6899694: Dual-pivot quicksort improvements
Co-authored-by: Joshua Bloch <joshua.bloch@google.com> Reviewed-by: jjb
This commit is contained in:
parent
a5e7fb4543
commit
0d83336729
@ -57,51 +57,14 @@ public class Arrays {
|
||||
// Suppresses default constructor, ensuring non-instantiability.
|
||||
private Arrays() {}
|
||||
|
||||
// Sorting
|
||||
/*
|
||||
* Sorting of primitive type arrays.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(long[] a) {
|
||||
sort(a, 0, a.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(long[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
@ -110,37 +73,76 @@ public class Arrays {
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(int[] a) {
|
||||
sort(a, 0, a.length);
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(int[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(long[] a) {
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(long[] a, int fromIndex, int toIndex) {
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
@ -149,37 +151,37 @@ public class Arrays {
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(short[] a) {
|
||||
sort(a, 0, a.length);
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(short[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
@ -188,37 +190,37 @@ public class Arrays {
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(char[] a) {
|
||||
sort(a, 0, a.length);
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(char[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
@ -227,160 +229,45 @@ public class Arrays {
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(byte[] a) {
|
||||
sort(a, 0, a.length);
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(byte[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>The {@code <} relation does not provide a total order on
|
||||
* all floating-point values; although they are distinct numbers
|
||||
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
|
||||
* neither less than, greater than, nor equal to any floating-point
|
||||
* value, even itself. To allow the sort to proceed, instead of using
|
||||
* the {@code <} relation to determine ascending numerical order,
|
||||
* this method uses the total order imposed by {@link Double#compareTo}.
|
||||
* This ordering differs from the {@code <} relation in that {@code -0.0d}
|
||||
* is treated as less than {@code 0.0d} and NaN is considered greater than
|
||||
* any other floating-point value. For the purposes of sorting, all NaN
|
||||
* values are considered equivalent and equal.
|
||||
* <p>The {@code <} relation does not provide a total order on all float
|
||||
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
|
||||
* value compares neither less than, greater than, nor equal to any value,
|
||||
* even itself. This method uses the total order imposed by the method
|
||||
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
|
||||
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
|
||||
* other value and all {@code Float.NaN} values are considered equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(double[] a) {
|
||||
sort(a, 0, a.length);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>The {@code <} relation does not provide a total order on
|
||||
* all floating-point values; although they are distinct numbers
|
||||
* {@code -0.0d == 0.0d} is {@code true} and a NaN value compares
|
||||
* neither less than, greater than, nor equal to any floating-point
|
||||
* value, even itself. To allow the sort to proceed, instead of using
|
||||
* the {@code <} relation to determine ascending numerical order,
|
||||
* this method uses the total order imposed by {@link Double#compareTo}.
|
||||
* This ordering differs from the {@code <} relation in that {@code -0.0d}
|
||||
* is treated as less than {@code 0.0d} and NaN is considered greater than
|
||||
* any other floating-point value. For the purposes of sorting, all NaN
|
||||
* values are considered equivalent and equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(double[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
sortNegZeroAndNaN(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
private static void sortNegZeroAndNaN(double[] a, int fromIndex, int toIndex) {
|
||||
final long NEG_ZERO_BITS = Double.doubleToLongBits(-0.0d);
|
||||
/*
|
||||
* The sort is done in three phases to avoid the expense of using
|
||||
* NaN and -0.0d aware comparisons during the main sort.
|
||||
*
|
||||
* Preprocessing phase: move any NaN's to end of array, count the
|
||||
* number of -0.0d's, and turn them into 0.0d's.
|
||||
*/
|
||||
int numNegZeros = 0;
|
||||
int i = fromIndex;
|
||||
int n = toIndex;
|
||||
double temp;
|
||||
|
||||
while (i < n) {
|
||||
if (a[i] != a[i]) {
|
||||
n--;
|
||||
temp = a[i];
|
||||
a[i] = a[n];
|
||||
a[n] = temp;
|
||||
}
|
||||
else {
|
||||
if (a[i] == 0 && Double.doubleToLongBits(a[i]) == NEG_ZERO_BITS) {
|
||||
a[i] = 0.0d;
|
||||
numNegZeros++;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
// Main sort phase: quicksort everything but the NaN's
|
||||
DualPivotQuicksort.sort(a, fromIndex, n - 1);
|
||||
|
||||
// Postprocessing phase: change 0.0d's to -0.0d's as required
|
||||
if (numNegZeros != 0) {
|
||||
int j = binarySearch0(a, fromIndex, n, 0.0d); // position of ANY zero
|
||||
|
||||
do {
|
||||
j--;
|
||||
}
|
||||
while (j >= fromIndex && a[j] == 0.0d);
|
||||
|
||||
// j is now one less than the index of the FIRST zero
|
||||
for (int k = 0; k < numNegZeros; k++) {
|
||||
a[++j] = -0.0d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* <p>The {@code <} relation does not provide a total order on
|
||||
* all floating-point values; although they are distinct numbers
|
||||
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
|
||||
* neither less than, greater than, nor equal to any floating-point
|
||||
* value, even itself. To allow the sort to proceed, instead of using
|
||||
* the {@code <} relation to determine ascending numerical order,
|
||||
* this method uses the total order imposed by {@link Float#compareTo}.
|
||||
* This ordering differs from the {@code <} relation in that {@code -0.0f}
|
||||
* is treated as less than {@code 0.0f} and NaN is considered greater than
|
||||
* any other floating-point value. For the purposes of sorting, all NaN
|
||||
* values are considered equivalent and equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
@ -389,92 +276,100 @@ public class Arrays {
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
public static void sort(float[] a) {
|
||||
sort(a, 0, a.length);
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the specified array into ascending order. The
|
||||
* range of to be sorted extends from the index {@code fromIndex}, inclusive,
|
||||
* to the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>The {@code <} relation does not provide a total order on
|
||||
* all floating-point values; although they are distinct numbers
|
||||
* {@code -0.0f == 0.0f} is {@code true} and a NaN value compares
|
||||
* neither less than, greater than, nor equal to any floating-point
|
||||
* value, even itself. To allow the sort to proceed, instead of using
|
||||
* the {@code <} relation to determine ascending numerical order,
|
||||
* this method uses the total order imposed by {@link Float#compareTo}.
|
||||
* This ordering differs from the {@code <} relation in that {@code -0.0f}
|
||||
* is treated as less than {@code 0.0f} and NaN is considered greater than
|
||||
* any other floating-point value. For the purposes of sorting, all NaN
|
||||
* values are considered equivalent and equal.
|
||||
* <p>The {@code <} relation does not provide a total order on all float
|
||||
* values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
|
||||
* value compares neither less than, greater than, nor equal to any value,
|
||||
* even itself. This method uses the total order imposed by the method
|
||||
* {@link Float#compareTo}: {@code -0.0f} is treated as less than value
|
||||
* {@code 0.0f} and {@code Float.NaN} is considered greater than any
|
||||
* other value and all {@code Float.NaN} values are considered equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort,
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusively, to be sorted
|
||||
* @param toIndex the index of the last element, exclusively, to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(float[] a, int fromIndex, int toIndex) {
|
||||
rangeCheck(a.length, fromIndex, toIndex);
|
||||
sortNegZeroAndNaN(a, fromIndex, toIndex);
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
|
||||
private static void sortNegZeroAndNaN(float[] a, int fromIndex, int toIndex) {
|
||||
final int NEG_ZERO_BITS = Float.floatToIntBits(-0.0f);
|
||||
/*
|
||||
* The sort is done in three phases to avoid the expense of using
|
||||
* NaN and -0.0f aware comparisons during the main sort.
|
||||
/**
|
||||
* Sorts the specified array into ascending numerical order.
|
||||
*
|
||||
* Preprocessing phase: move any NaN's to end of array, count the
|
||||
* number of -0.0f's, and turn them into 0.0f's.
|
||||
* <p>The {@code <} relation does not provide a total order on all double
|
||||
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
|
||||
* value compares neither less than, greater than, nor equal to any value,
|
||||
* even itself. This method uses the total order imposed by the method
|
||||
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
|
||||
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
|
||||
* other value and all {@code Double.NaN} values are considered equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
*/
|
||||
int numNegZeros = 0;
|
||||
int i = fromIndex;
|
||||
int n = toIndex;
|
||||
float temp;
|
||||
public static void sort(double[] a) {
|
||||
DualPivotQuicksort.sort(a);
|
||||
}
|
||||
|
||||
while (i < n) {
|
||||
if (a[i] != a[i]) {
|
||||
n--;
|
||||
temp = a[i];
|
||||
a[i] = a[n];
|
||||
a[n] = temp;
|
||||
/**
|
||||
* Sorts the specified range of the array into ascending order. The range
|
||||
* to be sorted extends from the index {@code fromIndex}, inclusive, to
|
||||
* the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
|
||||
* the range to be sorted is empty.
|
||||
*
|
||||
* <p>The {@code <} relation does not provide a total order on all double
|
||||
* values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
|
||||
* value compares neither less than, greater than, nor equal to any value,
|
||||
* even itself. This method uses the total order imposed by the method
|
||||
* {@link Double#compareTo}: {@code -0.0d} is treated as less than value
|
||||
* {@code 0.0d} and {@code Double.NaN} is considered greater than any
|
||||
* other value and all {@code Double.NaN} values are considered equal.
|
||||
*
|
||||
* <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
|
||||
* by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
|
||||
* offers O(n log(n)) performance on many data sets that cause other
|
||||
* quicksorts to degrade to quadratic performance, and is typically
|
||||
* faster than traditional (one-pivot) Quicksort implementations.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param fromIndex the index of the first element, inclusive, to be sorted
|
||||
* @param toIndex the index of the last element, exclusive, to be sorted
|
||||
*
|
||||
* @throws IllegalArgumentException if {@code fromIndex > toIndex}
|
||||
* @throws ArrayIndexOutOfBoundsException
|
||||
* if {@code fromIndex < 0} or {@code toIndex > a.length}
|
||||
*/
|
||||
public static void sort(double[] a, int fromIndex, int toIndex) {
|
||||
DualPivotQuicksort.sort(a, fromIndex, toIndex);
|
||||
}
|
||||
else {
|
||||
if (a[i] == 0 && Float.floatToIntBits(a[i]) == NEG_ZERO_BITS) {
|
||||
a[i] = 0.0f;
|
||||
numNegZeros++;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
}
|
||||
// Main sort phase: quicksort everything but the NaN's
|
||||
DualPivotQuicksort.sort(a, fromIndex, n - 1);
|
||||
|
||||
// Postprocessing phase: change 0.0f's to -0.0f's as required
|
||||
if (numNegZeros != 0) {
|
||||
int j = binarySearch0(a, fromIndex, n, 0.0f); // position of ANY zero
|
||||
|
||||
do {
|
||||
j--;
|
||||
}
|
||||
while (j >= fromIndex && a[j] == 0.0f);
|
||||
|
||||
// j is now one less than the index of the FIRST zero
|
||||
for (int k = 0; k < numNegZeros; k++) {
|
||||
a[++j] = -0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Sorting of complex type arrays.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* Old merge sort implementation can be selected (for
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
x
Reference in New Issue
Block a user