
keystoreURI="${test.src}/../../pkcs11/ec/pkcs12/sect193r1server-rsa1024ca.p12";
keystore eckeystore2
keystoreURI="${test.src}/../../pkcs11/ec/pkcs12/secp256r1server-secp384r1ca.p12";
};
@ -40,8 +38,6 @@ domain keystores_tmp
keystoreType="CaseExactJKS"
keystoreURI="${user.dir}/pw.jks_tmp";
keystore eckeystore1
keystoreURI="${user.dir}/sect193r1server-rsa1024ca.p12_tmp";
keystore eckeystore2
keystoreURI="${user.dir}/secp256r1server-secp384r1ca.p12_tmp";
};

View File

@ -25,10 +25,10 @@
* @test
* @bug 8246330
* @library /javax/net/ssl/templates
* @run main/othervm -Djdk.tls.namedGroups="sect283r1"
* @run main/othervm -Djdk.tls.namedGroups="secp384r1"
DisabledCurve DISABLE_NONE PASS
* @run main/othervm -Djdk.tls.namedGroups="sect283r1"
DisabledCurve sect283r1 FAIL
* @run main/othervm -Djdk.tls.namedGroups="secp384r1"
DisabledCurve secp384r1 FAIL
*/
import java.security.Security;
import java.util.Arrays;
@ -49,18 +49,18 @@ public class DisabledCurve extends SSLSocketTemplate {
protected SSLContext createClientSSLContext() throws Exception {
return createSSLContext(
new SSLSocketTemplate.Cert[] {
SSLSocketTemplate.Cert.CA_ECDSA_SECT283R1 },
SSLSocketTemplate.Cert.CA_ECDSA_SECP384R1 },
new SSLSocketTemplate.Cert[] {
SSLSocketTemplate.Cert.EE_ECDSA_SECT283R1 },
SSLSocketTemplate.Cert.EE_ECDSA_SECP384R1 },
getClientContextParameters());
}
protected SSLContext createServerSSLContext() throws Exception {
return createSSLContext(
new SSLSocketTemplate.Cert[] {
SSLSocketTemplate.Cert.CA_ECDSA_SECT283R1 },
SSLSocketTemplate.Cert.CA_ECDSA_SECP384R1 },
new SSLSocketTemplate.Cert[] {
SSLSocketTemplate.Cert.EE_ECDSA_SECT283R1 },
SSLSocketTemplate.Cert.EE_ECDSA_SECP384R1 },
getServerContextParameters());
}
@ -89,22 +89,23 @@ public class DisabledCurve extends SSLSocketTemplate {
public static void main(String[] args) throws Exception {
String expected = args[1];
String disabledName = ("DISABLE_NONE".equals(args[0]) ? "" : args[0]);
boolean disabled = false;
if (disabledName.equals("")) {
Security.setProperty("jdk.disabled.namedCurves", "");
} else {
disabled = true;
Security.setProperty("jdk.certpath.disabledAlgorithms", "secp384r1");
}
System.setProperty("jdk.sunec.disableNative", "false");
for (index = 0; index < protocols.length; index++) {
try {
(new DisabledCurve()).run();
if (expected.equals("FAIL")) {
throw new RuntimeException(
"The test case should not reach here");
"Expected test to fail, but it passed");
}
} catch (SSLException | IllegalStateException ssle) {
if ((expected.equals("FAIL"))
&& Security.getProperty("jdk.disabled.namedCurves")
.contains(disabledName)) {
if (expected.equals("FAIL") && disabled) {
System.out.println(
"Expected exception was thrown: TEST PASSED");
} else {

View File

@ -93,11 +93,6 @@ public class RestrictedAlgo {
System.out.println("\nTesting DSA Keysize: DSA keySize < 1024\n");
test("DSA", "SHA256withDSA", "KeySizeDSA", "SHA256", true,
"-keysize", "512");
System.out.println("\nTesting Native Curve:"
+ " include jdk.disabled.namedCurves\n");
test("EC", "SHA256withECDSA", "curve", "SHA256", true,
"-groupname", "secp112r1");
}
private static void test(String keyAlg, String sigAlg, String aliasPrefix,
@ -123,8 +118,7 @@ public class RestrictedAlgo {
"-ext", "bc:c",
"-keyalg", keyAlg,
"-sigalg", sigAlg,
"-alias", alias,
"-J-Djdk.sunec.disableNative=false");
"-alias", alias);
for (String additionalCMDArg : additionalCmdArgs) {
cmd.add(additionalCMDArg);
}
@ -147,8 +141,7 @@ public class RestrictedAlgo {
"-digestalg", digestAlg,
"-signedjar", SIGNED_JARFILE,
UNSIGNED_JARFILE,
alias,
"-J-Djdk.sunec.disableNative=false");
alias);
OutputAnalyzer analyzer = SecurityTools.jarsigner(cmd)
.shouldHaveExitValue(0);
@ -162,8 +155,7 @@ public class RestrictedAlgo {
System.out.println("\nTesting JarSigner Verification\n");
List<String> cmd = prepareCommand(
"-verify",
SIGNED_JARFILE,
"-J-Djdk.sunec.disableNative=false");
SIGNED_JARFILE);
OutputAnalyzer analyzer = SecurityTools.jarsigner(cmd)
.shouldHaveExitValue(0);

View File

@ -65,11 +65,6 @@ public class GroupName {
.shouldNotContain("Specifying -keysize for generating EC keys is deprecated");
checkCurveName("e", "secp256r1");
gen("f", "-J-Djdk.sunec.disableNative=false -keyalg EC -groupname brainpoolP256r1")
.shouldHaveExitValue(0)
.shouldNotContain("Specifying -keysize for generating EC keys is deprecated");
checkCurveName("f", "brainpoolP256r1");
kt("-list -v")
.shouldHaveExitValue(0)
.shouldContain("Subject Public Key Algorithm: 256-bit EC (secp256r1) key");

View File

@ -41,10 +41,6 @@ public class KeyAlg {
keytool("-printcert -file user.crt")
.shouldMatch("Signature algorithm name:.*SHA1withECDSA")
.shouldMatch("Subject Public Key Algorithm:.*1024.*RSA");
keytool("-genkeypair -alias e -dname CN=e " +
"-J-Djdk.sunec.disableNative=false -keyalg EC " +
"-groupname brainpoolP256r1")
.shouldContain("Generating 256 bit EC (brainpoolP256r1) key pair");
keytool("-genkeypair -alias f -dname CN=f -keyalg EC")
.shouldContain("Generating 256 bit EC (secp256r1) key pair");
keytool("-genkeypair -alias g -dname CN=g -keyalg EC -keysize 384")

View File

@ -55,11 +55,9 @@ public class DefaultSignatureAlgorithm {
check("DSA", 1024, null, "SHA256withDSA");
check("DSA", 3072, null, "SHA256withDSA");
check("EC", 192, null, "SHA256withECDSA");
check("EC", 384, null, "SHA384withECDSA");
check("EC", 571, null, "SHA512withECDSA");
check("EC", 571, "SHA256withECDSA", "SHA256withECDSA");
check("EC", 384, "SHA256withECDSA", "SHA256withECDSA");
}
private static void check(String keyAlg, int keySize,
@ -82,8 +80,7 @@ public class DefaultSignatureAlgorithm {
static OutputAnalyzer genkeypair(String alias, String options)
throws Exception {
String patchArg = "-J-Djdk.sunec.disableNative=false " +
"-J--patch-module=java.base="
String patchArg = "-J--patch-module=java.base="
+ System.getProperty("test.classes")
+ File.separator + "patches" + File.separator + "java.base"
+ " -J--patch-module=jdk.crypto.ec="

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2019, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -58,14 +58,6 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
public KeyPair generateKeyPair() {
BigInteger s, x, y;
switch (keySize) {
case 192:
s = new BigInteger("144089953963995451666433763881605261867377"
+ "0287449914970417");
x = new BigInteger("527580219290493448707803038403444129676461"
+ "560927008883862");
y = new BigInteger("171489247081620145247240656640887886126295"
+ "376102134763235");
break;
case 384:
s = new BigInteger("230878276322370828604837367594276033697165"
+ "328633328282930557390817326627704675451851870430805"
@ -77,22 +69,10 @@ public final class ECKeyPairGenerator extends KeyPairGeneratorSpi {
+ "792287657810480793861620950159864617021540168828129"
+ "97920015041145259782242");
break;
case 571:
s = new BigInteger("102950007413729156017516513076331886543538"
+ "947044937190140406420556321983301533699021909556189"
+ "150601557539520495361099574425100081169640300555562"
+ "4280643194744140660275077121");
x = new BigInteger("640598847385582251482893323029655037929442"
+ "593800810090252942944624854811134311418807076811195"
+ "132373308708007447666896675761104237802118413642543"
+ "8277858107132017492037336593");
y = new BigInteger("254271270803422773271985083014247202480077"
+ "131823713050110789460550383275777195766342550786766"
+ "080401402424961690914429074822281551140068729472439"
+ "477216613432839953714415981");
break;
default:
throw new AssertionError("Unsupported keysize " + keySize);
throw new AssertionError("SunEC ECKeyPairGenerator" +
"has been patched. Key size " + keySize +
" is not supported");
}
ECParameterSpec ecParams = ECUtil.getECParameterSpec(null, keySize);
try {