7059047: EA: can't find initializing store with several CheckCastPP

Split adjust_escape_state() method into two methods to find initializing stores.

Reviewed-by: never
This commit is contained in:
Vladimir Kozlov 2011-11-07 14:33:57 -08:00
parent 93fbade63d
commit 0bc2963b7d
2 changed files with 217 additions and 175 deletions

View File

@ -378,16 +378,17 @@ void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
// whose offset matches "offset". // whose offset matches "offset".
void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) { void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
PointsToNode* an = ptnode_adr(adr_i); PointsToNode* an = ptnode_adr(adr_i);
bool is_alloc = an->_node->is_Allocate();
for (uint fe = 0; fe < an->edge_count(); fe++) { for (uint fe = 0; fe < an->edge_count(); fe++) {
assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge"); assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an->edge_target(fe); int fi = an->edge_target(fe);
PointsToNode* pf = ptnode_adr(fi); PointsToNode* pf = ptnode_adr(fi);
int po = pf->offset(); int offset = pf->offset();
if (pf->edge_count() == 0) { if (!is_alloc) {
// we have not seen any stores to this field, assume it was set outside this method // Assume the field was set outside this method if it is not Allocation
add_pointsto_edge(fi, _phantom_object); add_pointsto_edge(fi, _phantom_object);
} }
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) { if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
add_deferred_edge(from_i, fi); add_deferred_edge(from_i, fi);
} }
} }
@ -1041,7 +1042,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
PointsToNode::EscapeState es = escape_state(alloc); PointsToNode::EscapeState es = escape_state(alloc);
// We have an allocation or call which returns a Java object, // We have an allocation or call which returns a Java object,
// see if it is unescaped. // see if it is unescaped.
if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable) if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
continue; continue;
// Find CheckCastPP for the allocate or for the return value of a call // Find CheckCastPP for the allocate or for the return value of a call
@ -1090,7 +1091,7 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
// so it could be eliminated. // so it could be eliminated.
alloc->as_Allocate()->_is_scalar_replaceable = true; alloc->as_Allocate()->_is_scalar_replaceable = true;
} }
set_escape_state(n->_idx, es); set_escape_state(n->_idx, es); // CheckCastPP escape state
// in order for an object to be scalar-replaceable, it must be: // in order for an object to be scalar-replaceable, it must be:
// - a direct allocation (not a call returning an object) // - a direct allocation (not a call returning an object)
// - non-escaping // - non-escaping
@ -1102,15 +1103,14 @@ void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist)
set_map(n->_idx, alloc); set_map(n->_idx, alloc);
const TypeOopPtr *t = igvn->type(n)->isa_oopptr(); const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
if (t == NULL) if (t == NULL)
continue; // not a TypeInstPtr continue; // not a TypeOopPtr
tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni); tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
igvn->hash_delete(n); igvn->hash_delete(n);
igvn->set_type(n, tinst); igvn->set_type(n, tinst);
n->raise_bottom_type(tinst); n->raise_bottom_type(tinst);
igvn->hash_insert(n); igvn->hash_insert(n);
record_for_optimizer(n); record_for_optimizer(n);
if (alloc->is_Allocate() && ptn->_scalar_replaceable && if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
(t->isa_instptr() || t->isa_aryptr())) {
// First, put on the worklist all Field edges from Connection Graph // First, put on the worklist all Field edges from Connection Graph
// which is more accurate then putting immediate users from Ideal Graph. // which is more accurate then putting immediate users from Ideal Graph.
@ -1538,7 +1538,8 @@ bool ConnectionGraph::compute_escape() {
worklist_init.push(C->root()); worklist_init.push(C->root());
} }
GrowableArray<int> cg_worklist; GrowableArray<Node*> alloc_worklist;
GrowableArray<Node*> addp_worklist;
PhaseGVN* igvn = _igvn; PhaseGVN* igvn = _igvn;
bool has_allocations = false; bool has_allocations = false;
@ -1551,11 +1552,13 @@ bool ConnectionGraph::compute_escape() {
if (n->is_Allocate() || n->is_CallStaticJava() && if (n->is_Allocate() || n->is_CallStaticJava() &&
ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) { ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
has_allocations = true; has_allocations = true;
if (n->is_Allocate())
alloc_worklist.append(n);
} }
if(n->is_AddP()) { if(n->is_AddP()) {
// Collect address nodes. Use them during stage 3 below // Collect address nodes. Use them during stage 3 below
// to build initial connection graph field edges. // to build initial connection graph field edges.
cg_worklist.append(n->_idx); addp_worklist.append(n);
} else if (n->is_MergeMem()) { } else if (n->is_MergeMem()) {
// Collect all MergeMem nodes to add memory slices for // Collect all MergeMem nodes to add memory slices for
// scalar replaceable objects in split_unique_types(). // scalar replaceable objects in split_unique_types().
@ -1581,10 +1584,9 @@ bool ConnectionGraph::compute_escape() {
// 3. Pass to create initial fields edges (JavaObject -F-> AddP) // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
// to reduce number of iterations during stage 4 below. // to reduce number of iterations during stage 4 below.
uint cg_length = cg_worklist.length(); uint addp_length = addp_worklist.length();
for( uint next = 0; next < cg_length; ++next ) { for( uint next = 0; next < addp_length; ++next ) {
int ni = cg_worklist.at(next); Node* n = addp_worklist.at(next);
Node* n = ptnode_adr(ni)->_node;
Node* base = get_addp_base(n); Node* base = get_addp_base(n);
if (base->is_Proj()) if (base->is_Proj())
base = base->in(0); base = base->in(0);
@ -1594,7 +1596,7 @@ bool ConnectionGraph::compute_escape() {
} }
} }
cg_worklist.clear(); GrowableArray<int> cg_worklist;
cg_worklist.append(_phantom_object); cg_worklist.append(_phantom_object);
GrowableArray<uint> worklist; GrowableArray<uint> worklist;
@ -1653,73 +1655,44 @@ bool ConnectionGraph::compute_escape() {
Arena* arena = Thread::current()->resource_area(); Arena* arena = Thread::current()->resource_area();
VectorSet visited(arena); VectorSet visited(arena);
// 5. Find fields initializing values for not escaped allocations
uint alloc_length = alloc_worklist.length();
for (uint next = 0; next < alloc_length; ++next) {
Node* n = alloc_worklist.at(next);
if (ptnode_adr(n->_idx)->escape_state() == PointsToNode::NoEscape) {
find_init_values(n, &visited, igvn);
}
}
worklist.clear(); worklist.clear();
// 5. Remove deferred edges from the graph and adjust // 6. Remove deferred edges from the graph.
// escape state of nonescaping objects. uint cg_length = cg_worklist.length();
cg_length = cg_worklist.length(); for (uint next = 0; next < cg_length; ++next) {
for( uint next = 0; next < cg_length; ++next ) {
int ni = cg_worklist.at(next); int ni = cg_worklist.at(next);
PointsToNode* ptn = ptnode_adr(ni); PointsToNode* ptn = ptnode_adr(ni);
PointsToNode::NodeType nt = ptn->node_type(); PointsToNode::NodeType nt = ptn->node_type();
if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) { if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
remove_deferred(ni, &worklist, &visited); remove_deferred(ni, &worklist, &visited);
Node *n = ptn->_node; Node *n = ptn->_node;
if (n->is_AddP()) {
// Search for objects which are not scalar replaceable
// and adjust their escape state.
adjust_escape_state(ni, igvn);
}
} }
} }
// 6. Propagate escape states. // 7. Adjust escape state of nonescaping objects.
for (uint next = 0; next < addp_length; ++next) {
Node* n = addp_worklist.at(next);
adjust_escape_state(n);
}
// 8. Propagate escape states.
worklist.clear(); worklist.clear();
bool has_non_escaping_obj = false;
// push all GlobalEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
worklist.push(nk);
}
// mark all nodes reachable from GlobalEscape nodes // mark all nodes reachable from GlobalEscape nodes
while(worklist.length() > 0) { (void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
PointsToNode* ptn = ptnode_adr(worklist.pop());
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::GlobalEscape) {
set_escape_state(npi, PointsToNode::GlobalEscape);
worklist.push(npi);
}
}
}
// push all ArgEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) {
int nk = cg_worklist.at(next);
if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
worklist.push(nk);
}
// mark all nodes reachable from ArgEscape nodes // mark all nodes reachable from ArgEscape nodes
while(worklist.length() > 0) { bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
PointsToNode* ptn = ptnode_adr(worklist.pop());
if (ptn->node_type() == PointsToNode::JavaObject)
has_non_escaping_obj = true; // Non GlobalEscape
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::ArgEscape) {
set_escape_state(npi, PointsToNode::ArgEscape);
worklist.push(npi);
}
}
}
GrowableArray<Node*> alloc_worklist;
// push all NoEscape nodes on the worklist // push all NoEscape nodes on the worklist
for( uint next = 0; next < cg_length; ++next ) { for( uint next = 0; next < cg_length; ++next ) {
@ -1727,6 +1700,7 @@ bool ConnectionGraph::compute_escape() {
if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape) if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
worklist.push(nk); worklist.push(nk);
} }
alloc_worklist.clear();
// mark all nodes reachable from NoEscape nodes // mark all nodes reachable from NoEscape nodes
while(worklist.length() > 0) { while(worklist.length() > 0) {
uint nk = worklist.pop(); uint nk = worklist.pop();
@ -1735,9 +1709,11 @@ bool ConnectionGraph::compute_escape() {
!(nk == _noop_null || nk == _oop_null)) !(nk == _noop_null || nk == _oop_null))
has_non_escaping_obj = true; // Non Escape has_non_escaping_obj = true; // Non Escape
Node* n = ptn->_node; Node* n = ptn->_node;
if (n->is_Allocate() && ptn->_scalar_replaceable ) { bool scalar_replaceable = ptn->scalar_replaceable();
if (n->is_Allocate() && scalar_replaceable) {
// Push scalar replaceable allocations on alloc_worklist // Push scalar replaceable allocations on alloc_worklist
// for processing in split_unique_types(). // for processing in split_unique_types(). Note,
// following code may change scalar_replaceable value.
alloc_worklist.append(n); alloc_worklist.append(n);
} }
uint e_cnt = ptn->edge_count(); uint e_cnt = ptn->edge_count();
@ -1746,6 +1722,13 @@ bool ConnectionGraph::compute_escape() {
PointsToNode *np = ptnode_adr(npi); PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < PointsToNode::NoEscape) { if (np->escape_state() < PointsToNode::NoEscape) {
set_escape_state(npi, PointsToNode::NoEscape); set_escape_state(npi, PointsToNode::NoEscape);
if (!scalar_replaceable) {
np->set_scalar_replaceable(false);
}
worklist.push(npi);
} else if (np->scalar_replaceable() && !scalar_replaceable) {
// Propagate scalar_replaceable value.
np->set_scalar_replaceable(false);
worklist.push(npi); worklist.push(npi);
} }
} }
@ -1759,7 +1742,7 @@ bool ConnectionGraph::compute_escape() {
assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity"); assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
} }
if (EliminateLocks) { if (EliminateLocks && has_non_escaping_obj) {
// Mark locks before changing ideal graph. // Mark locks before changing ideal graph.
int cnt = C->macro_count(); int cnt = C->macro_count();
for( int i=0; i < cnt; i++ ) { for( int i=0; i < cnt; i++ ) {
@ -1784,7 +1767,18 @@ bool ConnectionGraph::compute_escape() {
} }
#endif #endif
bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0; bool has_scalar_replaceable_candidates = false;
alloc_length = alloc_worklist.length();
for (uint next = 0; next < alloc_length; ++next) {
Node* n = alloc_worklist.at(next);
PointsToNode* ptn = ptnode_adr(n->_idx);
assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
if (ptn->scalar_replaceable()) {
has_scalar_replaceable_candidates = true;
break;
}
}
if ( has_scalar_replaceable_candidates && if ( has_scalar_replaceable_candidates &&
C->AliasLevel() >= 3 && EliminateAllocations ) { C->AliasLevel() >= 3 && EliminateAllocations ) {
@ -1813,53 +1807,32 @@ bool ConnectionGraph::compute_escape() {
return has_non_escaping_obj; return has_non_escaping_obj;
} }
// Adjust escape state after Connection Graph is built. // Find fields initializing values for allocations.
void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) { void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
PointsToNode* ptn = ptnode_adr(nidx); assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
Node* n = ptn->_node; PointsToNode* pta = ptnode_adr(alloc->_idx);
assert(n->is_AddP(), "Should be called for AddP nodes only"); assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
// Search for objects which are not scalar replaceable. InitializeNode* ini = alloc->as_Allocate()->initialization();
// Mark their escape state as ArgEscape to propagate the state
// to referenced objects.
// Note: currently there are no difference in compiler optimizations
// for ArgEscape objects and NoEscape objects which are not
// scalar replaceable.
Compile* C = _compile; Compile* C = _compile;
visited->Reset();
int offset = ptn->offset();
Node* base = get_addp_base(n);
VectorSet* ptset = PointsTo(base);
int ptset_size = ptset->Size();
// Check if a oop field's initializing value is recorded and add // Check if a oop field's initializing value is recorded and add
// a corresponding NULL field's value if it is not recorded. // a corresponding NULL field's value if it is not recorded.
// Connection Graph does not record a default initialization by NULL // Connection Graph does not record a default initialization by NULL
// captured by Initialize node. // captured by Initialize node.
// //
// Note: it will disable scalar replacement in some cases: uint ae_cnt = pta->edge_count();
// for (uint ei = 0; ei < ae_cnt; ei++) {
// Point p[] = new Point[1]; uint nidx = pta->edge_target(ei); // Field (AddP)
// p[0] = new Point(); // Will be not scalar replaced PointsToNode* ptn = ptnode_adr(nidx);
// assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
// but it will save us from incorrect optimizations in next cases: int offset = ptn->offset();
// if (offset != Type::OffsetBot &&
// Point p[] = new Point[1]; offset != oopDesc::klass_offset_in_bytes() &&
// if ( x ) p[0] = new Point(); // Will be not scalar replaced !visited->test_set(offset)) {
//
// Do a simple control flow analysis to distinguish above cases.
//
if (offset != Type::OffsetBot && ptset_size == 1) {
uint elem = ptset->getelem(); // Allocation node's index
// It does not matter if it is not Allocation node since
// only non-escaping allocations are scalar replaced.
if (ptnode_adr(elem)->_node->is_Allocate() &&
ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
InitializeNode* ini = alloc->initialization();
// Check only oop fields. // Check only oop fields.
const Type* adr_type = n->as_AddP()->bottom_type(); const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
BasicType basic_field_type = T_INT; BasicType basic_field_type = T_INT;
if (adr_type->isa_instptr()) { if (adr_type->isa_instptr()) {
ciField* field = C->alias_type(adr_type->isa_instptr())->field(); ciField* field = C->alias_type(adr_type->isa_instptr())->field();
@ -1869,12 +1842,20 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// Ignore non field load (for example, klass load) // Ignore non field load (for example, klass load)
} }
} else if (adr_type->isa_aryptr()) { } else if (adr_type->isa_aryptr()) {
const Type* elemtype = adr_type->isa_aryptr()->elem(); if (offset != arrayOopDesc::length_offset_in_bytes()) {
basic_field_type = elemtype->array_element_basic_type(); const Type* elemtype = adr_type->isa_aryptr()->elem();
basic_field_type = elemtype->array_element_basic_type();
} else {
// Ignore array length load
}
#ifdef ASSERT
} else { } else {
// Raw pointers are used for initializing stores so skip it. // Raw pointers are used for initializing stores so skip it
// since it should be recorded already
Node* base = get_addp_base(ptn->_node);
assert(adr_type->isa_rawptr() && base->is_Proj() && assert(adr_type->isa_rawptr() && base->is_Proj() &&
(base->in(0) == alloc),"unexpected pointer type"); (base->in(0) == alloc),"unexpected pointer type");
#endif
} }
if (basic_field_type == T_OBJECT || if (basic_field_type == T_OBJECT ||
basic_field_type == T_NARROWOOP || basic_field_type == T_NARROWOOP ||
@ -1889,18 +1870,33 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// Check for a store which follows allocation without branches. // Check for a store which follows allocation without branches.
// For example, a volatile field store is not collected // For example, a volatile field store is not collected
// by Initialize node. TODO: it would be nice to use idom() here. // by Initialize node. TODO: it would be nice to use idom() here.
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { //
store = n->fast_out(i); // Search all references to the same field which use different
if (store->is_Store() && store->in(0) != NULL) { // AddP nodes, for example, in the next case:
Node* ctrl = store->in(0); //
while(!(ctrl == ini || ctrl == alloc || ctrl == NULL || // Point p[] = new Point[1];
ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() || // if ( x ) { p[0] = new Point(); p[0].x = x; }
ctrl->is_IfTrue() || ctrl->is_IfFalse())) { // if ( p[0] != null ) { y = p[0].x; } // has CastPP
ctrl = ctrl->in(0); //
} for (uint next = ei; (next < ae_cnt) && (value == NULL); next++) {
if (ctrl == ini || ctrl == alloc) { uint fpi = pta->edge_target(next); // Field (AddP)
value = store->in(MemNode::ValueIn); PointsToNode *ptf = ptnode_adr(fpi);
break; if (ptf->offset() == offset) {
Node* nf = ptf->_node;
for (DUIterator_Fast imax, i = nf->fast_outs(imax); i < imax; i++) {
store = nf->fast_out(i);
if (store->is_Store() && store->in(0) != NULL) {
Node* ctrl = store->in(0);
while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
ctrl = ctrl->in(0);
}
if (ctrl == ini || ctrl == alloc) {
value = store->in(MemNode::ValueIn);
break;
}
}
} }
} }
} }
@ -1909,21 +1905,35 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
if (value == NULL || value != ptnode_adr(value->_idx)->_node) { if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
// A field's initializing value was not recorded. Add NULL. // A field's initializing value was not recorded. Add NULL.
uint null_idx = UseCompressedOops ? _noop_null : _oop_null; uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
add_pointsto_edge(nidx, null_idx); add_edge_from_fields(alloc->_idx, null_idx, offset);
} }
} }
} }
} }
}
// Adjust escape state after Connection Graph is built.
void ConnectionGraph::adjust_escape_state(Node* n) {
PointsToNode* ptn = ptnode_adr(n->_idx);
assert(n->is_AddP(), "Should be called for AddP nodes only");
// Search for objects which are not scalar replaceable
// and mark them to propagate the state to referenced objects.
//
int offset = ptn->offset();
Node* base = get_addp_base(n);
VectorSet* ptset = PointsTo(base);
int ptset_size = ptset->Size();
// An object is not scalar replaceable if the field which may point // An object is not scalar replaceable if the field which may point
// to it has unknown offset (unknown element of an array of objects). // to it has unknown offset (unknown element of an array of objects).
// //
if (offset == Type::OffsetBot) { if (offset == Type::OffsetBot) {
uint e_cnt = ptn->edge_count(); uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) { for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei); uint npi = ptn->edge_target(ei);
set_escape_state(npi, PointsToNode::ArgEscape); ptnode_adr(npi)->set_scalar_replaceable(false);
ptnode_adr(npi)->_scalar_replaceable = false;
} }
} }
@ -1942,20 +1952,62 @@ void ConnectionGraph::adjust_escape_state(int nidx, PhaseTransform* phase) {
// to unknown field (unknown element for arrays, offset is OffsetBot). // to unknown field (unknown element for arrays, offset is OffsetBot).
// //
// Or the address may point to more then one object. This may produce // Or the address may point to more then one object. This may produce
// the false positive result (set scalar_replaceable to false) // the false positive result (set not scalar replaceable)
// since the flow-insensitive escape analysis can't separate // since the flow-insensitive escape analysis can't separate
// the case when stores overwrite the field's value from the case // the case when stores overwrite the field's value from the case
// when stores happened on different control branches. // when stores happened on different control branches.
// //
// Note: it will disable scalar replacement in some cases:
//
// Point p[] = new Point[1];
// p[0] = new Point(); // Will be not scalar replaced
//
// but it will save us from incorrect optimizations in next cases:
//
// Point p[] = new Point[1];
// if ( x ) p[0] = new Point(); // Will be not scalar replaced
//
if (ptset_size > 1 || ptset_size != 0 && if (ptset_size > 1 || ptset_size != 0 &&
(has_LoadStore || offset == Type::OffsetBot)) { (has_LoadStore || offset == Type::OffsetBot)) {
for( VectorSetI j(ptset); j.test(); ++j ) { for( VectorSetI j(ptset); j.test(); ++j ) {
set_escape_state(j.elem, PointsToNode::ArgEscape); ptnode_adr(j.elem)->set_scalar_replaceable(false);
ptnode_adr(j.elem)->_scalar_replaceable = false;
} }
} }
} }
// Propagate escape states to referenced nodes.
bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
GrowableArray<uint>* worklist,
PointsToNode::EscapeState esc_state) {
bool has_java_obj = false;
// push all nodes with the same escape state on the worklist
uint cg_length = cg_worklist->length();
for (uint next = 0; next < cg_length; ++next) {
int nk = cg_worklist->at(next);
if (ptnode_adr(nk)->escape_state() == esc_state)
worklist->push(nk);
}
// mark all reachable nodes
while (worklist->length() > 0) {
PointsToNode* ptn = ptnode_adr(worklist->pop());
if (ptn->node_type() == PointsToNode::JavaObject) {
has_java_obj = true;
}
uint e_cnt = ptn->edge_count();
for (uint ei = 0; ei < e_cnt; ei++) {
uint npi = ptn->edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() < esc_state) {
set_escape_state(npi, esc_state);
worklist->push(npi);
}
}
}
// Has not escaping java objects
return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
}
void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) { void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
switch (call->Opcode()) { switch (call->Opcode()) {
@ -2112,6 +2164,7 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
} else { } else {
es = PointsToNode::NoEscape; es = PointsToNode::NoEscape;
edge_to = call_idx; edge_to = call_idx;
assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
} }
set_escape_state(call_idx, es); set_escape_state(call_idx, es);
add_pointsto_edge(resproj_idx, edge_to); add_pointsto_edge(resproj_idx, edge_to);
@ -2135,10 +2188,11 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
} else { } else {
es = PointsToNode::NoEscape; es = PointsToNode::NoEscape;
edge_to = call_idx; edge_to = call_idx;
assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
int length = call->in(AllocateNode::ALength)->find_int_con(-1); int length = call->in(AllocateNode::ALength)->find_int_con(-1);
if (length < 0 || length > EliminateAllocationArraySizeLimit) { if (length < 0 || length > EliminateAllocationArraySizeLimit) {
// Not scalar replaceable if the length is not constant or too big. // Not scalar replaceable if the length is not constant or too big.
ptnode_adr(call_idx)->_scalar_replaceable = false; ptnode_adr(call_idx)->set_scalar_replaceable(false);
} }
} }
set_escape_state(call_idx, es); set_escape_state(call_idx, es);
@ -2180,11 +2234,12 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
// Mark it as NoEscape so that objects referenced by // Mark it as NoEscape so that objects referenced by
// it's fields will be marked as NoEscape at least. // it's fields will be marked as NoEscape at least.
set_escape_state(call_idx, PointsToNode::NoEscape); set_escape_state(call_idx, PointsToNode::NoEscape);
ptnode_adr(call_idx)->set_scalar_replaceable(false);
add_pointsto_edge(resproj_idx, call_idx); add_pointsto_edge(resproj_idx, call_idx);
copy_dependencies = true; copy_dependencies = true;
} else if (call_analyzer->is_return_local()) { } else if (call_analyzer->is_return_local()) {
// determine whether any arguments are returned // determine whether any arguments are returned
set_escape_state(call_idx, PointsToNode::NoEscape); set_escape_state(call_idx, PointsToNode::ArgEscape);
bool ret_arg = false; bool ret_arg = false;
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i); const Type* at = d->field_at(i);
@ -2201,7 +2256,6 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
add_pointsto_edge(resproj_idx, arg->_idx); add_pointsto_edge(resproj_idx, arg->_idx);
else else
add_deferred_edge(resproj_idx, arg->_idx); add_deferred_edge(resproj_idx, arg->_idx);
arg_esp->_hidden_alias = true;
} }
} }
} }
@ -2210,18 +2264,12 @@ void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *pha
set_escape_state(call_idx, PointsToNode::GlobalEscape); set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object); add_pointsto_edge(resproj_idx, _phantom_object);
} }
copy_dependencies = true; if (done) {
copy_dependencies = true;
}
} else { } else {
set_escape_state(call_idx, PointsToNode::GlobalEscape); set_escape_state(call_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj_idx, _phantom_object); add_pointsto_edge(resproj_idx, _phantom_object);
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
if (at->isa_oopptr() != NULL) {
Node *arg = call->in(i)->uncast();
PointsToNode *arg_esp = ptnode_adr(arg->_idx);
arg_esp->_hidden_alias = true;
}
}
} }
if (copy_dependencies) if (copy_dependencies)
call_analyzer->copy_dependencies(_compile->dependencies()); call_analyzer->copy_dependencies(_compile->dependencies());

View File

@ -74,7 +74,7 @@
// C2 does not have local variables. However for the purposes of constructing // C2 does not have local variables. However for the purposes of constructing
// the connection graph, the following IR nodes are treated as local variables: // the connection graph, the following IR nodes are treated as local variables:
// Phi (pointer values) // Phi (pointer values)
// LoadP // LoadP, LoadN
// Proj#5 (value returned from callnodes including allocations) // Proj#5 (value returned from callnodes including allocations)
// CheckCastPP, CastPP // CheckCastPP, CastPP
// //
@ -84,7 +84,7 @@
// //
// The following node types are JavaObject: // The following node types are JavaObject:
// //
// top() // phantom_object (general globally escaped object)
// Allocate // Allocate
// AllocateArray // AllocateArray
// Parm (for incoming arguments) // Parm (for incoming arguments)
@ -93,6 +93,7 @@
// ConP // ConP
// LoadKlass // LoadKlass
// ThreadLocal // ThreadLocal
// CallStaticJava (which returns Object)
// //
// AddP nodes are fields. // AddP nodes are fields.
// //
@ -130,10 +131,12 @@ public:
typedef enum { typedef enum {
UnknownEscape = 0, UnknownEscape = 0,
NoEscape = 1, // A scalar replaceable object with unique type. NoEscape = 1, // An object does not escape method or thread and it is
ArgEscape = 2, // An object passed as argument or referenced by // not passed to call. It could be replaced with scalar.
// argument (and not globally escape during call). ArgEscape = 2, // An object does not escape method or thread but it is
GlobalEscape = 3 // An object escapes the method and thread. // passed as argument to call or referenced by argument
// and it does not escape during call.
GlobalEscape = 3 // An object escapes the method or thread.
} EscapeState; } EscapeState;
typedef enum { typedef enum {
@ -153,28 +156,25 @@ private:
NodeType _type; NodeType _type;
EscapeState _escape; EscapeState _escape;
GrowableArray<uint>* _edges; // outgoing edges GrowableArray<uint>* _edges; // outgoing edges
Node* _node; // Ideal node corresponding to this PointsTo node.
int _offset; // Object fields offsets.
bool _scalar_replaceable; // Not escaped object could be replaced with scalar
public: public:
Node* _node; // Ideal node corresponding to this PointsTo node.
int _offset; // Object fields offsets.
bool _scalar_replaceable;// Not escaped object could be replaced with scalar
bool _hidden_alias; // This node is an argument to a function.
// which may return it creating a hidden alias.
PointsToNode(): PointsToNode():
_type(UnknownType), _type(UnknownType),
_escape(UnknownEscape), _escape(UnknownEscape),
_edges(NULL), _edges(NULL),
_node(NULL), _node(NULL),
_offset(-1), _offset(-1),
_scalar_replaceable(true), _scalar_replaceable(true) {}
_hidden_alias(false) {}
EscapeState escape_state() const { return _escape; } EscapeState escape_state() const { return _escape; }
NodeType node_type() const { return _type;} NodeType node_type() const { return _type;}
int offset() { return _offset;} int offset() { return _offset;}
bool scalar_replaceable() { return _scalar_replaceable;}
void set_offset(int offs) { _offset = offs;} void set_offset(int offs) { _offset = offs;}
void set_escape_state(EscapeState state) { _escape = state; } void set_escape_state(EscapeState state) { _escape = state; }
@ -182,6 +182,7 @@ public:
assert(_type == UnknownType || _type == ntype, "Can't change node type"); assert(_type == UnknownType || _type == ntype, "Can't change node type");
_type = ntype; _type = ntype;
} }
void set_scalar_replaceable(bool v) { _scalar_replaceable = v; }
// count of outgoing edges // count of outgoing edges
uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); } uint edge_count() const { return (_edges == NULL) ? 0 : _edges->length(); }
@ -233,8 +234,8 @@ private:
// that pointer values loaded from // that pointer values loaded from
// a field which has not been set // a field which has not been set
// are assumed to point to. // are assumed to point to.
uint _oop_null; // ConP(#NULL) uint _oop_null; // ConP(#NULL)->_idx
uint _noop_null; // ConN(#NULL) uint _noop_null; // ConN(#NULL)->_idx
Compile * _compile; // Compile object for current compilation Compile * _compile; // Compile object for current compilation
PhaseIterGVN * _igvn; // Value numbering PhaseIterGVN * _igvn; // Value numbering
@ -339,8 +340,16 @@ private:
// Set the escape state of a node // Set the escape state of a node
void set_escape_state(uint ni, PointsToNode::EscapeState es); void set_escape_state(uint ni, PointsToNode::EscapeState es);
// Find fields initializing values for allocations.
void find_init_values(Node* n, VectorSet* visited, PhaseTransform* phase);
// Adjust escape state after Connection Graph is built. // Adjust escape state after Connection Graph is built.
void adjust_escape_state(int nidx, PhaseTransform* phase); void adjust_escape_state(Node* n);
// Propagate escape states to referenced nodes.
bool propagate_escape_state(GrowableArray<int>* cg_worklist,
GrowableArray<uint>* worklist,
PointsToNode::EscapeState esc_state);
// Compute the escape information // Compute the escape information
bool compute_escape(); bool compute_escape();
@ -357,21 +366,6 @@ public:
// escape state of a node // escape state of a node
PointsToNode::EscapeState escape_state(Node *n); PointsToNode::EscapeState escape_state(Node *n);
// other information we have collected
bool is_scalar_replaceable(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return false;
PointsToNode* ptn = ptnode_adr(n->_idx);
return ptn->escape_state() == PointsToNode::NoEscape && ptn->_scalar_replaceable;
}
bool hidden_alias(Node *n) {
if (_collecting || (n->_idx >= nodes_size()))
return true;
PointsToNode* ptn = ptnode_adr(n->_idx);
return (ptn->escape_state() != PointsToNode::NoEscape) || ptn->_hidden_alias;
}
#ifndef PRODUCT #ifndef PRODUCT
void dump(); void dump();
#endif #endif