6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads
Select number of GC threads dynamically based on heap usage and number of Java threads Reviewed-by: johnc, ysr, jcoomes
This commit is contained in:
parent
098ed89645
commit
15070123fa
@ -668,12 +668,16 @@ public:
|
||||
|
||||
// We de-virtualize the block-related calls below, since we know that our
|
||||
// space is a CompactibleFreeListSpace.
|
||||
|
||||
#define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
|
||||
void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
|
||||
HeapWord* bottom, \
|
||||
HeapWord* top, \
|
||||
ClosureType* cl) { \
|
||||
if (SharedHeap::heap()->n_par_threads() > 0) { \
|
||||
bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
|
||||
if (is_par) { \
|
||||
assert(SharedHeap::heap()->n_par_threads() == \
|
||||
SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
|
||||
walk_mem_region_with_cl_par(mr, bottom, top, cl); \
|
||||
} else { \
|
||||
walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
|
||||
@ -1925,6 +1929,9 @@ CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
|
||||
if (rem_size < SmallForDictionary) {
|
||||
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
|
||||
if (is_par) _indexedFreeListParLocks[rem_size]->lock();
|
||||
assert(!is_par ||
|
||||
(SharedHeap::heap()->n_par_threads() ==
|
||||
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
|
||||
returnChunkToFreeList(ffc);
|
||||
split(size, rem_size);
|
||||
if (is_par) _indexedFreeListParLocks[rem_size]->unlock();
|
||||
|
@ -4244,9 +4244,11 @@ void CMSConcMarkingTask::coordinator_yield() {
|
||||
|
||||
bool CMSCollector::do_marking_mt(bool asynch) {
|
||||
assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
|
||||
// In the future this would be determined ergonomically, based
|
||||
// on #cpu's, # active mutator threads (and load), and mutation rate.
|
||||
int num_workers = ConcGCThreads;
|
||||
int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
|
||||
conc_workers()->total_workers(),
|
||||
conc_workers()->active_workers(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
conc_workers()->set_active_workers(num_workers);
|
||||
|
||||
CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
|
||||
CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
|
||||
@ -5062,6 +5064,8 @@ class CMSParRemarkTask: public AbstractGangTask {
|
||||
ParallelTaskTerminator _term;
|
||||
|
||||
public:
|
||||
// A value of 0 passed to n_workers will cause the number of
|
||||
// workers to be taken from the active workers in the work gang.
|
||||
CMSParRemarkTask(CMSCollector* collector,
|
||||
CompactibleFreeListSpace* cms_space,
|
||||
CompactibleFreeListSpace* perm_space,
|
||||
@ -5544,7 +5548,15 @@ void CMSCollector::do_remark_parallel() {
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
FlexibleWorkGang* workers = gch->workers();
|
||||
assert(workers != NULL, "Need parallel worker threads.");
|
||||
int n_workers = workers->total_workers();
|
||||
// Choose to use the number of GC workers most recently set
|
||||
// into "active_workers". If active_workers is not set, set it
|
||||
// to ParallelGCThreads.
|
||||
int n_workers = workers->active_workers();
|
||||
if (n_workers == 0) {
|
||||
assert(n_workers > 0, "Should have been set during scavenge");
|
||||
n_workers = ParallelGCThreads;
|
||||
workers->set_active_workers(n_workers);
|
||||
}
|
||||
CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
|
||||
CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
|
||||
|
||||
@ -5884,8 +5896,17 @@ void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
|
||||
// and a different number of discovered lists may have Ref objects.
|
||||
// That is OK as long as the Reference lists are balanced (see
|
||||
// balance_all_queues() and balance_queues()).
|
||||
|
||||
rp->set_active_mt_degree(ParallelGCThreads);
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
int active_workers = ParallelGCThreads;
|
||||
FlexibleWorkGang* workers = gch->workers();
|
||||
if (workers != NULL) {
|
||||
active_workers = workers->active_workers();
|
||||
// The expectation is that active_workers will have already
|
||||
// been set to a reasonable value. If it has not been set,
|
||||
// investigate.
|
||||
assert(active_workers > 0, "Should have been set during scavenge");
|
||||
}
|
||||
rp->set_active_mt_degree(active_workers);
|
||||
CMSRefProcTaskExecutor task_executor(*this);
|
||||
rp->process_discovered_references(&_is_alive_closure,
|
||||
&cmsKeepAliveClosure,
|
||||
|
@ -255,7 +255,18 @@ void
|
||||
CollectionSetChooser::
|
||||
prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
|
||||
_first_par_unreserved_idx = 0;
|
||||
size_t max_waste = ParallelGCThreads * chunkSize;
|
||||
int n_threads = ParallelGCThreads;
|
||||
if (UseDynamicNumberOfGCThreads) {
|
||||
assert(G1CollectedHeap::heap()->workers()->active_workers() > 0,
|
||||
"Should have been set earlier");
|
||||
// This is defensive code. As the assertion above says, the number
|
||||
// of active threads should be > 0, but in case there is some path
|
||||
// or some improperly initialized variable with leads to no
|
||||
// active threads, protect against that in a product build.
|
||||
n_threads = MAX2(G1CollectedHeap::heap()->workers()->active_workers(),
|
||||
1);
|
||||
}
|
||||
size_t max_waste = n_threads * chunkSize;
|
||||
// it should be aligned with respect to chunkSize
|
||||
size_t aligned_n_regions =
|
||||
(n_regions + (chunkSize - 1)) / chunkSize * chunkSize;
|
||||
@ -265,6 +276,11 @@ prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
|
||||
|
||||
jint
|
||||
CollectionSetChooser::getParMarkedHeapRegionChunk(jint n_regions) {
|
||||
// Don't do this assert because this can be called at a point
|
||||
// where the loop up stream will not execute again but might
|
||||
// try to claim more chunks (loop test has not been done yet).
|
||||
// assert(_markedRegions.length() > _first_par_unreserved_idx,
|
||||
// "Striding beyond the marked regions");
|
||||
jint res = Atomic::add(n_regions, &_first_par_unreserved_idx);
|
||||
assert(_markedRegions.length() > res + n_regions - 1,
|
||||
"Should already have been expanded");
|
||||
|
@ -458,12 +458,17 @@ bool ConcurrentMark::not_yet_marked(oop obj) const {
|
||||
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list
|
||||
#endif // _MSC_VER
|
||||
|
||||
size_t ConcurrentMark::scale_parallel_threads(size_t n_par_threads) {
|
||||
return MAX2((n_par_threads + 2) / 4, (size_t)1);
|
||||
}
|
||||
|
||||
ConcurrentMark::ConcurrentMark(ReservedSpace rs,
|
||||
int max_regions) :
|
||||
_markBitMap1(rs, MinObjAlignment - 1),
|
||||
_markBitMap2(rs, MinObjAlignment - 1),
|
||||
|
||||
_parallel_marking_threads(0),
|
||||
_max_parallel_marking_threads(0),
|
||||
_sleep_factor(0.0),
|
||||
_marking_task_overhead(1.0),
|
||||
_cleanup_sleep_factor(0.0),
|
||||
@ -554,15 +559,17 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
|
||||
if (ParallelGCThreads == 0) {
|
||||
// if we are not running with any parallel GC threads we will not
|
||||
// spawn any marking threads either
|
||||
_parallel_marking_threads = 0;
|
||||
_sleep_factor = 0.0;
|
||||
_marking_task_overhead = 1.0;
|
||||
_parallel_marking_threads = 0;
|
||||
_max_parallel_marking_threads = 0;
|
||||
_sleep_factor = 0.0;
|
||||
_marking_task_overhead = 1.0;
|
||||
} else {
|
||||
if (ConcGCThreads > 0) {
|
||||
// notice that ConcGCThreads overwrites G1MarkingOverheadPercent
|
||||
// if both are set
|
||||
|
||||
_parallel_marking_threads = ConcGCThreads;
|
||||
_max_parallel_marking_threads = _parallel_marking_threads;
|
||||
_sleep_factor = 0.0;
|
||||
_marking_task_overhead = 1.0;
|
||||
} else if (G1MarkingOverheadPercent > 0) {
|
||||
@ -583,10 +590,12 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
|
||||
(1.0 - marking_task_overhead) / marking_task_overhead;
|
||||
|
||||
_parallel_marking_threads = (size_t) marking_thread_num;
|
||||
_max_parallel_marking_threads = _parallel_marking_threads;
|
||||
_sleep_factor = sleep_factor;
|
||||
_marking_task_overhead = marking_task_overhead;
|
||||
} else {
|
||||
_parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1);
|
||||
_parallel_marking_threads = scale_parallel_threads(ParallelGCThreads);
|
||||
_max_parallel_marking_threads = _parallel_marking_threads;
|
||||
_sleep_factor = 0.0;
|
||||
_marking_task_overhead = 1.0;
|
||||
}
|
||||
@ -609,7 +618,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
|
||||
|
||||
guarantee(parallel_marking_threads() > 0, "peace of mind");
|
||||
_parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
|
||||
(int) _parallel_marking_threads, false, true);
|
||||
(int) _max_parallel_marking_threads, false, true);
|
||||
if (_parallel_workers == NULL) {
|
||||
vm_exit_during_initialization("Failed necessary allocation.");
|
||||
} else {
|
||||
@ -1106,6 +1115,33 @@ public:
|
||||
~CMConcurrentMarkingTask() { }
|
||||
};
|
||||
|
||||
// Calculates the number of active workers for a concurrent
|
||||
// phase.
|
||||
int ConcurrentMark::calc_parallel_marking_threads() {
|
||||
|
||||
size_t n_conc_workers;
|
||||
if (!G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
n_conc_workers = 1;
|
||||
} else {
|
||||
if (!UseDynamicNumberOfGCThreads ||
|
||||
(!FLAG_IS_DEFAULT(ConcGCThreads) &&
|
||||
!ForceDynamicNumberOfGCThreads)) {
|
||||
n_conc_workers = max_parallel_marking_threads();
|
||||
} else {
|
||||
n_conc_workers =
|
||||
AdaptiveSizePolicy::calc_default_active_workers(
|
||||
max_parallel_marking_threads(),
|
||||
1, /* Minimum workers */
|
||||
parallel_marking_threads(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
// Don't scale down "n_conc_workers" by scale_parallel_threads() because
|
||||
// that scaling has already gone into "_max_parallel_marking_threads".
|
||||
}
|
||||
}
|
||||
assert(n_conc_workers > 0, "Always need at least 1");
|
||||
return (int) MAX2(n_conc_workers, (size_t) 1);
|
||||
}
|
||||
|
||||
void ConcurrentMark::markFromRoots() {
|
||||
// we might be tempted to assert that:
|
||||
// assert(asynch == !SafepointSynchronize::is_at_safepoint(),
|
||||
@ -1116,9 +1152,20 @@ void ConcurrentMark::markFromRoots() {
|
||||
|
||||
_restart_for_overflow = false;
|
||||
|
||||
size_t active_workers = MAX2((size_t) 1, parallel_marking_threads());
|
||||
// Parallel task terminator is set in "set_phase()".
|
||||
force_overflow_conc()->init();
|
||||
set_phase(active_workers, true /* concurrent */);
|
||||
|
||||
// _g1h has _n_par_threads
|
||||
|
||||
_parallel_marking_threads = calc_parallel_marking_threads();
|
||||
assert(parallel_marking_threads() <= max_parallel_marking_threads(),
|
||||
"Maximum number of marking threads exceeded");
|
||||
_parallel_workers->set_active_workers((int)_parallel_marking_threads);
|
||||
// Don't set _n_par_threads because it affects MT in proceess_strong_roots()
|
||||
// and the decisions on that MT processing is made elsewhere.
|
||||
|
||||
assert( _parallel_workers->active_workers() > 0, "Should have been set");
|
||||
set_phase(_parallel_workers->active_workers(), true /* concurrent */);
|
||||
|
||||
CMConcurrentMarkingTask markingTask(this, cmThread());
|
||||
if (parallel_marking_threads() > 0) {
|
||||
@ -1181,6 +1228,7 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
|
||||
true /* expected_active */);
|
||||
|
||||
if (VerifyDuringGC) {
|
||||
|
||||
HandleMark hm; // handle scope
|
||||
gclog_or_tty->print(" VerifyDuringGC:(after)");
|
||||
Universe::heap()->prepare_for_verify();
|
||||
@ -1463,12 +1511,20 @@ public:
|
||||
G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
|
||||
BitMap* region_bm, BitMap* card_bm)
|
||||
: AbstractGangTask("G1 final counting"), _g1h(g1h),
|
||||
_bm(bm), _region_bm(region_bm), _card_bm(card_bm) {
|
||||
if (ParallelGCThreads > 0) {
|
||||
_n_workers = _g1h->workers()->total_workers();
|
||||
_bm(bm), _region_bm(region_bm), _card_bm(card_bm),
|
||||
_n_workers(0)
|
||||
{
|
||||
// Use the value already set as the number of active threads
|
||||
// in the call to run_task(). Needed for the allocation of
|
||||
// _live_bytes and _used_bytes.
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
assert( _g1h->workers()->active_workers() > 0,
|
||||
"Should have been previously set");
|
||||
_n_workers = _g1h->workers()->active_workers();
|
||||
} else {
|
||||
_n_workers = 1;
|
||||
}
|
||||
|
||||
_live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
|
||||
_used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
|
||||
}
|
||||
@ -1485,6 +1541,7 @@ public:
|
||||
calccl.no_yield();
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
_g1h->heap_region_par_iterate_chunked(&calccl, i,
|
||||
(int) _n_workers,
|
||||
HeapRegion::FinalCountClaimValue);
|
||||
} else {
|
||||
_g1h->heap_region_iterate(&calccl);
|
||||
@ -1600,6 +1657,7 @@ public:
|
||||
&hrrs_cleanup_task);
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
_g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
|
||||
_g1h->workers()->active_workers(),
|
||||
HeapRegion::NoteEndClaimValue);
|
||||
} else {
|
||||
_g1h->heap_region_iterate(&g1_note_end);
|
||||
@ -1707,6 +1765,9 @@ void ConcurrentMark::cleanup() {
|
||||
|
||||
HeapRegionRemSet::reset_for_cleanup_tasks();
|
||||
|
||||
g1h->set_par_threads();
|
||||
size_t n_workers = g1h->n_par_threads();
|
||||
|
||||
// Do counting once more with the world stopped for good measure.
|
||||
G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
|
||||
&_region_bm, &_card_bm);
|
||||
@ -1715,9 +1776,10 @@ void ConcurrentMark::cleanup() {
|
||||
HeapRegion::InitialClaimValue),
|
||||
"sanity check");
|
||||
|
||||
int n_workers = g1h->workers()->total_workers();
|
||||
g1h->set_par_threads(n_workers);
|
||||
assert(g1h->n_par_threads() == (int) n_workers,
|
||||
"Should not have been reset");
|
||||
g1h->workers()->run_task(&g1_par_count_task);
|
||||
// Done with the parallel phase so reset to 0.
|
||||
g1h->set_par_threads(0);
|
||||
|
||||
assert(g1h->check_heap_region_claim_values(
|
||||
@ -1767,8 +1829,7 @@ void ConcurrentMark::cleanup() {
|
||||
double note_end_start = os::elapsedTime();
|
||||
G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
int n_workers = g1h->workers()->total_workers();
|
||||
g1h->set_par_threads(n_workers);
|
||||
g1h->set_par_threads((int)n_workers);
|
||||
g1h->workers()->run_task(&g1_par_note_end_task);
|
||||
g1h->set_par_threads(0);
|
||||
|
||||
@ -1797,8 +1858,7 @@ void ConcurrentMark::cleanup() {
|
||||
double rs_scrub_start = os::elapsedTime();
|
||||
G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
int n_workers = g1h->workers()->total_workers();
|
||||
g1h->set_par_threads(n_workers);
|
||||
g1h->set_par_threads((int)n_workers);
|
||||
g1h->workers()->run_task(&g1_par_scrub_rs_task);
|
||||
g1h->set_par_threads(0);
|
||||
|
||||
@ -1816,7 +1876,7 @@ void ConcurrentMark::cleanup() {
|
||||
|
||||
// this will also free any regions totally full of garbage objects,
|
||||
// and sort the regions.
|
||||
g1h->g1_policy()->record_concurrent_mark_cleanup_end();
|
||||
g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
|
||||
|
||||
// Statistics.
|
||||
double end = os::elapsedTime();
|
||||
@ -2187,7 +2247,7 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
|
||||
|
||||
// We use the work gang from the G1CollectedHeap and we utilize all
|
||||
// the worker threads.
|
||||
int active_workers = g1h->workers() ? g1h->workers()->total_workers() : 1;
|
||||
int active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1;
|
||||
active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1);
|
||||
|
||||
G1CMRefProcTaskExecutor par_task_executor(g1h, this,
|
||||
@ -2270,7 +2330,9 @@ public:
|
||||
}
|
||||
|
||||
CMRemarkTask(ConcurrentMark* cm) :
|
||||
AbstractGangTask("Par Remark"), _cm(cm) { }
|
||||
AbstractGangTask("Par Remark"), _cm(cm) {
|
||||
_cm->terminator()->reset_for_reuse(cm->_g1h->workers()->active_workers());
|
||||
}
|
||||
};
|
||||
|
||||
void ConcurrentMark::checkpointRootsFinalWork() {
|
||||
@ -2282,16 +2344,21 @@ void ConcurrentMark::checkpointRootsFinalWork() {
|
||||
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
G1CollectedHeap::StrongRootsScope srs(g1h);
|
||||
// this is remark, so we'll use up all available threads
|
||||
int active_workers = ParallelGCThreads;
|
||||
// this is remark, so we'll use up all active threads
|
||||
int active_workers = g1h->workers()->active_workers();
|
||||
if (active_workers == 0) {
|
||||
assert(active_workers > 0, "Should have been set earlier");
|
||||
active_workers = ParallelGCThreads;
|
||||
g1h->workers()->set_active_workers(active_workers);
|
||||
}
|
||||
set_phase(active_workers, false /* concurrent */);
|
||||
// Leave _parallel_marking_threads at it's
|
||||
// value originally calculated in the ConcurrentMark
|
||||
// constructor and pass values of the active workers
|
||||
// through the gang in the task.
|
||||
|
||||
CMRemarkTask remarkTask(this);
|
||||
// We will start all available threads, even if we decide that the
|
||||
// active_workers will be fewer. The extra ones will just bail out
|
||||
// immediately.
|
||||
int n_workers = g1h->workers()->total_workers();
|
||||
g1h->set_par_threads(n_workers);
|
||||
g1h->set_par_threads(active_workers);
|
||||
g1h->workers()->run_task(&remarkTask);
|
||||
g1h->set_par_threads(0);
|
||||
} else {
|
||||
|
@ -375,7 +375,9 @@ protected:
|
||||
ConcurrentMarkThread* _cmThread; // the thread doing the work
|
||||
G1CollectedHeap* _g1h; // the heap.
|
||||
size_t _parallel_marking_threads; // the number of marking
|
||||
// threads we'll use
|
||||
// threads we're use
|
||||
size_t _max_parallel_marking_threads; // max number of marking
|
||||
// threads we'll ever use
|
||||
double _sleep_factor; // how much we have to sleep, with
|
||||
// respect to the work we just did, to
|
||||
// meet the marking overhead goal
|
||||
@ -473,7 +475,7 @@ protected:
|
||||
|
||||
double* _accum_task_vtime; // accumulated task vtime
|
||||
|
||||
WorkGang* _parallel_workers;
|
||||
FlexibleWorkGang* _parallel_workers;
|
||||
|
||||
ForceOverflowSettings _force_overflow_conc;
|
||||
ForceOverflowSettings _force_overflow_stw;
|
||||
@ -504,6 +506,7 @@ protected:
|
||||
|
||||
// accessor methods
|
||||
size_t parallel_marking_threads() { return _parallel_marking_threads; }
|
||||
size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
|
||||
double sleep_factor() { return _sleep_factor; }
|
||||
double marking_task_overhead() { return _marking_task_overhead;}
|
||||
double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
|
||||
@ -709,6 +712,14 @@ public:
|
||||
CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
|
||||
CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
|
||||
|
||||
// Returns the number of GC threads to be used in a concurrent
|
||||
// phase based on the number of GC threads being used in a STW
|
||||
// phase.
|
||||
size_t scale_parallel_threads(size_t n_par_threads);
|
||||
|
||||
// Calculates the number of GC threads to be used in a concurrent phase.
|
||||
int calc_parallel_marking_threads();
|
||||
|
||||
// The following three are interaction between CM and
|
||||
// G1CollectedHeap
|
||||
|
||||
|
@ -66,6 +66,18 @@ size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
|
||||
// apply to TLAB allocation, which is not part of this interface: it
|
||||
// is done by clients of this interface.)
|
||||
|
||||
// Notes on implementation of parallelism in different tasks.
|
||||
//
|
||||
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
|
||||
// The number of GC workers is passed to heap_region_par_iterate_chunked().
|
||||
// It does use run_task() which sets _n_workers in the task.
|
||||
// G1ParTask executes g1_process_strong_roots() ->
|
||||
// SharedHeap::process_strong_roots() which calls eventuall to
|
||||
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
|
||||
// SequentialSubTasksDone. SharedHeap::process_strong_roots() also
|
||||
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
|
||||
//
|
||||
|
||||
// Local to this file.
|
||||
|
||||
class RefineCardTableEntryClosure: public CardTableEntryClosure {
|
||||
@ -1156,6 +1168,7 @@ public:
|
||||
void work(int i) {
|
||||
RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
|
||||
_g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
|
||||
_g1->workers()->active_workers(),
|
||||
HeapRegion::RebuildRSClaimValue);
|
||||
}
|
||||
};
|
||||
@ -1360,12 +1373,32 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
|
||||
}
|
||||
|
||||
// Rebuild remembered sets of all regions.
|
||||
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
int n_workers =
|
||||
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
|
||||
workers()->active_workers(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
n_workers == workers()->total_workers(),
|
||||
"If not dynamic should be using all the workers");
|
||||
workers()->set_active_workers(n_workers);
|
||||
// Set parallel threads in the heap (_n_par_threads) only
|
||||
// before a parallel phase and always reset it to 0 after
|
||||
// the phase so that the number of parallel threads does
|
||||
// no get carried forward to a serial phase where there
|
||||
// may be code that is "possibly_parallel".
|
||||
set_par_threads(n_workers);
|
||||
|
||||
ParRebuildRSTask rebuild_rs_task(this);
|
||||
assert(check_heap_region_claim_values(
|
||||
HeapRegion::InitialClaimValue), "sanity check");
|
||||
set_par_threads(workers()->total_workers());
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
workers()->active_workers() == workers()->total_workers(),
|
||||
"Unless dynamic should use total workers");
|
||||
// Use the most recent number of active workers
|
||||
assert(workers()->active_workers() > 0,
|
||||
"Active workers not properly set");
|
||||
set_par_threads(workers()->active_workers());
|
||||
workers()->run_task(&rebuild_rs_task);
|
||||
set_par_threads(0);
|
||||
assert(check_heap_region_claim_values(
|
||||
@ -2477,11 +2510,17 @@ void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
|
||||
void
|
||||
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
|
||||
int worker,
|
||||
int no_of_par_workers,
|
||||
jint claim_value) {
|
||||
const size_t regions = n_regions();
|
||||
const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1);
|
||||
const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
|
||||
no_of_par_workers :
|
||||
1);
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
no_of_par_workers == workers()->total_workers(),
|
||||
"Non dynamic should use fixed number of workers");
|
||||
// try to spread out the starting points of the workers
|
||||
const size_t start_index = regions / worker_num * (size_t) worker;
|
||||
const size_t start_index = regions / max_workers * (size_t) worker;
|
||||
|
||||
// each worker will actually look at all regions
|
||||
for (size_t count = 0; count < regions; ++count) {
|
||||
@ -2920,6 +2959,7 @@ public:
|
||||
HandleMark hm;
|
||||
VerifyRegionClosure blk(_allow_dirty, true, _vo);
|
||||
_g1h->heap_region_par_iterate_chunked(&blk, worker_i,
|
||||
_g1h->workers()->active_workers(),
|
||||
HeapRegion::ParVerifyClaimValue);
|
||||
if (blk.failures()) {
|
||||
_failures = true;
|
||||
@ -2937,6 +2977,10 @@ void G1CollectedHeap::verify(bool allow_dirty,
|
||||
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
|
||||
if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
|
||||
VerifyRootsClosure rootsCl(vo);
|
||||
|
||||
assert(Thread::current()->is_VM_thread(),
|
||||
"Expected to be executed serially by the VM thread at this point");
|
||||
|
||||
CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
|
||||
|
||||
// We apply the relevant closures to all the oops in the
|
||||
@ -2981,7 +3025,10 @@ void G1CollectedHeap::verify(bool allow_dirty,
|
||||
"sanity check");
|
||||
|
||||
G1ParVerifyTask task(this, allow_dirty, vo);
|
||||
int n_workers = workers()->total_workers();
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
workers()->active_workers() == workers()->total_workers(),
|
||||
"If not dynamic should be using all the workers");
|
||||
int n_workers = workers()->active_workers();
|
||||
set_par_threads(n_workers);
|
||||
workers()->run_task(&task);
|
||||
set_par_threads(0);
|
||||
@ -2989,6 +3036,8 @@ void G1CollectedHeap::verify(bool allow_dirty,
|
||||
failures = true;
|
||||
}
|
||||
|
||||
// Checks that the expected amount of parallel work was done.
|
||||
// The implication is that n_workers is > 0.
|
||||
assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
|
||||
"sanity check");
|
||||
|
||||
@ -3402,6 +3451,10 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
|
||||
assert(check_young_list_well_formed(),
|
||||
"young list should be well formed");
|
||||
|
||||
// Don't dynamically change the number of GC threads this early. A value of
|
||||
// 0 is used to indicate serial work. When parallel work is done,
|
||||
// it will be set.
|
||||
|
||||
{ // Call to jvmpi::post_class_unload_events must occur outside of active GC
|
||||
IsGCActiveMark x;
|
||||
|
||||
@ -3615,7 +3668,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
|
||||
double end_time_sec = os::elapsedTime();
|
||||
double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
|
||||
g1_policy()->record_pause_time_ms(pause_time_ms);
|
||||
g1_policy()->record_collection_pause_end();
|
||||
int active_gc_threads = workers()->active_workers();
|
||||
g1_policy()->record_collection_pause_end(active_gc_threads);
|
||||
|
||||
MemoryService::track_memory_usage();
|
||||
|
||||
@ -4562,13 +4616,13 @@ protected:
|
||||
}
|
||||
|
||||
public:
|
||||
G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
|
||||
G1ParTask(G1CollectedHeap* g1h,
|
||||
RefToScanQueueSet *task_queues)
|
||||
: AbstractGangTask("G1 collection"),
|
||||
_g1h(g1h),
|
||||
_queues(task_queues),
|
||||
_terminator(workers, _queues),
|
||||
_stats_lock(Mutex::leaf, "parallel G1 stats lock", true),
|
||||
_n_workers(workers)
|
||||
_terminator(0, _queues),
|
||||
_stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
|
||||
{}
|
||||
|
||||
RefToScanQueueSet* queues() { return _queues; }
|
||||
@ -4577,6 +4631,20 @@ public:
|
||||
return queues()->queue(i);
|
||||
}
|
||||
|
||||
ParallelTaskTerminator* terminator() { return &_terminator; }
|
||||
|
||||
virtual void set_for_termination(int active_workers) {
|
||||
// This task calls set_n_termination() in par_non_clean_card_iterate_work()
|
||||
// in the young space (_par_seq_tasks) in the G1 heap
|
||||
// for SequentialSubTasksDone.
|
||||
// This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
|
||||
// both of which need setting by set_n_termination().
|
||||
_g1h->SharedHeap::set_n_termination(active_workers);
|
||||
_g1h->set_n_termination(active_workers);
|
||||
terminator()->reset_for_reuse(active_workers);
|
||||
_n_workers = active_workers;
|
||||
}
|
||||
|
||||
void work(int i) {
|
||||
if (i >= _n_workers) return; // no work needed this round
|
||||
|
||||
@ -4861,12 +4929,12 @@ class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
|
||||
private:
|
||||
G1CollectedHeap* _g1h;
|
||||
RefToScanQueueSet* _queues;
|
||||
WorkGang* _workers;
|
||||
FlexibleWorkGang* _workers;
|
||||
int _active_workers;
|
||||
|
||||
public:
|
||||
G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
|
||||
WorkGang* workers,
|
||||
FlexibleWorkGang* workers,
|
||||
RefToScanQueueSet *task_queues,
|
||||
int n_workers) :
|
||||
_g1h(g1h),
|
||||
@ -5122,11 +5190,13 @@ void G1CollectedHeap::process_discovered_references() {
|
||||
// referents points to another object which is also referenced by an
|
||||
// object discovered by the STW ref processor.
|
||||
|
||||
int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
|
||||
workers()->total_workers() : 1);
|
||||
int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
|
||||
workers()->active_workers() : 1);
|
||||
|
||||
set_par_threads(n_workers);
|
||||
G1ParPreserveCMReferentsTask keep_cm_referents(this, n_workers, _task_queues);
|
||||
assert(active_workers == workers()->active_workers(),
|
||||
"Need to reset active_workers");
|
||||
set_par_threads(active_workers);
|
||||
G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
|
||||
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
workers()->run_task(&keep_cm_referents);
|
||||
@ -5192,7 +5262,6 @@ void G1CollectedHeap::process_discovered_references() {
|
||||
NULL);
|
||||
} else {
|
||||
// Parallel reference processing
|
||||
int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
|
||||
assert(rp->num_q() == active_workers, "sanity");
|
||||
assert(active_workers <= rp->max_num_q(), "sanity");
|
||||
|
||||
@ -5225,7 +5294,9 @@ void G1CollectedHeap::enqueue_discovered_references() {
|
||||
} else {
|
||||
// Parallel reference enqueuing
|
||||
|
||||
int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
|
||||
int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
|
||||
assert(active_workers == workers()->active_workers(),
|
||||
"Need to reset active_workers");
|
||||
assert(rp->num_q() == active_workers, "sanity");
|
||||
assert(active_workers <= rp->max_num_q(), "sanity");
|
||||
|
||||
@ -5252,9 +5323,24 @@ void G1CollectedHeap::evacuate_collection_set() {
|
||||
concurrent_g1_refine()->set_use_cache(false);
|
||||
concurrent_g1_refine()->clear_hot_cache_claimed_index();
|
||||
|
||||
int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
|
||||
set_par_threads(n_workers);
|
||||
G1ParTask g1_par_task(this, n_workers, _task_queues);
|
||||
int n_workers;
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
n_workers =
|
||||
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
|
||||
workers()->active_workers(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
n_workers == workers()->total_workers(),
|
||||
"If not dynamic should be using all the workers");
|
||||
set_par_threads(n_workers);
|
||||
} else {
|
||||
assert(n_par_threads() == 0,
|
||||
"Should be the original non-parallel value");
|
||||
n_workers = 1;
|
||||
}
|
||||
workers()->set_active_workers(n_workers);
|
||||
|
||||
G1ParTask g1_par_task(this, _task_queues);
|
||||
|
||||
init_for_evac_failure(NULL);
|
||||
|
||||
@ -5267,6 +5353,10 @@ void G1CollectedHeap::evacuate_collection_set() {
|
||||
// The individual threads will set their evac-failure closures.
|
||||
StrongRootsScope srs(this);
|
||||
if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
|
||||
// These tasks use ShareHeap::_process_strong_tasks
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
workers()->active_workers() == workers()->total_workers(),
|
||||
"If not dynamic should be using all the workers");
|
||||
workers()->run_task(&g1_par_task);
|
||||
} else {
|
||||
StrongRootsScope srs(this);
|
||||
@ -5275,6 +5365,7 @@ void G1CollectedHeap::evacuate_collection_set() {
|
||||
|
||||
double par_time = (os::elapsedTime() - start_par) * 1000.0;
|
||||
g1_policy()->record_par_time(par_time);
|
||||
|
||||
set_par_threads(0);
|
||||
|
||||
// Process any discovered reference objects - we have
|
||||
@ -5905,6 +5996,21 @@ HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
|
||||
return _g1h->new_mutator_alloc_region(word_size, force);
|
||||
}
|
||||
|
||||
void G1CollectedHeap::set_par_threads() {
|
||||
// Don't change the number of workers. Use the value previously set
|
||||
// in the workgroup.
|
||||
int n_workers = workers()->active_workers();
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
n_workers == workers()->total_workers(),
|
||||
"Otherwise should be using the total number of workers");
|
||||
if (n_workers == 0) {
|
||||
assert(false, "Should have been set in prior evacuation pause.");
|
||||
n_workers = ParallelGCThreads;
|
||||
workers()->set_active_workers(n_workers);
|
||||
}
|
||||
set_par_threads(n_workers);
|
||||
}
|
||||
|
||||
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
|
||||
size_t allocated_bytes) {
|
||||
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
|
||||
|
@ -987,6 +987,16 @@ public:
|
||||
|
||||
void set_par_threads(int t) {
|
||||
SharedHeap::set_par_threads(t);
|
||||
// Done in SharedHeap but oddly there are
|
||||
// two _process_strong_tasks's in a G1CollectedHeap
|
||||
// so do it here too.
|
||||
_process_strong_tasks->set_n_threads(t);
|
||||
}
|
||||
|
||||
// Set _n_par_threads according to a policy TBD.
|
||||
void set_par_threads();
|
||||
|
||||
void set_n_termination(int t) {
|
||||
_process_strong_tasks->set_n_threads(t);
|
||||
}
|
||||
|
||||
@ -1276,6 +1286,7 @@ public:
|
||||
// i.e., that a closure never attempt to abort a traversal.
|
||||
void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
|
||||
int worker,
|
||||
int no_of_par_workers,
|
||||
jint claim_value);
|
||||
|
||||
// It resets all the region claim values to the default.
|
||||
|
@ -1024,7 +1024,7 @@ void G1CollectorPolicy::print_par_stats(int level,
|
||||
double total = 0.0;
|
||||
LineBuffer buf(level);
|
||||
buf.append("[%s (ms):", str);
|
||||
for (uint i = 0; i < ParallelGCThreads; ++i) {
|
||||
for (uint i = 0; i < no_of_gc_threads(); ++i) {
|
||||
double val = data[i];
|
||||
if (val < min)
|
||||
min = val;
|
||||
@ -1034,7 +1034,7 @@ void G1CollectorPolicy::print_par_stats(int level,
|
||||
buf.append(" %3.1lf", val);
|
||||
}
|
||||
buf.append_and_print_cr("");
|
||||
double avg = total / (double) ParallelGCThreads;
|
||||
double avg = total / (double) no_of_gc_threads();
|
||||
buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
|
||||
avg, min, max, max - min);
|
||||
}
|
||||
@ -1046,7 +1046,7 @@ void G1CollectorPolicy::print_par_sizes(int level,
|
||||
double total = 0.0;
|
||||
LineBuffer buf(level);
|
||||
buf.append("[%s :", str);
|
||||
for (uint i = 0; i < ParallelGCThreads; ++i) {
|
||||
for (uint i = 0; i < no_of_gc_threads(); ++i) {
|
||||
double val = data[i];
|
||||
if (val < min)
|
||||
min = val;
|
||||
@ -1056,7 +1056,7 @@ void G1CollectorPolicy::print_par_sizes(int level,
|
||||
buf.append(" %d", (int) val);
|
||||
}
|
||||
buf.append_and_print_cr("");
|
||||
double avg = total / (double) ParallelGCThreads;
|
||||
double avg = total / (double) no_of_gc_threads();
|
||||
buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
|
||||
(int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
|
||||
}
|
||||
@ -1076,10 +1076,10 @@ void G1CollectorPolicy::print_stats(int level,
|
||||
double G1CollectorPolicy::avg_value(double* data) {
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
double ret = 0.0;
|
||||
for (uint i = 0; i < ParallelGCThreads; ++i) {
|
||||
for (uint i = 0; i < no_of_gc_threads(); ++i) {
|
||||
ret += data[i];
|
||||
}
|
||||
return ret / (double) ParallelGCThreads;
|
||||
return ret / (double) no_of_gc_threads();
|
||||
} else {
|
||||
return data[0];
|
||||
}
|
||||
@ -1088,7 +1088,7 @@ double G1CollectorPolicy::avg_value(double* data) {
|
||||
double G1CollectorPolicy::max_value(double* data) {
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
double ret = data[0];
|
||||
for (uint i = 1; i < ParallelGCThreads; ++i) {
|
||||
for (uint i = 1; i < no_of_gc_threads(); ++i) {
|
||||
if (data[i] > ret) {
|
||||
ret = data[i];
|
||||
}
|
||||
@ -1102,7 +1102,7 @@ double G1CollectorPolicy::max_value(double* data) {
|
||||
double G1CollectorPolicy::sum_of_values(double* data) {
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
double sum = 0.0;
|
||||
for (uint i = 0; i < ParallelGCThreads; i++) {
|
||||
for (uint i = 0; i < no_of_gc_threads(); i++) {
|
||||
sum += data[i];
|
||||
}
|
||||
return sum;
|
||||
@ -1115,7 +1115,7 @@ double G1CollectorPolicy::max_sum(double* data1, double* data2) {
|
||||
double ret = data1[0] + data2[0];
|
||||
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
for (uint i = 1; i < ParallelGCThreads; ++i) {
|
||||
for (uint i = 1; i < no_of_gc_threads(); ++i) {
|
||||
double data = data1[i] + data2[i];
|
||||
if (data > ret) {
|
||||
ret = data;
|
||||
@ -1128,7 +1128,7 @@ double G1CollectorPolicy::max_sum(double* data1, double* data2) {
|
||||
// Anything below that is considered to be zero
|
||||
#define MIN_TIMER_GRANULARITY 0.0000001
|
||||
|
||||
void G1CollectorPolicy::record_collection_pause_end() {
|
||||
void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
|
||||
double end_time_sec = os::elapsedTime();
|
||||
double elapsed_ms = _last_pause_time_ms;
|
||||
bool parallel = G1CollectedHeap::use_parallel_gc_threads();
|
||||
@ -1140,6 +1140,7 @@ void G1CollectorPolicy::record_collection_pause_end() {
|
||||
assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
|
||||
bool last_pause_included_initial_mark = false;
|
||||
bool update_stats = !_g1->evacuation_failed();
|
||||
set_no_of_gc_threads(no_of_gc_threads);
|
||||
|
||||
#ifndef PRODUCT
|
||||
if (G1YoungSurvRateVerbose) {
|
||||
@ -2304,6 +2305,7 @@ public:
|
||||
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
|
||||
// Back to zero for the claim value.
|
||||
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
|
||||
_g1->workers()->active_workers(),
|
||||
HeapRegion::InitialClaimValue);
|
||||
jint regions_added = parKnownGarbageCl.marked_regions_added();
|
||||
_hrSorted->incNumMarkedHeapRegions(regions_added);
|
||||
@ -2315,7 +2317,7 @@ public:
|
||||
};
|
||||
|
||||
void
|
||||
G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
|
||||
G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
|
||||
double start_sec;
|
||||
if (G1PrintParCleanupStats) {
|
||||
start_sec = os::elapsedTime();
|
||||
@ -2331,10 +2333,27 @@ G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
|
||||
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
const size_t OverpartitionFactor = 4;
|
||||
const size_t MinWorkUnit = 8;
|
||||
const size_t WorkUnit =
|
||||
MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
|
||||
MinWorkUnit);
|
||||
size_t WorkUnit;
|
||||
// The use of MinChunkSize = 8 in the original code
|
||||
// causes some assertion failures when the total number of
|
||||
// region is less than 8. The code here tries to fix that.
|
||||
// Should the original code also be fixed?
|
||||
if (no_of_gc_threads > 0) {
|
||||
const size_t MinWorkUnit =
|
||||
MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
|
||||
WorkUnit =
|
||||
MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
|
||||
MinWorkUnit);
|
||||
} else {
|
||||
assert(no_of_gc_threads > 0,
|
||||
"The active gc workers should be greater than 0");
|
||||
// In a product build do something reasonable to avoid a crash.
|
||||
const size_t MinWorkUnit =
|
||||
MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
|
||||
WorkUnit =
|
||||
MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
|
||||
MinWorkUnit);
|
||||
}
|
||||
_collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
|
||||
WorkUnit);
|
||||
ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,
|
||||
|
@ -89,6 +89,9 @@ private:
|
||||
// has been set, or 1 otherwise
|
||||
int _parallel_gc_threads;
|
||||
|
||||
// The number of GC threads currently active.
|
||||
uintx _no_of_gc_threads;
|
||||
|
||||
enum SomePrivateConstants {
|
||||
NumPrevPausesForHeuristics = 10
|
||||
};
|
||||
@ -280,6 +283,9 @@ private:
|
||||
double update_rs_processed_buffers,
|
||||
double goal_ms);
|
||||
|
||||
uintx no_of_gc_threads() { return _no_of_gc_threads; }
|
||||
void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
|
||||
|
||||
double _pause_time_target_ms;
|
||||
double _recorded_young_cset_choice_time_ms;
|
||||
double _recorded_non_young_cset_choice_time_ms;
|
||||
@ -287,6 +293,7 @@ private:
|
||||
size_t _max_pending_cards;
|
||||
|
||||
public:
|
||||
// Accessors
|
||||
|
||||
void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
|
||||
hr->set_young();
|
||||
@ -737,13 +744,13 @@ public:
|
||||
void record_concurrent_mark_remark_end();
|
||||
|
||||
void record_concurrent_mark_cleanup_start();
|
||||
void record_concurrent_mark_cleanup_end();
|
||||
void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
|
||||
void record_concurrent_mark_cleanup_completed();
|
||||
|
||||
void record_concurrent_pause();
|
||||
void record_concurrent_pause_end();
|
||||
|
||||
void record_collection_pause_end();
|
||||
void record_collection_pause_end(int no_of_gc_threads);
|
||||
void print_heap_transition();
|
||||
|
||||
// Record the fact that a full collection occurred.
|
||||
|
@ -218,7 +218,7 @@ public:
|
||||
|
||||
HeapRegion* G1RemSet::calculateStartRegion(int worker_i) {
|
||||
HeapRegion* result = _g1p->collection_set();
|
||||
if (ParallelGCThreads > 0) {
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
size_t cs_size = _g1p->cset_region_length();
|
||||
int n_workers = _g1->workers()->total_workers();
|
||||
size_t cs_spans = cs_size / n_workers;
|
||||
@ -430,8 +430,10 @@ void G1RemSet::prepare_for_oops_into_collection_set_do() {
|
||||
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
|
||||
dcqs.concatenate_logs();
|
||||
|
||||
if (ParallelGCThreads > 0) {
|
||||
_seq_task->set_n_threads((int)n_workers());
|
||||
if (G1CollectedHeap::use_parallel_gc_threads()) {
|
||||
// Don't set the number of workers here. It will be set
|
||||
// when the task is run
|
||||
// _seq_task->set_n_termination((int)n_workers());
|
||||
}
|
||||
guarantee( _cards_scanned == NULL, "invariant" );
|
||||
_cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers());
|
||||
@ -578,7 +580,10 @@ void G1RemSet::scrub(BitMap* region_bm, BitMap* card_bm) {
|
||||
void G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
|
||||
int worker_num, int claim_val) {
|
||||
ScrubRSClosure scrub_cl(region_bm, card_bm);
|
||||
_g1->heap_region_par_iterate_chunked(&scrub_cl, worker_num, claim_val);
|
||||
_g1->heap_region_par_iterate_chunked(&scrub_cl,
|
||||
worker_num,
|
||||
(int) n_workers(),
|
||||
claim_val);
|
||||
}
|
||||
|
||||
|
||||
|
@ -33,6 +33,7 @@
|
||||
#include "runtime/java.hpp"
|
||||
#include "runtime/mutexLocker.hpp"
|
||||
#include "runtime/virtualspace.hpp"
|
||||
#include "runtime/vmThread.hpp"
|
||||
|
||||
void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
|
||||
OopsInGenClosure* cl,
|
||||
@ -42,6 +43,11 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
|
||||
assert((n_threads == 1 && ParallelGCThreads == 0) ||
|
||||
n_threads <= (int)ParallelGCThreads,
|
||||
"# worker threads != # requested!");
|
||||
assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
|
||||
assert(UseDynamicNumberOfGCThreads ||
|
||||
!FLAG_IS_DEFAULT(ParallelGCThreads) ||
|
||||
n_threads == (int)ParallelGCThreads,
|
||||
"# worker threads != # requested!");
|
||||
// Make sure the LNC array is valid for the space.
|
||||
jbyte** lowest_non_clean;
|
||||
uintptr_t lowest_non_clean_base_chunk_index;
|
||||
@ -52,6 +58,8 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
|
||||
|
||||
int n_strides = n_threads * ParGCStridesPerThread;
|
||||
SequentialSubTasksDone* pst = sp->par_seq_tasks();
|
||||
// Sets the condition for completion of the subtask (how many threads
|
||||
// need to finish in order to be done).
|
||||
pst->set_n_threads(n_threads);
|
||||
pst->set_n_tasks(n_strides);
|
||||
|
||||
|
@ -305,7 +305,7 @@ public:
|
||||
|
||||
inline ParScanThreadState& thread_state(int i);
|
||||
|
||||
void reset(bool promotion_failed);
|
||||
void reset(int active_workers, bool promotion_failed);
|
||||
void flush();
|
||||
|
||||
#if TASKQUEUE_STATS
|
||||
@ -322,6 +322,9 @@ private:
|
||||
ParallelTaskTerminator& _term;
|
||||
ParNewGeneration& _gen;
|
||||
Generation& _next_gen;
|
||||
public:
|
||||
bool is_valid(int id) const { return id < length(); }
|
||||
ParallelTaskTerminator* terminator() { return &_term; }
|
||||
};
|
||||
|
||||
|
||||
@ -351,9 +354,9 @@ inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
|
||||
}
|
||||
|
||||
|
||||
void ParScanThreadStateSet::reset(bool promotion_failed)
|
||||
void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
|
||||
{
|
||||
_term.reset_for_reuse();
|
||||
_term.reset_for_reuse(active_threads);
|
||||
if (promotion_failed) {
|
||||
for (int i = 0; i < length(); ++i) {
|
||||
thread_state(i).print_and_clear_promotion_failure_size();
|
||||
@ -569,6 +572,24 @@ ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
|
||||
_state_set(state_set)
|
||||
{}
|
||||
|
||||
// Reset the terminator for the given number of
|
||||
// active threads.
|
||||
void ParNewGenTask::set_for_termination(int active_workers) {
|
||||
_state_set->reset(active_workers, _gen->promotion_failed());
|
||||
// Should the heap be passed in? There's only 1 for now so
|
||||
// grab it instead.
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
gch->set_n_termination(active_workers);
|
||||
}
|
||||
|
||||
// The "i" passed to this method is the part of the work for
|
||||
// this thread. It is not the worker ID. The "i" is derived
|
||||
// from _started_workers which is incremented in internal_note_start()
|
||||
// called in GangWorker loop() and which is called under the
|
||||
// which is called under the protection of the gang monitor and is
|
||||
// called after a task is started. So "i" is based on
|
||||
// first-come-first-served.
|
||||
|
||||
void ParNewGenTask::work(int i) {
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
// Since this is being done in a separate thread, need new resource
|
||||
@ -581,6 +602,8 @@ void ParNewGenTask::work(int i) {
|
||||
Generation* old_gen = gch->next_gen(_gen);
|
||||
|
||||
ParScanThreadState& par_scan_state = _state_set->thread_state(i);
|
||||
assert(_state_set->is_valid(i), "Should not have been called");
|
||||
|
||||
par_scan_state.set_young_old_boundary(_young_old_boundary);
|
||||
|
||||
par_scan_state.start_strong_roots();
|
||||
@ -733,7 +756,9 @@ public:
|
||||
|
||||
private:
|
||||
virtual void work(int i);
|
||||
|
||||
virtual void set_for_termination(int active_workers) {
|
||||
_state_set.terminator()->reset_for_reuse(active_workers);
|
||||
}
|
||||
private:
|
||||
ParNewGeneration& _gen;
|
||||
ProcessTask& _task;
|
||||
@ -789,18 +814,20 @@ void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
||||
"not a generational heap");
|
||||
WorkGang* workers = gch->workers();
|
||||
FlexibleWorkGang* workers = gch->workers();
|
||||
assert(workers != NULL, "Need parallel worker threads.");
|
||||
_state_set.reset(workers->active_workers(), _generation.promotion_failed());
|
||||
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
|
||||
_generation.reserved().end(), _state_set);
|
||||
workers->run_task(&rp_task);
|
||||
_state_set.reset(_generation.promotion_failed());
|
||||
_state_set.reset(0 /* bad value in debug if not reset */,
|
||||
_generation.promotion_failed());
|
||||
}
|
||||
|
||||
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
|
||||
{
|
||||
GenCollectedHeap* gch = GenCollectedHeap::heap();
|
||||
WorkGang* workers = gch->workers();
|
||||
FlexibleWorkGang* workers = gch->workers();
|
||||
assert(workers != NULL, "Need parallel worker threads.");
|
||||
ParNewRefEnqueueTaskProxy enq_task(task);
|
||||
workers->run_task(&enq_task);
|
||||
@ -856,7 +883,13 @@ void ParNewGeneration::collect(bool full,
|
||||
assert(gch->kind() == CollectedHeap::GenCollectedHeap,
|
||||
"not a CMS generational heap");
|
||||
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
|
||||
WorkGang* workers = gch->workers();
|
||||
FlexibleWorkGang* workers = gch->workers();
|
||||
assert(workers != NULL, "Need workgang for parallel work");
|
||||
int active_workers =
|
||||
AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
|
||||
workers->active_workers(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
workers->set_active_workers(active_workers);
|
||||
_next_gen = gch->next_gen(this);
|
||||
assert(_next_gen != NULL,
|
||||
"This must be the youngest gen, and not the only gen");
|
||||
@ -894,13 +927,19 @@ void ParNewGeneration::collect(bool full,
|
||||
|
||||
gch->save_marks();
|
||||
assert(workers != NULL, "Need parallel worker threads.");
|
||||
ParallelTaskTerminator _term(workers->total_workers(), task_queues());
|
||||
ParScanThreadStateSet thread_state_set(workers->total_workers(),
|
||||
int n_workers = active_workers;
|
||||
|
||||
// Set the correct parallelism (number of queues) in the reference processor
|
||||
ref_processor()->set_active_mt_degree(n_workers);
|
||||
|
||||
// Always set the terminator for the active number of workers
|
||||
// because only those workers go through the termination protocol.
|
||||
ParallelTaskTerminator _term(n_workers, task_queues());
|
||||
ParScanThreadStateSet thread_state_set(workers->active_workers(),
|
||||
*to(), *this, *_next_gen, *task_queues(),
|
||||
_overflow_stacks, desired_plab_sz(), _term);
|
||||
|
||||
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
|
||||
int n_workers = workers->total_workers();
|
||||
gch->set_par_threads(n_workers);
|
||||
gch->rem_set()->prepare_for_younger_refs_iterate(true);
|
||||
// It turns out that even when we're using 1 thread, doing the work in a
|
||||
@ -914,7 +953,8 @@ void ParNewGeneration::collect(bool full,
|
||||
GenCollectedHeap::StrongRootsScope srs(gch);
|
||||
tsk.work(0);
|
||||
}
|
||||
thread_state_set.reset(promotion_failed());
|
||||
thread_state_set.reset(0 /* Bad value in debug if not reset */,
|
||||
promotion_failed());
|
||||
|
||||
// Process (weak) reference objects found during scavenge.
|
||||
ReferenceProcessor* rp = ref_processor();
|
||||
@ -927,6 +967,8 @@ void ParNewGeneration::collect(bool full,
|
||||
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
|
||||
&scan_without_gc_barrier, &scan_with_gc_barrier);
|
||||
rp->setup_policy(clear_all_soft_refs);
|
||||
// Can the mt_degree be set later (at run_task() time would be best)?
|
||||
rp->set_active_mt_degree(active_workers);
|
||||
if (rp->processing_is_mt()) {
|
||||
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
|
||||
rp->process_discovered_references(&is_alive, &keep_alive,
|
||||
|
@ -240,6 +240,10 @@ public:
|
||||
HeapWord* young_old_boundary() { return _young_old_boundary; }
|
||||
|
||||
void work(int i);
|
||||
|
||||
// Reset the terminator in ParScanThreadStateSet for
|
||||
// "active_workers" threads.
|
||||
virtual void set_for_termination(int active_workers);
|
||||
};
|
||||
|
||||
class KeepAliveClosure: public DefNewGeneration::KeepAliveClosure {
|
||||
|
@ -223,7 +223,8 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
|
||||
MutableSpace* sp,
|
||||
HeapWord* space_top,
|
||||
PSPromotionManager* pm,
|
||||
uint stripe_number) {
|
||||
uint stripe_number,
|
||||
uint stripe_total) {
|
||||
int ssize = 128; // Naked constant! Work unit = 64k.
|
||||
int dirty_card_count = 0;
|
||||
|
||||
@ -231,7 +232,11 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
|
||||
jbyte* start_card = byte_for(sp->bottom());
|
||||
jbyte* end_card = byte_for(sp_top - 1) + 1;
|
||||
oop* last_scanned = NULL; // Prevent scanning objects more than once
|
||||
for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) {
|
||||
// The width of the stripe ssize*stripe_total must be
|
||||
// consistent with the number of stripes so that the complete slice
|
||||
// is covered.
|
||||
size_t slice_width = ssize * stripe_total;
|
||||
for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
|
||||
jbyte* worker_start_card = slice + stripe_number * ssize;
|
||||
if (worker_start_card >= end_card)
|
||||
return; // We're done.
|
||||
|
@ -69,7 +69,8 @@ class CardTableExtension : public CardTableModRefBS {
|
||||
MutableSpace* sp,
|
||||
HeapWord* space_top,
|
||||
PSPromotionManager* pm,
|
||||
uint stripe_number);
|
||||
uint stripe_number,
|
||||
uint stripe_total);
|
||||
|
||||
// Verification
|
||||
static void verify_all_young_refs_imprecise();
|
||||
|
@ -25,6 +25,7 @@
|
||||
#include "precompiled.hpp"
|
||||
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
|
||||
#include "gc_implementation/parallelScavenge/gcTaskThread.hpp"
|
||||
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
|
||||
#include "memory/allocation.hpp"
|
||||
#include "memory/allocation.inline.hpp"
|
||||
#include "runtime/mutex.hpp"
|
||||
@ -181,6 +182,7 @@ void GCTaskQueue::enqueue(GCTask* task) {
|
||||
}
|
||||
set_insert_end(task);
|
||||
increment_length();
|
||||
verify_length();
|
||||
if (TraceGCTaskQueue) {
|
||||
print("after:");
|
||||
}
|
||||
@ -192,7 +194,7 @@ void GCTaskQueue::enqueue(GCTaskQueue* list) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" GCTaskQueue::enqueue(list: "
|
||||
INTPTR_FORMAT ")",
|
||||
this);
|
||||
this, list);
|
||||
print("before:");
|
||||
list->print("list:");
|
||||
}
|
||||
@ -211,14 +213,15 @@ void GCTaskQueue::enqueue(GCTaskQueue* list) {
|
||||
list->remove_end()->set_older(insert_end());
|
||||
insert_end()->set_newer(list->remove_end());
|
||||
set_insert_end(list->insert_end());
|
||||
set_length(length() + list_length);
|
||||
// empty the argument list.
|
||||
}
|
||||
set_length(length() + list_length);
|
||||
list->initialize();
|
||||
if (TraceGCTaskQueue) {
|
||||
print("after:");
|
||||
list->print("list:");
|
||||
}
|
||||
verify_length();
|
||||
}
|
||||
|
||||
// Dequeue one task.
|
||||
@ -288,6 +291,7 @@ GCTask* GCTaskQueue::remove() {
|
||||
decrement_length();
|
||||
assert(result->newer() == NULL, "shouldn't be on queue");
|
||||
assert(result->older() == NULL, "shouldn't be on queue");
|
||||
verify_length();
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -311,22 +315,40 @@ GCTask* GCTaskQueue::remove(GCTask* task) {
|
||||
result->set_newer(NULL);
|
||||
result->set_older(NULL);
|
||||
decrement_length();
|
||||
verify_length();
|
||||
return result;
|
||||
}
|
||||
|
||||
NOT_PRODUCT(
|
||||
// Count the elements in the queue and verify the length against
|
||||
// that count.
|
||||
void GCTaskQueue::verify_length() const {
|
||||
uint count = 0;
|
||||
for (GCTask* element = insert_end();
|
||||
element != NULL;
|
||||
element = element->older()) {
|
||||
|
||||
count++;
|
||||
}
|
||||
assert(count == length(), "Length does not match queue");
|
||||
}
|
||||
|
||||
void GCTaskQueue::print(const char* message) const {
|
||||
tty->print_cr("[" INTPTR_FORMAT "] GCTaskQueue:"
|
||||
" insert_end: " INTPTR_FORMAT
|
||||
" remove_end: " INTPTR_FORMAT
|
||||
" length: %d"
|
||||
" %s",
|
||||
this, insert_end(), remove_end(), message);
|
||||
this, insert_end(), remove_end(), length(), message);
|
||||
uint count = 0;
|
||||
for (GCTask* element = insert_end();
|
||||
element != NULL;
|
||||
element = element->older()) {
|
||||
element->print(" ");
|
||||
count++;
|
||||
tty->cr();
|
||||
}
|
||||
tty->print("Total tasks: %d", count);
|
||||
}
|
||||
)
|
||||
|
||||
@ -351,12 +373,16 @@ SynchronizedGCTaskQueue::~SynchronizedGCTaskQueue() {
|
||||
//
|
||||
GCTaskManager::GCTaskManager(uint workers) :
|
||||
_workers(workers),
|
||||
_active_workers(0),
|
||||
_idle_workers(0),
|
||||
_ndc(NULL) {
|
||||
initialize();
|
||||
}
|
||||
|
||||
GCTaskManager::GCTaskManager(uint workers, NotifyDoneClosure* ndc) :
|
||||
_workers(workers),
|
||||
_active_workers(0),
|
||||
_idle_workers(0),
|
||||
_ndc(ndc) {
|
||||
initialize();
|
||||
}
|
||||
@ -373,6 +399,7 @@ void GCTaskManager::initialize() {
|
||||
GCTaskQueue* unsynchronized_queue = GCTaskQueue::create_on_c_heap();
|
||||
_queue = SynchronizedGCTaskQueue::create(unsynchronized_queue, lock());
|
||||
_noop_task = NoopGCTask::create_on_c_heap();
|
||||
_idle_inactive_task = WaitForBarrierGCTask::create_on_c_heap();
|
||||
_resource_flag = NEW_C_HEAP_ARRAY(bool, workers());
|
||||
{
|
||||
// Set up worker threads.
|
||||
@ -418,6 +445,8 @@ GCTaskManager::~GCTaskManager() {
|
||||
assert(queue()->is_empty(), "still have queued work");
|
||||
NoopGCTask::destroy(_noop_task);
|
||||
_noop_task = NULL;
|
||||
WaitForBarrierGCTask::destroy(_idle_inactive_task);
|
||||
_idle_inactive_task = NULL;
|
||||
if (_thread != NULL) {
|
||||
for (uint i = 0; i < workers(); i += 1) {
|
||||
GCTaskThread::destroy(thread(i));
|
||||
@ -442,6 +471,86 @@ GCTaskManager::~GCTaskManager() {
|
||||
}
|
||||
}
|
||||
|
||||
void GCTaskManager::set_active_gang() {
|
||||
_active_workers =
|
||||
AdaptiveSizePolicy::calc_active_workers(workers(),
|
||||
active_workers(),
|
||||
Threads::number_of_non_daemon_threads());
|
||||
|
||||
assert(!all_workers_active() || active_workers() == ParallelGCThreads,
|
||||
err_msg("all_workers_active() is incorrect: "
|
||||
"active %d ParallelGCThreads %d", active_workers(),
|
||||
ParallelGCThreads));
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("GCTaskManager::set_active_gang(): "
|
||||
"all_workers_active() %d workers %d "
|
||||
"active %d ParallelGCThreads %d ",
|
||||
all_workers_active(), workers(), active_workers(),
|
||||
ParallelGCThreads);
|
||||
}
|
||||
}
|
||||
|
||||
// Create IdleGCTasks for inactive workers.
|
||||
// Creates tasks in a ResourceArea and assumes
|
||||
// an appropriate ResourceMark.
|
||||
void GCTaskManager::task_idle_workers() {
|
||||
{
|
||||
int more_inactive_workers = 0;
|
||||
{
|
||||
// Stop any idle tasks from exiting their IdleGCTask's
|
||||
// and get the count for additional IdleGCTask's under
|
||||
// the GCTaskManager's monitor so that the "more_inactive_workers"
|
||||
// count is correct.
|
||||
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
|
||||
_idle_inactive_task->set_should_wait(true);
|
||||
// active_workers are a number being requested. idle_workers
|
||||
// are the number currently idle. If all the workers are being
|
||||
// requested to be active but some are already idle, reduce
|
||||
// the number of active_workers to be consistent with the
|
||||
// number of idle_workers. The idle_workers are stuck in
|
||||
// idle tasks and will no longer be release (since a new GC
|
||||
// is starting). Try later to release enough idle_workers
|
||||
// to allow the desired number of active_workers.
|
||||
more_inactive_workers =
|
||||
workers() - active_workers() - idle_workers();
|
||||
if (more_inactive_workers < 0) {
|
||||
int reduced_active_workers = active_workers() + more_inactive_workers;
|
||||
set_active_workers(reduced_active_workers);
|
||||
more_inactive_workers = 0;
|
||||
}
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("JT: %d workers %d active %d "
|
||||
"idle %d more %d",
|
||||
Threads::number_of_non_daemon_threads(),
|
||||
workers(),
|
||||
active_workers(),
|
||||
idle_workers(),
|
||||
more_inactive_workers);
|
||||
}
|
||||
}
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
for(uint i = 0; i < (uint) more_inactive_workers; i++) {
|
||||
q->enqueue(IdleGCTask::create_on_c_heap());
|
||||
increment_idle_workers();
|
||||
}
|
||||
assert(workers() == active_workers() + idle_workers(),
|
||||
"total workers should equal active + inactive");
|
||||
add_list(q);
|
||||
// GCTaskQueue* q was created in a ResourceArea so a
|
||||
// destroy() call is not needed.
|
||||
}
|
||||
}
|
||||
|
||||
void GCTaskManager::release_idle_workers() {
|
||||
{
|
||||
MutexLockerEx ml(monitor(),
|
||||
Mutex::_no_safepoint_check_flag);
|
||||
_idle_inactive_task->set_should_wait(false);
|
||||
monitor()->notify_all();
|
||||
// Release monitor
|
||||
}
|
||||
}
|
||||
|
||||
void GCTaskManager::print_task_time_stamps() {
|
||||
for(uint i=0; i<ParallelGCThreads; i++) {
|
||||
GCTaskThread* t = thread(i);
|
||||
@ -510,6 +619,13 @@ void GCTaskManager::add_list(GCTaskQueue* list) {
|
||||
// Release monitor().
|
||||
}
|
||||
|
||||
// GC workers wait in get_task() for new work to be added
|
||||
// to the GCTaskManager's queue. When new work is added,
|
||||
// a notify is sent to the waiting GC workers which then
|
||||
// compete to get tasks. If a GC worker wakes up and there
|
||||
// is no work on the queue, it is given a noop_task to execute
|
||||
// and then loops to find more work.
|
||||
|
||||
GCTask* GCTaskManager::get_task(uint which) {
|
||||
GCTask* result = NULL;
|
||||
// Grab the queue lock.
|
||||
@ -558,8 +674,10 @@ GCTask* GCTaskManager::get_task(uint which) {
|
||||
which, result, GCTask::Kind::to_string(result->kind()));
|
||||
tty->print_cr(" %s", result->name());
|
||||
}
|
||||
increment_busy_workers();
|
||||
increment_delivered_tasks();
|
||||
if (!result->is_idle_task()) {
|
||||
increment_busy_workers();
|
||||
increment_delivered_tasks();
|
||||
}
|
||||
return result;
|
||||
// Release monitor().
|
||||
}
|
||||
@ -622,6 +740,7 @@ uint GCTaskManager::increment_busy_workers() {
|
||||
|
||||
uint GCTaskManager::decrement_busy_workers() {
|
||||
assert(queue()->own_lock(), "don't own the lock");
|
||||
assert(_busy_workers > 0, "About to make a mistake");
|
||||
_busy_workers -= 1;
|
||||
return _busy_workers;
|
||||
}
|
||||
@ -643,11 +762,28 @@ void GCTaskManager::note_release(uint which) {
|
||||
set_resource_flag(which, false);
|
||||
}
|
||||
|
||||
// "list" contains tasks that are ready to execute. Those
|
||||
// tasks are added to the GCTaskManager's queue of tasks and
|
||||
// then the GC workers are notified that there is new work to
|
||||
// do.
|
||||
//
|
||||
// Typically different types of tasks can be added to the "list".
|
||||
// For example in PSScavenge OldToYoungRootsTask, SerialOldToYoungRootsTask,
|
||||
// ScavengeRootsTask, and StealTask tasks are all added to the list
|
||||
// and then the GC workers are notified of new work. The tasks are
|
||||
// handed out in the order in which they are added to the list
|
||||
// (although execution is not necessarily in that order). As long
|
||||
// as any tasks are running the GCTaskManager will wait for execution
|
||||
// to complete. GC workers that execute a stealing task remain in
|
||||
// the stealing task until all stealing tasks have completed. The load
|
||||
// balancing afforded by the stealing tasks work best if the stealing
|
||||
// tasks are added last to the list.
|
||||
|
||||
void GCTaskManager::execute_and_wait(GCTaskQueue* list) {
|
||||
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
|
||||
list->enqueue(fin);
|
||||
add_list(list);
|
||||
fin->wait_for();
|
||||
fin->wait_for(true /* reset */);
|
||||
// We have to release the barrier tasks!
|
||||
WaitForBarrierGCTask::destroy(fin);
|
||||
}
|
||||
@ -691,6 +827,72 @@ void NoopGCTask::destruct() {
|
||||
// Nothing else to do.
|
||||
}
|
||||
|
||||
//
|
||||
// IdleGCTask
|
||||
//
|
||||
|
||||
IdleGCTask* IdleGCTask::create() {
|
||||
IdleGCTask* result = new IdleGCTask(false);
|
||||
return result;
|
||||
}
|
||||
|
||||
IdleGCTask* IdleGCTask::create_on_c_heap() {
|
||||
IdleGCTask* result = new(ResourceObj::C_HEAP) IdleGCTask(true);
|
||||
return result;
|
||||
}
|
||||
|
||||
void IdleGCTask::do_it(GCTaskManager* manager, uint which) {
|
||||
WaitForBarrierGCTask* wait_for_task = manager->idle_inactive_task();
|
||||
if (TraceGCTaskManager) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" IdleGCTask:::do_it()"
|
||||
" should_wait: %s",
|
||||
this, wait_for_task->should_wait() ? "true" : "false");
|
||||
}
|
||||
MutexLockerEx ml(manager->monitor(), Mutex::_no_safepoint_check_flag);
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("--- idle %d", which);
|
||||
}
|
||||
// Increment has to be done when the idle tasks are created.
|
||||
// manager->increment_idle_workers();
|
||||
manager->monitor()->notify_all();
|
||||
while (wait_for_task->should_wait()) {
|
||||
if (TraceGCTaskManager) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" IdleGCTask::do_it()"
|
||||
" [" INTPTR_FORMAT "] (%s)->wait()",
|
||||
this, manager->monitor(), manager->monitor()->name());
|
||||
}
|
||||
manager->monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
|
||||
}
|
||||
manager->decrement_idle_workers();
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("--- release %d", which);
|
||||
}
|
||||
if (TraceGCTaskManager) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" IdleGCTask::do_it() returns"
|
||||
" should_wait: %s",
|
||||
this, wait_for_task->should_wait() ? "true" : "false");
|
||||
}
|
||||
// Release monitor().
|
||||
}
|
||||
|
||||
void IdleGCTask::destroy(IdleGCTask* that) {
|
||||
if (that != NULL) {
|
||||
that->destruct();
|
||||
if (that->is_c_heap_obj()) {
|
||||
FreeHeap(that);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void IdleGCTask::destruct() {
|
||||
// This has to know it's superclass structure, just like the constructor.
|
||||
this->GCTask::destruct();
|
||||
// Nothing else to do.
|
||||
}
|
||||
|
||||
//
|
||||
// BarrierGCTask
|
||||
//
|
||||
@ -768,7 +970,8 @@ WaitForBarrierGCTask* WaitForBarrierGCTask::create() {
|
||||
}
|
||||
|
||||
WaitForBarrierGCTask* WaitForBarrierGCTask::create_on_c_heap() {
|
||||
WaitForBarrierGCTask* result = new WaitForBarrierGCTask(true);
|
||||
WaitForBarrierGCTask* result =
|
||||
new (ResourceObj::C_HEAP) WaitForBarrierGCTask(true);
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -849,7 +1052,7 @@ void WaitForBarrierGCTask::do_it(GCTaskManager* manager, uint which) {
|
||||
}
|
||||
}
|
||||
|
||||
void WaitForBarrierGCTask::wait_for() {
|
||||
void WaitForBarrierGCTask::wait_for(bool reset) {
|
||||
if (TraceGCTaskManager) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" WaitForBarrierGCTask::wait_for()"
|
||||
@ -869,7 +1072,9 @@ void WaitForBarrierGCTask::wait_for() {
|
||||
monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
|
||||
}
|
||||
// Reset the flag in case someone reuses this task.
|
||||
set_should_wait(true);
|
||||
if (reset) {
|
||||
set_should_wait(true);
|
||||
}
|
||||
if (TraceGCTaskManager) {
|
||||
tty->print_cr("[" INTPTR_FORMAT "]"
|
||||
" WaitForBarrierGCTask::wait_for() returns"
|
||||
|
@ -45,6 +45,7 @@ class BarrierGCTask;
|
||||
class ReleasingBarrierGCTask;
|
||||
class NotifyingBarrierGCTask;
|
||||
class WaitForBarrierGCTask;
|
||||
class IdleGCTask;
|
||||
// A free list of Monitor*'s.
|
||||
class MonitorSupply;
|
||||
|
||||
@ -64,7 +65,8 @@ public:
|
||||
unknown_task,
|
||||
ordinary_task,
|
||||
barrier_task,
|
||||
noop_task
|
||||
noop_task,
|
||||
idle_task
|
||||
};
|
||||
static const char* to_string(kind value);
|
||||
};
|
||||
@ -108,6 +110,9 @@ public:
|
||||
bool is_noop_task() const {
|
||||
return kind()==Kind::noop_task;
|
||||
}
|
||||
bool is_idle_task() const {
|
||||
return kind()==Kind::idle_task;
|
||||
}
|
||||
void print(const char* message) const PRODUCT_RETURN;
|
||||
protected:
|
||||
// Constructors: Only create subclasses.
|
||||
@ -153,6 +158,7 @@ public:
|
||||
assert(((insert_end() == NULL && remove_end() == NULL) ||
|
||||
(insert_end() != NULL && remove_end() != NULL)),
|
||||
"insert_end and remove_end don't match");
|
||||
assert((insert_end() != NULL) || (_length == 0), "Not empty");
|
||||
return insert_end() == NULL;
|
||||
}
|
||||
uint length() const {
|
||||
@ -204,6 +210,8 @@ protected:
|
||||
GCTask* remove(); // Remove from remove end.
|
||||
GCTask* remove(GCTask* task); // Remove from the middle.
|
||||
void print(const char* message) const PRODUCT_RETURN;
|
||||
// Debug support
|
||||
void verify_length() const PRODUCT_RETURN;
|
||||
};
|
||||
|
||||
// A GCTaskQueue that can be synchronized.
|
||||
@ -285,12 +293,76 @@ protected:
|
||||
}
|
||||
};
|
||||
|
||||
// Dynamic number of GC threads
|
||||
//
|
||||
// GC threads wait in get_task() for work (i.e., a task) to perform.
|
||||
// When the number of GC threads was static, the number of tasks
|
||||
// created to do a job was equal to or greater than the maximum
|
||||
// number of GC threads (ParallelGCThreads). The job might be divided
|
||||
// into a number of tasks greater than the number of GC threads for
|
||||
// load balancing (i.e., over partitioning). The last task to be
|
||||
// executed by a GC thread in a job is a work stealing task. A
|
||||
// GC thread that gets a work stealing task continues to execute
|
||||
// that task until the job is done. In the static number of GC theads
|
||||
// case, tasks are added to a queue (FIFO). The work stealing tasks are
|
||||
// the last to be added. Once the tasks are added, the GC threads grab
|
||||
// a task and go. A single thread can do all the non-work stealing tasks
|
||||
// and then execute a work stealing and wait for all the other GC threads
|
||||
// to execute their work stealing task.
|
||||
// In the dynamic number of GC threads implementation, idle-tasks are
|
||||
// created to occupy the non-participating or "inactive" threads. An
|
||||
// idle-task makes the GC thread wait on a barrier that is part of the
|
||||
// GCTaskManager. The GC threads that have been "idled" in a IdleGCTask
|
||||
// are released once all the active GC threads have finished their work
|
||||
// stealing tasks. The GCTaskManager does not wait for all the "idled"
|
||||
// GC threads to resume execution. When those GC threads do resume
|
||||
// execution in the course of the thread scheduling, they call get_tasks()
|
||||
// as all the other GC threads do. Because all the "idled" threads are
|
||||
// not required to execute in order to finish a job, it is possible for
|
||||
// a GC thread to still be "idled" when the next job is started. Such
|
||||
// a thread stays "idled" for the next job. This can result in a new
|
||||
// job not having all the expected active workers. For example if on
|
||||
// job requests 4 active workers out of a total of 10 workers so the
|
||||
// remaining 6 are "idled", if the next job requests 6 active workers
|
||||
// but all 6 of the "idled" workers are still idle, then the next job
|
||||
// will only get 4 active workers.
|
||||
// The implementation for the parallel old compaction phase has an
|
||||
// added complication. In the static case parold partitions the chunks
|
||||
// ready to be filled into stacks, one for each GC thread. A GC thread
|
||||
// executing a draining task (drains the stack of ready chunks)
|
||||
// claims a stack according to it's id (the unique ordinal value assigned
|
||||
// to each GC thread). In the dynamic case not all GC threads will
|
||||
// actively participate so stacks with ready to fill chunks can only be
|
||||
// given to the active threads. An initial implementation chose stacks
|
||||
// number 1-n to get the ready chunks and required that GC threads
|
||||
// 1-n be the active workers. This was undesirable because it required
|
||||
// certain threads to participate. In the final implementation a
|
||||
// list of stacks equal in number to the active workers are filled
|
||||
// with ready chunks. GC threads that participate get a stack from
|
||||
// the task (DrainStacksCompactionTask), empty the stack, and then add it to a
|
||||
// recycling list at the end of the task. If the same GC thread gets
|
||||
// a second task, it gets a second stack to drain and returns it. The
|
||||
// stacks are added to a recycling list so that later stealing tasks
|
||||
// for this tasks can get a stack from the recycling list. Stealing tasks
|
||||
// use the stacks in its work in a way similar to the draining tasks.
|
||||
// A thread is not guaranteed to get anything but a stealing task and
|
||||
// a thread that only gets a stealing task has to get a stack. A failed
|
||||
// implementation tried to have the GC threads keep the stack they used
|
||||
// during a draining task for later use in the stealing task but that didn't
|
||||
// work because as noted a thread is not guaranteed to get a draining task.
|
||||
//
|
||||
// For PSScavenge and ParCompactionManager the GC threads are
|
||||
// held in the GCTaskThread** _thread array in GCTaskManager.
|
||||
|
||||
|
||||
class GCTaskManager : public CHeapObj {
|
||||
friend class ParCompactionManager;
|
||||
friend class PSParallelCompact;
|
||||
friend class PSScavenge;
|
||||
friend class PSRefProcTaskExecutor;
|
||||
friend class RefProcTaskExecutor;
|
||||
friend class GCTaskThread;
|
||||
friend class IdleGCTask;
|
||||
private:
|
||||
// Instance state.
|
||||
NotifyDoneClosure* _ndc; // Notify on completion.
|
||||
@ -298,6 +370,7 @@ private:
|
||||
Monitor* _monitor; // Notification of changes.
|
||||
SynchronizedGCTaskQueue* _queue; // Queue of tasks.
|
||||
GCTaskThread** _thread; // Array of worker threads.
|
||||
uint _active_workers; // Number of active workers.
|
||||
uint _busy_workers; // Number of busy workers.
|
||||
uint _blocking_worker; // The worker that's blocking.
|
||||
bool* _resource_flag; // Array of flag per threads.
|
||||
@ -307,6 +380,8 @@ private:
|
||||
uint _emptied_queue; // Times we emptied the queue.
|
||||
NoopGCTask* _noop_task; // The NoopGCTask instance.
|
||||
uint _noop_tasks; // Count of noop tasks.
|
||||
WaitForBarrierGCTask* _idle_inactive_task;// Task for inactive workers
|
||||
volatile uint _idle_workers; // Number of idled workers
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static GCTaskManager* create(uint workers) {
|
||||
@ -324,6 +399,9 @@ public:
|
||||
uint busy_workers() const {
|
||||
return _busy_workers;
|
||||
}
|
||||
volatile uint idle_workers() const {
|
||||
return _idle_workers;
|
||||
}
|
||||
// Pun between Monitor* and Mutex*
|
||||
Monitor* monitor() const {
|
||||
return _monitor;
|
||||
@ -331,6 +409,9 @@ public:
|
||||
Monitor * lock() const {
|
||||
return _monitor;
|
||||
}
|
||||
WaitForBarrierGCTask* idle_inactive_task() {
|
||||
return _idle_inactive_task;
|
||||
}
|
||||
// Methods.
|
||||
// Add the argument task to be run.
|
||||
void add_task(GCTask* task);
|
||||
@ -350,6 +431,10 @@ public:
|
||||
bool should_release_resources(uint which); // Predicate.
|
||||
// Note the release of resources by the argument worker.
|
||||
void note_release(uint which);
|
||||
// Create IdleGCTasks for inactive workers and start workers
|
||||
void task_idle_workers();
|
||||
// Release the workers in IdleGCTasks
|
||||
void release_idle_workers();
|
||||
// Constants.
|
||||
// A sentinel worker identifier.
|
||||
static uint sentinel_worker() {
|
||||
@ -375,6 +460,15 @@ protected:
|
||||
uint workers() const {
|
||||
return _workers;
|
||||
}
|
||||
void set_active_workers(uint v) {
|
||||
assert(v <= _workers, "Trying to set more workers active than there are");
|
||||
_active_workers = MIN2(v, _workers);
|
||||
assert(v != 0, "Trying to set active workers to 0");
|
||||
_active_workers = MAX2(1U, _active_workers);
|
||||
}
|
||||
// Sets the number of threads that will be used in a collection
|
||||
void set_active_gang();
|
||||
|
||||
NotifyDoneClosure* notify_done_closure() const {
|
||||
return _ndc;
|
||||
}
|
||||
@ -457,8 +551,21 @@ protected:
|
||||
void reset_noop_tasks() {
|
||||
_noop_tasks = 0;
|
||||
}
|
||||
void increment_idle_workers() {
|
||||
_idle_workers++;
|
||||
}
|
||||
void decrement_idle_workers() {
|
||||
_idle_workers--;
|
||||
}
|
||||
// Other methods.
|
||||
void initialize();
|
||||
|
||||
public:
|
||||
// Return true if all workers are currently active.
|
||||
bool all_workers_active() { return workers() == active_workers(); }
|
||||
uint active_workers() const {
|
||||
return _active_workers;
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@ -475,6 +582,8 @@ public:
|
||||
static NoopGCTask* create();
|
||||
static NoopGCTask* create_on_c_heap();
|
||||
static void destroy(NoopGCTask* that);
|
||||
|
||||
virtual char* name() { return (char *)"noop task"; }
|
||||
// Methods from GCTask.
|
||||
void do_it(GCTaskManager* manager, uint which) {
|
||||
// Nothing to do.
|
||||
@ -518,6 +627,8 @@ protected:
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
|
||||
virtual char* name() { return (char *)"barrier task"; }
|
||||
// Methods.
|
||||
// Wait for this to be the only task running.
|
||||
void do_it_internal(GCTaskManager* manager, uint which);
|
||||
@ -586,11 +697,13 @@ protected:
|
||||
// the BarrierGCTask is done.
|
||||
// This may cover many of the uses of NotifyingBarrierGCTasks.
|
||||
class WaitForBarrierGCTask : public BarrierGCTask {
|
||||
friend class GCTaskManager;
|
||||
friend class IdleGCTask;
|
||||
private:
|
||||
// Instance state.
|
||||
Monitor* _monitor; // Guard and notify changes.
|
||||
bool _should_wait; // true=>wait, false=>proceed.
|
||||
const bool _is_c_heap_obj; // Was allocated on the heap.
|
||||
Monitor* _monitor; // Guard and notify changes.
|
||||
volatile bool _should_wait; // true=>wait, false=>proceed.
|
||||
const bool _is_c_heap_obj; // Was allocated on the heap.
|
||||
public:
|
||||
virtual char* name() { return (char *) "waitfor-barrier-task"; }
|
||||
|
||||
@ -600,7 +713,10 @@ public:
|
||||
static void destroy(WaitForBarrierGCTask* that);
|
||||
// Methods.
|
||||
void do_it(GCTaskManager* manager, uint which);
|
||||
void wait_for();
|
||||
void wait_for(bool reset);
|
||||
void set_should_wait(bool value) {
|
||||
_should_wait = value;
|
||||
}
|
||||
protected:
|
||||
// Constructor. Clients use factory, but there might be subclasses.
|
||||
WaitForBarrierGCTask(bool on_c_heap);
|
||||
@ -613,14 +729,38 @@ protected:
|
||||
bool should_wait() const {
|
||||
return _should_wait;
|
||||
}
|
||||
void set_should_wait(bool value) {
|
||||
_should_wait = value;
|
||||
}
|
||||
bool is_c_heap_obj() {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
};
|
||||
|
||||
// Task that is used to idle a GC task when fewer than
|
||||
// the maximum workers are wanted.
|
||||
class IdleGCTask : public GCTask {
|
||||
const bool _is_c_heap_obj; // Was allocated on the heap.
|
||||
public:
|
||||
bool is_c_heap_obj() {
|
||||
return _is_c_heap_obj;
|
||||
}
|
||||
// Factory create and destroy methods.
|
||||
static IdleGCTask* create();
|
||||
static IdleGCTask* create_on_c_heap();
|
||||
static void destroy(IdleGCTask* that);
|
||||
|
||||
virtual char* name() { return (char *)"idle task"; }
|
||||
// Methods from GCTask.
|
||||
virtual void do_it(GCTaskManager* manager, uint which);
|
||||
protected:
|
||||
// Constructor.
|
||||
IdleGCTask(bool on_c_heap) :
|
||||
GCTask(GCTask::Kind::idle_task),
|
||||
_is_c_heap_obj(on_c_heap) {
|
||||
// Nothing to do.
|
||||
}
|
||||
// Destructor-like method.
|
||||
void destruct();
|
||||
};
|
||||
|
||||
class MonitorSupply : public AllStatic {
|
||||
private:
|
||||
// State.
|
||||
|
@ -93,6 +93,11 @@ void GCTaskThread::print_on(outputStream* st) const {
|
||||
st->cr();
|
||||
}
|
||||
|
||||
// GC workers get tasks from the GCTaskManager and execute
|
||||
// them in this method. If there are no tasks to execute,
|
||||
// the GC workers wait in the GCTaskManager's get_task()
|
||||
// for tasks to be enqueued for execution.
|
||||
|
||||
void GCTaskThread::run() {
|
||||
// Set up the thread for stack overflow support
|
||||
this->record_stack_base_and_size();
|
||||
@ -124,7 +129,6 @@ void GCTaskThread::run() {
|
||||
for (; /* break */; ) {
|
||||
// This will block until there is a task to be gotten.
|
||||
GCTask* task = manager()->get_task(which());
|
||||
|
||||
// In case the update is costly
|
||||
if (PrintGCTaskTimeStamps) {
|
||||
timer.update();
|
||||
@ -134,18 +138,28 @@ void GCTaskThread::run() {
|
||||
char* name = task->name();
|
||||
|
||||
task->do_it(manager(), which());
|
||||
manager()->note_completion(which());
|
||||
|
||||
if (PrintGCTaskTimeStamps) {
|
||||
assert(_time_stamps != NULL, "Sanity (PrintGCTaskTimeStamps set late?)");
|
||||
if (!task->is_idle_task()) {
|
||||
manager()->note_completion(which());
|
||||
|
||||
timer.update();
|
||||
if (PrintGCTaskTimeStamps) {
|
||||
assert(_time_stamps != NULL,
|
||||
"Sanity (PrintGCTaskTimeStamps set late?)");
|
||||
|
||||
GCTaskTimeStamp* time_stamp = time_stamp_at(_time_stamp_index++);
|
||||
timer.update();
|
||||
|
||||
time_stamp->set_name(name);
|
||||
time_stamp->set_entry_time(entry_time);
|
||||
time_stamp->set_exit_time(timer.ticks());
|
||||
GCTaskTimeStamp* time_stamp = time_stamp_at(_time_stamp_index++);
|
||||
|
||||
time_stamp->set_name(name);
|
||||
time_stamp->set_entry_time(entry_time);
|
||||
time_stamp->set_exit_time(timer.ticks());
|
||||
}
|
||||
} else {
|
||||
// idle tasks complete outside the normal accounting
|
||||
// so that a task can complete without waiting for idle tasks.
|
||||
// They have to be terminated separately.
|
||||
IdleGCTask::destroy((IdleGCTask*)task);
|
||||
set_is_working(true);
|
||||
}
|
||||
|
||||
// Check if we should release our inner resources.
|
||||
|
@ -35,6 +35,7 @@ class GCTaskTimeStamp;
|
||||
class GCTaskManager;
|
||||
|
||||
class GCTaskThread : public WorkerThread {
|
||||
friend class GCTaskManager;
|
||||
private:
|
||||
// Instance state.
|
||||
GCTaskManager* _manager; // Manager for worker.
|
||||
@ -45,6 +46,8 @@ private:
|
||||
|
||||
GCTaskTimeStamp* time_stamp_at(uint index);
|
||||
|
||||
bool _is_working; // True if participating in GC tasks
|
||||
|
||||
public:
|
||||
// Factory create and destroy methods.
|
||||
static GCTaskThread* create(GCTaskManager* manager,
|
||||
@ -84,6 +87,7 @@ protected:
|
||||
uint processor_id() const {
|
||||
return _processor_id;
|
||||
}
|
||||
void set_is_working(bool v) { _is_working = v; }
|
||||
};
|
||||
|
||||
class GCTaskTimeStamp : public CHeapObj
|
||||
|
@ -152,15 +152,16 @@ void RefProcTaskExecutor::execute(ProcessTask& task)
|
||||
{
|
||||
ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
|
||||
uint parallel_gc_threads = heap->gc_task_manager()->workers();
|
||||
uint active_gc_threads = heap->gc_task_manager()->active_workers();
|
||||
RegionTaskQueueSet* qset = ParCompactionManager::region_array();
|
||||
ParallelTaskTerminator terminator(parallel_gc_threads, qset);
|
||||
ParallelTaskTerminator terminator(active_gc_threads, qset);
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
for(uint i=0; i<parallel_gc_threads; i++) {
|
||||
q->enqueue(new RefProcTaskProxy(task, i));
|
||||
}
|
||||
if (task.marks_oops_alive()) {
|
||||
if (parallel_gc_threads>1) {
|
||||
for (uint j=0; j<parallel_gc_threads; j++) {
|
||||
for (uint j=0; j<active_gc_threads; j++) {
|
||||
q->enqueue(new StealMarkingTask(&terminator));
|
||||
}
|
||||
}
|
||||
@ -216,7 +217,6 @@ void StealMarkingTask::do_it(GCTaskManager* manager, uint which) {
|
||||
// StealRegionCompactionTask
|
||||
//
|
||||
|
||||
|
||||
StealRegionCompactionTask::StealRegionCompactionTask(ParallelTaskTerminator* t):
|
||||
_terminator(t) {}
|
||||
|
||||
@ -229,6 +229,32 @@ void StealRegionCompactionTask::do_it(GCTaskManager* manager, uint which) {
|
||||
ParCompactionManager* cm =
|
||||
ParCompactionManager::gc_thread_compaction_manager(which);
|
||||
|
||||
|
||||
// If not all threads are active, get a draining stack
|
||||
// from the list. Else, just use this threads draining stack.
|
||||
uint which_stack_index;
|
||||
bool use_all_workers = manager->all_workers_active();
|
||||
if (use_all_workers) {
|
||||
which_stack_index = which;
|
||||
assert(manager->active_workers() == ParallelGCThreads,
|
||||
err_msg("all_workers_active has been incorrectly set: "
|
||||
" active %d ParallelGCThreads %d", manager->active_workers(),
|
||||
ParallelGCThreads));
|
||||
} else {
|
||||
which_stack_index = ParCompactionManager::pop_recycled_stack_index();
|
||||
}
|
||||
|
||||
cm->set_region_stack_index(which_stack_index);
|
||||
cm->set_region_stack(ParCompactionManager::region_list(which_stack_index));
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("StealRegionCompactionTask::do_it "
|
||||
"region_stack_index %d region_stack = 0x%x "
|
||||
" empty (%d) use all workers %d",
|
||||
which_stack_index, ParCompactionManager::region_list(which_stack_index),
|
||||
cm->region_stack()->is_empty(),
|
||||
use_all_workers);
|
||||
}
|
||||
|
||||
// Has to drain stacks first because there may be regions on
|
||||
// preloaded onto the stack and this thread may never have
|
||||
// done a draining task. Are the draining tasks needed?
|
||||
@ -285,6 +311,50 @@ void DrainStacksCompactionTask::do_it(GCTaskManager* manager, uint which) {
|
||||
ParCompactionManager* cm =
|
||||
ParCompactionManager::gc_thread_compaction_manager(which);
|
||||
|
||||
uint which_stack_index;
|
||||
bool use_all_workers = manager->all_workers_active();
|
||||
if (use_all_workers) {
|
||||
which_stack_index = which;
|
||||
assert(manager->active_workers() == ParallelGCThreads,
|
||||
err_msg("all_workers_active has been incorrectly set: "
|
||||
" active %d ParallelGCThreads %d", manager->active_workers(),
|
||||
ParallelGCThreads));
|
||||
} else {
|
||||
which_stack_index = stack_index();
|
||||
}
|
||||
|
||||
cm->set_region_stack(ParCompactionManager::region_list(which_stack_index));
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("DrainStacksCompactionTask::do_it which = %d "
|
||||
"which_stack_index = %d/empty(%d) "
|
||||
"use all workers %d",
|
||||
which, which_stack_index,
|
||||
cm->region_stack()->is_empty(),
|
||||
use_all_workers);
|
||||
}
|
||||
|
||||
cm->set_region_stack_index(which_stack_index);
|
||||
|
||||
// Process any regions already in the compaction managers stacks.
|
||||
cm->drain_region_stacks();
|
||||
|
||||
assert(cm->region_stack()->is_empty(), "Not empty");
|
||||
|
||||
if (!use_all_workers) {
|
||||
// Always give up the region stack.
|
||||
assert(cm->region_stack() ==
|
||||
ParCompactionManager::region_list(cm->region_stack_index()),
|
||||
"region_stack and region_stack_index are inconsistent");
|
||||
ParCompactionManager::push_recycled_stack_index(cm->region_stack_index());
|
||||
|
||||
if (TraceDynamicGCThreads) {
|
||||
void* old_region_stack = (void*) cm->region_stack();
|
||||
int old_region_stack_index = cm->region_stack_index();
|
||||
gclog_or_tty->print_cr("Pushing region stack 0x%x/%d",
|
||||
old_region_stack, old_region_stack_index);
|
||||
}
|
||||
|
||||
cm->set_region_stack(NULL);
|
||||
cm->set_region_stack_index((uint)max_uintx);
|
||||
}
|
||||
}
|
||||
|
@ -39,6 +39,9 @@
|
||||
|
||||
PSOldGen* ParCompactionManager::_old_gen = NULL;
|
||||
ParCompactionManager** ParCompactionManager::_manager_array = NULL;
|
||||
|
||||
RegionTaskQueue** ParCompactionManager::_region_list = NULL;
|
||||
|
||||
OopTaskQueueSet* ParCompactionManager::_stack_array = NULL;
|
||||
ParCompactionManager::ObjArrayTaskQueueSet*
|
||||
ParCompactionManager::_objarray_queues = NULL;
|
||||
@ -46,8 +49,14 @@ ObjectStartArray* ParCompactionManager::_start_array = NULL;
|
||||
ParMarkBitMap* ParCompactionManager::_mark_bitmap = NULL;
|
||||
RegionTaskQueueSet* ParCompactionManager::_region_array = NULL;
|
||||
|
||||
uint* ParCompactionManager::_recycled_stack_index = NULL;
|
||||
int ParCompactionManager::_recycled_top = -1;
|
||||
int ParCompactionManager::_recycled_bottom = -1;
|
||||
|
||||
ParCompactionManager::ParCompactionManager() :
|
||||
_action(CopyAndUpdate) {
|
||||
_action(CopyAndUpdate),
|
||||
_region_stack(NULL),
|
||||
_region_stack_index((uint)max_uintx) {
|
||||
|
||||
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
||||
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
||||
@ -57,7 +66,10 @@ ParCompactionManager::ParCompactionManager() :
|
||||
|
||||
marking_stack()->initialize();
|
||||
_objarray_stack.initialize();
|
||||
region_stack()->initialize();
|
||||
}
|
||||
|
||||
ParCompactionManager::~ParCompactionManager() {
|
||||
delete _recycled_stack_index;
|
||||
}
|
||||
|
||||
void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
|
||||
@ -72,6 +84,19 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
|
||||
_manager_array = NEW_C_HEAP_ARRAY(ParCompactionManager*, parallel_gc_threads+1 );
|
||||
guarantee(_manager_array != NULL, "Could not allocate manager_array");
|
||||
|
||||
_region_list = NEW_C_HEAP_ARRAY(RegionTaskQueue*,
|
||||
parallel_gc_threads+1);
|
||||
guarantee(_region_list != NULL, "Could not initialize promotion manager");
|
||||
|
||||
_recycled_stack_index = NEW_C_HEAP_ARRAY(uint, parallel_gc_threads);
|
||||
|
||||
// parallel_gc-threads + 1 to be consistent with the number of
|
||||
// compaction managers.
|
||||
for(uint i=0; i<parallel_gc_threads + 1; i++) {
|
||||
_region_list[i] = new RegionTaskQueue();
|
||||
region_list(i)->initialize();
|
||||
}
|
||||
|
||||
_stack_array = new OopTaskQueueSet(parallel_gc_threads);
|
||||
guarantee(_stack_array != NULL, "Could not allocate stack_array");
|
||||
_objarray_queues = new ObjArrayTaskQueueSet(parallel_gc_threads);
|
||||
@ -85,7 +110,7 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
|
||||
guarantee(_manager_array[i] != NULL, "Could not create ParCompactionManager");
|
||||
stack_array()->register_queue(i, _manager_array[i]->marking_stack());
|
||||
_objarray_queues->register_queue(i, &_manager_array[i]->_objarray_stack);
|
||||
region_array()->register_queue(i, _manager_array[i]->region_stack());
|
||||
region_array()->register_queue(i, region_list(i));
|
||||
}
|
||||
|
||||
// The VMThread gets its own ParCompactionManager, which is not available
|
||||
@ -97,6 +122,29 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
|
||||
"Not initialized?");
|
||||
}
|
||||
|
||||
int ParCompactionManager::pop_recycled_stack_index() {
|
||||
assert(_recycled_bottom <= _recycled_top, "list is empty");
|
||||
// Get the next available index
|
||||
if (_recycled_bottom < _recycled_top) {
|
||||
uint cur, next, last;
|
||||
do {
|
||||
cur = _recycled_bottom;
|
||||
next = cur + 1;
|
||||
last = Atomic::cmpxchg(next, &_recycled_bottom, cur);
|
||||
} while (cur != last);
|
||||
return _recycled_stack_index[next];
|
||||
} else {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
void ParCompactionManager::push_recycled_stack_index(uint v) {
|
||||
// Get the next available index
|
||||
int cur = Atomic::add(1, &_recycled_top);
|
||||
_recycled_stack_index[cur] = v;
|
||||
assert(_recycled_bottom <= _recycled_top, "list top and bottom are wrong");
|
||||
}
|
||||
|
||||
bool ParCompactionManager::should_update() {
|
||||
assert(action() != NotValid, "Action is not set");
|
||||
return (action() == ParCompactionManager::Update) ||
|
||||
@ -121,6 +169,15 @@ bool ParCompactionManager::should_reset_only() {
|
||||
return action() == ParCompactionManager::ResetObjects;
|
||||
}
|
||||
|
||||
void ParCompactionManager::region_list_push(uint list_index,
|
||||
size_t region_index) {
|
||||
region_list(list_index)->push(region_index);
|
||||
}
|
||||
|
||||
void ParCompactionManager::verify_region_list_empty(uint list_index) {
|
||||
assert(region_list(list_index)->is_empty(), "Not empty");
|
||||
}
|
||||
|
||||
ParCompactionManager*
|
||||
ParCompactionManager::gc_thread_compaction_manager(int index) {
|
||||
assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range");
|
||||
|
@ -48,6 +48,7 @@ class ParCompactionManager : public CHeapObj {
|
||||
friend class StealRegionCompactionTask;
|
||||
friend class UpdateAndFillClosure;
|
||||
friend class RefProcTaskExecutor;
|
||||
friend class IdleGCTask;
|
||||
|
||||
public:
|
||||
|
||||
@ -85,7 +86,31 @@ private:
|
||||
// Is there a way to reuse the _marking_stack for the
|
||||
// saving empty regions? For now just create a different
|
||||
// type of TaskQueue.
|
||||
RegionTaskQueue _region_stack;
|
||||
RegionTaskQueue* _region_stack;
|
||||
|
||||
static RegionTaskQueue** _region_list;
|
||||
// Index in _region_list for current _region_stack.
|
||||
uint _region_stack_index;
|
||||
|
||||
// Indexes of recycled region stacks/overflow stacks
|
||||
// Stacks of regions to be compacted are embedded in the tasks doing
|
||||
// the compaction. A thread that executes the task extracts the
|
||||
// region stack and drains it. These threads keep these region
|
||||
// stacks for use during compaction task stealing. If a thread
|
||||
// gets a second draining task, it pushed its current region stack
|
||||
// index into the array _recycled_stack_index and gets a new
|
||||
// region stack from the task. A thread that is executing a
|
||||
// compaction stealing task without ever having executing a
|
||||
// draining task, will get a region stack from _recycled_stack_index.
|
||||
//
|
||||
// Array of indexes into the array of region stacks.
|
||||
static uint* _recycled_stack_index;
|
||||
// The index into _recycled_stack_index of the last region stack index
|
||||
// pushed. If -1, there are no entries into _recycled_stack_index.
|
||||
static int _recycled_top;
|
||||
// The index into _recycled_stack_index of the last region stack index
|
||||
// popped. If -1, there has not been any entry popped.
|
||||
static int _recycled_bottom;
|
||||
|
||||
Stack<Klass*> _revisit_klass_stack;
|
||||
Stack<DataLayout*> _revisit_mdo_stack;
|
||||
@ -104,7 +129,6 @@ private:
|
||||
// Array of tasks. Needed by the ParallelTaskTerminator.
|
||||
static RegionTaskQueueSet* region_array() { return _region_array; }
|
||||
OverflowTaskQueue<oop>* marking_stack() { return &_marking_stack; }
|
||||
RegionTaskQueue* region_stack() { return &_region_stack; }
|
||||
|
||||
// Pushes onto the marking stack. If the marking stack is full,
|
||||
// pushes onto the overflow stack.
|
||||
@ -116,10 +140,33 @@ private:
|
||||
Action action() { return _action; }
|
||||
void set_action(Action v) { _action = v; }
|
||||
|
||||
RegionTaskQueue* region_stack() { return _region_stack; }
|
||||
void set_region_stack(RegionTaskQueue* v) { _region_stack = v; }
|
||||
|
||||
inline static ParCompactionManager* manager_array(int index);
|
||||
|
||||
ParCompactionManager();
|
||||
inline static RegionTaskQueue* region_list(int index) {
|
||||
return _region_list[index];
|
||||
}
|
||||
|
||||
uint region_stack_index() { return _region_stack_index; }
|
||||
void set_region_stack_index(uint v) { _region_stack_index = v; }
|
||||
|
||||
// Pop and push unique reusable stack index
|
||||
static int pop_recycled_stack_index();
|
||||
static void push_recycled_stack_index(uint v);
|
||||
static void reset_recycled_stack_index() {
|
||||
_recycled_bottom = _recycled_top = -1;
|
||||
}
|
||||
|
||||
ParCompactionManager();
|
||||
~ParCompactionManager();
|
||||
|
||||
// Pushes onto the region stack at the given index. If the
|
||||
// region stack is full,
|
||||
// pushes onto the region overflow stack.
|
||||
static void region_list_push(uint stack_index, size_t region_index);
|
||||
static void verify_region_list_empty(uint stack_index);
|
||||
ParMarkBitMap* mark_bitmap() { return _mark_bitmap; }
|
||||
|
||||
// Take actions in preparation for a compaction.
|
||||
|
@ -2045,6 +2045,11 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
ResourceMark rm;
|
||||
HandleMark hm;
|
||||
|
||||
// Set the number of GC threads to be used in this collection
|
||||
gc_task_manager()->set_active_gang();
|
||||
gc_task_manager()->task_idle_workers();
|
||||
heap->set_par_threads(gc_task_manager()->active_workers());
|
||||
|
||||
const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
|
||||
|
||||
// This is useful for debugging but don't change the output the
|
||||
@ -2197,6 +2202,7 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
// Track memory usage and detect low memory
|
||||
MemoryService::track_memory_usage();
|
||||
heap->update_counters();
|
||||
gc_task_manager()->release_idle_workers();
|
||||
}
|
||||
|
||||
#ifdef ASSERT
|
||||
@ -2204,7 +2210,7 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
|
||||
ParCompactionManager* const cm =
|
||||
ParCompactionManager::manager_array(int(i));
|
||||
assert(cm->marking_stack()->is_empty(), "should be empty");
|
||||
assert(cm->region_stack()->is_empty(), "should be empty");
|
||||
assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
|
||||
assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
|
||||
}
|
||||
#endif // ASSERT
|
||||
@ -2351,8 +2357,9 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
|
||||
|
||||
ParallelScavengeHeap* heap = gc_heap();
|
||||
uint parallel_gc_threads = heap->gc_task_manager()->workers();
|
||||
uint active_gc_threads = heap->gc_task_manager()->active_workers();
|
||||
TaskQueueSetSuper* qset = ParCompactionManager::region_array();
|
||||
ParallelTaskTerminator terminator(parallel_gc_threads, qset);
|
||||
ParallelTaskTerminator terminator(active_gc_threads, qset);
|
||||
|
||||
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
|
||||
PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
|
||||
@ -2374,21 +2381,13 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
|
||||
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
|
||||
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
|
||||
|
||||
if (parallel_gc_threads > 1) {
|
||||
for (uint j = 0; j < parallel_gc_threads; j++) {
|
||||
if (active_gc_threads > 1) {
|
||||
for (uint j = 0; j < active_gc_threads; j++) {
|
||||
q->enqueue(new StealMarkingTask(&terminator));
|
||||
}
|
||||
}
|
||||
|
||||
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
|
||||
q->enqueue(fin);
|
||||
|
||||
gc_task_manager()->add_list(q);
|
||||
|
||||
fin->wait_for();
|
||||
|
||||
// We have to release the barrier tasks!
|
||||
WaitForBarrierGCTask::destroy(fin);
|
||||
gc_task_manager()->execute_and_wait(q);
|
||||
}
|
||||
|
||||
// Process reference objects found during marking
|
||||
@ -2483,10 +2482,22 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
|
||||
{
|
||||
TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
|
||||
|
||||
const unsigned int task_count = MAX2(parallel_gc_threads, 1U);
|
||||
for (unsigned int j = 0; j < task_count; j++) {
|
||||
// Find the threads that are active
|
||||
unsigned int which = 0;
|
||||
|
||||
const uint task_count = MAX2(parallel_gc_threads, 1U);
|
||||
for (uint j = 0; j < task_count; j++) {
|
||||
q->enqueue(new DrainStacksCompactionTask(j));
|
||||
ParCompactionManager::verify_region_list_empty(j);
|
||||
// Set the region stacks variables to "no" region stack values
|
||||
// so that they will be recognized and needing a region stack
|
||||
// in the stealing tasks if they do not get one by executing
|
||||
// a draining stack.
|
||||
ParCompactionManager* cm = ParCompactionManager::manager_array(j);
|
||||
cm->set_region_stack(NULL);
|
||||
cm->set_region_stack_index((uint)max_uintx);
|
||||
}
|
||||
ParCompactionManager::reset_recycled_stack_index();
|
||||
|
||||
// Find all regions that are available (can be filled immediately) and
|
||||
// distribute them to the thread stacks. The iteration is done in reverse
|
||||
@ -2495,8 +2506,10 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
|
||||
const ParallelCompactData& sd = PSParallelCompact::summary_data();
|
||||
|
||||
size_t fillable_regions = 0; // A count for diagnostic purposes.
|
||||
unsigned int which = 0; // The worker thread number.
|
||||
// A region index which corresponds to the tasks created above.
|
||||
// "which" must be 0 <= which < task_count
|
||||
|
||||
which = 0;
|
||||
for (unsigned int id = to_space_id; id > perm_space_id; --id) {
|
||||
SpaceInfo* const space_info = _space_info + id;
|
||||
MutableSpace* const space = space_info->space();
|
||||
@ -2509,8 +2522,7 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
|
||||
|
||||
for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
|
||||
if (sd.region(cur)->claim_unsafe()) {
|
||||
ParCompactionManager* cm = ParCompactionManager::manager_array(which);
|
||||
cm->push_region(cur);
|
||||
ParCompactionManager::region_list_push(which, cur);
|
||||
|
||||
if (TraceParallelOldGCCompactionPhase && Verbose) {
|
||||
const size_t count_mod_8 = fillable_regions & 7;
|
||||
@ -2521,8 +2533,10 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
|
||||
|
||||
NOT_PRODUCT(++fillable_regions;)
|
||||
|
||||
// Assign regions to threads in round-robin fashion.
|
||||
// Assign regions to tasks in round-robin fashion.
|
||||
if (++which == task_count) {
|
||||
assert(which <= parallel_gc_threads,
|
||||
"Inconsistent number of workers");
|
||||
which = 0;
|
||||
}
|
||||
}
|
||||
@ -2642,26 +2656,19 @@ void PSParallelCompact::compact() {
|
||||
PSOldGen* old_gen = heap->old_gen();
|
||||
old_gen->start_array()->reset();
|
||||
uint parallel_gc_threads = heap->gc_task_manager()->workers();
|
||||
uint active_gc_threads = heap->gc_task_manager()->active_workers();
|
||||
TaskQueueSetSuper* qset = ParCompactionManager::region_array();
|
||||
ParallelTaskTerminator terminator(parallel_gc_threads, qset);
|
||||
ParallelTaskTerminator terminator(active_gc_threads, qset);
|
||||
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
enqueue_region_draining_tasks(q, parallel_gc_threads);
|
||||
enqueue_dense_prefix_tasks(q, parallel_gc_threads);
|
||||
enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads);
|
||||
enqueue_region_draining_tasks(q, active_gc_threads);
|
||||
enqueue_dense_prefix_tasks(q, active_gc_threads);
|
||||
enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
|
||||
|
||||
{
|
||||
TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
|
||||
|
||||
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
|
||||
q->enqueue(fin);
|
||||
|
||||
gc_task_manager()->add_list(q);
|
||||
|
||||
fin->wait_for();
|
||||
|
||||
// We have to release the barrier tasks!
|
||||
WaitForBarrierGCTask::destroy(fin);
|
||||
gc_task_manager()->execute_and_wait(q);
|
||||
|
||||
#ifdef ASSERT
|
||||
// Verify that all regions have been processed before the deferred updates.
|
||||
@ -2729,6 +2736,9 @@ void
|
||||
PSParallelCompact::follow_weak_klass_links() {
|
||||
// All klasses on the revisit stack are marked at this point.
|
||||
// Update and follow all subklass, sibling and implementor links.
|
||||
// Check all the stacks here even if not all the workers are active.
|
||||
// There is no accounting which indicates which stacks might have
|
||||
// contents to be followed.
|
||||
if (PrintRevisitStats) {
|
||||
gclog_or_tty->print_cr("#classes in system dictionary = %d",
|
||||
SystemDictionary::number_of_classes());
|
||||
|
@ -181,28 +181,29 @@ class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
|
||||
void PSRefProcTaskExecutor::execute(ProcessTask& task)
|
||||
{
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
for(uint i=0; i<ParallelGCThreads; i++) {
|
||||
GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
|
||||
for(uint i=0; i < manager->active_workers(); i++) {
|
||||
q->enqueue(new PSRefProcTaskProxy(task, i));
|
||||
}
|
||||
ParallelTaskTerminator terminator(
|
||||
ParallelScavengeHeap::gc_task_manager()->workers(),
|
||||
ParallelTaskTerminator terminator(manager->active_workers(),
|
||||
(TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
|
||||
if (task.marks_oops_alive() && ParallelGCThreads > 1) {
|
||||
for (uint j=0; j<ParallelGCThreads; j++) {
|
||||
if (task.marks_oops_alive() && manager->active_workers() > 1) {
|
||||
for (uint j = 0; j < manager->active_workers(); j++) {
|
||||
q->enqueue(new StealTask(&terminator));
|
||||
}
|
||||
}
|
||||
ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
|
||||
manager->execute_and_wait(q);
|
||||
}
|
||||
|
||||
|
||||
void PSRefProcTaskExecutor::execute(EnqueueTask& task)
|
||||
{
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
for(uint i=0; i<ParallelGCThreads; i++) {
|
||||
GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
|
||||
for(uint i=0; i < manager->active_workers(); i++) {
|
||||
q->enqueue(new PSRefEnqueueTaskProxy(task, i));
|
||||
}
|
||||
ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q);
|
||||
manager->execute_and_wait(q);
|
||||
}
|
||||
|
||||
// This method contains all heap specific policy for invoking scavenge.
|
||||
@ -375,6 +376,14 @@ bool PSScavenge::invoke_no_policy() {
|
||||
// Release all previously held resources
|
||||
gc_task_manager()->release_all_resources();
|
||||
|
||||
// Set the number of GC threads to be used in this collection
|
||||
gc_task_manager()->set_active_gang();
|
||||
gc_task_manager()->task_idle_workers();
|
||||
// Get the active number of workers here and use that value
|
||||
// throughout the methods.
|
||||
uint active_workers = gc_task_manager()->active_workers();
|
||||
heap->set_par_threads(active_workers);
|
||||
|
||||
PSPromotionManager::pre_scavenge();
|
||||
|
||||
// We'll use the promotion manager again later.
|
||||
@ -385,8 +394,9 @@ bool PSScavenge::invoke_no_policy() {
|
||||
|
||||
GCTaskQueue* q = GCTaskQueue::create();
|
||||
|
||||
for(uint i=0; i<ParallelGCThreads; i++) {
|
||||
q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i));
|
||||
uint stripe_total = active_workers;
|
||||
for(uint i=0; i < stripe_total; i++) {
|
||||
q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
|
||||
}
|
||||
|
||||
q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
|
||||
@ -403,10 +413,10 @@ bool PSScavenge::invoke_no_policy() {
|
||||
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
|
||||
|
||||
ParallelTaskTerminator terminator(
|
||||
gc_task_manager()->workers(),
|
||||
active_workers,
|
||||
(TaskQueueSetSuper*) promotion_manager->stack_array_depth());
|
||||
if (ParallelGCThreads>1) {
|
||||
for (uint j=0; j<ParallelGCThreads; j++) {
|
||||
if (active_workers > 1) {
|
||||
for (uint j = 0; j < active_workers; j++) {
|
||||
q->enqueue(new StealTask(&terminator));
|
||||
}
|
||||
}
|
||||
@ -419,6 +429,7 @@ bool PSScavenge::invoke_no_policy() {
|
||||
// Process reference objects discovered during scavenge
|
||||
{
|
||||
reference_processor()->setup_policy(false); // not always_clear
|
||||
reference_processor()->set_active_mt_degree(active_workers);
|
||||
PSKeepAliveClosure keep_alive(promotion_manager);
|
||||
PSEvacuateFollowersClosure evac_followers(promotion_manager);
|
||||
if (reference_processor()->processing_is_mt()) {
|
||||
@ -622,6 +633,8 @@ bool PSScavenge::invoke_no_policy() {
|
||||
// Track memory usage and detect low memory
|
||||
MemoryService::track_memory_usage();
|
||||
heap->update_counters();
|
||||
|
||||
gc_task_manager()->release_idle_workers();
|
||||
}
|
||||
|
||||
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
|
||||
@ -804,6 +817,7 @@ void PSScavenge::initialize() {
|
||||
|
||||
// Initialize ref handling object for scavenging.
|
||||
MemRegion mr = young_gen->reserved();
|
||||
|
||||
_ref_processor =
|
||||
new ReferenceProcessor(mr, // span
|
||||
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
|
||||
|
@ -202,7 +202,8 @@ void OldToYoungRootsTask::do_it(GCTaskManager* manager, uint which) {
|
||||
_gen->object_space(),
|
||||
_gen_top,
|
||||
pm,
|
||||
_stripe_number);
|
||||
_stripe_number,
|
||||
_stripe_total);
|
||||
|
||||
// Do the real work
|
||||
pm->drain_stacks(false);
|
||||
|
@ -135,16 +135,63 @@ class SerialOldToYoungRootsTask : public GCTask {
|
||||
// OldToYoungRootsTask
|
||||
//
|
||||
// This task is used to scan old to young roots in parallel
|
||||
//
|
||||
// A GC thread executing this tasks divides the generation (old gen)
|
||||
// into slices and takes a stripe in the slice as its part of the
|
||||
// work.
|
||||
//
|
||||
// +===============+ slice 0
|
||||
// | stripe 0 |
|
||||
// +---------------+
|
||||
// | stripe 1 |
|
||||
// +---------------+
|
||||
// | stripe 2 |
|
||||
// +---------------+
|
||||
// | stripe 3 |
|
||||
// +===============+ slice 1
|
||||
// | stripe 0 |
|
||||
// +---------------+
|
||||
// | stripe 1 |
|
||||
// +---------------+
|
||||
// | stripe 2 |
|
||||
// +---------------+
|
||||
// | stripe 3 |
|
||||
// +===============+ slice 2
|
||||
// ...
|
||||
//
|
||||
// A task is created for each stripe. In this case there are 4 tasks
|
||||
// created. A GC thread first works on its stripe within slice 0
|
||||
// and then moves to its stripe in the next slice until all stripes
|
||||
// exceed the top of the generation. Note that having fewer GC threads
|
||||
// than stripes works because all the tasks are executed so all stripes
|
||||
// will be covered. In this example if 4 tasks have been created to cover
|
||||
// all the stripes and there are only 3 threads, one of the threads will
|
||||
// get the tasks with the 4th stripe. However, there is a dependence in
|
||||
// CardTableExtension::scavenge_contents_parallel() on the number
|
||||
// of tasks created. In scavenge_contents_parallel the distance
|
||||
// to the next stripe is calculated based on the number of tasks.
|
||||
// If the stripe width is ssize, a task's next stripe is at
|
||||
// ssize * number_of_tasks (= slice_stride). In this case after
|
||||
// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1
|
||||
// by adding slice_stride to the start of stripe 0 in slice 0 to get
|
||||
// to the start of stride 0 in slice 1.
|
||||
|
||||
class OldToYoungRootsTask : public GCTask {
|
||||
private:
|
||||
PSOldGen* _gen;
|
||||
HeapWord* _gen_top;
|
||||
uint _stripe_number;
|
||||
uint _stripe_total;
|
||||
|
||||
public:
|
||||
OldToYoungRootsTask(PSOldGen *gen, HeapWord* gen_top, uint stripe_number) :
|
||||
_gen(gen), _gen_top(gen_top), _stripe_number(stripe_number) { }
|
||||
OldToYoungRootsTask(PSOldGen *gen,
|
||||
HeapWord* gen_top,
|
||||
uint stripe_number,
|
||||
uint stripe_total) :
|
||||
_gen(gen),
|
||||
_gen_top(gen_top),
|
||||
_stripe_number(stripe_number),
|
||||
_stripe_total(stripe_total) { }
|
||||
|
||||
char* name() { return (char *)"old-to-young-roots-task"; }
|
||||
|
||||
|
@ -28,8 +28,10 @@
|
||||
#include "memory/collectorPolicy.hpp"
|
||||
#include "runtime/timer.hpp"
|
||||
#include "utilities/ostream.hpp"
|
||||
#include "utilities/workgroup.hpp"
|
||||
elapsedTimer AdaptiveSizePolicy::_minor_timer;
|
||||
elapsedTimer AdaptiveSizePolicy::_major_timer;
|
||||
bool AdaptiveSizePolicy::_debug_perturbation = false;
|
||||
|
||||
// The throughput goal is implemented as
|
||||
// _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
|
||||
@ -88,6 +90,134 @@ AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
|
||||
_young_gen_policy_is_ready = false;
|
||||
}
|
||||
|
||||
// If the number of GC threads was set on the command line,
|
||||
// use it.
|
||||
// Else
|
||||
// Calculate the number of GC threads based on the number of Java threads.
|
||||
// Calculate the number of GC threads based on the size of the heap.
|
||||
// Use the larger.
|
||||
|
||||
int AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
|
||||
const uintx min_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers) {
|
||||
// If the user has specifically set the number of
|
||||
// GC threads, use them.
|
||||
|
||||
// If the user has turned off using a dynamic number of GC threads
|
||||
// or the users has requested a specific number, set the active
|
||||
// number of workers to all the workers.
|
||||
|
||||
uintx new_active_workers = total_workers;
|
||||
uintx prev_active_workers = active_workers;
|
||||
uintx active_workers_by_JT = 0;
|
||||
uintx active_workers_by_heap_size = 0;
|
||||
|
||||
// Always use at least min_workers but use up to
|
||||
// GCThreadsPerJavaThreads * application threads.
|
||||
active_workers_by_JT =
|
||||
MAX2((uintx) GCWorkersPerJavaThread * application_workers,
|
||||
min_workers);
|
||||
|
||||
// Choose a number of GC threads based on the current size
|
||||
// of the heap. This may be complicated because the size of
|
||||
// the heap depends on factors such as the thoughput goal.
|
||||
// Still a large heap should be collected by more GC threads.
|
||||
active_workers_by_heap_size =
|
||||
MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);
|
||||
|
||||
uintx max_active_workers =
|
||||
MAX2(active_workers_by_JT, active_workers_by_heap_size);
|
||||
|
||||
// Limit the number of workers to the the number created,
|
||||
// (workers()).
|
||||
new_active_workers = MIN2(max_active_workers,
|
||||
(uintx) total_workers);
|
||||
|
||||
// Increase GC workers instantly but decrease them more
|
||||
// slowly.
|
||||
if (new_active_workers < prev_active_workers) {
|
||||
new_active_workers =
|
||||
MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
|
||||
}
|
||||
|
||||
// Check once more that the number of workers is within the limits.
|
||||
assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
|
||||
assert(new_active_workers >= min_workers, "Minimum workers not observed");
|
||||
assert(new_active_workers <= total_workers, "Total workers not observed");
|
||||
|
||||
if (ForceDynamicNumberOfGCThreads) {
|
||||
// Assume this is debugging and jiggle the number of GC threads.
|
||||
if (new_active_workers == prev_active_workers) {
|
||||
if (new_active_workers < total_workers) {
|
||||
new_active_workers++;
|
||||
} else if (new_active_workers > min_workers) {
|
||||
new_active_workers--;
|
||||
}
|
||||
}
|
||||
if (new_active_workers == total_workers) {
|
||||
if (_debug_perturbation) {
|
||||
new_active_workers = min_workers;
|
||||
}
|
||||
_debug_perturbation = !_debug_perturbation;
|
||||
}
|
||||
assert((new_active_workers <= (uintx) ParallelGCThreads) &&
|
||||
(new_active_workers >= min_workers),
|
||||
"Jiggled active workers too much");
|
||||
}
|
||||
|
||||
if (TraceDynamicGCThreads) {
|
||||
gclog_or_tty->print_cr("GCTaskManager::calc_default_active_workers() : "
|
||||
"active_workers(): %d new_acitve_workers: %d "
|
||||
"prev_active_workers: %d\n"
|
||||
" active_workers_by_JT: %d active_workers_by_heap_size: %d",
|
||||
active_workers, new_active_workers, prev_active_workers,
|
||||
active_workers_by_JT, active_workers_by_heap_size);
|
||||
}
|
||||
assert(new_active_workers > 0, "Always need at least 1");
|
||||
return new_active_workers;
|
||||
}
|
||||
|
||||
int AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers) {
|
||||
// If the user has specifically set the number of
|
||||
// GC threads, use them.
|
||||
|
||||
// If the user has turned off using a dynamic number of GC threads
|
||||
// or the users has requested a specific number, set the active
|
||||
// number of workers to all the workers.
|
||||
|
||||
int new_active_workers;
|
||||
if (!UseDynamicNumberOfGCThreads ||
|
||||
(!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
|
||||
new_active_workers = total_workers;
|
||||
} else {
|
||||
new_active_workers = calc_default_active_workers(total_workers,
|
||||
2, /* Minimum number of workers */
|
||||
active_workers,
|
||||
application_workers);
|
||||
}
|
||||
assert(new_active_workers > 0, "Always need at least 1");
|
||||
return new_active_workers;
|
||||
}
|
||||
|
||||
int AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers) {
|
||||
if (!UseDynamicNumberOfGCThreads ||
|
||||
(!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
|
||||
return ConcGCThreads;
|
||||
} else {
|
||||
int no_of_gc_threads = calc_default_active_workers(
|
||||
total_workers,
|
||||
1, /* Minimum number of workers */
|
||||
active_workers,
|
||||
application_workers);
|
||||
return no_of_gc_threads;
|
||||
}
|
||||
}
|
||||
|
||||
bool AdaptiveSizePolicy::tenuring_threshold_change() const {
|
||||
return decrement_tenuring_threshold_for_gc_cost() ||
|
||||
increment_tenuring_threshold_for_gc_cost() ||
|
||||
|
@ -187,6 +187,8 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
julong _young_gen_change_for_minor_throughput;
|
||||
julong _old_gen_change_for_major_throughput;
|
||||
|
||||
static const uint GCWorkersPerJavaThread = 2;
|
||||
|
||||
// Accessors
|
||||
|
||||
double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
|
||||
@ -331,6 +333,8 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
// Return true if the policy suggested a change.
|
||||
bool tenuring_threshold_change() const;
|
||||
|
||||
static bool _debug_perturbation;
|
||||
|
||||
public:
|
||||
AdaptiveSizePolicy(size_t init_eden_size,
|
||||
size_t init_promo_size,
|
||||
@ -338,6 +342,31 @@ class AdaptiveSizePolicy : public CHeapObj {
|
||||
double gc_pause_goal_sec,
|
||||
uint gc_cost_ratio);
|
||||
|
||||
// Return number default GC threads to use in the next GC.
|
||||
static int calc_default_active_workers(uintx total_workers,
|
||||
const uintx min_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers);
|
||||
|
||||
// Return number of GC threads to use in the next GC.
|
||||
// This is called sparingly so as not to change the
|
||||
// number of GC workers gratuitously.
|
||||
// For ParNew collections
|
||||
// For PS scavenge and ParOld collections
|
||||
// For G1 evacuation pauses (subject to update)
|
||||
// Other collection phases inherit the number of
|
||||
// GC workers from the calls above. For example,
|
||||
// a CMS parallel remark uses the same number of GC
|
||||
// workers as the most recent ParNew collection.
|
||||
static int calc_active_workers(uintx total_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers);
|
||||
|
||||
// Return number of GC threads to use in the next concurrent GC phase.
|
||||
static int calc_active_conc_workers(uintx total_workers,
|
||||
uintx active_workers,
|
||||
uintx application_workers);
|
||||
|
||||
bool is_gc_cms_adaptive_size_policy() {
|
||||
return kind() == _gc_cms_adaptive_size_policy;
|
||||
}
|
||||
|
@ -460,9 +460,43 @@ void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
|
||||
OopsInGenClosure* cl,
|
||||
CardTableRS* ct) {
|
||||
if (!mr.is_empty()) {
|
||||
int n_threads = SharedHeap::heap()->n_par_threads();
|
||||
if (n_threads > 0) {
|
||||
// Caller (process_strong_roots()) claims that all GC threads
|
||||
// execute this call. With UseDynamicNumberOfGCThreads now all
|
||||
// active GC threads execute this call. The number of active GC
|
||||
// threads needs to be passed to par_non_clean_card_iterate_work()
|
||||
// to get proper partitioning and termination.
|
||||
//
|
||||
// This is an example of where n_par_threads() is used instead
|
||||
// of workers()->active_workers(). n_par_threads can be set to 0 to
|
||||
// turn off parallelism. For example when this code is called as
|
||||
// part of verification and SharedHeap::process_strong_roots() is being
|
||||
// used, then n_par_threads() may have been set to 0. active_workers
|
||||
// is not overloaded with the meaning that it is a switch to disable
|
||||
// parallelism and so keeps the meaning of the number of
|
||||
// active gc workers. If parallelism has not been shut off by
|
||||
// setting n_par_threads to 0, then n_par_threads should be
|
||||
// equal to active_workers. When a different mechanism for shutting
|
||||
// off parallelism is used, then active_workers can be used in
|
||||
// place of n_par_threads.
|
||||
// This is an example of a path where n_par_threads is
|
||||
// set to 0 to turn off parallism.
|
||||
// [7] CardTableModRefBS::non_clean_card_iterate()
|
||||
// [8] CardTableRS::younger_refs_in_space_iterate()
|
||||
// [9] Generation::younger_refs_in_space_iterate()
|
||||
// [10] OneContigSpaceCardGeneration::younger_refs_iterate()
|
||||
// [11] CompactingPermGenGen::younger_refs_iterate()
|
||||
// [12] CardTableRS::younger_refs_iterate()
|
||||
// [13] SharedHeap::process_strong_roots()
|
||||
// [14] G1CollectedHeap::verify()
|
||||
// [15] Universe::verify()
|
||||
// [16] G1CollectedHeap::do_collection_pause_at_safepoint()
|
||||
//
|
||||
int n_threads = SharedHeap::heap()->n_par_threads();
|
||||
bool is_par = n_threads > 0;
|
||||
if (is_par) {
|
||||
#ifndef SERIALGC
|
||||
assert(SharedHeap::heap()->n_par_threads() ==
|
||||
SharedHeap::heap()->workers()->active_workers(), "Mismatch");
|
||||
non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
|
||||
#else // SERIALGC
|
||||
fatal("Parallel gc not supported here.");
|
||||
@ -489,6 +523,10 @@ void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
|
||||
// change their values in any manner.
|
||||
void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
|
||||
MemRegionClosure* cl) {
|
||||
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
|
||||
assert(!is_par ||
|
||||
(SharedHeap::heap()->n_par_threads() ==
|
||||
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
|
||||
for (int i = 0; i < _cur_covered_regions; i++) {
|
||||
MemRegion mri = mr.intersection(_covered[i]);
|
||||
if (mri.word_size() > 0) {
|
||||
|
@ -164,7 +164,13 @@ inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
|
||||
ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
|
||||
DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
|
||||
_dirty_card_closure(dirty_card_closure), _ct(ct) {
|
||||
// Cannot yet substitute active_workers for n_par_threads
|
||||
// in the case where parallelism is being turned off by
|
||||
// setting n_par_threads to 0.
|
||||
_is_par = (SharedHeap::heap()->n_par_threads() > 0);
|
||||
assert(!_is_par ||
|
||||
(SharedHeap::heap()->n_par_threads() ==
|
||||
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
|
||||
}
|
||||
|
||||
void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
|
||||
|
@ -58,7 +58,6 @@ SharedHeap::SharedHeap(CollectorPolicy* policy_) :
|
||||
_perm_gen(NULL), _rem_set(NULL),
|
||||
_strong_roots_parity(0),
|
||||
_process_strong_tasks(new SubTasksDone(SH_PS_NumElements)),
|
||||
_n_par_threads(0),
|
||||
_workers(NULL)
|
||||
{
|
||||
if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
|
||||
@ -80,6 +79,14 @@ SharedHeap::SharedHeap(CollectorPolicy* policy_) :
|
||||
}
|
||||
}
|
||||
|
||||
int SharedHeap::n_termination() {
|
||||
return _process_strong_tasks->n_threads();
|
||||
}
|
||||
|
||||
void SharedHeap::set_n_termination(int t) {
|
||||
_process_strong_tasks->set_n_threads(t);
|
||||
}
|
||||
|
||||
bool SharedHeap::heap_lock_held_for_gc() {
|
||||
Thread* t = Thread::current();
|
||||
return Heap_lock->owned_by_self()
|
||||
@ -144,6 +151,10 @@ void SharedHeap::process_strong_roots(bool activate_scope,
|
||||
StrongRootsScope srs(this, activate_scope);
|
||||
// General strong roots.
|
||||
assert(_strong_roots_parity != 0, "must have called prologue code");
|
||||
// _n_termination for _process_strong_tasks should be set up stream
|
||||
// in a method not running in a GC worker. Otherwise the GC worker
|
||||
// could be trying to change the termination condition while the task
|
||||
// is executing in another GC worker.
|
||||
if (!_process_strong_tasks->is_task_claimed(SH_PS_Universe_oops_do)) {
|
||||
Universe::oops_do(roots);
|
||||
// Consider perm-gen discovered lists to be strong.
|
||||
|
@ -49,6 +49,62 @@ class FlexibleWorkGang;
|
||||
class CollectorPolicy;
|
||||
class KlassHandle;
|
||||
|
||||
// Note on use of FlexibleWorkGang's for GC.
|
||||
// There are three places where task completion is determined.
|
||||
// In
|
||||
// 1) ParallelTaskTerminator::offer_termination() where _n_threads
|
||||
// must be set to the correct value so that count of workers that
|
||||
// have offered termination will exactly match the number
|
||||
// working on the task. Tasks such as those derived from GCTask
|
||||
// use ParallelTaskTerminator's. Tasks that want load balancing
|
||||
// by work stealing use this method to gauge completion.
|
||||
// 2) SubTasksDone has a variable _n_threads that is used in
|
||||
// all_tasks_completed() to determine completion. all_tasks_complete()
|
||||
// counts the number of tasks that have been done and then reset
|
||||
// the SubTasksDone so that it can be used again. When the number of
|
||||
// tasks is set to the number of GC workers, then _n_threads must
|
||||
// be set to the number of active GC workers. G1CollectedHeap,
|
||||
// HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
|
||||
// This seems too many.
|
||||
// 3) SequentialSubTasksDone has an _n_threads that is used in
|
||||
// a way similar to SubTasksDone and has the same dependency on the
|
||||
// number of active GC workers. CompactibleFreeListSpace and Space
|
||||
// have SequentialSubTasksDone's.
|
||||
// Example of using SubTasksDone and SequentialSubTasksDone
|
||||
// G1CollectedHeap::g1_process_strong_roots() calls
|
||||
// process_strong_roots(false, // no scoping; this is parallel code
|
||||
// collecting_perm_gen, so,
|
||||
// &buf_scan_non_heap_roots,
|
||||
// &eager_scan_code_roots,
|
||||
// &buf_scan_perm);
|
||||
// which delegates to SharedHeap::process_strong_roots() and uses
|
||||
// SubTasksDone* _process_strong_tasks to claim tasks.
|
||||
// process_strong_roots() calls
|
||||
// rem_set()->younger_refs_iterate(perm_gen(), perm_blk);
|
||||
// to scan the card table and which eventually calls down into
|
||||
// CardTableModRefBS::par_non_clean_card_iterate_work(). This method
|
||||
// uses SequentialSubTasksDone* _pst to claim tasks.
|
||||
// Both SubTasksDone and SequentialSubTasksDone call their method
|
||||
// all_tasks_completed() to count the number of GC workers that have
|
||||
// finished their work. That logic is "when all the workers are
|
||||
// finished the tasks are finished".
|
||||
//
|
||||
// The pattern that appears in the code is to set _n_threads
|
||||
// to a value > 1 before a task that you would like executed in parallel
|
||||
// and then to set it to 0 after that task has completed. A value of
|
||||
// 0 is a "special" value in set_n_threads() which translates to
|
||||
// setting _n_threads to 1.
|
||||
//
|
||||
// Some code uses _n_terminiation to decide if work should be done in
|
||||
// parallel. The notorious possibly_parallel_oops_do() in threads.cpp
|
||||
// is an example of such code. Look for variable "is_par" for other
|
||||
// examples.
|
||||
//
|
||||
// The active_workers is not reset to 0 after a parallel phase. It's
|
||||
// value may be used in later phases and in one instance at least
|
||||
// (the parallel remark) it has to be used (the parallel remark depends
|
||||
// on the partitioning done in the previous parallel scavenge).
|
||||
|
||||
class SharedHeap : public CollectedHeap {
|
||||
friend class VMStructs;
|
||||
|
||||
@ -84,11 +140,6 @@ protected:
|
||||
// If we're doing parallel GC, use this gang of threads.
|
||||
FlexibleWorkGang* _workers;
|
||||
|
||||
// Number of parallel threads currently working on GC tasks.
|
||||
// O indicates use sequential code; 1 means use parallel code even with
|
||||
// only one thread, for performance testing purposes.
|
||||
int _n_par_threads;
|
||||
|
||||
// Full initialization is done in a concrete subtype's "initialize"
|
||||
// function.
|
||||
SharedHeap(CollectorPolicy* policy_);
|
||||
@ -107,6 +158,7 @@ public:
|
||||
CollectorPolicy *collector_policy() const { return _collector_policy; }
|
||||
|
||||
void set_barrier_set(BarrierSet* bs);
|
||||
SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
|
||||
|
||||
// Does operations required after initialization has been done.
|
||||
virtual void post_initialize();
|
||||
@ -198,13 +250,6 @@ public:
|
||||
|
||||
FlexibleWorkGang* workers() const { return _workers; }
|
||||
|
||||
// Sets the number of parallel threads that will be doing tasks
|
||||
// (such as process strong roots) subsequently.
|
||||
virtual void set_par_threads(int t);
|
||||
|
||||
// Number of threads currently working on GC tasks.
|
||||
int n_par_threads() { return _n_par_threads; }
|
||||
|
||||
// Invoke the "do_oop" method the closure "roots" on all root locations.
|
||||
// If "collecting_perm_gen" is false, then roots that may only contain
|
||||
// references to permGen objects are not scanned; instead, in that case,
|
||||
@ -240,6 +285,13 @@ public:
|
||||
virtual void gc_prologue(bool full) = 0;
|
||||
virtual void gc_epilogue(bool full) = 0;
|
||||
|
||||
// Sets the number of parallel threads that will be doing tasks
|
||||
// (such as process strong roots) subsequently.
|
||||
virtual void set_par_threads(int t);
|
||||
|
||||
int n_termination();
|
||||
void set_n_termination(int t);
|
||||
|
||||
//
|
||||
// New methods from CollectedHeap
|
||||
//
|
||||
|
@ -1394,8 +1394,8 @@ void Arguments::set_parallel_gc_flags() {
|
||||
// If no heap maximum was requested explicitly, use some reasonable fraction
|
||||
// of the physical memory, up to a maximum of 1GB.
|
||||
if (UseParallelGC) {
|
||||
FLAG_SET_ERGO(uintx, ParallelGCThreads,
|
||||
Abstract_VM_Version::parallel_worker_threads());
|
||||
FLAG_SET_DEFAULT(ParallelGCThreads,
|
||||
Abstract_VM_Version::parallel_worker_threads());
|
||||
|
||||
// If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the
|
||||
// SurvivorRatio has been set, reset their default values to SurvivorRatio +
|
||||
|
@ -1416,6 +1416,21 @@ class CommandLineFlags {
|
||||
product(uintx, ParallelGCThreads, 0, \
|
||||
"Number of parallel threads parallel gc will use") \
|
||||
\
|
||||
product(bool, UseDynamicNumberOfGCThreads, false, \
|
||||
"Dynamically choose the number of parallel threads " \
|
||||
"parallel gc will use") \
|
||||
\
|
||||
diagnostic(bool, ForceDynamicNumberOfGCThreads, false, \
|
||||
"Force dynamic selection of the number of" \
|
||||
"parallel threads parallel gc will use to aid debugging") \
|
||||
\
|
||||
product(uintx, HeapSizePerGCThread, ScaleForWordSize(64*M), \
|
||||
"Size of heap (bytes) per GC thread used in calculating the " \
|
||||
"number of GC threads") \
|
||||
\
|
||||
product(bool, TraceDynamicGCThreads, false, \
|
||||
"Trace the dynamic GC thread usage") \
|
||||
\
|
||||
develop(bool, ParallelOldGCSplitALot, false, \
|
||||
"Provoke splitting (copying data from a young gen space to" \
|
||||
"multiple destination spaces)") \
|
||||
@ -2357,7 +2372,7 @@ class CommandLineFlags {
|
||||
develop(bool, TraceGCTaskQueue, false, \
|
||||
"Trace actions of the GC task queues") \
|
||||
\
|
||||
develop(bool, TraceGCTaskThread, false, \
|
||||
diagnostic(bool, TraceGCTaskThread, false, \
|
||||
"Trace actions of the GC task threads") \
|
||||
\
|
||||
product(bool, PrintParallelOldGCPhaseTimes, false, \
|
||||
|
@ -778,12 +778,12 @@ bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
|
||||
return true;
|
||||
} else {
|
||||
guarantee(res == strong_roots_parity, "Or else what?");
|
||||
assert(SharedHeap::heap()->n_par_threads() > 0,
|
||||
"Should only fail when parallel.");
|
||||
assert(SharedHeap::heap()->workers()->active_workers() > 0,
|
||||
"Should only fail when parallel.");
|
||||
return false;
|
||||
}
|
||||
}
|
||||
assert(SharedHeap::heap()->n_par_threads() > 0,
|
||||
assert(SharedHeap::heap()->workers()->active_workers() > 0,
|
||||
"Should only fail when parallel.");
|
||||
return false;
|
||||
}
|
||||
@ -3939,7 +3939,15 @@ void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
|
||||
// root groups. Overhead should be small enough to use all the time,
|
||||
// even in sequential code.
|
||||
SharedHeap* sh = SharedHeap::heap();
|
||||
bool is_par = (sh->n_par_threads() > 0);
|
||||
// Cannot yet substitute active_workers for n_par_threads
|
||||
// because of G1CollectedHeap::verify() use of
|
||||
// SharedHeap::process_strong_roots(). n_par_threads == 0 will
|
||||
// turn off parallelism in process_strong_roots while active_workers
|
||||
// is being used for parallelism elsewhere.
|
||||
bool is_par = sh->n_par_threads() > 0;
|
||||
assert(!is_par ||
|
||||
(SharedHeap::heap()->n_par_threads() ==
|
||||
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
|
||||
int cp = SharedHeap::heap()->strong_roots_parity();
|
||||
ALL_JAVA_THREADS(p) {
|
||||
if (p->claim_oops_do(is_par, cp)) {
|
||||
|
@ -57,7 +57,6 @@ WorkGang::WorkGang(const char* name,
|
||||
bool are_GC_task_threads,
|
||||
bool are_ConcurrentGC_threads) :
|
||||
AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) {
|
||||
// Save arguments.
|
||||
_total_workers = workers;
|
||||
}
|
||||
|
||||
@ -127,6 +126,12 @@ GangWorker* AbstractWorkGang::gang_worker(int i) const {
|
||||
}
|
||||
|
||||
void WorkGang::run_task(AbstractGangTask* task) {
|
||||
run_task(task, total_workers());
|
||||
}
|
||||
|
||||
void WorkGang::run_task(AbstractGangTask* task, uint no_of_parallel_workers) {
|
||||
task->set_for_termination(no_of_parallel_workers);
|
||||
|
||||
// This thread is executed by the VM thread which does not block
|
||||
// on ordinary MutexLocker's.
|
||||
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
|
||||
@ -143,22 +148,32 @@ void WorkGang::run_task(AbstractGangTask* task) {
|
||||
// Tell the workers to get to work.
|
||||
monitor()->notify_all();
|
||||
// Wait for them to be finished
|
||||
while (finished_workers() < total_workers()) {
|
||||
while (finished_workers() < (int) no_of_parallel_workers) {
|
||||
if (TraceWorkGang) {
|
||||
tty->print_cr("Waiting in work gang %s: %d/%d finished sequence %d",
|
||||
name(), finished_workers(), total_workers(),
|
||||
name(), finished_workers(), no_of_parallel_workers,
|
||||
_sequence_number);
|
||||
}
|
||||
monitor()->wait(/* no_safepoint_check */ true);
|
||||
}
|
||||
_task = NULL;
|
||||
if (TraceWorkGang) {
|
||||
tty->print_cr("/nFinished work gang %s: %d/%d sequence %d",
|
||||
name(), finished_workers(), total_workers(),
|
||||
tty->print_cr("\nFinished work gang %s: %d/%d sequence %d",
|
||||
name(), finished_workers(), no_of_parallel_workers,
|
||||
_sequence_number);
|
||||
Thread* me = Thread::current();
|
||||
tty->print_cr(" T: 0x%x VM_thread: %d", me, me->is_VM_thread());
|
||||
}
|
||||
}
|
||||
|
||||
void FlexibleWorkGang::run_task(AbstractGangTask* task) {
|
||||
// If active_workers() is passed, _finished_workers
|
||||
// must only be incremented for workers that find non_null
|
||||
// work (as opposed to all those that just check that the
|
||||
// task is not null).
|
||||
WorkGang::run_task(task, (uint) active_workers());
|
||||
}
|
||||
|
||||
void AbstractWorkGang::stop() {
|
||||
// Tell all workers to terminate, then wait for them to become inactive.
|
||||
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
|
||||
@ -168,10 +183,10 @@ void AbstractWorkGang::stop() {
|
||||
_task = NULL;
|
||||
_terminate = true;
|
||||
monitor()->notify_all();
|
||||
while (finished_workers() < total_workers()) {
|
||||
while (finished_workers() < active_workers()) {
|
||||
if (TraceWorkGang) {
|
||||
tty->print_cr("Waiting in work gang %s: %d/%d finished",
|
||||
name(), finished_workers(), total_workers());
|
||||
name(), finished_workers(), active_workers());
|
||||
}
|
||||
monitor()->wait(/* no_safepoint_check */ true);
|
||||
}
|
||||
@ -275,10 +290,12 @@ void GangWorker::loop() {
|
||||
// Check for new work.
|
||||
if ((data.task() != NULL) &&
|
||||
(data.sequence_number() != previous_sequence_number)) {
|
||||
gang()->internal_note_start();
|
||||
gang_monitor->notify_all();
|
||||
part = gang()->started_workers() - 1;
|
||||
break;
|
||||
if (gang()->needs_more_workers()) {
|
||||
gang()->internal_note_start();
|
||||
gang_monitor->notify_all();
|
||||
part = gang()->started_workers() - 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Nothing to do.
|
||||
gang_monitor->wait(/* no_safepoint_check */ true);
|
||||
@ -350,6 +367,9 @@ const char* AbstractGangTask::name() const {
|
||||
|
||||
#endif /* PRODUCT */
|
||||
|
||||
// FlexibleWorkGang
|
||||
|
||||
|
||||
// *** WorkGangBarrierSync
|
||||
|
||||
WorkGangBarrierSync::WorkGangBarrierSync()
|
||||
@ -411,10 +431,8 @@ bool SubTasksDone::valid() {
|
||||
}
|
||||
|
||||
void SubTasksDone::set_n_threads(int t) {
|
||||
#ifdef ASSERT
|
||||
assert(_claimed == 0 || _threads_completed == _n_threads,
|
||||
"should not be called while tasks are being processed!");
|
||||
#endif
|
||||
_n_threads = (t == 0 ? 1 : t);
|
||||
}
|
||||
|
||||
|
@ -96,11 +96,14 @@ private:
|
||||
|
||||
protected:
|
||||
// Constructor and desctructor: only construct subclasses.
|
||||
AbstractGangTask(const char* name) {
|
||||
AbstractGangTask(const char* name)
|
||||
{
|
||||
NOT_PRODUCT(_name = name);
|
||||
_counter = 0;
|
||||
}
|
||||
virtual ~AbstractGangTask() { }
|
||||
|
||||
public:
|
||||
};
|
||||
|
||||
class AbstractGangTaskWOopQueues : public AbstractGangTask {
|
||||
@ -116,6 +119,7 @@ class AbstractGangTaskWOopQueues : public AbstractGangTask {
|
||||
OopTaskQueueSet* queues() { return _queues; }
|
||||
};
|
||||
|
||||
|
||||
// Class AbstractWorkGang:
|
||||
// An abstract class representing a gang of workers.
|
||||
// You subclass this to supply an implementation of run_task().
|
||||
@ -130,6 +134,8 @@ public:
|
||||
virtual void run_task(AbstractGangTask* task) = 0;
|
||||
// Stop and terminate all workers.
|
||||
virtual void stop();
|
||||
// Return true if more workers should be applied to the task.
|
||||
virtual bool needs_more_workers() const { return true; }
|
||||
public:
|
||||
// Debugging.
|
||||
const char* name() const;
|
||||
@ -287,20 +293,62 @@ public:
|
||||
AbstractWorkGang* gang() const { return _gang; }
|
||||
};
|
||||
|
||||
// Dynamic number of worker threads
|
||||
//
|
||||
// This type of work gang is used to run different numbers of
|
||||
// worker threads at different times. The
|
||||
// number of workers run for a task is "_active_workers"
|
||||
// instead of "_total_workers" in a WorkGang. The method
|
||||
// "needs_more_workers()" returns true until "_active_workers"
|
||||
// have been started and returns false afterwards. The
|
||||
// implementation of "needs_more_workers()" in WorkGang always
|
||||
// returns true so that all workers are started. The method
|
||||
// "loop()" in GangWorker was modified to ask "needs_more_workers()"
|
||||
// in its loop to decide if it should start working on a task.
|
||||
// A worker in "loop()" waits for notification on the WorkGang
|
||||
// monitor and execution of each worker as it checks for work
|
||||
// is serialized via the same monitor. The "needs_more_workers()"
|
||||
// call is serialized and additionally the calculation for the
|
||||
// "part" (effectively the worker id for executing the task) is
|
||||
// serialized to give each worker a unique "part". Workers that
|
||||
// are not needed for this tasks (i.e., "_active_workers" have
|
||||
// been started before it, continue to wait for work.
|
||||
|
||||
class FlexibleWorkGang: public WorkGang {
|
||||
// The currently active workers in this gang.
|
||||
// This is a number that is dynamically adjusted
|
||||
// and checked in the run_task() method at each invocation.
|
||||
// As described above _active_workers determines the number
|
||||
// of threads started on a task. It must also be used to
|
||||
// determine completion.
|
||||
|
||||
protected:
|
||||
int _active_workers;
|
||||
public:
|
||||
// Constructor and destructor.
|
||||
// Initialize active_workers to a minimum value. Setting it to
|
||||
// the parameter "workers" will initialize it to a maximum
|
||||
// value which is not desirable.
|
||||
FlexibleWorkGang(const char* name, int workers,
|
||||
bool are_GC_task_threads,
|
||||
bool are_ConcurrentGC_threads) :
|
||||
WorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads) {
|
||||
_active_workers = ParallelGCThreads;
|
||||
};
|
||||
WorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
|
||||
_active_workers(UseDynamicNumberOfGCThreads ? 1 : ParallelGCThreads) {};
|
||||
// Accessors for fields
|
||||
virtual int active_workers() const { return _active_workers; }
|
||||
void set_active_workers(int v) { _active_workers = v; }
|
||||
void set_active_workers(int v) {
|
||||
assert(v <= _total_workers,
|
||||
"Trying to set more workers active than there are");
|
||||
_active_workers = MIN2(v, _total_workers);
|
||||
assert(v != 0, "Trying to set active workers to 0");
|
||||
_active_workers = MAX2(1, _active_workers);
|
||||
assert(UseDynamicNumberOfGCThreads || _active_workers == _total_workers,
|
||||
"Unless dynamic should use total workers");
|
||||
}
|
||||
virtual void run_task(AbstractGangTask* task);
|
||||
virtual bool needs_more_workers() const {
|
||||
return _started_workers < _active_workers;
|
||||
}
|
||||
};
|
||||
|
||||
// Work gangs in garbage collectors: 2009-06-10
|
||||
@ -357,6 +405,11 @@ public:
|
||||
class SubTasksDone: public CHeapObj {
|
||||
jint* _tasks;
|
||||
int _n_tasks;
|
||||
// _n_threads is used to determine when a sub task is done.
|
||||
// It does not control how many threads will execute the subtask
|
||||
// but must be initialized to the number that do execute the task
|
||||
// in order to correctly decide when the subtask is done (all the
|
||||
// threads working on the task have finished).
|
||||
int _n_threads;
|
||||
jint _threads_completed;
|
||||
#ifdef ASSERT
|
||||
|
@ -125,7 +125,7 @@ void YieldingFlexibleWorkGang::start_task(YieldingFlexibleGangTask* new_task) {
|
||||
if (requested_size != 0) {
|
||||
_active_workers = MIN2(requested_size, total_workers());
|
||||
} else {
|
||||
_active_workers = total_workers();
|
||||
_active_workers = active_workers();
|
||||
}
|
||||
new_task->set_actual_size(_active_workers);
|
||||
new_task->set_for_termination(_active_workers);
|
||||
@ -148,22 +148,22 @@ void YieldingFlexibleWorkGang::wait_for_gang() {
|
||||
for (Status status = yielding_task()->status();
|
||||
status != COMPLETED && status != YIELDED && status != ABORTED;
|
||||
status = yielding_task()->status()) {
|
||||
assert(started_workers() <= total_workers(), "invariant");
|
||||
assert(finished_workers() <= total_workers(), "invariant");
|
||||
assert(yielded_workers() <= total_workers(), "invariant");
|
||||
assert(started_workers() <= active_workers(), "invariant");
|
||||
assert(finished_workers() <= active_workers(), "invariant");
|
||||
assert(yielded_workers() <= active_workers(), "invariant");
|
||||
monitor()->wait(Mutex::_no_safepoint_check_flag);
|
||||
}
|
||||
switch (yielding_task()->status()) {
|
||||
case COMPLETED:
|
||||
case ABORTED: {
|
||||
assert(finished_workers() == total_workers(), "Inconsistent status");
|
||||
assert(finished_workers() == active_workers(), "Inconsistent status");
|
||||
assert(yielded_workers() == 0, "Invariant");
|
||||
reset(); // for next task; gang<->task binding released
|
||||
break;
|
||||
}
|
||||
case YIELDED: {
|
||||
assert(yielded_workers() > 0, "Invariant");
|
||||
assert(yielded_workers() + finished_workers() == total_workers(),
|
||||
assert(yielded_workers() + finished_workers() == active_workers(),
|
||||
"Inconsistent counts");
|
||||
break;
|
||||
}
|
||||
@ -182,7 +182,6 @@ void YieldingFlexibleWorkGang::continue_task(
|
||||
|
||||
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
|
||||
assert(task() != NULL && task() == gang_task, "Incorrect usage");
|
||||
// assert(_active_workers == total_workers(), "For now");
|
||||
assert(_started_workers == _active_workers, "Precondition");
|
||||
assert(_yielded_workers > 0 && yielding_task()->status() == YIELDED,
|
||||
"Else why are we calling continue_task()");
|
||||
@ -202,7 +201,7 @@ void YieldingFlexibleWorkGang::reset() {
|
||||
void YieldingFlexibleWorkGang::yield() {
|
||||
assert(task() != NULL, "Inconsistency; should have task binding");
|
||||
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
|
||||
assert(yielded_workers() < total_workers(), "Consistency check");
|
||||
assert(yielded_workers() < active_workers(), "Consistency check");
|
||||
if (yielding_task()->status() == ABORTING) {
|
||||
// Do not yield; we need to abort as soon as possible
|
||||
// XXX NOTE: This can cause a performance pathology in the
|
||||
@ -213,7 +212,7 @@ void YieldingFlexibleWorkGang::yield() {
|
||||
// us to return at each potential yield point.
|
||||
return;
|
||||
}
|
||||
if (++_yielded_workers + finished_workers() == total_workers()) {
|
||||
if (++_yielded_workers + finished_workers() == active_workers()) {
|
||||
yielding_task()->set_status(YIELDED);
|
||||
monitor()->notify_all();
|
||||
} else {
|
||||
|
@ -199,16 +199,10 @@ public:
|
||||
void abort();
|
||||
|
||||
private:
|
||||
int _active_workers;
|
||||
int _yielded_workers;
|
||||
void wait_for_gang();
|
||||
|
||||
public:
|
||||
// Accessors for fields
|
||||
int active_workers() const {
|
||||
return _active_workers;
|
||||
}
|
||||
|
||||
// Accessors for fields
|
||||
int yielded_workers() const {
|
||||
return _yielded_workers;
|
||||
|
Loading…
Reference in New Issue
Block a user