This commit is contained in:
Coleen Phillimore 2016-01-27 16:34:47 +00:00
commit 0dc7d4dfa2
21 changed files with 985 additions and 929 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
@ -910,11 +910,6 @@ void MacroAssembler::lookup_interface_method(Register recv_klass,
// lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
add(scan_temp, scan_temp, vtable_base);
if (HeapWordsPerLong > 1) {
// Round up to align_object_offset boundary
// see code for instanceKlass::start_of_itable!
round_to(scan_temp, BytesPerLong);
}
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");

View File

@ -2196,22 +2196,10 @@ void MacroAssembler::lookup_interface_method(Register recv_klass,
// %%% We should store the aligned, prescaled offset in the klassoop.
// Then the next several instructions would fold away.
int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
int itb_offset = vtable_base;
if (round_to_unit != 0) {
// hoist first instruction of round_to(scan_temp, BytesPerLong):
itb_offset += round_to_unit - wordSize;
}
int itb_scale = exact_log2(vtableEntry::size() * wordSize);
sll(scan_temp, itb_scale, scan_temp);
add(scan_temp, itb_offset, scan_temp);
if (round_to_unit != 0) {
// Round up to align_object_offset boundary
// see code for InstanceKlass::start_of_itable!
// Was: round_to(scan_temp, BytesPerLong);
// Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
and3(scan_temp, -round_to_unit, scan_temp);
}
add(recv_klass, scan_temp, scan_temp);
// Adjust recv_klass by scaled itable_index, so we can free itable_index.

View File

@ -3158,9 +3158,6 @@ void TemplateTable::invokeinterface(int byte_no) {
Register Rtemp = O1_flags;
__ ld(O2_Klass, InstanceKlass::vtable_length_offset() * wordSize, Rtemp);
if (align_object_offset(1) > 1) {
__ round_to(Rtemp, align_object_offset(1));
}
__ sll(Rtemp, LogBytesPerWord, Rtemp); // Rscratch *= 4;
if (Assembler::is_simm13(base)) {
__ add(Rtemp, base, Rtemp);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -5818,11 +5818,6 @@ void MacroAssembler::lookup_interface_method(Register recv_klass,
// %%% Could store the aligned, prescaled offset in the klassoop.
lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
if (HeapWordsPerLong > 1) {
// Round up to align_object_offset boundary
// see code for InstanceKlass::start_of_itable!
round_to(scan_temp, BytesPerLong);
}
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -90,7 +90,7 @@ public class InstanceKlass extends Klass {
genericSignatureIndex = new CIntField(type.getCIntegerField("_generic_signature_index"), 0);
majorVersion = new CIntField(type.getCIntegerField("_major_version"), 0);
minorVersion = new CIntField(type.getCIntegerField("_minor_version"), 0);
headerSize = Oop.alignObjectOffset(type.getSize());
headerSize = type.getSize();
// read field offset constants
ACCESS_FLAGS_OFFSET = db.lookupIntConstant("FieldInfo::access_flags_offset").intValue();
@ -242,8 +242,8 @@ public class InstanceKlass extends Klass {
}
public long getSize() {
return Oop.alignObjectSize(getHeaderSize() + Oop.alignObjectOffset(getVtableLen()) +
Oop.alignObjectOffset(getItableLen()) + Oop.alignObjectOffset(getNonstaticOopMapSize()));
return Oop.alignObjectSize(getHeaderSize() + getVtableLen() +
getItableLen() + getNonstaticOopMapSize());
}
public static long getHeaderSize() { return headerSize; }

View File

@ -31,6 +31,7 @@
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectorPolicy.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "gc/g1/heapRegion.inline.hpp"
@ -1062,7 +1063,7 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
g1h->prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
}
g1h->check_bitmaps("Remark Start");
g1h->verifier()->check_bitmaps("Remark Start");
G1CollectorPolicy* g1p = g1h->g1_policy();
g1p->record_concurrent_mark_remark_start();
@ -1111,7 +1112,7 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
g1h->prepare_for_verify();
Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
}
g1h->check_bitmaps("Remark End");
g1h->verifier()->check_bitmaps("Remark End");
assert(!restart_for_overflow(), "sanity");
// Completely reset the marking state since marking completed
set_non_marking_state();
@ -1605,14 +1606,14 @@ void ConcurrentMark::cleanup() {
return;
}
g1h->verify_region_sets_optional();
g1h->verifier()->verify_region_sets_optional();
if (VerifyDuringGC) {
HandleMark hm; // handle scope
g1h->prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
}
g1h->check_bitmaps("Cleanup Start");
g1h->verifier()->check_bitmaps("Cleanup Start");
G1CollectorPolicy* g1p = g1h->g1_policy();
g1p->record_concurrent_mark_cleanup_start();
@ -1702,9 +1703,9 @@ void ConcurrentMark::cleanup() {
Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
}
g1h->check_bitmaps("Cleanup End");
g1h->verifier()->check_bitmaps("Cleanup End");
g1h->verify_region_sets_optional();
g1h->verifier()->verify_region_sets_optional();
// We need to make this be a "collection" so any collection pause that
// races with it goes around and waits for completeCleanup to finish.

View File

@ -38,6 +38,7 @@
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1EvacStats.inline.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1MarkSweep.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1ParScanThreadState.inline.hpp"
@ -399,7 +400,7 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
assert(hr->bottom() < obj_top && obj_top <= hr->end(),
"obj_top should be in last region");
check_bitmaps("Humongous Region Allocation", first_hr);
_verifier->check_bitmaps("Humongous Region Allocation", first_hr);
assert(words_not_fillable == 0 ||
first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
@ -427,7 +428,7 @@ size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
uint first = G1_NO_HRM_INDEX;
uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
@ -501,7 +502,7 @@ HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationCo
g1mm()->update_sizes();
}
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
return result;
}
@ -1230,7 +1231,7 @@ bool G1CollectedHeap::do_full_collection(bool explicit_gc,
size_t metadata_prev_used = MetaspaceAux::used_bytes();
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
collector_policy()->should_clear_all_soft_refs();
@ -1271,9 +1272,9 @@ bool G1CollectedHeap::do_full_collection(bool explicit_gc,
assert(used() == recalculate_used(), "Should be equal");
verify_before_gc();
_verifier->verify_before_gc();
check_bitmaps("Full GC Start");
_verifier->check_bitmaps("Full GC Start");
pre_full_gc_dump(gc_timer);
#if defined(COMPILER2) || INCLUDE_JVMCI
@ -1408,9 +1409,9 @@ bool G1CollectedHeap::do_full_collection(bool explicit_gc,
increment_old_marking_cycles_completed(false /* concurrent */);
_hrm.verify_optional();
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
verify_after_gc();
_verifier->verify_after_gc();
// Clear the previous marking bitmap, if needed for bitmap verification.
// Note we cannot do this when we clear the next marking bitmap in
@ -1422,7 +1423,7 @@ bool G1CollectedHeap::do_full_collection(bool explicit_gc,
if (G1VerifyBitmaps) {
((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
}
check_bitmaps("Full GC End");
_verifier->check_bitmaps("Full GC End");
// Start a new incremental collection set for the next pause
assert(g1_policy()->collection_set() == NULL, "must be");
@ -1639,7 +1640,7 @@ HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
assert_at_safepoint(true /* should_be_vm_thread */);
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
@ -1648,7 +1649,7 @@ HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationConte
if (expand(expand_bytes)) {
_hrm.verify_optional();
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
return attempt_allocation_at_safepoint(word_size,
context,
false /* expect_null_mutator_alloc_region */);
@ -1717,7 +1718,7 @@ void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
}
void G1CollectedHeap::shrink(size_t shrink_bytes) {
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
// We should only reach here at the end of a Full GC which means we
// should not not be holding to any GC alloc regions. The method
@ -1732,7 +1733,7 @@ void G1CollectedHeap::shrink(size_t shrink_bytes) {
rebuild_region_sets(true /* free_list_only */);
_hrm.verify_optional();
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
}
// Public methods.
@ -1778,6 +1779,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
/* are_GC_task_threads */true,
/* are_ConcurrentGC_threads */false);
_workers->initialize_workers();
_verifier = new G1HeapVerifier(this);
_allocator = G1Allocator::create_allocator(this);
_humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
@ -2667,452 +2669,11 @@ jlong G1CollectedHeap::millis_since_last_gc() {
}
void G1CollectedHeap::prepare_for_verify() {
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
ensure_parsability(false);
}
g1_rem_set()->prepare_for_verify();
_verifier->prepare_for_verify();
}
bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
VerifyOption vo) {
switch (vo) {
case VerifyOption_G1UsePrevMarking:
return hr->obj_allocated_since_prev_marking(obj);
case VerifyOption_G1UseNextMarking:
return hr->obj_allocated_since_next_marking(obj);
case VerifyOption_G1UseMarkWord:
return false;
default:
ShouldNotReachHere();
}
return false; // keep some compilers happy
}
HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
case VerifyOption_G1UseMarkWord: return NULL;
default: ShouldNotReachHere();
}
return NULL; // keep some compilers happy
}
bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
case VerifyOption_G1UseMarkWord: return obj->is_gc_marked();
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return "PTAMS";
case VerifyOption_G1UseNextMarking: return "NTAMS";
case VerifyOption_G1UseMarkWord: return "NONE";
default: ShouldNotReachHere();
}
return NULL; // keep some compilers happy
}
class VerifyRootsClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRootsClosure(VerifyOption vo) :
_g1h(G1CollectedHeap::heap()),
_vo(vo),
_failures(false) { }
bool failures() { return _failures; }
template <class T> void do_oop_nv(T* p) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (_g1h->is_obj_dead_cond(obj, _vo)) {
LogHandle(gc, verify) log;
log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
if (_vo == VerifyOption_G1UseMarkWord) {
log.info(" Mark word: " PTR_FORMAT, p2i(obj->mark()));
}
ResourceMark rm;
obj->print_on(log.info_stream());
_failures = true;
}
}
}
void do_oop(oop* p) { do_oop_nv(p); }
void do_oop(narrowOop* p) { do_oop_nv(p); }
};
class G1VerifyCodeRootOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
OopClosure* _root_cl;
nmethod* _nm;
VerifyOption _vo;
bool _failures;
template <class T> void do_oop_work(T* p) {
// First verify that this root is live
_root_cl->do_oop(p);
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying the code roots attached to heap region.
return;
}
// Don't check the code roots during marking verification in a full GC
if (_vo == VerifyOption_G1UseMarkWord) {
return;
}
// Now verify that the current nmethod (which contains p) is
// in the code root list of the heap region containing the
// object referenced by p.
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
// Now fetch the region containing the object
HeapRegion* hr = _g1h->heap_region_containing(obj);
HeapRegionRemSet* hrrs = hr->rem_set();
// Verify that the strong code root list for this region
// contains the nmethod
if (!hrrs->strong_code_roots_list_contains(_nm)) {
log_info(gc, verify)("Code root location " PTR_FORMAT " "
"from nmethod " PTR_FORMAT " not in strong "
"code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
_failures = true;
}
}
}
public:
G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
_g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
void set_nmethod(nmethod* nm) { _nm = nm; }
bool failures() { return _failures; }
};
class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
G1VerifyCodeRootOopClosure* _oop_cl;
public:
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
_oop_cl(oop_cl) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
_oop_cl->set_nmethod(nm);
nm->oops_do(_oop_cl);
}
}
};
class YoungRefCounterClosure : public OopClosure {
G1CollectedHeap* _g1h;
int _count;
public:
YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
int count() { return _count; }
void reset_count() { _count = 0; };
};
class VerifyKlassClosure: public KlassClosure {
YoungRefCounterClosure _young_ref_counter_closure;
OopClosure *_oop_closure;
public:
VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
void do_klass(Klass* k) {
k->oops_do(_oop_closure);
_young_ref_counter_closure.reset_count();
k->oops_do(&_young_ref_counter_closure);
if (_young_ref_counter_closure.count() > 0) {
guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
}
}
};
class VerifyLivenessOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
VerifyOption _vo;
public:
VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
_g1h(g1h), _vo(vo)
{ }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
"Dead object referenced by a not dead object");
}
};
class VerifyObjsInRegionClosure: public ObjectClosure {
private:
G1CollectedHeap* _g1h;
size_t _live_bytes;
HeapRegion *_hr;
VerifyOption _vo;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
: _live_bytes(0), _hr(hr), _vo(vo) {
_g1h = G1CollectedHeap::heap();
}
void do_object(oop o) {
VerifyLivenessOopClosure isLive(_g1h, _vo);
assert(o != NULL, "Huh?");
if (!_g1h->is_obj_dead_cond(o, _vo)) {
// If the object is alive according to the mark word,
// then verify that the marking information agrees.
// Note we can't verify the contra-positive of the
// above: if the object is dead (according to the mark
// word), it may not be marked, or may have been marked
// but has since became dead, or may have been allocated
// since the last marking.
if (_vo == VerifyOption_G1UseMarkWord) {
guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
}
o->oop_iterate_no_header(&isLive);
if (!_hr->obj_allocated_since_prev_marking(o)) {
size_t obj_size = o->size(); // Make sure we don't overflow
_live_bytes += (obj_size * HeapWordSize);
}
}
}
size_t live_bytes() { return _live_bytes; }
};
class VerifyArchiveOopClosure: public OopClosure {
public:
VerifyArchiveOopClosure(HeapRegion *hr) { }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
"Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
p2i(p), p2i(obj));
}
};
class VerifyArchiveRegionClosure: public ObjectClosure {
public:
VerifyArchiveRegionClosure(HeapRegion *hr) { }
// Verify that all object pointers are to archive regions.
void do_object(oop o) {
VerifyArchiveOopClosure checkOop(NULL);
assert(o != NULL, "Should not be here for NULL oops");
o->oop_iterate_no_header(&checkOop);
}
};
class VerifyRegionClosure: public HeapRegionClosure {
private:
bool _par;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRegionClosure(bool par, VerifyOption vo)
: _par(par),
_vo(vo),
_failures(false) {}
bool failures() {
return _failures;
}
bool doHeapRegion(HeapRegion* r) {
// For archive regions, verify there are no heap pointers to
// non-pinned regions. For all others, verify liveness info.
if (r->is_archive()) {
VerifyArchiveRegionClosure verify_oop_pointers(r);
r->object_iterate(&verify_oop_pointers);
return true;
}
if (!r->is_continues_humongous()) {
bool failures = false;
r->verify(_vo, &failures);
if (failures) {
_failures = true;
} else if (!r->is_starts_humongous()) {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
r->object_iterate(&not_dead_yet_cl);
if (_vo != VerifyOption_G1UseNextMarking) {
if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
_failures = true;
}
} else {
// When vo == UseNextMarking we cannot currently do a sanity
// check on the live bytes as the calculation has not been
// finalized yet.
}
}
}
return false; // stop the region iteration if we hit a failure
}
};
// This is the task used for parallel verification of the heap regions
class G1ParVerifyTask: public AbstractGangTask {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
HeapRegionClaimer _hrclaimer;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
AbstractGangTask("Parallel verify task"),
_g1h(g1h),
_vo(vo),
_failures(false),
_hrclaimer(g1h->workers()->active_workers()) {}
bool failures() {
return _failures;
}
void work(uint worker_id) {
HandleMark hm;
VerifyRegionClosure blk(true, _vo);
_g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
if (blk.failures()) {
_failures = true;
}
}
};
void G1CollectedHeap::verify(VerifyOption vo) {
if (!SafepointSynchronize::is_at_safepoint()) {
log_info(gc, verify)("Skipping verification. Not at safepoint.");
}
assert(Thread::current()->is_VM_thread(),
"Expected to be executed serially by the VM thread at this point");
log_debug(gc, verify)("Roots");
VerifyRootsClosure rootsCl(vo);
VerifyKlassClosure klassCl(this, &rootsCl);
CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
// We apply the relevant closures to all the oops in the
// system dictionary, class loader data graph, the string table
// and the nmethods in the code cache.
G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
{
G1RootProcessor root_processor(this, 1);
root_processor.process_all_roots(&rootsCl,
&cldCl,
&blobsCl);
}
bool failures = rootsCl.failures() || codeRootsCl.failures();
if (vo != VerifyOption_G1UseMarkWord) {
// If we're verifying during a full GC then the region sets
// will have been torn down at the start of the GC. Therefore
// verifying the region sets will fail. So we only verify
// the region sets when not in a full GC.
log_debug(gc, verify)("HeapRegionSets");
verify_region_sets();
}
log_debug(gc, verify)("HeapRegions");
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
G1ParVerifyTask task(this, vo);
workers()->run_task(&task);
if (task.failures()) {
failures = true;
}
} else {
VerifyRegionClosure blk(false, vo);
heap_region_iterate(&blk);
if (blk.failures()) {
failures = true;
}
}
if (G1StringDedup::is_enabled()) {
log_debug(gc, verify)("StrDedup");
G1StringDedup::verify();
}
if (failures) {
log_info(gc, verify)("Heap after failed verification:");
// It helps to have the per-region information in the output to
// help us track down what went wrong. This is why we call
// print_extended_on() instead of print_on().
LogHandle(gc, verify) log;
ResourceMark rm;
print_extended_on(log.info_stream());
}
guarantee(!failures, "there should not have been any failures");
}
double G1CollectedHeap::verify(bool guard, const char* msg) {
double verify_time_ms = 0.0;
if (guard && total_collections() >= VerifyGCStartAt) {
double verify_start = os::elapsedTime();
HandleMark hm; // Discard invalid handles created during verification
prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking, msg);
verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
}
return verify_time_ms;
}
void G1CollectedHeap::verify_before_gc() {
double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}
void G1CollectedHeap::verify_after_gc() {
double verify_time_ms = verify(VerifyAfterGC, "After GC");
g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
_verifier->verify(vo);
}
class PrintRegionClosure: public HeapRegionClosure {
@ -3657,8 +3218,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
print_heap_before_gc();
trace_heap_before_gc(_gc_tracer_stw);
verify_region_sets_optional();
verify_dirty_young_regions();
_verifier->verify_region_sets_optional();
_verifier->verify_dirty_young_regions();
// This call will decide whether this pause is an initial-mark
// pause. If it is, during_initial_mark_pause() will return true
@ -3741,9 +3302,9 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
heap_region_iterate(&v_cl);
}
verify_before_gc();
_verifier->verify_before_gc();
check_bitmaps("GC Start");
_verifier->check_bitmaps("GC Start");
#if defined(COMPILER2) || INCLUDE_JVMCI
DerivedPointerTable::clear();
@ -3801,7 +3362,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
register_humongous_regions_with_cset();
assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
_cm->note_start_of_gc();
// We call this after finalize_cset() to
@ -3951,8 +3512,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
heap_region_iterate(&v_cl);
}
verify_after_gc();
check_bitmaps("GC End");
_verifier->verify_after_gc();
_verifier->check_bitmaps("GC End");
assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
ref_processor_stw()->verify_no_references_recorded();
@ -3976,7 +3537,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
// logging output either.
_hrm.verify_optional();
verify_region_sets_optional();
_verifier->verify_region_sets_optional();
TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
@ -5245,197 +4806,6 @@ public:
}
};
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
G1CollectedHeap* _g1h;
G1SATBCardTableModRefBS* _ct_bs;
public:
G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
: _g1h(g1h), _ct_bs(ct_bs) { }
virtual bool doHeapRegion(HeapRegion* r) {
if (r->is_survivor()) {
_g1h->verify_dirty_region(r);
} else {
_g1h->verify_not_dirty_region(r);
}
return false;
}
};
void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
// All of the region should be clean.
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
MemRegion mr(hr->bottom(), hr->end());
ct_bs->verify_not_dirty_region(mr);
}
void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
// We cannot guarantee that [bottom(),end()] is dirty. Threads
// dirty allocated blocks as they allocate them. The thread that
// retires each region and replaces it with a new one will do a
// maximal allocation to fill in [pre_dummy_top(),end()] but will
// not dirty that area (one less thing to have to do while holding
// a lock). So we can only verify that [bottom(),pre_dummy_top()]
// is dirty.
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
MemRegion mr(hr->bottom(), hr->pre_dummy_top());
if (hr->is_young()) {
ct_bs->verify_g1_young_region(mr);
} else {
ct_bs->verify_dirty_region(mr);
}
}
void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
verify_dirty_region(hr);
}
}
void G1CollectedHeap::verify_dirty_young_regions() {
verify_dirty_young_list(_young_list->first_region());
}
bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
HeapWord* tams, HeapWord* end) {
guarantee(tams <= end,
"tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
if (result < end) {
log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
return false;
}
return true;
}
bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
HeapWord* bottom = hr->bottom();
HeapWord* ptams = hr->prev_top_at_mark_start();
HeapWord* ntams = hr->next_top_at_mark_start();
HeapWord* end = hr->end();
bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
bool res_n = true;
// We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
// we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
// if we happen to be in that state.
if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
}
if (!res_p || !res_n) {
log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
log_info(gc, verify)("#### Caller: %s", caller);
return false;
}
return true;
}
void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
if (!G1VerifyBitmaps) return;
guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}
class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
const char* _caller;
G1CollectedHeap* _g1h;
bool _failures;
public:
G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
_caller(caller), _g1h(g1h), _failures(false) { }
bool failures() { return _failures; }
virtual bool doHeapRegion(HeapRegion* hr) {
bool result = _g1h->verify_bitmaps(_caller, hr);
if (!result) {
_failures = true;
}
return false;
}
};
void G1CollectedHeap::check_bitmaps(const char* caller) {
if (!G1VerifyBitmaps) return;
G1VerifyBitmapClosure cl(caller, this);
heap_region_iterate(&cl);
guarantee(!cl.failures(), "bitmap verification");
}
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
private:
bool _failures;
public:
G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
virtual bool doHeapRegion(HeapRegion* hr) {
uint i = hr->hrm_index();
InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
if (hr->is_humongous()) {
if (hr->in_collection_set()) {
log_info(gc, verify)("## humongous region %u in CSet", i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_continues_humongous() && cset_state.is_humongous()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
} else {
if (cset_state.is_humongous()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->in_collection_set() != cset_state.is_in_cset()) {
log_info(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->in_collection_set(), cset_state.value(), i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
if (hr->is_young() != (cset_state.is_young())) {
log_info(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_young(), cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_old() != (cset_state.is_old())) {
log_info(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_old(), cset_state.value(), i);
_failures = true;
return true;
}
}
}
return false;
}
bool failures() const { return _failures; }
};
bool G1CollectedHeap::check_cset_fast_test() {
G1CheckCSetFastTableClosure cl;
_hrm.iterate(&cl);
return !cl.failures();
}
#endif // PRODUCT
class G1ParScrubRemSetTask: public AbstractGangTask {
protected:
G1RemSet* _g1rs;
@ -5473,10 +4843,7 @@ void G1CollectedHeap::cleanUpCardTable() {
workers()->run_task(&cleanup_task);
#ifndef PRODUCT
if (G1VerifyCTCleanup || VerifyAfterGC) {
G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
heap_region_iterate(&cleanup_verifier);
}
_verifier->verify_card_table_cleanup();
#endif
}
@ -5998,7 +5365,7 @@ HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
if (new_alloc_region != NULL) {
set_region_short_lived_locked(new_alloc_region);
_hr_printer.alloc(new_alloc_region, young_list_full);
check_bitmaps("Mutator Region Allocation", new_alloc_region);
_verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
return new_alloc_region;
}
}
@ -6038,10 +5405,10 @@ HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
new_alloc_region->record_timestamp();
if (is_survivor) {
new_alloc_region->set_survivor();
check_bitmaps("Survivor Region Allocation", new_alloc_region);
_verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
} else {
new_alloc_region->set_old();
check_bitmaps("Old Region Allocation", new_alloc_region);
_verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
}
_hr_printer.alloc(new_alloc_region);
bool during_im = collector_state()->during_initial_mark_pause();
@ -6081,93 +5448,6 @@ HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
return NULL;
}
// Heap region set verification
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
HeapRegionSet* _old_set;
HeapRegionSet* _humongous_set;
HeapRegionManager* _hrm;
public:
uint _old_count;
uint _humongous_count;
uint _free_count;
VerifyRegionListsClosure(HeapRegionSet* old_set,
HeapRegionSet* humongous_set,
HeapRegionManager* hrm) :
_old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
_old_count(), _humongous_count(), _free_count(){ }
bool doHeapRegion(HeapRegion* hr) {
if (hr->is_young()) {
// TODO
} else if (hr->is_humongous()) {
assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
_humongous_count++;
} else if (hr->is_empty()) {
assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
_free_count++;
} else if (hr->is_old()) {
assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
_old_count++;
} else {
// There are no other valid region types. Check for one invalid
// one we can identify: pinned without old or humongous set.
assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
ShouldNotReachHere();
}
return false;
}
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
}
};
void G1CollectedHeap::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists.
_hrm.verify();
{
// Given that a concurrent operation might be adding regions to
// the secondary free list we have to take the lock before
// verifying it.
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
_secondary_free_list.verify_list();
}
// If a concurrent region freeing operation is in progress it will
// be difficult to correctly attributed any free regions we come
// across to the correct free list given that they might belong to
// one of several (free_list, secondary_free_list, any local lists,
// etc.). So, if that's the case we will skip the rest of the
// verification operation. Alternatively, waiting for the concurrent
// operation to complete will have a non-trivial effect on the GC's
// operation (no concurrent operation will last longer than the
// interval between two calls to verification) and it might hide
// any issues that we would like to catch during testing.
if (free_regions_coming()) {
return;
}
// Make sure we append the secondary_free_list on the free_list so
// that all free regions we will come across can be safely
// attributed to the free_list.
append_secondary_free_list_if_not_empty_with_lock();
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
heap_region_iterate(&cl);
cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
}
// Optimized nmethod scanning
class RegisterNMethodOopClosure: public OopClosure {

View File

@ -82,6 +82,7 @@ class Ticks;
class WorkGang;
class G1Allocator;
class G1ArchiveAllocator;
class G1HeapVerifier;
typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
@ -118,6 +119,7 @@ class G1CollectedHeap : public CollectedHeap {
friend class VMStructs;
friend class MutatorAllocRegion;
friend class G1GCAllocRegion;
friend class G1HeapVerifier;
// Closures used in implementation.
friend class G1ParScanThreadState;
@ -181,6 +183,9 @@ private:
// Manages all allocations with regions except humongous object allocations.
G1Allocator* _allocator;
// Manages all heap verification.
G1HeapVerifier* _verifier;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region(s).
size_t _summary_bytes_used;
@ -286,10 +291,6 @@ private:
size_t size,
size_t translation_factor);
double verify(bool guard, const char* msg);
void verify_before_gc();
void verify_after_gc();
void log_gc_footer(jlong pause_time_counter);
void trace_heap(GCWhen::Type when, const GCTracer* tracer);
@ -527,6 +528,10 @@ public:
return _allocator;
}
G1HeapVerifier* verifier() {
return _verifier;
}
G1MonitoringSupport* g1mm() {
assert(_g1mm != NULL, "should have been initialized");
return _g1mm;
@ -1056,54 +1061,6 @@ public:
// The number of regions that are not completely free.
uint num_used_regions() const { return num_regions() - num_free_regions(); }
void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
void verify_dirty_young_regions() PRODUCT_RETURN;
#ifndef PRODUCT
// Make sure that the given bitmap has no marked objects in the
// range [from,limit). If it does, print an error message and return
// false. Otherwise, just return true. bitmap_name should be "prev"
// or "next".
bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
HeapWord* from, HeapWord* limit);
// Verify that the prev / next bitmap range [tams,end) for the given
// region has no marks. Return true if all is well, false if errors
// are detected.
bool verify_bitmaps(const char* caller, HeapRegion* hr);
#endif // PRODUCT
// If G1VerifyBitmaps is set, verify that the marking bitmaps for
// the given region do not have any spurious marks. If errors are
// detected, print appropriate error messages and crash.
void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
// If G1VerifyBitmaps is set, verify that the marking bitmaps do not
// have any spurious marks. If errors are detected, print
// appropriate error messages and crash.
void check_bitmaps(const char* caller) PRODUCT_RETURN;
// Do sanity check on the contents of the in-cset fast test table.
bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
// verify_region_sets() performs verification over the region
// lists. It will be compiled in the product code to be used when
// necessary (i.e., during heap verification).
void verify_region_sets();
// verify_region_sets_optional() is planted in the code for
// list verification in non-product builds (and it can be enabled in
// product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
#if HEAP_REGION_SET_FORCE_VERIFY
void verify_region_sets_optional() {
verify_region_sets();
}
#else // HEAP_REGION_SET_FORCE_VERIFY
void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY
#ifdef ASSERT
bool is_on_master_free_list(HeapRegion* hr) {
return _hrm.is_free(hr);
@ -1425,11 +1382,6 @@ public:
inline bool is_obj_ill(const oop obj) const;
bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
bool is_marked(oop obj, VerifyOption vo);
const char* top_at_mark_start_str(VerifyOption vo);
ConcurrentMark* concurrent_mark() const { return _cm; }
// Refinement

View File

@ -28,6 +28,7 @@
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1EvacFailure.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1_globals.hpp"
#include "gc/g1/heapRegion.hpp"
@ -223,7 +224,7 @@ public:
if (hr->evacuation_failed()) {
hr->note_self_forwarding_removal_start(during_initial_mark,
during_conc_mark);
_g1h->check_bitmaps("Self-Forwarding Ptr Removal", hr);
_g1h->verifier()->check_bitmaps("Self-Forwarding Ptr Removal", hr);
// In the common case (i.e. when there is no evacuation
// failure) we make sure that the following is done when

View File

@ -0,0 +1,731 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "logging/log.hpp"
#include "gc/g1/concurrentMarkThread.hpp"
#include "gc/g1/g1CollectedHeap.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1MarkSweep.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1RootProcessor.hpp"
#include "gc/g1/heapRegion.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "gc/g1/youngList.hpp"
#include "memory/resourceArea.hpp"
#include "oops/oop.inline.hpp"
class VerifyRootsClosure: public OopClosure {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRootsClosure(VerifyOption vo) :
_g1h(G1CollectedHeap::heap()),
_vo(vo),
_failures(false) { }
bool failures() { return _failures; }
template <class T> void do_oop_nv(T* p) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
if (_g1h->is_obj_dead_cond(obj, _vo)) {
LogHandle(gc, verify) log;
log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
if (_vo == VerifyOption_G1UseMarkWord) {
log.info(" Mark word: " PTR_FORMAT, p2i(obj->mark()));
}
ResourceMark rm;
obj->print_on(log.info_stream());
_failures = true;
}
}
}
void do_oop(oop* p) { do_oop_nv(p); }
void do_oop(narrowOop* p) { do_oop_nv(p); }
};
class G1VerifyCodeRootOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
OopClosure* _root_cl;
nmethod* _nm;
VerifyOption _vo;
bool _failures;
template <class T> void do_oop_work(T* p) {
// First verify that this root is live
_root_cl->do_oop(p);
if (!G1VerifyHeapRegionCodeRoots) {
// We're not verifying the code roots attached to heap region.
return;
}
// Don't check the code roots during marking verification in a full GC
if (_vo == VerifyOption_G1UseMarkWord) {
return;
}
// Now verify that the current nmethod (which contains p) is
// in the code root list of the heap region containing the
// object referenced by p.
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {
oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
// Now fetch the region containing the object
HeapRegion* hr = _g1h->heap_region_containing(obj);
HeapRegionRemSet* hrrs = hr->rem_set();
// Verify that the strong code root list for this region
// contains the nmethod
if (!hrrs->strong_code_roots_list_contains(_nm)) {
log_info(gc, verify)("Code root location " PTR_FORMAT " "
"from nmethod " PTR_FORMAT " not in strong "
"code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
_failures = true;
}
}
}
public:
G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
_g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
void set_nmethod(nmethod* nm) { _nm = nm; }
bool failures() { return _failures; }
};
class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
G1VerifyCodeRootOopClosure* _oop_cl;
public:
G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
_oop_cl(oop_cl) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
_oop_cl->set_nmethod(nm);
nm->oops_do(_oop_cl);
}
}
};
class YoungRefCounterClosure : public OopClosure {
G1CollectedHeap* _g1h;
int _count;
public:
YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
void do_oop(oop* p) { if (_g1h->is_in_young(*p)) { _count++; } }
void do_oop(narrowOop* p) { ShouldNotReachHere(); }
int count() { return _count; }
void reset_count() { _count = 0; };
};
class VerifyKlassClosure: public KlassClosure {
YoungRefCounterClosure _young_ref_counter_closure;
OopClosure *_oop_closure;
public:
VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
void do_klass(Klass* k) {
k->oops_do(_oop_closure);
_young_ref_counter_closure.reset_count();
k->oops_do(&_young_ref_counter_closure);
if (_young_ref_counter_closure.count() > 0) {
guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
}
}
};
class VerifyLivenessOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
VerifyOption _vo;
public:
VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
_g1h(g1h), _vo(vo)
{ }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
"Dead object referenced by a not dead object");
}
};
class VerifyObjsInRegionClosure: public ObjectClosure {
private:
G1CollectedHeap* _g1h;
size_t _live_bytes;
HeapRegion *_hr;
VerifyOption _vo;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
: _live_bytes(0), _hr(hr), _vo(vo) {
_g1h = G1CollectedHeap::heap();
}
void do_object(oop o) {
VerifyLivenessOopClosure isLive(_g1h, _vo);
assert(o != NULL, "Huh?");
if (!_g1h->is_obj_dead_cond(o, _vo)) {
// If the object is alive according to the mark word,
// then verify that the marking information agrees.
// Note we can't verify the contra-positive of the
// above: if the object is dead (according to the mark
// word), it may not be marked, or may have been marked
// but has since became dead, or may have been allocated
// since the last marking.
if (_vo == VerifyOption_G1UseMarkWord) {
guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
}
o->oop_iterate_no_header(&isLive);
if (!_hr->obj_allocated_since_prev_marking(o)) {
size_t obj_size = o->size(); // Make sure we don't overflow
_live_bytes += (obj_size * HeapWordSize);
}
}
}
size_t live_bytes() { return _live_bytes; }
};
class VerifyArchiveOopClosure: public OopClosure {
public:
VerifyArchiveOopClosure(HeapRegion *hr) { }
void do_oop(narrowOop *p) { do_oop_work(p); }
void do_oop( oop *p) { do_oop_work(p); }
template <class T> void do_oop_work(T *p) {
oop obj = oopDesc::load_decode_heap_oop(p);
guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
"Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
p2i(p), p2i(obj));
}
};
class VerifyArchiveRegionClosure: public ObjectClosure {
public:
VerifyArchiveRegionClosure(HeapRegion *hr) { }
// Verify that all object pointers are to archive regions.
void do_object(oop o) {
VerifyArchiveOopClosure checkOop(NULL);
assert(o != NULL, "Should not be here for NULL oops");
o->oop_iterate_no_header(&checkOop);
}
};
class VerifyRegionClosure: public HeapRegionClosure {
private:
bool _par;
VerifyOption _vo;
bool _failures;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
VerifyRegionClosure(bool par, VerifyOption vo)
: _par(par),
_vo(vo),
_failures(false) {}
bool failures() {
return _failures;
}
bool doHeapRegion(HeapRegion* r) {
// For archive regions, verify there are no heap pointers to
// non-pinned regions. For all others, verify liveness info.
if (r->is_archive()) {
VerifyArchiveRegionClosure verify_oop_pointers(r);
r->object_iterate(&verify_oop_pointers);
return true;
}
if (!r->is_continues_humongous()) {
bool failures = false;
r->verify(_vo, &failures);
if (failures) {
_failures = true;
} else if (!r->is_starts_humongous()) {
VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
r->object_iterate(&not_dead_yet_cl);
if (_vo != VerifyOption_G1UseNextMarking) {
if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
_failures = true;
}
} else {
// When vo == UseNextMarking we cannot currently do a sanity
// check on the live bytes as the calculation has not been
// finalized yet.
}
}
}
return false; // stop the region iteration if we hit a failure
}
};
// This is the task used for parallel verification of the heap regions
class G1ParVerifyTask: public AbstractGangTask {
private:
G1CollectedHeap* _g1h;
VerifyOption _vo;
bool _failures;
HeapRegionClaimer _hrclaimer;
public:
// _vo == UsePrevMarking -> use "prev" marking information,
// _vo == UseNextMarking -> use "next" marking information,
// _vo == UseMarkWord -> use mark word from object header.
G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
AbstractGangTask("Parallel verify task"),
_g1h(g1h),
_vo(vo),
_failures(false),
_hrclaimer(g1h->workers()->active_workers()) {}
bool failures() {
return _failures;
}
void work(uint worker_id) {
HandleMark hm;
VerifyRegionClosure blk(true, _vo);
_g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
if (blk.failures()) {
_failures = true;
}
}
};
void G1HeapVerifier::verify(VerifyOption vo) {
if (!SafepointSynchronize::is_at_safepoint()) {
log_info(gc, verify)("Skipping verification. Not at safepoint.");
}
assert(Thread::current()->is_VM_thread(),
"Expected to be executed serially by the VM thread at this point");
log_debug(gc, verify)("Roots");
VerifyRootsClosure rootsCl(vo);
VerifyKlassClosure klassCl(_g1h, &rootsCl);
CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
// We apply the relevant closures to all the oops in the
// system dictionary, class loader data graph, the string table
// and the nmethods in the code cache.
G1VerifyCodeRootOopClosure codeRootsCl(_g1h, &rootsCl, vo);
G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
{
G1RootProcessor root_processor(_g1h, 1);
root_processor.process_all_roots(&rootsCl,
&cldCl,
&blobsCl);
}
bool failures = rootsCl.failures() || codeRootsCl.failures();
if (vo != VerifyOption_G1UseMarkWord) {
// If we're verifying during a full GC then the region sets
// will have been torn down at the start of the GC. Therefore
// verifying the region sets will fail. So we only verify
// the region sets when not in a full GC.
log_debug(gc, verify)("HeapRegionSets");
verify_region_sets();
}
log_debug(gc, verify)("HeapRegions");
if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
G1ParVerifyTask task(_g1h, vo);
_g1h->workers()->run_task(&task);
if (task.failures()) {
failures = true;
}
} else {
VerifyRegionClosure blk(false, vo);
_g1h->heap_region_iterate(&blk);
if (blk.failures()) {
failures = true;
}
}
if (G1StringDedup::is_enabled()) {
log_debug(gc, verify)("StrDedup");
G1StringDedup::verify();
}
if (failures) {
log_info(gc, verify)("Heap after failed verification:");
// It helps to have the per-region information in the output to
// help us track down what went wrong. This is why we call
// print_extended_on() instead of print_on().
LogHandle(gc, verify) log;
ResourceMark rm;
_g1h->print_extended_on(log.info_stream());
}
guarantee(!failures, "there should not have been any failures");
}
// Heap region set verification
class VerifyRegionListsClosure : public HeapRegionClosure {
private:
HeapRegionSet* _old_set;
HeapRegionSet* _humongous_set;
HeapRegionManager* _hrm;
public:
uint _old_count;
uint _humongous_count;
uint _free_count;
VerifyRegionListsClosure(HeapRegionSet* old_set,
HeapRegionSet* humongous_set,
HeapRegionManager* hrm) :
_old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
_old_count(), _humongous_count(), _free_count(){ }
bool doHeapRegion(HeapRegion* hr) {
if (hr->is_young()) {
// TODO
} else if (hr->is_humongous()) {
assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
_humongous_count++;
} else if (hr->is_empty()) {
assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
_free_count++;
} else if (hr->is_old()) {
assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
_old_count++;
} else {
// There are no other valid region types. Check for one invalid
// one we can identify: pinned without old or humongous set.
assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
ShouldNotReachHere();
}
return false;
}
void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
guarantee(old_set->length() == _old_count, "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count);
guarantee(humongous_set->length() == _humongous_count, "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count);
guarantee(free_list->num_free_regions() == _free_count, "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count);
}
};
void G1HeapVerifier::verify_region_sets() {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
// First, check the explicit lists.
_g1h->_hrm.verify();
{
// Given that a concurrent operation might be adding regions to
// the secondary free list we have to take the lock before
// verifying it.
MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
_g1h->_secondary_free_list.verify_list();
}
// If a concurrent region freeing operation is in progress it will
// be difficult to correctly attributed any free regions we come
// across to the correct free list given that they might belong to
// one of several (free_list, secondary_free_list, any local lists,
// etc.). So, if that's the case we will skip the rest of the
// verification operation. Alternatively, waiting for the concurrent
// operation to complete will have a non-trivial effect on the GC's
// operation (no concurrent operation will last longer than the
// interval between two calls to verification) and it might hide
// any issues that we would like to catch during testing.
if (_g1h->free_regions_coming()) {
return;
}
// Make sure we append the secondary_free_list on the free_list so
// that all free regions we will come across can be safely
// attributed to the free_list.
_g1h->append_secondary_free_list_if_not_empty_with_lock();
// Finally, make sure that the region accounting in the lists is
// consistent with what we see in the heap.
VerifyRegionListsClosure cl(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm);
_g1h->heap_region_iterate(&cl);
cl.verify_counts(&_g1h->_old_set, &_g1h->_humongous_set, &_g1h->_hrm);
}
void G1HeapVerifier::prepare_for_verify() {
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
_g1h->ensure_parsability(false);
}
_g1h->g1_rem_set()->prepare_for_verify();
}
double G1HeapVerifier::verify(bool guard, const char* msg) {
double verify_time_ms = 0.0;
if (guard && _g1h->total_collections() >= VerifyGCStartAt) {
double verify_start = os::elapsedTime();
HandleMark hm; // Discard invalid handles created during verification
prepare_for_verify();
Universe::verify(VerifyOption_G1UsePrevMarking, msg);
verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
}
return verify_time_ms;
}
void G1HeapVerifier::verify_before_gc() {
double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
_g1h->g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
}
void G1HeapVerifier::verify_after_gc() {
double verify_time_ms = verify(VerifyAfterGC, "After GC");
_g1h->g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
}
#ifndef PRODUCT
class G1VerifyCardTableCleanup: public HeapRegionClosure {
G1HeapVerifier* _verifier;
G1SATBCardTableModRefBS* _ct_bs;
public:
G1VerifyCardTableCleanup(G1HeapVerifier* verifier, G1SATBCardTableModRefBS* ct_bs)
: _verifier(verifier), _ct_bs(ct_bs) { }
virtual bool doHeapRegion(HeapRegion* r) {
if (r->is_survivor()) {
_verifier->verify_dirty_region(r);
} else {
_verifier->verify_not_dirty_region(r);
}
return false;
}
};
void G1HeapVerifier::verify_card_table_cleanup() {
if (G1VerifyCTCleanup || VerifyAfterGC) {
G1VerifyCardTableCleanup cleanup_verifier(this, _g1h->g1_barrier_set());
_g1h->heap_region_iterate(&cleanup_verifier);
}
}
void G1HeapVerifier::verify_not_dirty_region(HeapRegion* hr) {
// All of the region should be clean.
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
MemRegion mr(hr->bottom(), hr->end());
ct_bs->verify_not_dirty_region(mr);
}
void G1HeapVerifier::verify_dirty_region(HeapRegion* hr) {
// We cannot guarantee that [bottom(),end()] is dirty. Threads
// dirty allocated blocks as they allocate them. The thread that
// retires each region and replaces it with a new one will do a
// maximal allocation to fill in [pre_dummy_top(),end()] but will
// not dirty that area (one less thing to have to do while holding
// a lock). So we can only verify that [bottom(),pre_dummy_top()]
// is dirty.
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
MemRegion mr(hr->bottom(), hr->pre_dummy_top());
if (hr->is_young()) {
ct_bs->verify_g1_young_region(mr);
} else {
ct_bs->verify_dirty_region(mr);
}
}
void G1HeapVerifier::verify_dirty_young_list(HeapRegion* head) {
G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
verify_dirty_region(hr);
}
}
void G1HeapVerifier::verify_dirty_young_regions() {
verify_dirty_young_list(_g1h->young_list()->first_region());
}
bool G1HeapVerifier::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
HeapWord* tams, HeapWord* end) {
guarantee(tams <= end,
"tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
if (result < end) {
log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
return false;
}
return true;
}
bool G1HeapVerifier::verify_bitmaps(const char* caller, HeapRegion* hr) {
CMBitMapRO* prev_bitmap = _g1h->concurrent_mark()->prevMarkBitMap();
CMBitMapRO* next_bitmap = (CMBitMapRO*) _g1h->concurrent_mark()->nextMarkBitMap();
HeapWord* bottom = hr->bottom();
HeapWord* ptams = hr->prev_top_at_mark_start();
HeapWord* ntams = hr->next_top_at_mark_start();
HeapWord* end = hr->end();
bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
bool res_n = true;
// We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
// we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
// if we happen to be in that state.
if (_g1h->collector_state()->mark_in_progress() || !_g1h->_cmThread->in_progress()) {
res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
}
if (!res_p || !res_n) {
log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
log_info(gc, verify)("#### Caller: %s", caller);
return false;
}
return true;
}
void G1HeapVerifier::check_bitmaps(const char* caller, HeapRegion* hr) {
if (!G1VerifyBitmaps) return;
guarantee(verify_bitmaps(caller, hr), "bitmap verification");
}
class G1VerifyBitmapClosure : public HeapRegionClosure {
private:
const char* _caller;
G1HeapVerifier* _verifier;
bool _failures;
public:
G1VerifyBitmapClosure(const char* caller, G1HeapVerifier* verifier) :
_caller(caller), _verifier(verifier), _failures(false) { }
bool failures() { return _failures; }
virtual bool doHeapRegion(HeapRegion* hr) {
bool result = _verifier->verify_bitmaps(_caller, hr);
if (!result) {
_failures = true;
}
return false;
}
};
void G1HeapVerifier::check_bitmaps(const char* caller) {
if (!G1VerifyBitmaps) return;
G1VerifyBitmapClosure cl(caller, this);
_g1h->heap_region_iterate(&cl);
guarantee(!cl.failures(), "bitmap verification");
}
class G1CheckCSetFastTableClosure : public HeapRegionClosure {
private:
bool _failures;
public:
G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
virtual bool doHeapRegion(HeapRegion* hr) {
uint i = hr->hrm_index();
InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
if (hr->is_humongous()) {
if (hr->in_collection_set()) {
log_info(gc, verify)("## humongous region %u in CSet", i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_continues_humongous() && cset_state.is_humongous()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for continues humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
} else {
if (cset_state.is_humongous()) {
log_info(gc, verify)("## inconsistent cset state " CSETSTATE_FORMAT " for non-humongous region %u", cset_state.value(), i);
_failures = true;
return true;
}
if (hr->in_collection_set() != cset_state.is_in_cset()) {
log_info(gc, verify)("## in CSet %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->in_collection_set(), cset_state.value(), i);
_failures = true;
return true;
}
if (cset_state.is_in_cset()) {
if (hr->is_young() != (cset_state.is_young())) {
log_info(gc, verify)("## is_young %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_young(), cset_state.value(), i);
_failures = true;
return true;
}
if (hr->is_old() != (cset_state.is_old())) {
log_info(gc, verify)("## is_old %d / cset state " CSETSTATE_FORMAT " inconsistency for region %u",
hr->is_old(), cset_state.value(), i);
_failures = true;
return true;
}
}
}
return false;
}
bool failures() const { return _failures; }
};
bool G1HeapVerifier::check_cset_fast_test() {
G1CheckCSetFastTableClosure cl;
_g1h->_hrm.iterate(&cl);
return !cl.failures();
}
#endif // PRODUCT

View File

@ -0,0 +1,115 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_G1_G1HEAPVERIFIER_HPP
#define SHARE_VM_GC_G1_G1HEAPVERIFIER_HPP
#include "gc/g1/heapRegionSet.hpp"
#include "memory/allocation.hpp"
#include "memory/universe.hpp"
class G1CollectedHeap;
class G1HeapVerifier : public CHeapObj<mtGC> {
private:
G1CollectedHeap* _g1h;
// verify_region_sets() performs verification over the region
// lists. It will be compiled in the product code to be used when
// necessary (i.e., during heap verification).
void verify_region_sets();
public:
G1HeapVerifier(G1CollectedHeap* heap) : _g1h(heap) { }
// Perform verification.
// vo == UsePrevMarking -> use "prev" marking information,
// vo == UseNextMarking -> use "next" marking information
// vo == UseMarkWord -> use the mark word in the object header
//
// NOTE: Only the "prev" marking information is guaranteed to be
// consistent most of the time, so most calls to this should use
// vo == UsePrevMarking.
// Currently, there is only one case where this is called with
// vo == UseNextMarking, which is to verify the "next" marking
// information at the end of remark.
// Currently there is only one place where this is called with
// vo == UseMarkWord, which is to verify the marking during a
// full GC.
void verify(VerifyOption vo);
// verify_region_sets_optional() is planted in the code for
// list verification in non-product builds (and it can be enabled in
// product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
#if HEAP_REGION_SET_FORCE_VERIFY
void verify_region_sets_optional() {
verify_region_sets();
}
#else // HEAP_REGION_SET_FORCE_VERIFY
void verify_region_sets_optional() { }
#endif // HEAP_REGION_SET_FORCE_VERIFY
void prepare_for_verify();
double verify(bool guard, const char* msg);
void verify_before_gc();
void verify_after_gc();
#ifndef PRODUCT
// Make sure that the given bitmap has no marked objects in the
// range [from,limit). If it does, print an error message and return
// false. Otherwise, just return true. bitmap_name should be "prev"
// or "next".
bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
HeapWord* from, HeapWord* limit);
// Verify that the prev / next bitmap range [tams,end) for the given
// region has no marks. Return true if all is well, false if errors
// are detected.
bool verify_bitmaps(const char* caller, HeapRegion* hr);
#endif // PRODUCT
// If G1VerifyBitmaps is set, verify that the marking bitmaps for
// the given region do not have any spurious marks. If errors are
// detected, print appropriate error messages and crash.
void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
// If G1VerifyBitmaps is set, verify that the marking bitmaps do not
// have any spurious marks. If errors are detected, print
// appropriate error messages and crash.
void check_bitmaps(const char* caller) PRODUCT_RETURN;
// Do sanity check on the contents of the in-cset fast test table.
bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
void verify_card_table_cleanup() PRODUCT_RETURN;
void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
void verify_dirty_young_regions() PRODUCT_RETURN;
};
#endif // SHARE_VM_GC_G1_G1HEAPVERIFIER_HPP

View File

@ -36,11 +36,12 @@ void Test_log_length() {
remove("loglengthoutput.txt");
// Write long message to output file
LogConfiguration::parse_log_arguments("loglengthoutput.txt", "logging=trace",
NULL, NULL, NULL);
ResourceMark rm;
outputStream* logstream = LogHandle(logging)::trace_stream();
logstream->print_cr("01:1234567890-"
LogHandle(logging) log;
bool success = LogConfiguration::parse_log_arguments("loglengthoutput.txt", "logging=trace",
NULL, NULL, log.error_stream());
assert(success, "test unable to configure logging");
log.trace("01:1234567890-"
"02:1234567890-"
"03:1234567890-"
"04:1234567890-"
@ -77,11 +78,12 @@ void Test_log_length() {
"35:1234567890-"
"36:1234567890-"
"37:1234567890-");
LogConfiguration::parse_log_arguments("loglengthoutput.txt", "all=off",
NULL, NULL, log.error_stream());
// Look for end of message in output file
FILE* fp;
fp = fopen("loglengthoutput.txt", "r");
assert (fp, "File read error");
FILE* fp = fopen("loglengthoutput.txt", "r");
assert(fp, "File read error");
char output[600];
if (fgets(output, 600, fp) != NULL) {
assert(strstr(output, "37:1234567890-"), "logging print size error");
@ -89,5 +91,12 @@ void Test_log_length() {
fclose(fp);
remove("loglengthoutput.txt");
}
#endif // PRODUCT
void Test_configure_stdout() {
LogConfiguration::configure_stdout(LogLevel::Info, true, LOG_TAGS(logging));
assert(log_is_enabled(Info, logging), "configure_stdout did not enable requested logging");
assert(!log_is_enabled(Info, logging, gc), "configure_stdout enabled too much logging");
LogConfiguration::configure_stdout(LogLevel::Off, false, LOG_TAGS(logging));
assert(!log_is_enabled(Info, logging), "configure_stdout did not disable requested logging");
}
#endif // PRODUCT

View File

@ -29,21 +29,8 @@
const char* LogTagLevelExpression::DefaultExpressionString = "all";
void LogTagLevelExpression::clear() {
_ntags = 0;
_ncombinations = 0;
for (size_t combination = 0; combination < MaxCombinations; combination++) {
_level[combination] = LogLevel::Invalid;
_allow_other_tags[combination] = false;
for (size_t tag = 0; tag < LogTag::MaxTags; tag++) {
_tags[combination][tag] = LogTag::__NO_TAG;
}
}
}
bool LogTagLevelExpression::parse(const char* str, outputStream* errstream) {
bool success = true;
clear();
if (str == NULL || strcmp(str, "") == 0) {
str = DefaultExpressionString;
}

View File

@ -47,6 +47,11 @@ class LogTagLevelExpression : public StackObj {
bool _allow_other_tags[MaxCombinations];
void new_combination() {
// Make sure either all tags are set or the last tag is __NO_TAG
if (_ntags < LogTag::MaxTags) {
_tags[_ncombinations][_ntags] = LogTag::__NO_TAG;
}
_ncombinations++;
_ntags = 0;
}
@ -64,10 +69,13 @@ class LogTagLevelExpression : public StackObj {
_allow_other_tags[_ncombinations] = true;
}
void clear();
public:
LogTagLevelExpression() : _ntags(0), _ncombinations(0) {
for (size_t combination = 0; combination < MaxCombinations; combination++) {
_level[combination] = LogLevel::Invalid;
_allow_other_tags[combination] = false;
_tags[combination][0] = LogTag::__NO_TAG;
}
}
bool parse(const char* str, outputStream* errstream = NULL);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -42,11 +42,7 @@ int ArrayKlass::static_size(int header_size) {
// If this assert fails, see comments in base_create_array_klass.
header_size = InstanceKlass::header_size();
int vtable_len = Universe::base_vtable_size();
#ifdef _LP64
int size = header_size + align_object_offset(vtable_len);
#else
int size = header_size + vtable_len;
#endif
return align_object_size(size);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -2910,12 +2910,9 @@ void InstanceKlass::collect_statistics(KlassSizeStats *sz) const {
Klass::collect_statistics(sz);
sz->_inst_size = HeapWordSize * size_helper();
sz->_vtab_bytes = HeapWordSize * align_object_offset(vtable_length());
sz->_itab_bytes = HeapWordSize * align_object_offset(itable_length());
sz->_nonstatic_oopmap_bytes = HeapWordSize *
((is_interface() || is_anonymous()) ?
align_object_offset(nonstatic_oop_map_size()) :
nonstatic_oop_map_size());
sz->_vtab_bytes = HeapWordSize * vtable_length();
sz->_itab_bytes = HeapWordSize * itable_length();
sz->_nonstatic_oopmap_bytes = HeapWordSize * nonstatic_oop_map_size();
int n = 0;
n += (sz->_methods_array_bytes = sz->count_array(methods()));

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -927,17 +927,15 @@ public:
}
// Sizing (in words)
static int header_size() { return align_object_offset(sizeof(InstanceKlass)/HeapWordSize); }
static int header_size() { return sizeof(InstanceKlass)/HeapWordSize; }
static int size(int vtable_length, int itable_length,
int nonstatic_oop_map_size,
bool is_interface, bool is_anonymous) {
return align_object_size(header_size() +
align_object_offset(vtable_length) +
align_object_offset(itable_length) +
((is_interface || is_anonymous) ?
align_object_offset(nonstatic_oop_map_size) :
nonstatic_oop_map_size) +
vtable_length +
itable_length +
nonstatic_oop_map_size +
(is_interface ? (int)sizeof(Klass*)/HeapWordSize : 0) +
(is_anonymous ? (int)sizeof(Klass*)/HeapWordSize : 0));
}
@ -955,7 +953,7 @@ public:
static int vtable_length_offset() { return offset_of(InstanceKlass, _vtable_len) / HeapWordSize; }
intptr_t* start_of_vtable() const { return ((intptr_t*)this) + vtable_start_offset(); }
intptr_t* start_of_itable() const { return start_of_vtable() + align_object_offset(vtable_length()); }
intptr_t* start_of_itable() const { return start_of_vtable() + vtable_length(); }
int itable_offset_in_words() const { return start_of_itable() - (intptr_t*)this; }
intptr_t* end_of_itable() const { return start_of_itable() + itable_length(); }
@ -963,7 +961,7 @@ public:
address static_field_addr(int offset);
OopMapBlock* start_of_nonstatic_oop_maps() const {
return (OopMapBlock*)(start_of_itable() + align_object_offset(itable_length()));
return (OopMapBlock*)(start_of_itable() + itable_length());
}
Klass** end_of_nonstatic_oop_maps() const {

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -169,7 +169,9 @@ template<class E> class GrowableArray : public GenericGrowableArray {
: GenericGrowableArray(initial_size, 0, C_heap, F) {
_data = (E*)raw_allocate(sizeof(E));
// Needed for Visual Studio 2012 and older
#ifdef _MSC_VER
#pragma warning(suppress: 4345)
#endif
for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
}
@ -422,7 +424,9 @@ template<class E> void GrowableArray<E>::grow(int j) {
int i = 0;
for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
// Needed for Visual Studio 2012 and older
#ifdef _MSC_VER
#pragma warning(suppress: 4345)
#endif
for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
for (i = 0; i < old_max; i++) _data[i].~E();
if (on_C_heap() && _data != NULL) {

View File

@ -53,6 +53,7 @@ void Test_linked_list();
void TestResourcehash_test();
void TestChunkedList_test();
void Test_log_length();
void Test_configure_stdout();
void Test_TempNewSymbol();
void GlobalDefinitions_test();
void GCTimer_test();
@ -110,6 +111,7 @@ void InternalVMTests::run() {
run_unit_test(TestChunkedList_test());
run_unit_test(JSON_test());
run_unit_test(Test_log_length());
run_unit_test(Test_configure_stdout());
run_unit_test(DirectivesParser_test());
run_unit_test(Test_TempNewSymbol());
#if INCLUDE_VM_STRUCTS

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -33,7 +33,7 @@
* @build jdk.test.lib.*
* @build jdk.test.lib.dcmd.*
* @build jdk.test.lib.hprof.*
* @build jdk.test.lib.hprof.module.*
* @build jdk.test.lib.hprof.model.*
* @build jdk.test.lib.hprof.parser.*
* @build jdk.test.lib.hprof.utils.*
* @build HeapDumpTest

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -49,7 +49,7 @@ import jdk.test.lib.dcmd.PidJcmdExecutor;
* @build jdk.test.lib.*
* @build jdk.test.lib.dcmd.*
* @build jdk.test.lib.hprof.*
* @build jdk.test.lib.hprof.module.*
* @build jdk.test.lib.hprof.model.*
* @build jdk.test.lib.hprof.parser.*
* @build jdk.test.lib.hprof.utils.*
* @run testng HeapDumpTest