6593758: RFE: Enhance GC ergonomics to dynamically choose ParallelGCThreads

Select number of GC threads dynamically based on heap usage and number of Java threads

Reviewed-by: johnc, ysr, jcoomes
This commit is contained in:
Jon Masamitsu 2011-08-09 10:16:01 -07:00
parent 098ed89645
commit 15070123fa
39 changed files with 1523 additions and 231 deletions

View File

@ -668,12 +668,16 @@ public:
// We de-virtualize the block-related calls below, since we know that our // We de-virtualize the block-related calls below, since we know that our
// space is a CompactibleFreeListSpace. // space is a CompactibleFreeListSpace.
#define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \ #define FreeListSpace_DCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \ void FreeListSpace_DCTOC::walk_mem_region_with_cl(MemRegion mr, \
HeapWord* bottom, \ HeapWord* bottom, \
HeapWord* top, \ HeapWord* top, \
ClosureType* cl) { \ ClosureType* cl) { \
if (SharedHeap::heap()->n_par_threads() > 0) { \ bool is_par = SharedHeap::heap()->n_par_threads() > 0; \
if (is_par) { \
assert(SharedHeap::heap()->n_par_threads() == \
SharedHeap::heap()->workers()->active_workers(), "Mismatch"); \
walk_mem_region_with_cl_par(mr, bottom, top, cl); \ walk_mem_region_with_cl_par(mr, bottom, top, cl); \
} else { \ } else { \
walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \ walk_mem_region_with_cl_nopar(mr, bottom, top, cl); \
@ -1925,6 +1929,9 @@ CompactibleFreeListSpace::splitChunkAndReturnRemainder(FreeChunk* chunk,
if (rem_size < SmallForDictionary) { if (rem_size < SmallForDictionary) {
bool is_par = (SharedHeap::heap()->n_par_threads() > 0); bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
if (is_par) _indexedFreeListParLocks[rem_size]->lock(); if (is_par) _indexedFreeListParLocks[rem_size]->lock();
assert(!is_par ||
(SharedHeap::heap()->n_par_threads() ==
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
returnChunkToFreeList(ffc); returnChunkToFreeList(ffc);
split(size, rem_size); split(size, rem_size);
if (is_par) _indexedFreeListParLocks[rem_size]->unlock(); if (is_par) _indexedFreeListParLocks[rem_size]->unlock();

View File

@ -4244,9 +4244,11 @@ void CMSConcMarkingTask::coordinator_yield() {
bool CMSCollector::do_marking_mt(bool asynch) { bool CMSCollector::do_marking_mt(bool asynch) {
assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition"); assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
// In the future this would be determined ergonomically, based int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
// on #cpu's, # active mutator threads (and load), and mutation rate. conc_workers()->total_workers(),
int num_workers = ConcGCThreads; conc_workers()->active_workers(),
Threads::number_of_non_daemon_threads());
conc_workers()->set_active_workers(num_workers);
CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
@ -5062,6 +5064,8 @@ class CMSParRemarkTask: public AbstractGangTask {
ParallelTaskTerminator _term; ParallelTaskTerminator _term;
public: public:
// A value of 0 passed to n_workers will cause the number of
// workers to be taken from the active workers in the work gang.
CMSParRemarkTask(CMSCollector* collector, CMSParRemarkTask(CMSCollector* collector,
CompactibleFreeListSpace* cms_space, CompactibleFreeListSpace* cms_space,
CompactibleFreeListSpace* perm_space, CompactibleFreeListSpace* perm_space,
@ -5544,7 +5548,15 @@ void CMSCollector::do_remark_parallel() {
GenCollectedHeap* gch = GenCollectedHeap::heap(); GenCollectedHeap* gch = GenCollectedHeap::heap();
FlexibleWorkGang* workers = gch->workers(); FlexibleWorkGang* workers = gch->workers();
assert(workers != NULL, "Need parallel worker threads."); assert(workers != NULL, "Need parallel worker threads.");
int n_workers = workers->total_workers(); // Choose to use the number of GC workers most recently set
// into "active_workers". If active_workers is not set, set it
// to ParallelGCThreads.
int n_workers = workers->active_workers();
if (n_workers == 0) {
assert(n_workers > 0, "Should have been set during scavenge");
n_workers = ParallelGCThreads;
workers->set_active_workers(n_workers);
}
CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace(); CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
CompactibleFreeListSpace* perm_space = _permGen->cmsSpace(); CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
@ -5884,8 +5896,17 @@ void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
// and a different number of discovered lists may have Ref objects. // and a different number of discovered lists may have Ref objects.
// That is OK as long as the Reference lists are balanced (see // That is OK as long as the Reference lists are balanced (see
// balance_all_queues() and balance_queues()). // balance_all_queues() and balance_queues()).
GenCollectedHeap* gch = GenCollectedHeap::heap();
rp->set_active_mt_degree(ParallelGCThreads); int active_workers = ParallelGCThreads;
FlexibleWorkGang* workers = gch->workers();
if (workers != NULL) {
active_workers = workers->active_workers();
// The expectation is that active_workers will have already
// been set to a reasonable value. If it has not been set,
// investigate.
assert(active_workers > 0, "Should have been set during scavenge");
}
rp->set_active_mt_degree(active_workers);
CMSRefProcTaskExecutor task_executor(*this); CMSRefProcTaskExecutor task_executor(*this);
rp->process_discovered_references(&_is_alive_closure, rp->process_discovered_references(&_is_alive_closure,
&cmsKeepAliveClosure, &cmsKeepAliveClosure,

View File

@ -255,7 +255,18 @@ void
CollectionSetChooser:: CollectionSetChooser::
prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) { prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
_first_par_unreserved_idx = 0; _first_par_unreserved_idx = 0;
size_t max_waste = ParallelGCThreads * chunkSize; int n_threads = ParallelGCThreads;
if (UseDynamicNumberOfGCThreads) {
assert(G1CollectedHeap::heap()->workers()->active_workers() > 0,
"Should have been set earlier");
// This is defensive code. As the assertion above says, the number
// of active threads should be > 0, but in case there is some path
// or some improperly initialized variable with leads to no
// active threads, protect against that in a product build.
n_threads = MAX2(G1CollectedHeap::heap()->workers()->active_workers(),
1);
}
size_t max_waste = n_threads * chunkSize;
// it should be aligned with respect to chunkSize // it should be aligned with respect to chunkSize
size_t aligned_n_regions = size_t aligned_n_regions =
(n_regions + (chunkSize - 1)) / chunkSize * chunkSize; (n_regions + (chunkSize - 1)) / chunkSize * chunkSize;
@ -265,6 +276,11 @@ prepareForAddMarkedHeapRegionsPar(size_t n_regions, size_t chunkSize) {
jint jint
CollectionSetChooser::getParMarkedHeapRegionChunk(jint n_regions) { CollectionSetChooser::getParMarkedHeapRegionChunk(jint n_regions) {
// Don't do this assert because this can be called at a point
// where the loop up stream will not execute again but might
// try to claim more chunks (loop test has not been done yet).
// assert(_markedRegions.length() > _first_par_unreserved_idx,
// "Striding beyond the marked regions");
jint res = Atomic::add(n_regions, &_first_par_unreserved_idx); jint res = Atomic::add(n_regions, &_first_par_unreserved_idx);
assert(_markedRegions.length() > res + n_regions - 1, assert(_markedRegions.length() > res + n_regions - 1,
"Should already have been expanded"); "Should already have been expanded");

View File

@ -458,12 +458,17 @@ bool ConcurrentMark::not_yet_marked(oop obj) const {
#pragma warning( disable:4355 ) // 'this' : used in base member initializer list #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
#endif // _MSC_VER #endif // _MSC_VER
size_t ConcurrentMark::scale_parallel_threads(size_t n_par_threads) {
return MAX2((n_par_threads + 2) / 4, (size_t)1);
}
ConcurrentMark::ConcurrentMark(ReservedSpace rs, ConcurrentMark::ConcurrentMark(ReservedSpace rs,
int max_regions) : int max_regions) :
_markBitMap1(rs, MinObjAlignment - 1), _markBitMap1(rs, MinObjAlignment - 1),
_markBitMap2(rs, MinObjAlignment - 1), _markBitMap2(rs, MinObjAlignment - 1),
_parallel_marking_threads(0), _parallel_marking_threads(0),
_max_parallel_marking_threads(0),
_sleep_factor(0.0), _sleep_factor(0.0),
_marking_task_overhead(1.0), _marking_task_overhead(1.0),
_cleanup_sleep_factor(0.0), _cleanup_sleep_factor(0.0),
@ -555,6 +560,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
// if we are not running with any parallel GC threads we will not // if we are not running with any parallel GC threads we will not
// spawn any marking threads either // spawn any marking threads either
_parallel_marking_threads = 0; _parallel_marking_threads = 0;
_max_parallel_marking_threads = 0;
_sleep_factor = 0.0; _sleep_factor = 0.0;
_marking_task_overhead = 1.0; _marking_task_overhead = 1.0;
} else { } else {
@ -563,6 +569,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
// if both are set // if both are set
_parallel_marking_threads = ConcGCThreads; _parallel_marking_threads = ConcGCThreads;
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = 0.0; _sleep_factor = 0.0;
_marking_task_overhead = 1.0; _marking_task_overhead = 1.0;
} else if (G1MarkingOverheadPercent > 0) { } else if (G1MarkingOverheadPercent > 0) {
@ -583,10 +590,12 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
(1.0 - marking_task_overhead) / marking_task_overhead; (1.0 - marking_task_overhead) / marking_task_overhead;
_parallel_marking_threads = (size_t) marking_thread_num; _parallel_marking_threads = (size_t) marking_thread_num;
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = sleep_factor; _sleep_factor = sleep_factor;
_marking_task_overhead = marking_task_overhead; _marking_task_overhead = marking_task_overhead;
} else { } else {
_parallel_marking_threads = MAX2((ParallelGCThreads + 2) / 4, (size_t)1); _parallel_marking_threads = scale_parallel_threads(ParallelGCThreads);
_max_parallel_marking_threads = _parallel_marking_threads;
_sleep_factor = 0.0; _sleep_factor = 0.0;
_marking_task_overhead = 1.0; _marking_task_overhead = 1.0;
} }
@ -609,7 +618,7 @@ ConcurrentMark::ConcurrentMark(ReservedSpace rs,
guarantee(parallel_marking_threads() > 0, "peace of mind"); guarantee(parallel_marking_threads() > 0, "peace of mind");
_parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads", _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
(int) _parallel_marking_threads, false, true); (int) _max_parallel_marking_threads, false, true);
if (_parallel_workers == NULL) { if (_parallel_workers == NULL) {
vm_exit_during_initialization("Failed necessary allocation."); vm_exit_during_initialization("Failed necessary allocation.");
} else { } else {
@ -1106,6 +1115,33 @@ public:
~CMConcurrentMarkingTask() { } ~CMConcurrentMarkingTask() { }
}; };
// Calculates the number of active workers for a concurrent
// phase.
int ConcurrentMark::calc_parallel_marking_threads() {
size_t n_conc_workers;
if (!G1CollectedHeap::use_parallel_gc_threads()) {
n_conc_workers = 1;
} else {
if (!UseDynamicNumberOfGCThreads ||
(!FLAG_IS_DEFAULT(ConcGCThreads) &&
!ForceDynamicNumberOfGCThreads)) {
n_conc_workers = max_parallel_marking_threads();
} else {
n_conc_workers =
AdaptiveSizePolicy::calc_default_active_workers(
max_parallel_marking_threads(),
1, /* Minimum workers */
parallel_marking_threads(),
Threads::number_of_non_daemon_threads());
// Don't scale down "n_conc_workers" by scale_parallel_threads() because
// that scaling has already gone into "_max_parallel_marking_threads".
}
}
assert(n_conc_workers > 0, "Always need at least 1");
return (int) MAX2(n_conc_workers, (size_t) 1);
}
void ConcurrentMark::markFromRoots() { void ConcurrentMark::markFromRoots() {
// we might be tempted to assert that: // we might be tempted to assert that:
// assert(asynch == !SafepointSynchronize::is_at_safepoint(), // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
@ -1116,9 +1152,20 @@ void ConcurrentMark::markFromRoots() {
_restart_for_overflow = false; _restart_for_overflow = false;
size_t active_workers = MAX2((size_t) 1, parallel_marking_threads()); // Parallel task terminator is set in "set_phase()".
force_overflow_conc()->init(); force_overflow_conc()->init();
set_phase(active_workers, true /* concurrent */);
// _g1h has _n_par_threads
_parallel_marking_threads = calc_parallel_marking_threads();
assert(parallel_marking_threads() <= max_parallel_marking_threads(),
"Maximum number of marking threads exceeded");
_parallel_workers->set_active_workers((int)_parallel_marking_threads);
// Don't set _n_par_threads because it affects MT in proceess_strong_roots()
// and the decisions on that MT processing is made elsewhere.
assert( _parallel_workers->active_workers() > 0, "Should have been set");
set_phase(_parallel_workers->active_workers(), true /* concurrent */);
CMConcurrentMarkingTask markingTask(this, cmThread()); CMConcurrentMarkingTask markingTask(this, cmThread());
if (parallel_marking_threads() > 0) { if (parallel_marking_threads() > 0) {
@ -1181,6 +1228,7 @@ void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
true /* expected_active */); true /* expected_active */);
if (VerifyDuringGC) { if (VerifyDuringGC) {
HandleMark hm; // handle scope HandleMark hm; // handle scope
gclog_or_tty->print(" VerifyDuringGC:(after)"); gclog_or_tty->print(" VerifyDuringGC:(after)");
Universe::heap()->prepare_for_verify(); Universe::heap()->prepare_for_verify();
@ -1463,12 +1511,20 @@ public:
G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm, G1ParFinalCountTask(G1CollectedHeap* g1h, CMBitMap* bm,
BitMap* region_bm, BitMap* card_bm) BitMap* region_bm, BitMap* card_bm)
: AbstractGangTask("G1 final counting"), _g1h(g1h), : AbstractGangTask("G1 final counting"), _g1h(g1h),
_bm(bm), _region_bm(region_bm), _card_bm(card_bm) { _bm(bm), _region_bm(region_bm), _card_bm(card_bm),
if (ParallelGCThreads > 0) { _n_workers(0)
_n_workers = _g1h->workers()->total_workers(); {
// Use the value already set as the number of active threads
// in the call to run_task(). Needed for the allocation of
// _live_bytes and _used_bytes.
if (G1CollectedHeap::use_parallel_gc_threads()) {
assert( _g1h->workers()->active_workers() > 0,
"Should have been previously set");
_n_workers = _g1h->workers()->active_workers();
} else { } else {
_n_workers = 1; _n_workers = 1;
} }
_live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers); _live_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
_used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers); _used_bytes = NEW_C_HEAP_ARRAY(size_t, _n_workers);
} }
@ -1485,6 +1541,7 @@ public:
calccl.no_yield(); calccl.no_yield();
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1h->heap_region_par_iterate_chunked(&calccl, i, _g1h->heap_region_par_iterate_chunked(&calccl, i,
(int) _n_workers,
HeapRegion::FinalCountClaimValue); HeapRegion::FinalCountClaimValue);
} else { } else {
_g1h->heap_region_iterate(&calccl); _g1h->heap_region_iterate(&calccl);
@ -1600,6 +1657,7 @@ public:
&hrrs_cleanup_task); &hrrs_cleanup_task);
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
_g1h->heap_region_par_iterate_chunked(&g1_note_end, i, _g1h->heap_region_par_iterate_chunked(&g1_note_end, i,
_g1h->workers()->active_workers(),
HeapRegion::NoteEndClaimValue); HeapRegion::NoteEndClaimValue);
} else { } else {
_g1h->heap_region_iterate(&g1_note_end); _g1h->heap_region_iterate(&g1_note_end);
@ -1707,6 +1765,9 @@ void ConcurrentMark::cleanup() {
HeapRegionRemSet::reset_for_cleanup_tasks(); HeapRegionRemSet::reset_for_cleanup_tasks();
g1h->set_par_threads();
size_t n_workers = g1h->n_par_threads();
// Do counting once more with the world stopped for good measure. // Do counting once more with the world stopped for good measure.
G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(), G1ParFinalCountTask g1_par_count_task(g1h, nextMarkBitMap(),
&_region_bm, &_card_bm); &_region_bm, &_card_bm);
@ -1715,9 +1776,10 @@ void ConcurrentMark::cleanup() {
HeapRegion::InitialClaimValue), HeapRegion::InitialClaimValue),
"sanity check"); "sanity check");
int n_workers = g1h->workers()->total_workers(); assert(g1h->n_par_threads() == (int) n_workers,
g1h->set_par_threads(n_workers); "Should not have been reset");
g1h->workers()->run_task(&g1_par_count_task); g1h->workers()->run_task(&g1_par_count_task);
// Done with the parallel phase so reset to 0.
g1h->set_par_threads(0); g1h->set_par_threads(0);
assert(g1h->check_heap_region_claim_values( assert(g1h->check_heap_region_claim_values(
@ -1767,8 +1829,7 @@ void ConcurrentMark::cleanup() {
double note_end_start = os::elapsedTime(); double note_end_start = os::elapsedTime();
G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list); G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
int n_workers = g1h->workers()->total_workers(); g1h->set_par_threads((int)n_workers);
g1h->set_par_threads(n_workers);
g1h->workers()->run_task(&g1_par_note_end_task); g1h->workers()->run_task(&g1_par_note_end_task);
g1h->set_par_threads(0); g1h->set_par_threads(0);
@ -1797,8 +1858,7 @@ void ConcurrentMark::cleanup() {
double rs_scrub_start = os::elapsedTime(); double rs_scrub_start = os::elapsedTime();
G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm); G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
int n_workers = g1h->workers()->total_workers(); g1h->set_par_threads((int)n_workers);
g1h->set_par_threads(n_workers);
g1h->workers()->run_task(&g1_par_scrub_rs_task); g1h->workers()->run_task(&g1_par_scrub_rs_task);
g1h->set_par_threads(0); g1h->set_par_threads(0);
@ -1816,7 +1876,7 @@ void ConcurrentMark::cleanup() {
// this will also free any regions totally full of garbage objects, // this will also free any regions totally full of garbage objects,
// and sort the regions. // and sort the regions.
g1h->g1_policy()->record_concurrent_mark_cleanup_end(); g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
// Statistics. // Statistics.
double end = os::elapsedTime(); double end = os::elapsedTime();
@ -2187,7 +2247,7 @@ void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
// We use the work gang from the G1CollectedHeap and we utilize all // We use the work gang from the G1CollectedHeap and we utilize all
// the worker threads. // the worker threads.
int active_workers = g1h->workers() ? g1h->workers()->total_workers() : 1; int active_workers = g1h->workers() ? g1h->workers()->active_workers() : 1;
active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1); active_workers = MAX2(MIN2(active_workers, (int)_max_task_num), 1);
G1CMRefProcTaskExecutor par_task_executor(g1h, this, G1CMRefProcTaskExecutor par_task_executor(g1h, this,
@ -2270,7 +2330,9 @@ public:
} }
CMRemarkTask(ConcurrentMark* cm) : CMRemarkTask(ConcurrentMark* cm) :
AbstractGangTask("Par Remark"), _cm(cm) { } AbstractGangTask("Par Remark"), _cm(cm) {
_cm->terminator()->reset_for_reuse(cm->_g1h->workers()->active_workers());
}
}; };
void ConcurrentMark::checkpointRootsFinalWork() { void ConcurrentMark::checkpointRootsFinalWork() {
@ -2282,16 +2344,21 @@ void ConcurrentMark::checkpointRootsFinalWork() {
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
G1CollectedHeap::StrongRootsScope srs(g1h); G1CollectedHeap::StrongRootsScope srs(g1h);
// this is remark, so we'll use up all available threads // this is remark, so we'll use up all active threads
int active_workers = ParallelGCThreads; int active_workers = g1h->workers()->active_workers();
if (active_workers == 0) {
assert(active_workers > 0, "Should have been set earlier");
active_workers = ParallelGCThreads;
g1h->workers()->set_active_workers(active_workers);
}
set_phase(active_workers, false /* concurrent */); set_phase(active_workers, false /* concurrent */);
// Leave _parallel_marking_threads at it's
// value originally calculated in the ConcurrentMark
// constructor and pass values of the active workers
// through the gang in the task.
CMRemarkTask remarkTask(this); CMRemarkTask remarkTask(this);
// We will start all available threads, even if we decide that the g1h->set_par_threads(active_workers);
// active_workers will be fewer. The extra ones will just bail out
// immediately.
int n_workers = g1h->workers()->total_workers();
g1h->set_par_threads(n_workers);
g1h->workers()->run_task(&remarkTask); g1h->workers()->run_task(&remarkTask);
g1h->set_par_threads(0); g1h->set_par_threads(0);
} else { } else {

View File

@ -375,7 +375,9 @@ protected:
ConcurrentMarkThread* _cmThread; // the thread doing the work ConcurrentMarkThread* _cmThread; // the thread doing the work
G1CollectedHeap* _g1h; // the heap. G1CollectedHeap* _g1h; // the heap.
size_t _parallel_marking_threads; // the number of marking size_t _parallel_marking_threads; // the number of marking
// threads we'll use // threads we're use
size_t _max_parallel_marking_threads; // max number of marking
// threads we'll ever use
double _sleep_factor; // how much we have to sleep, with double _sleep_factor; // how much we have to sleep, with
// respect to the work we just did, to // respect to the work we just did, to
// meet the marking overhead goal // meet the marking overhead goal
@ -473,7 +475,7 @@ protected:
double* _accum_task_vtime; // accumulated task vtime double* _accum_task_vtime; // accumulated task vtime
WorkGang* _parallel_workers; FlexibleWorkGang* _parallel_workers;
ForceOverflowSettings _force_overflow_conc; ForceOverflowSettings _force_overflow_conc;
ForceOverflowSettings _force_overflow_stw; ForceOverflowSettings _force_overflow_stw;
@ -504,6 +506,7 @@ protected:
// accessor methods // accessor methods
size_t parallel_marking_threads() { return _parallel_marking_threads; } size_t parallel_marking_threads() { return _parallel_marking_threads; }
size_t max_parallel_marking_threads() { return _max_parallel_marking_threads;}
double sleep_factor() { return _sleep_factor; } double sleep_factor() { return _sleep_factor; }
double marking_task_overhead() { return _marking_task_overhead;} double marking_task_overhead() { return _marking_task_overhead;}
double cleanup_sleep_factor() { return _cleanup_sleep_factor; } double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
@ -709,6 +712,14 @@ public:
CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; } CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; } CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
// Returns the number of GC threads to be used in a concurrent
// phase based on the number of GC threads being used in a STW
// phase.
size_t scale_parallel_threads(size_t n_par_threads);
// Calculates the number of GC threads to be used in a concurrent phase.
int calc_parallel_marking_threads();
// The following three are interaction between CM and // The following three are interaction between CM and
// G1CollectedHeap // G1CollectedHeap

View File

@ -66,6 +66,18 @@ size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
// apply to TLAB allocation, which is not part of this interface: it // apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.) // is done by clients of this interface.)
// Notes on implementation of parallelism in different tasks.
//
// G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
// The number of GC workers is passed to heap_region_par_iterate_chunked().
// It does use run_task() which sets _n_workers in the task.
// G1ParTask executes g1_process_strong_roots() ->
// SharedHeap::process_strong_roots() which calls eventuall to
// CardTableModRefBS::par_non_clean_card_iterate_work() which uses
// SequentialSubTasksDone. SharedHeap::process_strong_roots() also
// directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
//
// Local to this file. // Local to this file.
class RefineCardTableEntryClosure: public CardTableEntryClosure { class RefineCardTableEntryClosure: public CardTableEntryClosure {
@ -1156,6 +1168,7 @@ public:
void work(int i) { void work(int i) {
RebuildRSOutOfRegionClosure rebuild_rs(_g1, i); RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
_g1->heap_region_par_iterate_chunked(&rebuild_rs, i, _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
_g1->workers()->active_workers(),
HeapRegion::RebuildRSClaimValue); HeapRegion::RebuildRSClaimValue);
} }
}; };
@ -1360,12 +1373,32 @@ bool G1CollectedHeap::do_collection(bool explicit_gc,
} }
// Rebuild remembered sets of all regions. // Rebuild remembered sets of all regions.
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
int n_workers =
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
workers()->active_workers(),
Threads::number_of_non_daemon_threads());
assert(UseDynamicNumberOfGCThreads ||
n_workers == workers()->total_workers(),
"If not dynamic should be using all the workers");
workers()->set_active_workers(n_workers);
// Set parallel threads in the heap (_n_par_threads) only
// before a parallel phase and always reset it to 0 after
// the phase so that the number of parallel threads does
// no get carried forward to a serial phase where there
// may be code that is "possibly_parallel".
set_par_threads(n_workers);
ParRebuildRSTask rebuild_rs_task(this); ParRebuildRSTask rebuild_rs_task(this);
assert(check_heap_region_claim_values( assert(check_heap_region_claim_values(
HeapRegion::InitialClaimValue), "sanity check"); HeapRegion::InitialClaimValue), "sanity check");
set_par_threads(workers()->total_workers()); assert(UseDynamicNumberOfGCThreads ||
workers()->active_workers() == workers()->total_workers(),
"Unless dynamic should use total workers");
// Use the most recent number of active workers
assert(workers()->active_workers() > 0,
"Active workers not properly set");
set_par_threads(workers()->active_workers());
workers()->run_task(&rebuild_rs_task); workers()->run_task(&rebuild_rs_task);
set_par_threads(0); set_par_threads(0);
assert(check_heap_region_claim_values( assert(check_heap_region_claim_values(
@ -2477,11 +2510,17 @@ void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
void void
G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl, G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
int worker, int worker,
int no_of_par_workers,
jint claim_value) { jint claim_value) {
const size_t regions = n_regions(); const size_t regions = n_regions();
const size_t worker_num = (G1CollectedHeap::use_parallel_gc_threads() ? ParallelGCThreads : 1); const size_t max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
no_of_par_workers :
1);
assert(UseDynamicNumberOfGCThreads ||
no_of_par_workers == workers()->total_workers(),
"Non dynamic should use fixed number of workers");
// try to spread out the starting points of the workers // try to spread out the starting points of the workers
const size_t start_index = regions / worker_num * (size_t) worker; const size_t start_index = regions / max_workers * (size_t) worker;
// each worker will actually look at all regions // each worker will actually look at all regions
for (size_t count = 0; count < regions; ++count) { for (size_t count = 0; count < regions; ++count) {
@ -2920,6 +2959,7 @@ public:
HandleMark hm; HandleMark hm;
VerifyRegionClosure blk(_allow_dirty, true, _vo); VerifyRegionClosure blk(_allow_dirty, true, _vo);
_g1h->heap_region_par_iterate_chunked(&blk, worker_i, _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
_g1h->workers()->active_workers(),
HeapRegion::ParVerifyClaimValue); HeapRegion::ParVerifyClaimValue);
if (blk.failures()) { if (blk.failures()) {
_failures = true; _failures = true;
@ -2937,6 +2977,10 @@ void G1CollectedHeap::verify(bool allow_dirty,
if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) { if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); } if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
VerifyRootsClosure rootsCl(vo); VerifyRootsClosure rootsCl(vo);
assert(Thread::current()->is_VM_thread(),
"Expected to be executed serially by the VM thread at this point");
CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false); CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
// We apply the relevant closures to all the oops in the // We apply the relevant closures to all the oops in the
@ -2981,7 +3025,10 @@ void G1CollectedHeap::verify(bool allow_dirty,
"sanity check"); "sanity check");
G1ParVerifyTask task(this, allow_dirty, vo); G1ParVerifyTask task(this, allow_dirty, vo);
int n_workers = workers()->total_workers(); assert(UseDynamicNumberOfGCThreads ||
workers()->active_workers() == workers()->total_workers(),
"If not dynamic should be using all the workers");
int n_workers = workers()->active_workers();
set_par_threads(n_workers); set_par_threads(n_workers);
workers()->run_task(&task); workers()->run_task(&task);
set_par_threads(0); set_par_threads(0);
@ -2989,6 +3036,8 @@ void G1CollectedHeap::verify(bool allow_dirty,
failures = true; failures = true;
} }
// Checks that the expected amount of parallel work was done.
// The implication is that n_workers is > 0.
assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue), assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
"sanity check"); "sanity check");
@ -3402,6 +3451,10 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
assert(check_young_list_well_formed(), assert(check_young_list_well_formed(),
"young list should be well formed"); "young list should be well formed");
// Don't dynamically change the number of GC threads this early. A value of
// 0 is used to indicate serial work. When parallel work is done,
// it will be set.
{ // Call to jvmpi::post_class_unload_events must occur outside of active GC { // Call to jvmpi::post_class_unload_events must occur outside of active GC
IsGCActiveMark x; IsGCActiveMark x;
@ -3615,7 +3668,8 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
double end_time_sec = os::elapsedTime(); double end_time_sec = os::elapsedTime();
double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS; double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
g1_policy()->record_pause_time_ms(pause_time_ms); g1_policy()->record_pause_time_ms(pause_time_ms);
g1_policy()->record_collection_pause_end(); int active_gc_threads = workers()->active_workers();
g1_policy()->record_collection_pause_end(active_gc_threads);
MemoryService::track_memory_usage(); MemoryService::track_memory_usage();
@ -4562,13 +4616,13 @@ protected:
} }
public: public:
G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues) G1ParTask(G1CollectedHeap* g1h,
RefToScanQueueSet *task_queues)
: AbstractGangTask("G1 collection"), : AbstractGangTask("G1 collection"),
_g1h(g1h), _g1h(g1h),
_queues(task_queues), _queues(task_queues),
_terminator(workers, _queues), _terminator(0, _queues),
_stats_lock(Mutex::leaf, "parallel G1 stats lock", true), _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
_n_workers(workers)
{} {}
RefToScanQueueSet* queues() { return _queues; } RefToScanQueueSet* queues() { return _queues; }
@ -4577,6 +4631,20 @@ public:
return queues()->queue(i); return queues()->queue(i);
} }
ParallelTaskTerminator* terminator() { return &_terminator; }
virtual void set_for_termination(int active_workers) {
// This task calls set_n_termination() in par_non_clean_card_iterate_work()
// in the young space (_par_seq_tasks) in the G1 heap
// for SequentialSubTasksDone.
// This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
// both of which need setting by set_n_termination().
_g1h->SharedHeap::set_n_termination(active_workers);
_g1h->set_n_termination(active_workers);
terminator()->reset_for_reuse(active_workers);
_n_workers = active_workers;
}
void work(int i) { void work(int i) {
if (i >= _n_workers) return; // no work needed this round if (i >= _n_workers) return; // no work needed this round
@ -4861,12 +4929,12 @@ class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private: private:
G1CollectedHeap* _g1h; G1CollectedHeap* _g1h;
RefToScanQueueSet* _queues; RefToScanQueueSet* _queues;
WorkGang* _workers; FlexibleWorkGang* _workers;
int _active_workers; int _active_workers;
public: public:
G1STWRefProcTaskExecutor(G1CollectedHeap* g1h, G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
WorkGang* workers, FlexibleWorkGang* workers,
RefToScanQueueSet *task_queues, RefToScanQueueSet *task_queues,
int n_workers) : int n_workers) :
_g1h(g1h), _g1h(g1h),
@ -5122,11 +5190,13 @@ void G1CollectedHeap::process_discovered_references() {
// referents points to another object which is also referenced by an // referents points to another object which is also referenced by an
// object discovered by the STW ref processor. // object discovered by the STW ref processor.
int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ? int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
workers()->total_workers() : 1); workers()->active_workers() : 1);
set_par_threads(n_workers); assert(active_workers == workers()->active_workers(),
G1ParPreserveCMReferentsTask keep_cm_referents(this, n_workers, _task_queues); "Need to reset active_workers");
set_par_threads(active_workers);
G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
workers()->run_task(&keep_cm_referents); workers()->run_task(&keep_cm_referents);
@ -5192,7 +5262,6 @@ void G1CollectedHeap::process_discovered_references() {
NULL); NULL);
} else { } else {
// Parallel reference processing // Parallel reference processing
int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
assert(rp->num_q() == active_workers, "sanity"); assert(rp->num_q() == active_workers, "sanity");
assert(active_workers <= rp->max_num_q(), "sanity"); assert(active_workers <= rp->max_num_q(), "sanity");
@ -5225,7 +5294,9 @@ void G1CollectedHeap::enqueue_discovered_references() {
} else { } else {
// Parallel reference enqueuing // Parallel reference enqueuing
int active_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1); int active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
assert(active_workers == workers()->active_workers(),
"Need to reset active_workers");
assert(rp->num_q() == active_workers, "sanity"); assert(rp->num_q() == active_workers, "sanity");
assert(active_workers <= rp->max_num_q(), "sanity"); assert(active_workers <= rp->max_num_q(), "sanity");
@ -5252,9 +5323,24 @@ void G1CollectedHeap::evacuate_collection_set() {
concurrent_g1_refine()->set_use_cache(false); concurrent_g1_refine()->set_use_cache(false);
concurrent_g1_refine()->clear_hot_cache_claimed_index(); concurrent_g1_refine()->clear_hot_cache_claimed_index();
int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1); int n_workers;
if (G1CollectedHeap::use_parallel_gc_threads()) {
n_workers =
AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
workers()->active_workers(),
Threads::number_of_non_daemon_threads());
assert(UseDynamicNumberOfGCThreads ||
n_workers == workers()->total_workers(),
"If not dynamic should be using all the workers");
set_par_threads(n_workers); set_par_threads(n_workers);
G1ParTask g1_par_task(this, n_workers, _task_queues); } else {
assert(n_par_threads() == 0,
"Should be the original non-parallel value");
n_workers = 1;
}
workers()->set_active_workers(n_workers);
G1ParTask g1_par_task(this, _task_queues);
init_for_evac_failure(NULL); init_for_evac_failure(NULL);
@ -5267,6 +5353,10 @@ void G1CollectedHeap::evacuate_collection_set() {
// The individual threads will set their evac-failure closures. // The individual threads will set their evac-failure closures.
StrongRootsScope srs(this); StrongRootsScope srs(this);
if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr(); if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
// These tasks use ShareHeap::_process_strong_tasks
assert(UseDynamicNumberOfGCThreads ||
workers()->active_workers() == workers()->total_workers(),
"If not dynamic should be using all the workers");
workers()->run_task(&g1_par_task); workers()->run_task(&g1_par_task);
} else { } else {
StrongRootsScope srs(this); StrongRootsScope srs(this);
@ -5275,6 +5365,7 @@ void G1CollectedHeap::evacuate_collection_set() {
double par_time = (os::elapsedTime() - start_par) * 1000.0; double par_time = (os::elapsedTime() - start_par) * 1000.0;
g1_policy()->record_par_time(par_time); g1_policy()->record_par_time(par_time);
set_par_threads(0); set_par_threads(0);
// Process any discovered reference objects - we have // Process any discovered reference objects - we have
@ -5905,6 +5996,21 @@ HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
return _g1h->new_mutator_alloc_region(word_size, force); return _g1h->new_mutator_alloc_region(word_size, force);
} }
void G1CollectedHeap::set_par_threads() {
// Don't change the number of workers. Use the value previously set
// in the workgroup.
int n_workers = workers()->active_workers();
assert(UseDynamicNumberOfGCThreads ||
n_workers == workers()->total_workers(),
"Otherwise should be using the total number of workers");
if (n_workers == 0) {
assert(false, "Should have been set in prior evacuation pause.");
n_workers = ParallelGCThreads;
workers()->set_active_workers(n_workers);
}
set_par_threads(n_workers);
}
void MutatorAllocRegion::retire_region(HeapRegion* alloc_region, void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
size_t allocated_bytes) { size_t allocated_bytes) {
_g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes); _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);

View File

@ -987,6 +987,16 @@ public:
void set_par_threads(int t) { void set_par_threads(int t) {
SharedHeap::set_par_threads(t); SharedHeap::set_par_threads(t);
// Done in SharedHeap but oddly there are
// two _process_strong_tasks's in a G1CollectedHeap
// so do it here too.
_process_strong_tasks->set_n_threads(t);
}
// Set _n_par_threads according to a policy TBD.
void set_par_threads();
void set_n_termination(int t) {
_process_strong_tasks->set_n_threads(t); _process_strong_tasks->set_n_threads(t);
} }
@ -1276,6 +1286,7 @@ public:
// i.e., that a closure never attempt to abort a traversal. // i.e., that a closure never attempt to abort a traversal.
void heap_region_par_iterate_chunked(HeapRegionClosure* blk, void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
int worker, int worker,
int no_of_par_workers,
jint claim_value); jint claim_value);
// It resets all the region claim values to the default. // It resets all the region claim values to the default.

View File

@ -1024,7 +1024,7 @@ void G1CollectorPolicy::print_par_stats(int level,
double total = 0.0; double total = 0.0;
LineBuffer buf(level); LineBuffer buf(level);
buf.append("[%s (ms):", str); buf.append("[%s (ms):", str);
for (uint i = 0; i < ParallelGCThreads; ++i) { for (uint i = 0; i < no_of_gc_threads(); ++i) {
double val = data[i]; double val = data[i];
if (val < min) if (val < min)
min = val; min = val;
@ -1034,7 +1034,7 @@ void G1CollectorPolicy::print_par_stats(int level,
buf.append(" %3.1lf", val); buf.append(" %3.1lf", val);
} }
buf.append_and_print_cr(""); buf.append_and_print_cr("");
double avg = total / (double) ParallelGCThreads; double avg = total / (double) no_of_gc_threads();
buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]", buf.append_and_print_cr(" Avg: %5.1lf, Min: %5.1lf, Max: %5.1lf, Diff: %5.1lf]",
avg, min, max, max - min); avg, min, max, max - min);
} }
@ -1046,7 +1046,7 @@ void G1CollectorPolicy::print_par_sizes(int level,
double total = 0.0; double total = 0.0;
LineBuffer buf(level); LineBuffer buf(level);
buf.append("[%s :", str); buf.append("[%s :", str);
for (uint i = 0; i < ParallelGCThreads; ++i) { for (uint i = 0; i < no_of_gc_threads(); ++i) {
double val = data[i]; double val = data[i];
if (val < min) if (val < min)
min = val; min = val;
@ -1056,7 +1056,7 @@ void G1CollectorPolicy::print_par_sizes(int level,
buf.append(" %d", (int) val); buf.append(" %d", (int) val);
} }
buf.append_and_print_cr(""); buf.append_and_print_cr("");
double avg = total / (double) ParallelGCThreads; double avg = total / (double) no_of_gc_threads();
buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]", buf.append_and_print_cr(" Sum: %d, Avg: %d, Min: %d, Max: %d, Diff: %d]",
(int)total, (int)avg, (int)min, (int)max, (int)max - (int)min); (int)total, (int)avg, (int)min, (int)max, (int)max - (int)min);
} }
@ -1076,10 +1076,10 @@ void G1CollectorPolicy::print_stats(int level,
double G1CollectorPolicy::avg_value(double* data) { double G1CollectorPolicy::avg_value(double* data) {
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
double ret = 0.0; double ret = 0.0;
for (uint i = 0; i < ParallelGCThreads; ++i) { for (uint i = 0; i < no_of_gc_threads(); ++i) {
ret += data[i]; ret += data[i];
} }
return ret / (double) ParallelGCThreads; return ret / (double) no_of_gc_threads();
} else { } else {
return data[0]; return data[0];
} }
@ -1088,7 +1088,7 @@ double G1CollectorPolicy::avg_value(double* data) {
double G1CollectorPolicy::max_value(double* data) { double G1CollectorPolicy::max_value(double* data) {
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
double ret = data[0]; double ret = data[0];
for (uint i = 1; i < ParallelGCThreads; ++i) { for (uint i = 1; i < no_of_gc_threads(); ++i) {
if (data[i] > ret) { if (data[i] > ret) {
ret = data[i]; ret = data[i];
} }
@ -1102,7 +1102,7 @@ double G1CollectorPolicy::max_value(double* data) {
double G1CollectorPolicy::sum_of_values(double* data) { double G1CollectorPolicy::sum_of_values(double* data) {
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
double sum = 0.0; double sum = 0.0;
for (uint i = 0; i < ParallelGCThreads; i++) { for (uint i = 0; i < no_of_gc_threads(); i++) {
sum += data[i]; sum += data[i];
} }
return sum; return sum;
@ -1115,7 +1115,7 @@ double G1CollectorPolicy::max_sum(double* data1, double* data2) {
double ret = data1[0] + data2[0]; double ret = data1[0] + data2[0];
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
for (uint i = 1; i < ParallelGCThreads; ++i) { for (uint i = 1; i < no_of_gc_threads(); ++i) {
double data = data1[i] + data2[i]; double data = data1[i] + data2[i];
if (data > ret) { if (data > ret) {
ret = data; ret = data;
@ -1128,7 +1128,7 @@ double G1CollectorPolicy::max_sum(double* data1, double* data2) {
// Anything below that is considered to be zero // Anything below that is considered to be zero
#define MIN_TIMER_GRANULARITY 0.0000001 #define MIN_TIMER_GRANULARITY 0.0000001
void G1CollectorPolicy::record_collection_pause_end() { void G1CollectorPolicy::record_collection_pause_end(int no_of_gc_threads) {
double end_time_sec = os::elapsedTime(); double end_time_sec = os::elapsedTime();
double elapsed_ms = _last_pause_time_ms; double elapsed_ms = _last_pause_time_ms;
bool parallel = G1CollectedHeap::use_parallel_gc_threads(); bool parallel = G1CollectedHeap::use_parallel_gc_threads();
@ -1140,6 +1140,7 @@ void G1CollectorPolicy::record_collection_pause_end() {
assert(cur_used_bytes == _g1->recalculate_used(), "It should!"); assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
bool last_pause_included_initial_mark = false; bool last_pause_included_initial_mark = false;
bool update_stats = !_g1->evacuation_failed(); bool update_stats = !_g1->evacuation_failed();
set_no_of_gc_threads(no_of_gc_threads);
#ifndef PRODUCT #ifndef PRODUCT
if (G1YoungSurvRateVerbose) { if (G1YoungSurvRateVerbose) {
@ -2304,6 +2305,7 @@ public:
ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i); ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size, i);
// Back to zero for the claim value. // Back to zero for the claim value.
_g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i, _g1->heap_region_par_iterate_chunked(&parKnownGarbageCl, i,
_g1->workers()->active_workers(),
HeapRegion::InitialClaimValue); HeapRegion::InitialClaimValue);
jint regions_added = parKnownGarbageCl.marked_regions_added(); jint regions_added = parKnownGarbageCl.marked_regions_added();
_hrSorted->incNumMarkedHeapRegions(regions_added); _hrSorted->incNumMarkedHeapRegions(regions_added);
@ -2315,7 +2317,7 @@ public:
}; };
void void
G1CollectorPolicy::record_concurrent_mark_cleanup_end() { G1CollectorPolicy::record_concurrent_mark_cleanup_end(int no_of_gc_threads) {
double start_sec; double start_sec;
if (G1PrintParCleanupStats) { if (G1PrintParCleanupStats) {
start_sec = os::elapsedTime(); start_sec = os::elapsedTime();
@ -2331,10 +2333,27 @@ G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
if (G1CollectedHeap::use_parallel_gc_threads()) { if (G1CollectedHeap::use_parallel_gc_threads()) {
const size_t OverpartitionFactor = 4; const size_t OverpartitionFactor = 4;
const size_t MinWorkUnit = 8; size_t WorkUnit;
const size_t WorkUnit = // The use of MinChunkSize = 8 in the original code
// causes some assertion failures when the total number of
// region is less than 8. The code here tries to fix that.
// Should the original code also be fixed?
if (no_of_gc_threads > 0) {
const size_t MinWorkUnit =
MAX2(_g1->n_regions() / no_of_gc_threads, (size_t) 1U);
WorkUnit =
MAX2(_g1->n_regions() / (no_of_gc_threads * OverpartitionFactor),
MinWorkUnit);
} else {
assert(no_of_gc_threads > 0,
"The active gc workers should be greater than 0");
// In a product build do something reasonable to avoid a crash.
const size_t MinWorkUnit =
MAX2(_g1->n_regions() / ParallelGCThreads, (size_t) 1U);
WorkUnit =
MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor), MAX2(_g1->n_regions() / (ParallelGCThreads * OverpartitionFactor),
MinWorkUnit); MinWorkUnit);
}
_collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(), _collectionSetChooser->prepareForAddMarkedHeapRegionsPar(_g1->n_regions(),
WorkUnit); WorkUnit);
ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser, ParKnownGarbageTask parKnownGarbageTask(_collectionSetChooser,

View File

@ -89,6 +89,9 @@ private:
// has been set, or 1 otherwise // has been set, or 1 otherwise
int _parallel_gc_threads; int _parallel_gc_threads;
// The number of GC threads currently active.
uintx _no_of_gc_threads;
enum SomePrivateConstants { enum SomePrivateConstants {
NumPrevPausesForHeuristics = 10 NumPrevPausesForHeuristics = 10
}; };
@ -280,6 +283,9 @@ private:
double update_rs_processed_buffers, double update_rs_processed_buffers,
double goal_ms); double goal_ms);
uintx no_of_gc_threads() { return _no_of_gc_threads; }
void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
double _pause_time_target_ms; double _pause_time_target_ms;
double _recorded_young_cset_choice_time_ms; double _recorded_young_cset_choice_time_ms;
double _recorded_non_young_cset_choice_time_ms; double _recorded_non_young_cset_choice_time_ms;
@ -287,6 +293,7 @@ private:
size_t _max_pending_cards; size_t _max_pending_cards;
public: public:
// Accessors
void set_region_eden(HeapRegion* hr, int young_index_in_cset) { void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
hr->set_young(); hr->set_young();
@ -737,13 +744,13 @@ public:
void record_concurrent_mark_remark_end(); void record_concurrent_mark_remark_end();
void record_concurrent_mark_cleanup_start(); void record_concurrent_mark_cleanup_start();
void record_concurrent_mark_cleanup_end(); void record_concurrent_mark_cleanup_end(int no_of_gc_threads);
void record_concurrent_mark_cleanup_completed(); void record_concurrent_mark_cleanup_completed();
void record_concurrent_pause(); void record_concurrent_pause();
void record_concurrent_pause_end(); void record_concurrent_pause_end();
void record_collection_pause_end(); void record_collection_pause_end(int no_of_gc_threads);
void print_heap_transition(); void print_heap_transition();
// Record the fact that a full collection occurred. // Record the fact that a full collection occurred.

View File

@ -218,7 +218,7 @@ public:
HeapRegion* G1RemSet::calculateStartRegion(int worker_i) { HeapRegion* G1RemSet::calculateStartRegion(int worker_i) {
HeapRegion* result = _g1p->collection_set(); HeapRegion* result = _g1p->collection_set();
if (ParallelGCThreads > 0) { if (G1CollectedHeap::use_parallel_gc_threads()) {
size_t cs_size = _g1p->cset_region_length(); size_t cs_size = _g1p->cset_region_length();
int n_workers = _g1->workers()->total_workers(); int n_workers = _g1->workers()->total_workers();
size_t cs_spans = cs_size / n_workers; size_t cs_spans = cs_size / n_workers;
@ -430,8 +430,10 @@ void G1RemSet::prepare_for_oops_into_collection_set_do() {
DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
dcqs.concatenate_logs(); dcqs.concatenate_logs();
if (ParallelGCThreads > 0) { if (G1CollectedHeap::use_parallel_gc_threads()) {
_seq_task->set_n_threads((int)n_workers()); // Don't set the number of workers here. It will be set
// when the task is run
// _seq_task->set_n_termination((int)n_workers());
} }
guarantee( _cards_scanned == NULL, "invariant" ); guarantee( _cards_scanned == NULL, "invariant" );
_cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers()); _cards_scanned = NEW_C_HEAP_ARRAY(size_t, n_workers());
@ -578,7 +580,10 @@ void G1RemSet::scrub(BitMap* region_bm, BitMap* card_bm) {
void G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm, void G1RemSet::scrub_par(BitMap* region_bm, BitMap* card_bm,
int worker_num, int claim_val) { int worker_num, int claim_val) {
ScrubRSClosure scrub_cl(region_bm, card_bm); ScrubRSClosure scrub_cl(region_bm, card_bm);
_g1->heap_region_par_iterate_chunked(&scrub_cl, worker_num, claim_val); _g1->heap_region_par_iterate_chunked(&scrub_cl,
worker_num,
(int) n_workers(),
claim_val);
} }

View File

@ -33,6 +33,7 @@
#include "runtime/java.hpp" #include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp" #include "runtime/mutexLocker.hpp"
#include "runtime/virtualspace.hpp" #include "runtime/virtualspace.hpp"
#include "runtime/vmThread.hpp"
void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr, void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
OopsInGenClosure* cl, OopsInGenClosure* cl,
@ -42,6 +43,11 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
assert((n_threads == 1 && ParallelGCThreads == 0) || assert((n_threads == 1 && ParallelGCThreads == 0) ||
n_threads <= (int)ParallelGCThreads, n_threads <= (int)ParallelGCThreads,
"# worker threads != # requested!"); "# worker threads != # requested!");
assert(!Thread::current()->is_VM_thread() || (n_threads == 1), "There is only 1 VM thread");
assert(UseDynamicNumberOfGCThreads ||
!FLAG_IS_DEFAULT(ParallelGCThreads) ||
n_threads == (int)ParallelGCThreads,
"# worker threads != # requested!");
// Make sure the LNC array is valid for the space. // Make sure the LNC array is valid for the space.
jbyte** lowest_non_clean; jbyte** lowest_non_clean;
uintptr_t lowest_non_clean_base_chunk_index; uintptr_t lowest_non_clean_base_chunk_index;
@ -52,6 +58,8 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
int n_strides = n_threads * ParGCStridesPerThread; int n_strides = n_threads * ParGCStridesPerThread;
SequentialSubTasksDone* pst = sp->par_seq_tasks(); SequentialSubTasksDone* pst = sp->par_seq_tasks();
// Sets the condition for completion of the subtask (how many threads
// need to finish in order to be done).
pst->set_n_threads(n_threads); pst->set_n_threads(n_threads);
pst->set_n_tasks(n_strides); pst->set_n_tasks(n_strides);

View File

@ -305,7 +305,7 @@ public:
inline ParScanThreadState& thread_state(int i); inline ParScanThreadState& thread_state(int i);
void reset(bool promotion_failed); void reset(int active_workers, bool promotion_failed);
void flush(); void flush();
#if TASKQUEUE_STATS #if TASKQUEUE_STATS
@ -322,6 +322,9 @@ private:
ParallelTaskTerminator& _term; ParallelTaskTerminator& _term;
ParNewGeneration& _gen; ParNewGeneration& _gen;
Generation& _next_gen; Generation& _next_gen;
public:
bool is_valid(int id) const { return id < length(); }
ParallelTaskTerminator* terminator() { return &_term; }
}; };
@ -351,9 +354,9 @@ inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
} }
void ParScanThreadStateSet::reset(bool promotion_failed) void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
{ {
_term.reset_for_reuse(); _term.reset_for_reuse(active_threads);
if (promotion_failed) { if (promotion_failed) {
for (int i = 0; i < length(); ++i) { for (int i = 0; i < length(); ++i) {
thread_state(i).print_and_clear_promotion_failure_size(); thread_state(i).print_and_clear_promotion_failure_size();
@ -569,6 +572,24 @@ ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* next_gen,
_state_set(state_set) _state_set(state_set)
{} {}
// Reset the terminator for the given number of
// active threads.
void ParNewGenTask::set_for_termination(int active_workers) {
_state_set->reset(active_workers, _gen->promotion_failed());
// Should the heap be passed in? There's only 1 for now so
// grab it instead.
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->set_n_termination(active_workers);
}
// The "i" passed to this method is the part of the work for
// this thread. It is not the worker ID. The "i" is derived
// from _started_workers which is incremented in internal_note_start()
// called in GangWorker loop() and which is called under the
// which is called under the protection of the gang monitor and is
// called after a task is started. So "i" is based on
// first-come-first-served.
void ParNewGenTask::work(int i) { void ParNewGenTask::work(int i) {
GenCollectedHeap* gch = GenCollectedHeap::heap(); GenCollectedHeap* gch = GenCollectedHeap::heap();
// Since this is being done in a separate thread, need new resource // Since this is being done in a separate thread, need new resource
@ -581,6 +602,8 @@ void ParNewGenTask::work(int i) {
Generation* old_gen = gch->next_gen(_gen); Generation* old_gen = gch->next_gen(_gen);
ParScanThreadState& par_scan_state = _state_set->thread_state(i); ParScanThreadState& par_scan_state = _state_set->thread_state(i);
assert(_state_set->is_valid(i), "Should not have been called");
par_scan_state.set_young_old_boundary(_young_old_boundary); par_scan_state.set_young_old_boundary(_young_old_boundary);
par_scan_state.start_strong_roots(); par_scan_state.start_strong_roots();
@ -733,7 +756,9 @@ public:
private: private:
virtual void work(int i); virtual void work(int i);
virtual void set_for_termination(int active_workers) {
_state_set.terminator()->reset_for_reuse(active_workers);
}
private: private:
ParNewGeneration& _gen; ParNewGeneration& _gen;
ProcessTask& _task; ProcessTask& _task;
@ -789,18 +814,20 @@ void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
GenCollectedHeap* gch = GenCollectedHeap::heap(); GenCollectedHeap* gch = GenCollectedHeap::heap();
assert(gch->kind() == CollectedHeap::GenCollectedHeap, assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a generational heap"); "not a generational heap");
WorkGang* workers = gch->workers(); FlexibleWorkGang* workers = gch->workers();
assert(workers != NULL, "Need parallel worker threads."); assert(workers != NULL, "Need parallel worker threads.");
_state_set.reset(workers->active_workers(), _generation.promotion_failed());
ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(), ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
_generation.reserved().end(), _state_set); _generation.reserved().end(), _state_set);
workers->run_task(&rp_task); workers->run_task(&rp_task);
_state_set.reset(_generation.promotion_failed()); _state_set.reset(0 /* bad value in debug if not reset */,
_generation.promotion_failed());
} }
void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
{ {
GenCollectedHeap* gch = GenCollectedHeap::heap(); GenCollectedHeap* gch = GenCollectedHeap::heap();
WorkGang* workers = gch->workers(); FlexibleWorkGang* workers = gch->workers();
assert(workers != NULL, "Need parallel worker threads."); assert(workers != NULL, "Need parallel worker threads.");
ParNewRefEnqueueTaskProxy enq_task(task); ParNewRefEnqueueTaskProxy enq_task(task);
workers->run_task(&enq_task); workers->run_task(&enq_task);
@ -856,7 +883,13 @@ void ParNewGeneration::collect(bool full,
assert(gch->kind() == CollectedHeap::GenCollectedHeap, assert(gch->kind() == CollectedHeap::GenCollectedHeap,
"not a CMS generational heap"); "not a CMS generational heap");
AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy(); AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
WorkGang* workers = gch->workers(); FlexibleWorkGang* workers = gch->workers();
assert(workers != NULL, "Need workgang for parallel work");
int active_workers =
AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
workers->active_workers(),
Threads::number_of_non_daemon_threads());
workers->set_active_workers(active_workers);
_next_gen = gch->next_gen(this); _next_gen = gch->next_gen(this);
assert(_next_gen != NULL, assert(_next_gen != NULL,
"This must be the youngest gen, and not the only gen"); "This must be the youngest gen, and not the only gen");
@ -894,13 +927,19 @@ void ParNewGeneration::collect(bool full,
gch->save_marks(); gch->save_marks();
assert(workers != NULL, "Need parallel worker threads."); assert(workers != NULL, "Need parallel worker threads.");
ParallelTaskTerminator _term(workers->total_workers(), task_queues()); int n_workers = active_workers;
ParScanThreadStateSet thread_state_set(workers->total_workers(),
// Set the correct parallelism (number of queues) in the reference processor
ref_processor()->set_active_mt_degree(n_workers);
// Always set the terminator for the active number of workers
// because only those workers go through the termination protocol.
ParallelTaskTerminator _term(n_workers, task_queues());
ParScanThreadStateSet thread_state_set(workers->active_workers(),
*to(), *this, *_next_gen, *task_queues(), *to(), *this, *_next_gen, *task_queues(),
_overflow_stacks, desired_plab_sz(), _term); _overflow_stacks, desired_plab_sz(), _term);
ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set); ParNewGenTask tsk(this, _next_gen, reserved().end(), &thread_state_set);
int n_workers = workers->total_workers();
gch->set_par_threads(n_workers); gch->set_par_threads(n_workers);
gch->rem_set()->prepare_for_younger_refs_iterate(true); gch->rem_set()->prepare_for_younger_refs_iterate(true);
// It turns out that even when we're using 1 thread, doing the work in a // It turns out that even when we're using 1 thread, doing the work in a
@ -914,7 +953,8 @@ void ParNewGeneration::collect(bool full,
GenCollectedHeap::StrongRootsScope srs(gch); GenCollectedHeap::StrongRootsScope srs(gch);
tsk.work(0); tsk.work(0);
} }
thread_state_set.reset(promotion_failed()); thread_state_set.reset(0 /* Bad value in debug if not reset */,
promotion_failed());
// Process (weak) reference objects found during scavenge. // Process (weak) reference objects found during scavenge.
ReferenceProcessor* rp = ref_processor(); ReferenceProcessor* rp = ref_processor();
@ -927,6 +967,8 @@ void ParNewGeneration::collect(bool full,
EvacuateFollowersClosureGeneral evacuate_followers(gch, _level, EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
&scan_without_gc_barrier, &scan_with_gc_barrier); &scan_without_gc_barrier, &scan_with_gc_barrier);
rp->setup_policy(clear_all_soft_refs); rp->setup_policy(clear_all_soft_refs);
// Can the mt_degree be set later (at run_task() time would be best)?
rp->set_active_mt_degree(active_workers);
if (rp->processing_is_mt()) { if (rp->processing_is_mt()) {
ParNewRefProcTaskExecutor task_executor(*this, thread_state_set); ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
rp->process_discovered_references(&is_alive, &keep_alive, rp->process_discovered_references(&is_alive, &keep_alive,

View File

@ -240,6 +240,10 @@ public:
HeapWord* young_old_boundary() { return _young_old_boundary; } HeapWord* young_old_boundary() { return _young_old_boundary; }
void work(int i); void work(int i);
// Reset the terminator in ParScanThreadStateSet for
// "active_workers" threads.
virtual void set_for_termination(int active_workers);
}; };
class KeepAliveClosure: public DefNewGeneration::KeepAliveClosure { class KeepAliveClosure: public DefNewGeneration::KeepAliveClosure {

View File

@ -223,7 +223,8 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
MutableSpace* sp, MutableSpace* sp,
HeapWord* space_top, HeapWord* space_top,
PSPromotionManager* pm, PSPromotionManager* pm,
uint stripe_number) { uint stripe_number,
uint stripe_total) {
int ssize = 128; // Naked constant! Work unit = 64k. int ssize = 128; // Naked constant! Work unit = 64k.
int dirty_card_count = 0; int dirty_card_count = 0;
@ -231,7 +232,11 @@ void CardTableExtension::scavenge_contents_parallel(ObjectStartArray* start_arra
jbyte* start_card = byte_for(sp->bottom()); jbyte* start_card = byte_for(sp->bottom());
jbyte* end_card = byte_for(sp_top - 1) + 1; jbyte* end_card = byte_for(sp_top - 1) + 1;
oop* last_scanned = NULL; // Prevent scanning objects more than once oop* last_scanned = NULL; // Prevent scanning objects more than once
for (jbyte* slice = start_card; slice < end_card; slice += ssize*ParallelGCThreads) { // The width of the stripe ssize*stripe_total must be
// consistent with the number of stripes so that the complete slice
// is covered.
size_t slice_width = ssize * stripe_total;
for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
jbyte* worker_start_card = slice + stripe_number * ssize; jbyte* worker_start_card = slice + stripe_number * ssize;
if (worker_start_card >= end_card) if (worker_start_card >= end_card)
return; // We're done. return; // We're done.

View File

@ -69,7 +69,8 @@ class CardTableExtension : public CardTableModRefBS {
MutableSpace* sp, MutableSpace* sp,
HeapWord* space_top, HeapWord* space_top,
PSPromotionManager* pm, PSPromotionManager* pm,
uint stripe_number); uint stripe_number,
uint stripe_total);
// Verification // Verification
static void verify_all_young_refs_imprecise(); static void verify_all_young_refs_imprecise();

View File

@ -25,6 +25,7 @@
#include "precompiled.hpp" #include "precompiled.hpp"
#include "gc_implementation/parallelScavenge/gcTaskManager.hpp" #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
#include "gc_implementation/parallelScavenge/gcTaskThread.hpp" #include "gc_implementation/parallelScavenge/gcTaskThread.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "memory/allocation.hpp" #include "memory/allocation.hpp"
#include "memory/allocation.inline.hpp" #include "memory/allocation.inline.hpp"
#include "runtime/mutex.hpp" #include "runtime/mutex.hpp"
@ -181,6 +182,7 @@ void GCTaskQueue::enqueue(GCTask* task) {
} }
set_insert_end(task); set_insert_end(task);
increment_length(); increment_length();
verify_length();
if (TraceGCTaskQueue) { if (TraceGCTaskQueue) {
print("after:"); print("after:");
} }
@ -192,7 +194,7 @@ void GCTaskQueue::enqueue(GCTaskQueue* list) {
tty->print_cr("[" INTPTR_FORMAT "]" tty->print_cr("[" INTPTR_FORMAT "]"
" GCTaskQueue::enqueue(list: " " GCTaskQueue::enqueue(list: "
INTPTR_FORMAT ")", INTPTR_FORMAT ")",
this); this, list);
print("before:"); print("before:");
list->print("list:"); list->print("list:");
} }
@ -211,14 +213,15 @@ void GCTaskQueue::enqueue(GCTaskQueue* list) {
list->remove_end()->set_older(insert_end()); list->remove_end()->set_older(insert_end());
insert_end()->set_newer(list->remove_end()); insert_end()->set_newer(list->remove_end());
set_insert_end(list->insert_end()); set_insert_end(list->insert_end());
set_length(length() + list_length);
// empty the argument list. // empty the argument list.
} }
set_length(length() + list_length);
list->initialize(); list->initialize();
if (TraceGCTaskQueue) { if (TraceGCTaskQueue) {
print("after:"); print("after:");
list->print("list:"); list->print("list:");
} }
verify_length();
} }
// Dequeue one task. // Dequeue one task.
@ -288,6 +291,7 @@ GCTask* GCTaskQueue::remove() {
decrement_length(); decrement_length();
assert(result->newer() == NULL, "shouldn't be on queue"); assert(result->newer() == NULL, "shouldn't be on queue");
assert(result->older() == NULL, "shouldn't be on queue"); assert(result->older() == NULL, "shouldn't be on queue");
verify_length();
return result; return result;
} }
@ -311,22 +315,40 @@ GCTask* GCTaskQueue::remove(GCTask* task) {
result->set_newer(NULL); result->set_newer(NULL);
result->set_older(NULL); result->set_older(NULL);
decrement_length(); decrement_length();
verify_length();
return result; return result;
} }
NOT_PRODUCT( NOT_PRODUCT(
// Count the elements in the queue and verify the length against
// that count.
void GCTaskQueue::verify_length() const {
uint count = 0;
for (GCTask* element = insert_end();
element != NULL;
element = element->older()) {
count++;
}
assert(count == length(), "Length does not match queue");
}
void GCTaskQueue::print(const char* message) const { void GCTaskQueue::print(const char* message) const {
tty->print_cr("[" INTPTR_FORMAT "] GCTaskQueue:" tty->print_cr("[" INTPTR_FORMAT "] GCTaskQueue:"
" insert_end: " INTPTR_FORMAT " insert_end: " INTPTR_FORMAT
" remove_end: " INTPTR_FORMAT " remove_end: " INTPTR_FORMAT
" length: %d"
" %s", " %s",
this, insert_end(), remove_end(), message); this, insert_end(), remove_end(), length(), message);
uint count = 0;
for (GCTask* element = insert_end(); for (GCTask* element = insert_end();
element != NULL; element != NULL;
element = element->older()) { element = element->older()) {
element->print(" "); element->print(" ");
count++;
tty->cr(); tty->cr();
} }
tty->print("Total tasks: %d", count);
} }
) )
@ -351,12 +373,16 @@ SynchronizedGCTaskQueue::~SynchronizedGCTaskQueue() {
// //
GCTaskManager::GCTaskManager(uint workers) : GCTaskManager::GCTaskManager(uint workers) :
_workers(workers), _workers(workers),
_active_workers(0),
_idle_workers(0),
_ndc(NULL) { _ndc(NULL) {
initialize(); initialize();
} }
GCTaskManager::GCTaskManager(uint workers, NotifyDoneClosure* ndc) : GCTaskManager::GCTaskManager(uint workers, NotifyDoneClosure* ndc) :
_workers(workers), _workers(workers),
_active_workers(0),
_idle_workers(0),
_ndc(ndc) { _ndc(ndc) {
initialize(); initialize();
} }
@ -373,6 +399,7 @@ void GCTaskManager::initialize() {
GCTaskQueue* unsynchronized_queue = GCTaskQueue::create_on_c_heap(); GCTaskQueue* unsynchronized_queue = GCTaskQueue::create_on_c_heap();
_queue = SynchronizedGCTaskQueue::create(unsynchronized_queue, lock()); _queue = SynchronizedGCTaskQueue::create(unsynchronized_queue, lock());
_noop_task = NoopGCTask::create_on_c_heap(); _noop_task = NoopGCTask::create_on_c_heap();
_idle_inactive_task = WaitForBarrierGCTask::create_on_c_heap();
_resource_flag = NEW_C_HEAP_ARRAY(bool, workers()); _resource_flag = NEW_C_HEAP_ARRAY(bool, workers());
{ {
// Set up worker threads. // Set up worker threads.
@ -418,6 +445,8 @@ GCTaskManager::~GCTaskManager() {
assert(queue()->is_empty(), "still have queued work"); assert(queue()->is_empty(), "still have queued work");
NoopGCTask::destroy(_noop_task); NoopGCTask::destroy(_noop_task);
_noop_task = NULL; _noop_task = NULL;
WaitForBarrierGCTask::destroy(_idle_inactive_task);
_idle_inactive_task = NULL;
if (_thread != NULL) { if (_thread != NULL) {
for (uint i = 0; i < workers(); i += 1) { for (uint i = 0; i < workers(); i += 1) {
GCTaskThread::destroy(thread(i)); GCTaskThread::destroy(thread(i));
@ -442,6 +471,86 @@ GCTaskManager::~GCTaskManager() {
} }
} }
void GCTaskManager::set_active_gang() {
_active_workers =
AdaptiveSizePolicy::calc_active_workers(workers(),
active_workers(),
Threads::number_of_non_daemon_threads());
assert(!all_workers_active() || active_workers() == ParallelGCThreads,
err_msg("all_workers_active() is incorrect: "
"active %d ParallelGCThreads %d", active_workers(),
ParallelGCThreads));
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("GCTaskManager::set_active_gang(): "
"all_workers_active() %d workers %d "
"active %d ParallelGCThreads %d ",
all_workers_active(), workers(), active_workers(),
ParallelGCThreads);
}
}
// Create IdleGCTasks for inactive workers.
// Creates tasks in a ResourceArea and assumes
// an appropriate ResourceMark.
void GCTaskManager::task_idle_workers() {
{
int more_inactive_workers = 0;
{
// Stop any idle tasks from exiting their IdleGCTask's
// and get the count for additional IdleGCTask's under
// the GCTaskManager's monitor so that the "more_inactive_workers"
// count is correct.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
_idle_inactive_task->set_should_wait(true);
// active_workers are a number being requested. idle_workers
// are the number currently idle. If all the workers are being
// requested to be active but some are already idle, reduce
// the number of active_workers to be consistent with the
// number of idle_workers. The idle_workers are stuck in
// idle tasks and will no longer be release (since a new GC
// is starting). Try later to release enough idle_workers
// to allow the desired number of active_workers.
more_inactive_workers =
workers() - active_workers() - idle_workers();
if (more_inactive_workers < 0) {
int reduced_active_workers = active_workers() + more_inactive_workers;
set_active_workers(reduced_active_workers);
more_inactive_workers = 0;
}
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("JT: %d workers %d active %d "
"idle %d more %d",
Threads::number_of_non_daemon_threads(),
workers(),
active_workers(),
idle_workers(),
more_inactive_workers);
}
}
GCTaskQueue* q = GCTaskQueue::create();
for(uint i = 0; i < (uint) more_inactive_workers; i++) {
q->enqueue(IdleGCTask::create_on_c_heap());
increment_idle_workers();
}
assert(workers() == active_workers() + idle_workers(),
"total workers should equal active + inactive");
add_list(q);
// GCTaskQueue* q was created in a ResourceArea so a
// destroy() call is not needed.
}
}
void GCTaskManager::release_idle_workers() {
{
MutexLockerEx ml(monitor(),
Mutex::_no_safepoint_check_flag);
_idle_inactive_task->set_should_wait(false);
monitor()->notify_all();
// Release monitor
}
}
void GCTaskManager::print_task_time_stamps() { void GCTaskManager::print_task_time_stamps() {
for(uint i=0; i<ParallelGCThreads; i++) { for(uint i=0; i<ParallelGCThreads; i++) {
GCTaskThread* t = thread(i); GCTaskThread* t = thread(i);
@ -510,6 +619,13 @@ void GCTaskManager::add_list(GCTaskQueue* list) {
// Release monitor(). // Release monitor().
} }
// GC workers wait in get_task() for new work to be added
// to the GCTaskManager's queue. When new work is added,
// a notify is sent to the waiting GC workers which then
// compete to get tasks. If a GC worker wakes up and there
// is no work on the queue, it is given a noop_task to execute
// and then loops to find more work.
GCTask* GCTaskManager::get_task(uint which) { GCTask* GCTaskManager::get_task(uint which) {
GCTask* result = NULL; GCTask* result = NULL;
// Grab the queue lock. // Grab the queue lock.
@ -558,8 +674,10 @@ GCTask* GCTaskManager::get_task(uint which) {
which, result, GCTask::Kind::to_string(result->kind())); which, result, GCTask::Kind::to_string(result->kind()));
tty->print_cr(" %s", result->name()); tty->print_cr(" %s", result->name());
} }
if (!result->is_idle_task()) {
increment_busy_workers(); increment_busy_workers();
increment_delivered_tasks(); increment_delivered_tasks();
}
return result; return result;
// Release monitor(). // Release monitor().
} }
@ -622,6 +740,7 @@ uint GCTaskManager::increment_busy_workers() {
uint GCTaskManager::decrement_busy_workers() { uint GCTaskManager::decrement_busy_workers() {
assert(queue()->own_lock(), "don't own the lock"); assert(queue()->own_lock(), "don't own the lock");
assert(_busy_workers > 0, "About to make a mistake");
_busy_workers -= 1; _busy_workers -= 1;
return _busy_workers; return _busy_workers;
} }
@ -643,11 +762,28 @@ void GCTaskManager::note_release(uint which) {
set_resource_flag(which, false); set_resource_flag(which, false);
} }
// "list" contains tasks that are ready to execute. Those
// tasks are added to the GCTaskManager's queue of tasks and
// then the GC workers are notified that there is new work to
// do.
//
// Typically different types of tasks can be added to the "list".
// For example in PSScavenge OldToYoungRootsTask, SerialOldToYoungRootsTask,
// ScavengeRootsTask, and StealTask tasks are all added to the list
// and then the GC workers are notified of new work. The tasks are
// handed out in the order in which they are added to the list
// (although execution is not necessarily in that order). As long
// as any tasks are running the GCTaskManager will wait for execution
// to complete. GC workers that execute a stealing task remain in
// the stealing task until all stealing tasks have completed. The load
// balancing afforded by the stealing tasks work best if the stealing
// tasks are added last to the list.
void GCTaskManager::execute_and_wait(GCTaskQueue* list) { void GCTaskManager::execute_and_wait(GCTaskQueue* list) {
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create(); WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create();
list->enqueue(fin); list->enqueue(fin);
add_list(list); add_list(list);
fin->wait_for(); fin->wait_for(true /* reset */);
// We have to release the barrier tasks! // We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin); WaitForBarrierGCTask::destroy(fin);
} }
@ -691,6 +827,72 @@ void NoopGCTask::destruct() {
// Nothing else to do. // Nothing else to do.
} }
//
// IdleGCTask
//
IdleGCTask* IdleGCTask::create() {
IdleGCTask* result = new IdleGCTask(false);
return result;
}
IdleGCTask* IdleGCTask::create_on_c_heap() {
IdleGCTask* result = new(ResourceObj::C_HEAP) IdleGCTask(true);
return result;
}
void IdleGCTask::do_it(GCTaskManager* manager, uint which) {
WaitForBarrierGCTask* wait_for_task = manager->idle_inactive_task();
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask:::do_it()"
" should_wait: %s",
this, wait_for_task->should_wait() ? "true" : "false");
}
MutexLockerEx ml(manager->monitor(), Mutex::_no_safepoint_check_flag);
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("--- idle %d", which);
}
// Increment has to be done when the idle tasks are created.
// manager->increment_idle_workers();
manager->monitor()->notify_all();
while (wait_for_task->should_wait()) {
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask::do_it()"
" [" INTPTR_FORMAT "] (%s)->wait()",
this, manager->monitor(), manager->monitor()->name());
}
manager->monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
}
manager->decrement_idle_workers();
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("--- release %d", which);
}
if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]"
" IdleGCTask::do_it() returns"
" should_wait: %s",
this, wait_for_task->should_wait() ? "true" : "false");
}
// Release monitor().
}
void IdleGCTask::destroy(IdleGCTask* that) {
if (that != NULL) {
that->destruct();
if (that->is_c_heap_obj()) {
FreeHeap(that);
}
}
}
void IdleGCTask::destruct() {
// This has to know it's superclass structure, just like the constructor.
this->GCTask::destruct();
// Nothing else to do.
}
// //
// BarrierGCTask // BarrierGCTask
// //
@ -768,7 +970,8 @@ WaitForBarrierGCTask* WaitForBarrierGCTask::create() {
} }
WaitForBarrierGCTask* WaitForBarrierGCTask::create_on_c_heap() { WaitForBarrierGCTask* WaitForBarrierGCTask::create_on_c_heap() {
WaitForBarrierGCTask* result = new WaitForBarrierGCTask(true); WaitForBarrierGCTask* result =
new (ResourceObj::C_HEAP) WaitForBarrierGCTask(true);
return result; return result;
} }
@ -849,7 +1052,7 @@ void WaitForBarrierGCTask::do_it(GCTaskManager* manager, uint which) {
} }
} }
void WaitForBarrierGCTask::wait_for() { void WaitForBarrierGCTask::wait_for(bool reset) {
if (TraceGCTaskManager) { if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]" tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::wait_for()" " WaitForBarrierGCTask::wait_for()"
@ -869,7 +1072,9 @@ void WaitForBarrierGCTask::wait_for() {
monitor()->wait(Mutex::_no_safepoint_check_flag, 0); monitor()->wait(Mutex::_no_safepoint_check_flag, 0);
} }
// Reset the flag in case someone reuses this task. // Reset the flag in case someone reuses this task.
if (reset) {
set_should_wait(true); set_should_wait(true);
}
if (TraceGCTaskManager) { if (TraceGCTaskManager) {
tty->print_cr("[" INTPTR_FORMAT "]" tty->print_cr("[" INTPTR_FORMAT "]"
" WaitForBarrierGCTask::wait_for() returns" " WaitForBarrierGCTask::wait_for() returns"

View File

@ -45,6 +45,7 @@ class BarrierGCTask;
class ReleasingBarrierGCTask; class ReleasingBarrierGCTask;
class NotifyingBarrierGCTask; class NotifyingBarrierGCTask;
class WaitForBarrierGCTask; class WaitForBarrierGCTask;
class IdleGCTask;
// A free list of Monitor*'s. // A free list of Monitor*'s.
class MonitorSupply; class MonitorSupply;
@ -64,7 +65,8 @@ public:
unknown_task, unknown_task,
ordinary_task, ordinary_task,
barrier_task, barrier_task,
noop_task noop_task,
idle_task
}; };
static const char* to_string(kind value); static const char* to_string(kind value);
}; };
@ -108,6 +110,9 @@ public:
bool is_noop_task() const { bool is_noop_task() const {
return kind()==Kind::noop_task; return kind()==Kind::noop_task;
} }
bool is_idle_task() const {
return kind()==Kind::idle_task;
}
void print(const char* message) const PRODUCT_RETURN; void print(const char* message) const PRODUCT_RETURN;
protected: protected:
// Constructors: Only create subclasses. // Constructors: Only create subclasses.
@ -153,6 +158,7 @@ public:
assert(((insert_end() == NULL && remove_end() == NULL) || assert(((insert_end() == NULL && remove_end() == NULL) ||
(insert_end() != NULL && remove_end() != NULL)), (insert_end() != NULL && remove_end() != NULL)),
"insert_end and remove_end don't match"); "insert_end and remove_end don't match");
assert((insert_end() != NULL) || (_length == 0), "Not empty");
return insert_end() == NULL; return insert_end() == NULL;
} }
uint length() const { uint length() const {
@ -204,6 +210,8 @@ protected:
GCTask* remove(); // Remove from remove end. GCTask* remove(); // Remove from remove end.
GCTask* remove(GCTask* task); // Remove from the middle. GCTask* remove(GCTask* task); // Remove from the middle.
void print(const char* message) const PRODUCT_RETURN; void print(const char* message) const PRODUCT_RETURN;
// Debug support
void verify_length() const PRODUCT_RETURN;
}; };
// A GCTaskQueue that can be synchronized. // A GCTaskQueue that can be synchronized.
@ -285,12 +293,76 @@ protected:
} }
}; };
// Dynamic number of GC threads
//
// GC threads wait in get_task() for work (i.e., a task) to perform.
// When the number of GC threads was static, the number of tasks
// created to do a job was equal to or greater than the maximum
// number of GC threads (ParallelGCThreads). The job might be divided
// into a number of tasks greater than the number of GC threads for
// load balancing (i.e., over partitioning). The last task to be
// executed by a GC thread in a job is a work stealing task. A
// GC thread that gets a work stealing task continues to execute
// that task until the job is done. In the static number of GC theads
// case, tasks are added to a queue (FIFO). The work stealing tasks are
// the last to be added. Once the tasks are added, the GC threads grab
// a task and go. A single thread can do all the non-work stealing tasks
// and then execute a work stealing and wait for all the other GC threads
// to execute their work stealing task.
// In the dynamic number of GC threads implementation, idle-tasks are
// created to occupy the non-participating or "inactive" threads. An
// idle-task makes the GC thread wait on a barrier that is part of the
// GCTaskManager. The GC threads that have been "idled" in a IdleGCTask
// are released once all the active GC threads have finished their work
// stealing tasks. The GCTaskManager does not wait for all the "idled"
// GC threads to resume execution. When those GC threads do resume
// execution in the course of the thread scheduling, they call get_tasks()
// as all the other GC threads do. Because all the "idled" threads are
// not required to execute in order to finish a job, it is possible for
// a GC thread to still be "idled" when the next job is started. Such
// a thread stays "idled" for the next job. This can result in a new
// job not having all the expected active workers. For example if on
// job requests 4 active workers out of a total of 10 workers so the
// remaining 6 are "idled", if the next job requests 6 active workers
// but all 6 of the "idled" workers are still idle, then the next job
// will only get 4 active workers.
// The implementation for the parallel old compaction phase has an
// added complication. In the static case parold partitions the chunks
// ready to be filled into stacks, one for each GC thread. A GC thread
// executing a draining task (drains the stack of ready chunks)
// claims a stack according to it's id (the unique ordinal value assigned
// to each GC thread). In the dynamic case not all GC threads will
// actively participate so stacks with ready to fill chunks can only be
// given to the active threads. An initial implementation chose stacks
// number 1-n to get the ready chunks and required that GC threads
// 1-n be the active workers. This was undesirable because it required
// certain threads to participate. In the final implementation a
// list of stacks equal in number to the active workers are filled
// with ready chunks. GC threads that participate get a stack from
// the task (DrainStacksCompactionTask), empty the stack, and then add it to a
// recycling list at the end of the task. If the same GC thread gets
// a second task, it gets a second stack to drain and returns it. The
// stacks are added to a recycling list so that later stealing tasks
// for this tasks can get a stack from the recycling list. Stealing tasks
// use the stacks in its work in a way similar to the draining tasks.
// A thread is not guaranteed to get anything but a stealing task and
// a thread that only gets a stealing task has to get a stack. A failed
// implementation tried to have the GC threads keep the stack they used
// during a draining task for later use in the stealing task but that didn't
// work because as noted a thread is not guaranteed to get a draining task.
//
// For PSScavenge and ParCompactionManager the GC threads are
// held in the GCTaskThread** _thread array in GCTaskManager.
class GCTaskManager : public CHeapObj { class GCTaskManager : public CHeapObj {
friend class ParCompactionManager; friend class ParCompactionManager;
friend class PSParallelCompact; friend class PSParallelCompact;
friend class PSScavenge; friend class PSScavenge;
friend class PSRefProcTaskExecutor; friend class PSRefProcTaskExecutor;
friend class RefProcTaskExecutor; friend class RefProcTaskExecutor;
friend class GCTaskThread;
friend class IdleGCTask;
private: private:
// Instance state. // Instance state.
NotifyDoneClosure* _ndc; // Notify on completion. NotifyDoneClosure* _ndc; // Notify on completion.
@ -298,6 +370,7 @@ private:
Monitor* _monitor; // Notification of changes. Monitor* _monitor; // Notification of changes.
SynchronizedGCTaskQueue* _queue; // Queue of tasks. SynchronizedGCTaskQueue* _queue; // Queue of tasks.
GCTaskThread** _thread; // Array of worker threads. GCTaskThread** _thread; // Array of worker threads.
uint _active_workers; // Number of active workers.
uint _busy_workers; // Number of busy workers. uint _busy_workers; // Number of busy workers.
uint _blocking_worker; // The worker that's blocking. uint _blocking_worker; // The worker that's blocking.
bool* _resource_flag; // Array of flag per threads. bool* _resource_flag; // Array of flag per threads.
@ -307,6 +380,8 @@ private:
uint _emptied_queue; // Times we emptied the queue. uint _emptied_queue; // Times we emptied the queue.
NoopGCTask* _noop_task; // The NoopGCTask instance. NoopGCTask* _noop_task; // The NoopGCTask instance.
uint _noop_tasks; // Count of noop tasks. uint _noop_tasks; // Count of noop tasks.
WaitForBarrierGCTask* _idle_inactive_task;// Task for inactive workers
volatile uint _idle_workers; // Number of idled workers
public: public:
// Factory create and destroy methods. // Factory create and destroy methods.
static GCTaskManager* create(uint workers) { static GCTaskManager* create(uint workers) {
@ -324,6 +399,9 @@ public:
uint busy_workers() const { uint busy_workers() const {
return _busy_workers; return _busy_workers;
} }
volatile uint idle_workers() const {
return _idle_workers;
}
// Pun between Monitor* and Mutex* // Pun between Monitor* and Mutex*
Monitor* monitor() const { Monitor* monitor() const {
return _monitor; return _monitor;
@ -331,6 +409,9 @@ public:
Monitor * lock() const { Monitor * lock() const {
return _monitor; return _monitor;
} }
WaitForBarrierGCTask* idle_inactive_task() {
return _idle_inactive_task;
}
// Methods. // Methods.
// Add the argument task to be run. // Add the argument task to be run.
void add_task(GCTask* task); void add_task(GCTask* task);
@ -350,6 +431,10 @@ public:
bool should_release_resources(uint which); // Predicate. bool should_release_resources(uint which); // Predicate.
// Note the release of resources by the argument worker. // Note the release of resources by the argument worker.
void note_release(uint which); void note_release(uint which);
// Create IdleGCTasks for inactive workers and start workers
void task_idle_workers();
// Release the workers in IdleGCTasks
void release_idle_workers();
// Constants. // Constants.
// A sentinel worker identifier. // A sentinel worker identifier.
static uint sentinel_worker() { static uint sentinel_worker() {
@ -375,6 +460,15 @@ protected:
uint workers() const { uint workers() const {
return _workers; return _workers;
} }
void set_active_workers(uint v) {
assert(v <= _workers, "Trying to set more workers active than there are");
_active_workers = MIN2(v, _workers);
assert(v != 0, "Trying to set active workers to 0");
_active_workers = MAX2(1U, _active_workers);
}
// Sets the number of threads that will be used in a collection
void set_active_gang();
NotifyDoneClosure* notify_done_closure() const { NotifyDoneClosure* notify_done_closure() const {
return _ndc; return _ndc;
} }
@ -457,8 +551,21 @@ protected:
void reset_noop_tasks() { void reset_noop_tasks() {
_noop_tasks = 0; _noop_tasks = 0;
} }
void increment_idle_workers() {
_idle_workers++;
}
void decrement_idle_workers() {
_idle_workers--;
}
// Other methods. // Other methods.
void initialize(); void initialize();
public:
// Return true if all workers are currently active.
bool all_workers_active() { return workers() == active_workers(); }
uint active_workers() const {
return _active_workers;
}
}; };
// //
@ -475,6 +582,8 @@ public:
static NoopGCTask* create(); static NoopGCTask* create();
static NoopGCTask* create_on_c_heap(); static NoopGCTask* create_on_c_heap();
static void destroy(NoopGCTask* that); static void destroy(NoopGCTask* that);
virtual char* name() { return (char *)"noop task"; }
// Methods from GCTask. // Methods from GCTask.
void do_it(GCTaskManager* manager, uint which) { void do_it(GCTaskManager* manager, uint which) {
// Nothing to do. // Nothing to do.
@ -518,6 +627,8 @@ protected:
} }
// Destructor-like method. // Destructor-like method.
void destruct(); void destruct();
virtual char* name() { return (char *)"barrier task"; }
// Methods. // Methods.
// Wait for this to be the only task running. // Wait for this to be the only task running.
void do_it_internal(GCTaskManager* manager, uint which); void do_it_internal(GCTaskManager* manager, uint which);
@ -586,10 +697,12 @@ protected:
// the BarrierGCTask is done. // the BarrierGCTask is done.
// This may cover many of the uses of NotifyingBarrierGCTasks. // This may cover many of the uses of NotifyingBarrierGCTasks.
class WaitForBarrierGCTask : public BarrierGCTask { class WaitForBarrierGCTask : public BarrierGCTask {
friend class GCTaskManager;
friend class IdleGCTask;
private: private:
// Instance state. // Instance state.
Monitor* _monitor; // Guard and notify changes. Monitor* _monitor; // Guard and notify changes.
bool _should_wait; // true=>wait, false=>proceed. volatile bool _should_wait; // true=>wait, false=>proceed.
const bool _is_c_heap_obj; // Was allocated on the heap. const bool _is_c_heap_obj; // Was allocated on the heap.
public: public:
virtual char* name() { return (char *) "waitfor-barrier-task"; } virtual char* name() { return (char *) "waitfor-barrier-task"; }
@ -600,7 +713,10 @@ public:
static void destroy(WaitForBarrierGCTask* that); static void destroy(WaitForBarrierGCTask* that);
// Methods. // Methods.
void do_it(GCTaskManager* manager, uint which); void do_it(GCTaskManager* manager, uint which);
void wait_for(); void wait_for(bool reset);
void set_should_wait(bool value) {
_should_wait = value;
}
protected: protected:
// Constructor. Clients use factory, but there might be subclasses. // Constructor. Clients use factory, but there might be subclasses.
WaitForBarrierGCTask(bool on_c_heap); WaitForBarrierGCTask(bool on_c_heap);
@ -613,14 +729,38 @@ protected:
bool should_wait() const { bool should_wait() const {
return _should_wait; return _should_wait;
} }
void set_should_wait(bool value) {
_should_wait = value;
}
bool is_c_heap_obj() { bool is_c_heap_obj() {
return _is_c_heap_obj; return _is_c_heap_obj;
} }
}; };
// Task that is used to idle a GC task when fewer than
// the maximum workers are wanted.
class IdleGCTask : public GCTask {
const bool _is_c_heap_obj; // Was allocated on the heap.
public:
bool is_c_heap_obj() {
return _is_c_heap_obj;
}
// Factory create and destroy methods.
static IdleGCTask* create();
static IdleGCTask* create_on_c_heap();
static void destroy(IdleGCTask* that);
virtual char* name() { return (char *)"idle task"; }
// Methods from GCTask.
virtual void do_it(GCTaskManager* manager, uint which);
protected:
// Constructor.
IdleGCTask(bool on_c_heap) :
GCTask(GCTask::Kind::idle_task),
_is_c_heap_obj(on_c_heap) {
// Nothing to do.
}
// Destructor-like method.
void destruct();
};
class MonitorSupply : public AllStatic { class MonitorSupply : public AllStatic {
private: private:
// State. // State.

View File

@ -93,6 +93,11 @@ void GCTaskThread::print_on(outputStream* st) const {
st->cr(); st->cr();
} }
// GC workers get tasks from the GCTaskManager and execute
// them in this method. If there are no tasks to execute,
// the GC workers wait in the GCTaskManager's get_task()
// for tasks to be enqueued for execution.
void GCTaskThread::run() { void GCTaskThread::run() {
// Set up the thread for stack overflow support // Set up the thread for stack overflow support
this->record_stack_base_and_size(); this->record_stack_base_and_size();
@ -124,7 +129,6 @@ void GCTaskThread::run() {
for (; /* break */; ) { for (; /* break */; ) {
// This will block until there is a task to be gotten. // This will block until there is a task to be gotten.
GCTask* task = manager()->get_task(which()); GCTask* task = manager()->get_task(which());
// In case the update is costly // In case the update is costly
if (PrintGCTaskTimeStamps) { if (PrintGCTaskTimeStamps) {
timer.update(); timer.update();
@ -134,10 +138,13 @@ void GCTaskThread::run() {
char* name = task->name(); char* name = task->name();
task->do_it(manager(), which()); task->do_it(manager(), which());
if (!task->is_idle_task()) {
manager()->note_completion(which()); manager()->note_completion(which());
if (PrintGCTaskTimeStamps) { if (PrintGCTaskTimeStamps) {
assert(_time_stamps != NULL, "Sanity (PrintGCTaskTimeStamps set late?)"); assert(_time_stamps != NULL,
"Sanity (PrintGCTaskTimeStamps set late?)");
timer.update(); timer.update();
@ -147,6 +154,13 @@ void GCTaskThread::run() {
time_stamp->set_entry_time(entry_time); time_stamp->set_entry_time(entry_time);
time_stamp->set_exit_time(timer.ticks()); time_stamp->set_exit_time(timer.ticks());
} }
} else {
// idle tasks complete outside the normal accounting
// so that a task can complete without waiting for idle tasks.
// They have to be terminated separately.
IdleGCTask::destroy((IdleGCTask*)task);
set_is_working(true);
}
// Check if we should release our inner resources. // Check if we should release our inner resources.
if (manager()->should_release_resources(which())) { if (manager()->should_release_resources(which())) {

View File

@ -35,6 +35,7 @@ class GCTaskTimeStamp;
class GCTaskManager; class GCTaskManager;
class GCTaskThread : public WorkerThread { class GCTaskThread : public WorkerThread {
friend class GCTaskManager;
private: private:
// Instance state. // Instance state.
GCTaskManager* _manager; // Manager for worker. GCTaskManager* _manager; // Manager for worker.
@ -45,6 +46,8 @@ private:
GCTaskTimeStamp* time_stamp_at(uint index); GCTaskTimeStamp* time_stamp_at(uint index);
bool _is_working; // True if participating in GC tasks
public: public:
// Factory create and destroy methods. // Factory create and destroy methods.
static GCTaskThread* create(GCTaskManager* manager, static GCTaskThread* create(GCTaskManager* manager,
@ -84,6 +87,7 @@ protected:
uint processor_id() const { uint processor_id() const {
return _processor_id; return _processor_id;
} }
void set_is_working(bool v) { _is_working = v; }
}; };
class GCTaskTimeStamp : public CHeapObj class GCTaskTimeStamp : public CHeapObj

View File

@ -152,15 +152,16 @@ void RefProcTaskExecutor::execute(ProcessTask& task)
{ {
ParallelScavengeHeap* heap = PSParallelCompact::gc_heap(); ParallelScavengeHeap* heap = PSParallelCompact::gc_heap();
uint parallel_gc_threads = heap->gc_task_manager()->workers(); uint parallel_gc_threads = heap->gc_task_manager()->workers();
uint active_gc_threads = heap->gc_task_manager()->active_workers();
RegionTaskQueueSet* qset = ParCompactionManager::region_array(); RegionTaskQueueSet* qset = ParCompactionManager::region_array();
ParallelTaskTerminator terminator(parallel_gc_threads, qset); ParallelTaskTerminator terminator(active_gc_threads, qset);
GCTaskQueue* q = GCTaskQueue::create(); GCTaskQueue* q = GCTaskQueue::create();
for(uint i=0; i<parallel_gc_threads; i++) { for(uint i=0; i<parallel_gc_threads; i++) {
q->enqueue(new RefProcTaskProxy(task, i)); q->enqueue(new RefProcTaskProxy(task, i));
} }
if (task.marks_oops_alive()) { if (task.marks_oops_alive()) {
if (parallel_gc_threads>1) { if (parallel_gc_threads>1) {
for (uint j=0; j<parallel_gc_threads; j++) { for (uint j=0; j<active_gc_threads; j++) {
q->enqueue(new StealMarkingTask(&terminator)); q->enqueue(new StealMarkingTask(&terminator));
} }
} }
@ -216,7 +217,6 @@ void StealMarkingTask::do_it(GCTaskManager* manager, uint which) {
// StealRegionCompactionTask // StealRegionCompactionTask
// //
StealRegionCompactionTask::StealRegionCompactionTask(ParallelTaskTerminator* t): StealRegionCompactionTask::StealRegionCompactionTask(ParallelTaskTerminator* t):
_terminator(t) {} _terminator(t) {}
@ -229,6 +229,32 @@ void StealRegionCompactionTask::do_it(GCTaskManager* manager, uint which) {
ParCompactionManager* cm = ParCompactionManager* cm =
ParCompactionManager::gc_thread_compaction_manager(which); ParCompactionManager::gc_thread_compaction_manager(which);
// If not all threads are active, get a draining stack
// from the list. Else, just use this threads draining stack.
uint which_stack_index;
bool use_all_workers = manager->all_workers_active();
if (use_all_workers) {
which_stack_index = which;
assert(manager->active_workers() == ParallelGCThreads,
err_msg("all_workers_active has been incorrectly set: "
" active %d ParallelGCThreads %d", manager->active_workers(),
ParallelGCThreads));
} else {
which_stack_index = ParCompactionManager::pop_recycled_stack_index();
}
cm->set_region_stack_index(which_stack_index);
cm->set_region_stack(ParCompactionManager::region_list(which_stack_index));
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("StealRegionCompactionTask::do_it "
"region_stack_index %d region_stack = 0x%x "
" empty (%d) use all workers %d",
which_stack_index, ParCompactionManager::region_list(which_stack_index),
cm->region_stack()->is_empty(),
use_all_workers);
}
// Has to drain stacks first because there may be regions on // Has to drain stacks first because there may be regions on
// preloaded onto the stack and this thread may never have // preloaded onto the stack and this thread may never have
// done a draining task. Are the draining tasks needed? // done a draining task. Are the draining tasks needed?
@ -285,6 +311,50 @@ void DrainStacksCompactionTask::do_it(GCTaskManager* manager, uint which) {
ParCompactionManager* cm = ParCompactionManager* cm =
ParCompactionManager::gc_thread_compaction_manager(which); ParCompactionManager::gc_thread_compaction_manager(which);
uint which_stack_index;
bool use_all_workers = manager->all_workers_active();
if (use_all_workers) {
which_stack_index = which;
assert(manager->active_workers() == ParallelGCThreads,
err_msg("all_workers_active has been incorrectly set: "
" active %d ParallelGCThreads %d", manager->active_workers(),
ParallelGCThreads));
} else {
which_stack_index = stack_index();
}
cm->set_region_stack(ParCompactionManager::region_list(which_stack_index));
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("DrainStacksCompactionTask::do_it which = %d "
"which_stack_index = %d/empty(%d) "
"use all workers %d",
which, which_stack_index,
cm->region_stack()->is_empty(),
use_all_workers);
}
cm->set_region_stack_index(which_stack_index);
// Process any regions already in the compaction managers stacks. // Process any regions already in the compaction managers stacks.
cm->drain_region_stacks(); cm->drain_region_stacks();
assert(cm->region_stack()->is_empty(), "Not empty");
if (!use_all_workers) {
// Always give up the region stack.
assert(cm->region_stack() ==
ParCompactionManager::region_list(cm->region_stack_index()),
"region_stack and region_stack_index are inconsistent");
ParCompactionManager::push_recycled_stack_index(cm->region_stack_index());
if (TraceDynamicGCThreads) {
void* old_region_stack = (void*) cm->region_stack();
int old_region_stack_index = cm->region_stack_index();
gclog_or_tty->print_cr("Pushing region stack 0x%x/%d",
old_region_stack, old_region_stack_index);
}
cm->set_region_stack(NULL);
cm->set_region_stack_index((uint)max_uintx);
}
} }

View File

@ -39,6 +39,9 @@
PSOldGen* ParCompactionManager::_old_gen = NULL; PSOldGen* ParCompactionManager::_old_gen = NULL;
ParCompactionManager** ParCompactionManager::_manager_array = NULL; ParCompactionManager** ParCompactionManager::_manager_array = NULL;
RegionTaskQueue** ParCompactionManager::_region_list = NULL;
OopTaskQueueSet* ParCompactionManager::_stack_array = NULL; OopTaskQueueSet* ParCompactionManager::_stack_array = NULL;
ParCompactionManager::ObjArrayTaskQueueSet* ParCompactionManager::ObjArrayTaskQueueSet*
ParCompactionManager::_objarray_queues = NULL; ParCompactionManager::_objarray_queues = NULL;
@ -46,8 +49,14 @@ ObjectStartArray* ParCompactionManager::_start_array = NULL;
ParMarkBitMap* ParCompactionManager::_mark_bitmap = NULL; ParMarkBitMap* ParCompactionManager::_mark_bitmap = NULL;
RegionTaskQueueSet* ParCompactionManager::_region_array = NULL; RegionTaskQueueSet* ParCompactionManager::_region_array = NULL;
uint* ParCompactionManager::_recycled_stack_index = NULL;
int ParCompactionManager::_recycled_top = -1;
int ParCompactionManager::_recycled_bottom = -1;
ParCompactionManager::ParCompactionManager() : ParCompactionManager::ParCompactionManager() :
_action(CopyAndUpdate) { _action(CopyAndUpdate),
_region_stack(NULL),
_region_stack_index((uint)max_uintx) {
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap(); ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity"); assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
@ -57,7 +66,10 @@ ParCompactionManager::ParCompactionManager() :
marking_stack()->initialize(); marking_stack()->initialize();
_objarray_stack.initialize(); _objarray_stack.initialize();
region_stack()->initialize(); }
ParCompactionManager::~ParCompactionManager() {
delete _recycled_stack_index;
} }
void ParCompactionManager::initialize(ParMarkBitMap* mbm) { void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
@ -72,6 +84,19 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
_manager_array = NEW_C_HEAP_ARRAY(ParCompactionManager*, parallel_gc_threads+1 ); _manager_array = NEW_C_HEAP_ARRAY(ParCompactionManager*, parallel_gc_threads+1 );
guarantee(_manager_array != NULL, "Could not allocate manager_array"); guarantee(_manager_array != NULL, "Could not allocate manager_array");
_region_list = NEW_C_HEAP_ARRAY(RegionTaskQueue*,
parallel_gc_threads+1);
guarantee(_region_list != NULL, "Could not initialize promotion manager");
_recycled_stack_index = NEW_C_HEAP_ARRAY(uint, parallel_gc_threads);
// parallel_gc-threads + 1 to be consistent with the number of
// compaction managers.
for(uint i=0; i<parallel_gc_threads + 1; i++) {
_region_list[i] = new RegionTaskQueue();
region_list(i)->initialize();
}
_stack_array = new OopTaskQueueSet(parallel_gc_threads); _stack_array = new OopTaskQueueSet(parallel_gc_threads);
guarantee(_stack_array != NULL, "Could not allocate stack_array"); guarantee(_stack_array != NULL, "Could not allocate stack_array");
_objarray_queues = new ObjArrayTaskQueueSet(parallel_gc_threads); _objarray_queues = new ObjArrayTaskQueueSet(parallel_gc_threads);
@ -85,7 +110,7 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
guarantee(_manager_array[i] != NULL, "Could not create ParCompactionManager"); guarantee(_manager_array[i] != NULL, "Could not create ParCompactionManager");
stack_array()->register_queue(i, _manager_array[i]->marking_stack()); stack_array()->register_queue(i, _manager_array[i]->marking_stack());
_objarray_queues->register_queue(i, &_manager_array[i]->_objarray_stack); _objarray_queues->register_queue(i, &_manager_array[i]->_objarray_stack);
region_array()->register_queue(i, _manager_array[i]->region_stack()); region_array()->register_queue(i, region_list(i));
} }
// The VMThread gets its own ParCompactionManager, which is not available // The VMThread gets its own ParCompactionManager, which is not available
@ -97,6 +122,29 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
"Not initialized?"); "Not initialized?");
} }
int ParCompactionManager::pop_recycled_stack_index() {
assert(_recycled_bottom <= _recycled_top, "list is empty");
// Get the next available index
if (_recycled_bottom < _recycled_top) {
uint cur, next, last;
do {
cur = _recycled_bottom;
next = cur + 1;
last = Atomic::cmpxchg(next, &_recycled_bottom, cur);
} while (cur != last);
return _recycled_stack_index[next];
} else {
return -1;
}
}
void ParCompactionManager::push_recycled_stack_index(uint v) {
// Get the next available index
int cur = Atomic::add(1, &_recycled_top);
_recycled_stack_index[cur] = v;
assert(_recycled_bottom <= _recycled_top, "list top and bottom are wrong");
}
bool ParCompactionManager::should_update() { bool ParCompactionManager::should_update() {
assert(action() != NotValid, "Action is not set"); assert(action() != NotValid, "Action is not set");
return (action() == ParCompactionManager::Update) || return (action() == ParCompactionManager::Update) ||
@ -121,6 +169,15 @@ bool ParCompactionManager::should_reset_only() {
return action() == ParCompactionManager::ResetObjects; return action() == ParCompactionManager::ResetObjects;
} }
void ParCompactionManager::region_list_push(uint list_index,
size_t region_index) {
region_list(list_index)->push(region_index);
}
void ParCompactionManager::verify_region_list_empty(uint list_index) {
assert(region_list(list_index)->is_empty(), "Not empty");
}
ParCompactionManager* ParCompactionManager*
ParCompactionManager::gc_thread_compaction_manager(int index) { ParCompactionManager::gc_thread_compaction_manager(int index) {
assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range"); assert(index >= 0 && index < (int)ParallelGCThreads, "index out of range");

View File

@ -48,6 +48,7 @@ class ParCompactionManager : public CHeapObj {
friend class StealRegionCompactionTask; friend class StealRegionCompactionTask;
friend class UpdateAndFillClosure; friend class UpdateAndFillClosure;
friend class RefProcTaskExecutor; friend class RefProcTaskExecutor;
friend class IdleGCTask;
public: public:
@ -85,7 +86,31 @@ private:
// Is there a way to reuse the _marking_stack for the // Is there a way to reuse the _marking_stack for the
// saving empty regions? For now just create a different // saving empty regions? For now just create a different
// type of TaskQueue. // type of TaskQueue.
RegionTaskQueue _region_stack; RegionTaskQueue* _region_stack;
static RegionTaskQueue** _region_list;
// Index in _region_list for current _region_stack.
uint _region_stack_index;
// Indexes of recycled region stacks/overflow stacks
// Stacks of regions to be compacted are embedded in the tasks doing
// the compaction. A thread that executes the task extracts the
// region stack and drains it. These threads keep these region
// stacks for use during compaction task stealing. If a thread
// gets a second draining task, it pushed its current region stack
// index into the array _recycled_stack_index and gets a new
// region stack from the task. A thread that is executing a
// compaction stealing task without ever having executing a
// draining task, will get a region stack from _recycled_stack_index.
//
// Array of indexes into the array of region stacks.
static uint* _recycled_stack_index;
// The index into _recycled_stack_index of the last region stack index
// pushed. If -1, there are no entries into _recycled_stack_index.
static int _recycled_top;
// The index into _recycled_stack_index of the last region stack index
// popped. If -1, there has not been any entry popped.
static int _recycled_bottom;
Stack<Klass*> _revisit_klass_stack; Stack<Klass*> _revisit_klass_stack;
Stack<DataLayout*> _revisit_mdo_stack; Stack<DataLayout*> _revisit_mdo_stack;
@ -104,7 +129,6 @@ private:
// Array of tasks. Needed by the ParallelTaskTerminator. // Array of tasks. Needed by the ParallelTaskTerminator.
static RegionTaskQueueSet* region_array() { return _region_array; } static RegionTaskQueueSet* region_array() { return _region_array; }
OverflowTaskQueue<oop>* marking_stack() { return &_marking_stack; } OverflowTaskQueue<oop>* marking_stack() { return &_marking_stack; }
RegionTaskQueue* region_stack() { return &_region_stack; }
// Pushes onto the marking stack. If the marking stack is full, // Pushes onto the marking stack. If the marking stack is full,
// pushes onto the overflow stack. // pushes onto the overflow stack.
@ -116,10 +140,33 @@ private:
Action action() { return _action; } Action action() { return _action; }
void set_action(Action v) { _action = v; } void set_action(Action v) { _action = v; }
RegionTaskQueue* region_stack() { return _region_stack; }
void set_region_stack(RegionTaskQueue* v) { _region_stack = v; }
inline static ParCompactionManager* manager_array(int index); inline static ParCompactionManager* manager_array(int index);
ParCompactionManager(); inline static RegionTaskQueue* region_list(int index) {
return _region_list[index];
}
uint region_stack_index() { return _region_stack_index; }
void set_region_stack_index(uint v) { _region_stack_index = v; }
// Pop and push unique reusable stack index
static int pop_recycled_stack_index();
static void push_recycled_stack_index(uint v);
static void reset_recycled_stack_index() {
_recycled_bottom = _recycled_top = -1;
}
ParCompactionManager();
~ParCompactionManager();
// Pushes onto the region stack at the given index. If the
// region stack is full,
// pushes onto the region overflow stack.
static void region_list_push(uint stack_index, size_t region_index);
static void verify_region_list_empty(uint stack_index);
ParMarkBitMap* mark_bitmap() { return _mark_bitmap; } ParMarkBitMap* mark_bitmap() { return _mark_bitmap; }
// Take actions in preparation for a compaction. // Take actions in preparation for a compaction.

View File

@ -2045,6 +2045,11 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
ResourceMark rm; ResourceMark rm;
HandleMark hm; HandleMark hm;
// Set the number of GC threads to be used in this collection
gc_task_manager()->set_active_gang();
gc_task_manager()->task_idle_workers();
heap->set_par_threads(gc_task_manager()->active_workers());
const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc; const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
// This is useful for debugging but don't change the output the // This is useful for debugging but don't change the output the
@ -2197,6 +2202,7 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
// Track memory usage and detect low memory // Track memory usage and detect low memory
MemoryService::track_memory_usage(); MemoryService::track_memory_usage();
heap->update_counters(); heap->update_counters();
gc_task_manager()->release_idle_workers();
} }
#ifdef ASSERT #ifdef ASSERT
@ -2204,7 +2210,7 @@ void PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
ParCompactionManager* const cm = ParCompactionManager* const cm =
ParCompactionManager::manager_array(int(i)); ParCompactionManager::manager_array(int(i));
assert(cm->marking_stack()->is_empty(), "should be empty"); assert(cm->marking_stack()->is_empty(), "should be empty");
assert(cm->region_stack()->is_empty(), "should be empty"); assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
assert(cm->revisit_klass_stack()->is_empty(), "should be empty"); assert(cm->revisit_klass_stack()->is_empty(), "should be empty");
} }
#endif // ASSERT #endif // ASSERT
@ -2351,8 +2357,9 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
ParallelScavengeHeap* heap = gc_heap(); ParallelScavengeHeap* heap = gc_heap();
uint parallel_gc_threads = heap->gc_task_manager()->workers(); uint parallel_gc_threads = heap->gc_task_manager()->workers();
uint active_gc_threads = heap->gc_task_manager()->active_workers();
TaskQueueSetSuper* qset = ParCompactionManager::region_array(); TaskQueueSetSuper* qset = ParCompactionManager::region_array();
ParallelTaskTerminator terminator(parallel_gc_threads, qset); ParallelTaskTerminator terminator(active_gc_threads, qset);
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm); PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
PSParallelCompact::FollowStackClosure follow_stack_closure(cm); PSParallelCompact::FollowStackClosure follow_stack_closure(cm);
@ -2374,21 +2381,13 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti)); q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache)); q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
if (parallel_gc_threads > 1) { if (active_gc_threads > 1) {
for (uint j = 0; j < parallel_gc_threads; j++) { for (uint j = 0; j < active_gc_threads; j++) {
q->enqueue(new StealMarkingTask(&terminator)); q->enqueue(new StealMarkingTask(&terminator));
} }
} }
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create(); gc_task_manager()->execute_and_wait(q);
q->enqueue(fin);
gc_task_manager()->add_list(q);
fin->wait_for();
// We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin);
} }
// Process reference objects found during marking // Process reference objects found during marking
@ -2483,10 +2482,22 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
{ {
TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty); TraceTime tm("drain task setup", print_phases(), true, gclog_or_tty);
const unsigned int task_count = MAX2(parallel_gc_threads, 1U); // Find the threads that are active
for (unsigned int j = 0; j < task_count; j++) { unsigned int which = 0;
const uint task_count = MAX2(parallel_gc_threads, 1U);
for (uint j = 0; j < task_count; j++) {
q->enqueue(new DrainStacksCompactionTask(j)); q->enqueue(new DrainStacksCompactionTask(j));
ParCompactionManager::verify_region_list_empty(j);
// Set the region stacks variables to "no" region stack values
// so that they will be recognized and needing a region stack
// in the stealing tasks if they do not get one by executing
// a draining stack.
ParCompactionManager* cm = ParCompactionManager::manager_array(j);
cm->set_region_stack(NULL);
cm->set_region_stack_index((uint)max_uintx);
} }
ParCompactionManager::reset_recycled_stack_index();
// Find all regions that are available (can be filled immediately) and // Find all regions that are available (can be filled immediately) and
// distribute them to the thread stacks. The iteration is done in reverse // distribute them to the thread stacks. The iteration is done in reverse
@ -2495,8 +2506,10 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
const ParallelCompactData& sd = PSParallelCompact::summary_data(); const ParallelCompactData& sd = PSParallelCompact::summary_data();
size_t fillable_regions = 0; // A count for diagnostic purposes. size_t fillable_regions = 0; // A count for diagnostic purposes.
unsigned int which = 0; // The worker thread number. // A region index which corresponds to the tasks created above.
// "which" must be 0 <= which < task_count
which = 0;
for (unsigned int id = to_space_id; id > perm_space_id; --id) { for (unsigned int id = to_space_id; id > perm_space_id; --id) {
SpaceInfo* const space_info = _space_info + id; SpaceInfo* const space_info = _space_info + id;
MutableSpace* const space = space_info->space(); MutableSpace* const space = space_info->space();
@ -2509,8 +2522,7 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
for (size_t cur = end_region - 1; cur >= beg_region; --cur) { for (size_t cur = end_region - 1; cur >= beg_region; --cur) {
if (sd.region(cur)->claim_unsafe()) { if (sd.region(cur)->claim_unsafe()) {
ParCompactionManager* cm = ParCompactionManager::manager_array(which); ParCompactionManager::region_list_push(which, cur);
cm->push_region(cur);
if (TraceParallelOldGCCompactionPhase && Verbose) { if (TraceParallelOldGCCompactionPhase && Verbose) {
const size_t count_mod_8 = fillable_regions & 7; const size_t count_mod_8 = fillable_regions & 7;
@ -2521,8 +2533,10 @@ void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
NOT_PRODUCT(++fillable_regions;) NOT_PRODUCT(++fillable_regions;)
// Assign regions to threads in round-robin fashion. // Assign regions to tasks in round-robin fashion.
if (++which == task_count) { if (++which == task_count) {
assert(which <= parallel_gc_threads,
"Inconsistent number of workers");
which = 0; which = 0;
} }
} }
@ -2642,26 +2656,19 @@ void PSParallelCompact::compact() {
PSOldGen* old_gen = heap->old_gen(); PSOldGen* old_gen = heap->old_gen();
old_gen->start_array()->reset(); old_gen->start_array()->reset();
uint parallel_gc_threads = heap->gc_task_manager()->workers(); uint parallel_gc_threads = heap->gc_task_manager()->workers();
uint active_gc_threads = heap->gc_task_manager()->active_workers();
TaskQueueSetSuper* qset = ParCompactionManager::region_array(); TaskQueueSetSuper* qset = ParCompactionManager::region_array();
ParallelTaskTerminator terminator(parallel_gc_threads, qset); ParallelTaskTerminator terminator(active_gc_threads, qset);
GCTaskQueue* q = GCTaskQueue::create(); GCTaskQueue* q = GCTaskQueue::create();
enqueue_region_draining_tasks(q, parallel_gc_threads); enqueue_region_draining_tasks(q, active_gc_threads);
enqueue_dense_prefix_tasks(q, parallel_gc_threads); enqueue_dense_prefix_tasks(q, active_gc_threads);
enqueue_region_stealing_tasks(q, &terminator, parallel_gc_threads); enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
{ {
TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty); TraceTime tm_pc("par compact", print_phases(), true, gclog_or_tty);
WaitForBarrierGCTask* fin = WaitForBarrierGCTask::create(); gc_task_manager()->execute_and_wait(q);
q->enqueue(fin);
gc_task_manager()->add_list(q);
fin->wait_for();
// We have to release the barrier tasks!
WaitForBarrierGCTask::destroy(fin);
#ifdef ASSERT #ifdef ASSERT
// Verify that all regions have been processed before the deferred updates. // Verify that all regions have been processed before the deferred updates.
@ -2729,6 +2736,9 @@ void
PSParallelCompact::follow_weak_klass_links() { PSParallelCompact::follow_weak_klass_links() {
// All klasses on the revisit stack are marked at this point. // All klasses on the revisit stack are marked at this point.
// Update and follow all subklass, sibling and implementor links. // Update and follow all subklass, sibling and implementor links.
// Check all the stacks here even if not all the workers are active.
// There is no accounting which indicates which stacks might have
// contents to be followed.
if (PrintRevisitStats) { if (PrintRevisitStats) {
gclog_or_tty->print_cr("#classes in system dictionary = %d", gclog_or_tty->print_cr("#classes in system dictionary = %d",
SystemDictionary::number_of_classes()); SystemDictionary::number_of_classes());

View File

@ -181,28 +181,29 @@ class PSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
void PSRefProcTaskExecutor::execute(ProcessTask& task) void PSRefProcTaskExecutor::execute(ProcessTask& task)
{ {
GCTaskQueue* q = GCTaskQueue::create(); GCTaskQueue* q = GCTaskQueue::create();
for(uint i=0; i<ParallelGCThreads; i++) { GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
for(uint i=0; i < manager->active_workers(); i++) {
q->enqueue(new PSRefProcTaskProxy(task, i)); q->enqueue(new PSRefProcTaskProxy(task, i));
} }
ParallelTaskTerminator terminator( ParallelTaskTerminator terminator(manager->active_workers(),
ParallelScavengeHeap::gc_task_manager()->workers(),
(TaskQueueSetSuper*) PSPromotionManager::stack_array_depth()); (TaskQueueSetSuper*) PSPromotionManager::stack_array_depth());
if (task.marks_oops_alive() && ParallelGCThreads > 1) { if (task.marks_oops_alive() && manager->active_workers() > 1) {
for (uint j=0; j<ParallelGCThreads; j++) { for (uint j = 0; j < manager->active_workers(); j++) {
q->enqueue(new StealTask(&terminator)); q->enqueue(new StealTask(&terminator));
} }
} }
ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q); manager->execute_and_wait(q);
} }
void PSRefProcTaskExecutor::execute(EnqueueTask& task) void PSRefProcTaskExecutor::execute(EnqueueTask& task)
{ {
GCTaskQueue* q = GCTaskQueue::create(); GCTaskQueue* q = GCTaskQueue::create();
for(uint i=0; i<ParallelGCThreads; i++) { GCTaskManager* manager = ParallelScavengeHeap::gc_task_manager();
for(uint i=0; i < manager->active_workers(); i++) {
q->enqueue(new PSRefEnqueueTaskProxy(task, i)); q->enqueue(new PSRefEnqueueTaskProxy(task, i));
} }
ParallelScavengeHeap::gc_task_manager()->execute_and_wait(q); manager->execute_and_wait(q);
} }
// This method contains all heap specific policy for invoking scavenge. // This method contains all heap specific policy for invoking scavenge.
@ -375,6 +376,14 @@ bool PSScavenge::invoke_no_policy() {
// Release all previously held resources // Release all previously held resources
gc_task_manager()->release_all_resources(); gc_task_manager()->release_all_resources();
// Set the number of GC threads to be used in this collection
gc_task_manager()->set_active_gang();
gc_task_manager()->task_idle_workers();
// Get the active number of workers here and use that value
// throughout the methods.
uint active_workers = gc_task_manager()->active_workers();
heap->set_par_threads(active_workers);
PSPromotionManager::pre_scavenge(); PSPromotionManager::pre_scavenge();
// We'll use the promotion manager again later. // We'll use the promotion manager again later.
@ -385,8 +394,9 @@ bool PSScavenge::invoke_no_policy() {
GCTaskQueue* q = GCTaskQueue::create(); GCTaskQueue* q = GCTaskQueue::create();
for(uint i=0; i<ParallelGCThreads; i++) { uint stripe_total = active_workers;
q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i)); for(uint i=0; i < stripe_total; i++) {
q->enqueue(new OldToYoungRootsTask(old_gen, old_top, i, stripe_total));
} }
q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top)); q->enqueue(new SerialOldToYoungRootsTask(perm_gen, perm_top));
@ -403,10 +413,10 @@ bool PSScavenge::invoke_no_policy() {
q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache)); q->enqueue(new ScavengeRootsTask(ScavengeRootsTask::code_cache));
ParallelTaskTerminator terminator( ParallelTaskTerminator terminator(
gc_task_manager()->workers(), active_workers,
(TaskQueueSetSuper*) promotion_manager->stack_array_depth()); (TaskQueueSetSuper*) promotion_manager->stack_array_depth());
if (ParallelGCThreads>1) { if (active_workers > 1) {
for (uint j=0; j<ParallelGCThreads; j++) { for (uint j = 0; j < active_workers; j++) {
q->enqueue(new StealTask(&terminator)); q->enqueue(new StealTask(&terminator));
} }
} }
@ -419,6 +429,7 @@ bool PSScavenge::invoke_no_policy() {
// Process reference objects discovered during scavenge // Process reference objects discovered during scavenge
{ {
reference_processor()->setup_policy(false); // not always_clear reference_processor()->setup_policy(false); // not always_clear
reference_processor()->set_active_mt_degree(active_workers);
PSKeepAliveClosure keep_alive(promotion_manager); PSKeepAliveClosure keep_alive(promotion_manager);
PSEvacuateFollowersClosure evac_followers(promotion_manager); PSEvacuateFollowersClosure evac_followers(promotion_manager);
if (reference_processor()->processing_is_mt()) { if (reference_processor()->processing_is_mt()) {
@ -622,6 +633,8 @@ bool PSScavenge::invoke_no_policy() {
// Track memory usage and detect low memory // Track memory usage and detect low memory
MemoryService::track_memory_usage(); MemoryService::track_memory_usage();
heap->update_counters(); heap->update_counters();
gc_task_manager()->release_idle_workers();
} }
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) { if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
@ -804,6 +817,7 @@ void PSScavenge::initialize() {
// Initialize ref handling object for scavenging. // Initialize ref handling object for scavenging.
MemRegion mr = young_gen->reserved(); MemRegion mr = young_gen->reserved();
_ref_processor = _ref_processor =
new ReferenceProcessor(mr, // span new ReferenceProcessor(mr, // span
ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing

View File

@ -202,7 +202,8 @@ void OldToYoungRootsTask::do_it(GCTaskManager* manager, uint which) {
_gen->object_space(), _gen->object_space(),
_gen_top, _gen_top,
pm, pm,
_stripe_number); _stripe_number,
_stripe_total);
// Do the real work // Do the real work
pm->drain_stacks(false); pm->drain_stacks(false);

View File

@ -135,16 +135,63 @@ class SerialOldToYoungRootsTask : public GCTask {
// OldToYoungRootsTask // OldToYoungRootsTask
// //
// This task is used to scan old to young roots in parallel // This task is used to scan old to young roots in parallel
//
// A GC thread executing this tasks divides the generation (old gen)
// into slices and takes a stripe in the slice as its part of the
// work.
//
// +===============+ slice 0
// | stripe 0 |
// +---------------+
// | stripe 1 |
// +---------------+
// | stripe 2 |
// +---------------+
// | stripe 3 |
// +===============+ slice 1
// | stripe 0 |
// +---------------+
// | stripe 1 |
// +---------------+
// | stripe 2 |
// +---------------+
// | stripe 3 |
// +===============+ slice 2
// ...
//
// A task is created for each stripe. In this case there are 4 tasks
// created. A GC thread first works on its stripe within slice 0
// and then moves to its stripe in the next slice until all stripes
// exceed the top of the generation. Note that having fewer GC threads
// than stripes works because all the tasks are executed so all stripes
// will be covered. In this example if 4 tasks have been created to cover
// all the stripes and there are only 3 threads, one of the threads will
// get the tasks with the 4th stripe. However, there is a dependence in
// CardTableExtension::scavenge_contents_parallel() on the number
// of tasks created. In scavenge_contents_parallel the distance
// to the next stripe is calculated based on the number of tasks.
// If the stripe width is ssize, a task's next stripe is at
// ssize * number_of_tasks (= slice_stride). In this case after
// finishing stripe 0 in slice 0, the thread finds the stripe 0 in slice1
// by adding slice_stride to the start of stripe 0 in slice 0 to get
// to the start of stride 0 in slice 1.
class OldToYoungRootsTask : public GCTask { class OldToYoungRootsTask : public GCTask {
private: private:
PSOldGen* _gen; PSOldGen* _gen;
HeapWord* _gen_top; HeapWord* _gen_top;
uint _stripe_number; uint _stripe_number;
uint _stripe_total;
public: public:
OldToYoungRootsTask(PSOldGen *gen, HeapWord* gen_top, uint stripe_number) : OldToYoungRootsTask(PSOldGen *gen,
_gen(gen), _gen_top(gen_top), _stripe_number(stripe_number) { } HeapWord* gen_top,
uint stripe_number,
uint stripe_total) :
_gen(gen),
_gen_top(gen_top),
_stripe_number(stripe_number),
_stripe_total(stripe_total) { }
char* name() { return (char *)"old-to-young-roots-task"; } char* name() { return (char *)"old-to-young-roots-task"; }

View File

@ -28,8 +28,10 @@
#include "memory/collectorPolicy.hpp" #include "memory/collectorPolicy.hpp"
#include "runtime/timer.hpp" #include "runtime/timer.hpp"
#include "utilities/ostream.hpp" #include "utilities/ostream.hpp"
#include "utilities/workgroup.hpp"
elapsedTimer AdaptiveSizePolicy::_minor_timer; elapsedTimer AdaptiveSizePolicy::_minor_timer;
elapsedTimer AdaptiveSizePolicy::_major_timer; elapsedTimer AdaptiveSizePolicy::_major_timer;
bool AdaptiveSizePolicy::_debug_perturbation = false;
// The throughput goal is implemented as // The throughput goal is implemented as
// _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio)) // _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
@ -88,6 +90,134 @@ AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
_young_gen_policy_is_ready = false; _young_gen_policy_is_ready = false;
} }
// If the number of GC threads was set on the command line,
// use it.
// Else
// Calculate the number of GC threads based on the number of Java threads.
// Calculate the number of GC threads based on the size of the heap.
// Use the larger.
int AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
const uintx min_workers,
uintx active_workers,
uintx application_workers) {
// If the user has specifically set the number of
// GC threads, use them.
// If the user has turned off using a dynamic number of GC threads
// or the users has requested a specific number, set the active
// number of workers to all the workers.
uintx new_active_workers = total_workers;
uintx prev_active_workers = active_workers;
uintx active_workers_by_JT = 0;
uintx active_workers_by_heap_size = 0;
// Always use at least min_workers but use up to
// GCThreadsPerJavaThreads * application threads.
active_workers_by_JT =
MAX2((uintx) GCWorkersPerJavaThread * application_workers,
min_workers);
// Choose a number of GC threads based on the current size
// of the heap. This may be complicated because the size of
// the heap depends on factors such as the thoughput goal.
// Still a large heap should be collected by more GC threads.
active_workers_by_heap_size =
MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);
uintx max_active_workers =
MAX2(active_workers_by_JT, active_workers_by_heap_size);
// Limit the number of workers to the the number created,
// (workers()).
new_active_workers = MIN2(max_active_workers,
(uintx) total_workers);
// Increase GC workers instantly but decrease them more
// slowly.
if (new_active_workers < prev_active_workers) {
new_active_workers =
MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
}
// Check once more that the number of workers is within the limits.
assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
assert(new_active_workers >= min_workers, "Minimum workers not observed");
assert(new_active_workers <= total_workers, "Total workers not observed");
if (ForceDynamicNumberOfGCThreads) {
// Assume this is debugging and jiggle the number of GC threads.
if (new_active_workers == prev_active_workers) {
if (new_active_workers < total_workers) {
new_active_workers++;
} else if (new_active_workers > min_workers) {
new_active_workers--;
}
}
if (new_active_workers == total_workers) {
if (_debug_perturbation) {
new_active_workers = min_workers;
}
_debug_perturbation = !_debug_perturbation;
}
assert((new_active_workers <= (uintx) ParallelGCThreads) &&
(new_active_workers >= min_workers),
"Jiggled active workers too much");
}
if (TraceDynamicGCThreads) {
gclog_or_tty->print_cr("GCTaskManager::calc_default_active_workers() : "
"active_workers(): %d new_acitve_workers: %d "
"prev_active_workers: %d\n"
" active_workers_by_JT: %d active_workers_by_heap_size: %d",
active_workers, new_active_workers, prev_active_workers,
active_workers_by_JT, active_workers_by_heap_size);
}
assert(new_active_workers > 0, "Always need at least 1");
return new_active_workers;
}
int AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
uintx active_workers,
uintx application_workers) {
// If the user has specifically set the number of
// GC threads, use them.
// If the user has turned off using a dynamic number of GC threads
// or the users has requested a specific number, set the active
// number of workers to all the workers.
int new_active_workers;
if (!UseDynamicNumberOfGCThreads ||
(!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
new_active_workers = total_workers;
} else {
new_active_workers = calc_default_active_workers(total_workers,
2, /* Minimum number of workers */
active_workers,
application_workers);
}
assert(new_active_workers > 0, "Always need at least 1");
return new_active_workers;
}
int AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
uintx active_workers,
uintx application_workers) {
if (!UseDynamicNumberOfGCThreads ||
(!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
return ConcGCThreads;
} else {
int no_of_gc_threads = calc_default_active_workers(
total_workers,
1, /* Minimum number of workers */
active_workers,
application_workers);
return no_of_gc_threads;
}
}
bool AdaptiveSizePolicy::tenuring_threshold_change() const { bool AdaptiveSizePolicy::tenuring_threshold_change() const {
return decrement_tenuring_threshold_for_gc_cost() || return decrement_tenuring_threshold_for_gc_cost() ||
increment_tenuring_threshold_for_gc_cost() || increment_tenuring_threshold_for_gc_cost() ||

View File

@ -187,6 +187,8 @@ class AdaptiveSizePolicy : public CHeapObj {
julong _young_gen_change_for_minor_throughput; julong _young_gen_change_for_minor_throughput;
julong _old_gen_change_for_major_throughput; julong _old_gen_change_for_major_throughput;
static const uint GCWorkersPerJavaThread = 2;
// Accessors // Accessors
double gc_pause_goal_sec() const { return _gc_pause_goal_sec; } double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
@ -331,6 +333,8 @@ class AdaptiveSizePolicy : public CHeapObj {
// Return true if the policy suggested a change. // Return true if the policy suggested a change.
bool tenuring_threshold_change() const; bool tenuring_threshold_change() const;
static bool _debug_perturbation;
public: public:
AdaptiveSizePolicy(size_t init_eden_size, AdaptiveSizePolicy(size_t init_eden_size,
size_t init_promo_size, size_t init_promo_size,
@ -338,6 +342,31 @@ class AdaptiveSizePolicy : public CHeapObj {
double gc_pause_goal_sec, double gc_pause_goal_sec,
uint gc_cost_ratio); uint gc_cost_ratio);
// Return number default GC threads to use in the next GC.
static int calc_default_active_workers(uintx total_workers,
const uintx min_workers,
uintx active_workers,
uintx application_workers);
// Return number of GC threads to use in the next GC.
// This is called sparingly so as not to change the
// number of GC workers gratuitously.
// For ParNew collections
// For PS scavenge and ParOld collections
// For G1 evacuation pauses (subject to update)
// Other collection phases inherit the number of
// GC workers from the calls above. For example,
// a CMS parallel remark uses the same number of GC
// workers as the most recent ParNew collection.
static int calc_active_workers(uintx total_workers,
uintx active_workers,
uintx application_workers);
// Return number of GC threads to use in the next concurrent GC phase.
static int calc_active_conc_workers(uintx total_workers,
uintx active_workers,
uintx application_workers);
bool is_gc_cms_adaptive_size_policy() { bool is_gc_cms_adaptive_size_policy() {
return kind() == _gc_cms_adaptive_size_policy; return kind() == _gc_cms_adaptive_size_policy;
} }

View File

@ -460,9 +460,43 @@ void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
OopsInGenClosure* cl, OopsInGenClosure* cl,
CardTableRS* ct) { CardTableRS* ct) {
if (!mr.is_empty()) { if (!mr.is_empty()) {
// Caller (process_strong_roots()) claims that all GC threads
// execute this call. With UseDynamicNumberOfGCThreads now all
// active GC threads execute this call. The number of active GC
// threads needs to be passed to par_non_clean_card_iterate_work()
// to get proper partitioning and termination.
//
// This is an example of where n_par_threads() is used instead
// of workers()->active_workers(). n_par_threads can be set to 0 to
// turn off parallelism. For example when this code is called as
// part of verification and SharedHeap::process_strong_roots() is being
// used, then n_par_threads() may have been set to 0. active_workers
// is not overloaded with the meaning that it is a switch to disable
// parallelism and so keeps the meaning of the number of
// active gc workers. If parallelism has not been shut off by
// setting n_par_threads to 0, then n_par_threads should be
// equal to active_workers. When a different mechanism for shutting
// off parallelism is used, then active_workers can be used in
// place of n_par_threads.
// This is an example of a path where n_par_threads is
// set to 0 to turn off parallism.
// [7] CardTableModRefBS::non_clean_card_iterate()
// [8] CardTableRS::younger_refs_in_space_iterate()
// [9] Generation::younger_refs_in_space_iterate()
// [10] OneContigSpaceCardGeneration::younger_refs_iterate()
// [11] CompactingPermGenGen::younger_refs_iterate()
// [12] CardTableRS::younger_refs_iterate()
// [13] SharedHeap::process_strong_roots()
// [14] G1CollectedHeap::verify()
// [15] Universe::verify()
// [16] G1CollectedHeap::do_collection_pause_at_safepoint()
//
int n_threads = SharedHeap::heap()->n_par_threads(); int n_threads = SharedHeap::heap()->n_par_threads();
if (n_threads > 0) { bool is_par = n_threads > 0;
if (is_par) {
#ifndef SERIALGC #ifndef SERIALGC
assert(SharedHeap::heap()->n_par_threads() ==
SharedHeap::heap()->workers()->active_workers(), "Mismatch");
non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads); non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
#else // SERIALGC #else // SERIALGC
fatal("Parallel gc not supported here."); fatal("Parallel gc not supported here.");
@ -489,6 +523,10 @@ void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
// change their values in any manner. // change their values in any manner.
void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr, void CardTableModRefBS::non_clean_card_iterate_serial(MemRegion mr,
MemRegionClosure* cl) { MemRegionClosure* cl) {
bool is_par = (SharedHeap::heap()->n_par_threads() > 0);
assert(!is_par ||
(SharedHeap::heap()->n_par_threads() ==
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
for (int i = 0; i < _cur_covered_regions; i++) { for (int i = 0; i < _cur_covered_regions; i++) {
MemRegion mri = mr.intersection(_covered[i]); MemRegion mri = mr.intersection(_covered[i]);
if (mri.word_size() > 0) { if (mri.word_size() > 0) {

View File

@ -164,7 +164,13 @@ inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
ClearNoncleanCardWrapper::ClearNoncleanCardWrapper( ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) : DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
_dirty_card_closure(dirty_card_closure), _ct(ct) { _dirty_card_closure(dirty_card_closure), _ct(ct) {
// Cannot yet substitute active_workers for n_par_threads
// in the case where parallelism is being turned off by
// setting n_par_threads to 0.
_is_par = (SharedHeap::heap()->n_par_threads() > 0); _is_par = (SharedHeap::heap()->n_par_threads() > 0);
assert(!_is_par ||
(SharedHeap::heap()->n_par_threads() ==
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
} }
void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) { void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {

View File

@ -58,7 +58,6 @@ SharedHeap::SharedHeap(CollectorPolicy* policy_) :
_perm_gen(NULL), _rem_set(NULL), _perm_gen(NULL), _rem_set(NULL),
_strong_roots_parity(0), _strong_roots_parity(0),
_process_strong_tasks(new SubTasksDone(SH_PS_NumElements)), _process_strong_tasks(new SubTasksDone(SH_PS_NumElements)),
_n_par_threads(0),
_workers(NULL) _workers(NULL)
{ {
if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) { if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
@ -80,6 +79,14 @@ SharedHeap::SharedHeap(CollectorPolicy* policy_) :
} }
} }
int SharedHeap::n_termination() {
return _process_strong_tasks->n_threads();
}
void SharedHeap::set_n_termination(int t) {
_process_strong_tasks->set_n_threads(t);
}
bool SharedHeap::heap_lock_held_for_gc() { bool SharedHeap::heap_lock_held_for_gc() {
Thread* t = Thread::current(); Thread* t = Thread::current();
return Heap_lock->owned_by_self() return Heap_lock->owned_by_self()
@ -144,6 +151,10 @@ void SharedHeap::process_strong_roots(bool activate_scope,
StrongRootsScope srs(this, activate_scope); StrongRootsScope srs(this, activate_scope);
// General strong roots. // General strong roots.
assert(_strong_roots_parity != 0, "must have called prologue code"); assert(_strong_roots_parity != 0, "must have called prologue code");
// _n_termination for _process_strong_tasks should be set up stream
// in a method not running in a GC worker. Otherwise the GC worker
// could be trying to change the termination condition while the task
// is executing in another GC worker.
if (!_process_strong_tasks->is_task_claimed(SH_PS_Universe_oops_do)) { if (!_process_strong_tasks->is_task_claimed(SH_PS_Universe_oops_do)) {
Universe::oops_do(roots); Universe::oops_do(roots);
// Consider perm-gen discovered lists to be strong. // Consider perm-gen discovered lists to be strong.

View File

@ -49,6 +49,62 @@ class FlexibleWorkGang;
class CollectorPolicy; class CollectorPolicy;
class KlassHandle; class KlassHandle;
// Note on use of FlexibleWorkGang's for GC.
// There are three places where task completion is determined.
// In
// 1) ParallelTaskTerminator::offer_termination() where _n_threads
// must be set to the correct value so that count of workers that
// have offered termination will exactly match the number
// working on the task. Tasks such as those derived from GCTask
// use ParallelTaskTerminator's. Tasks that want load balancing
// by work stealing use this method to gauge completion.
// 2) SubTasksDone has a variable _n_threads that is used in
// all_tasks_completed() to determine completion. all_tasks_complete()
// counts the number of tasks that have been done and then reset
// the SubTasksDone so that it can be used again. When the number of
// tasks is set to the number of GC workers, then _n_threads must
// be set to the number of active GC workers. G1CollectedHeap,
// HRInto_G1RemSet, GenCollectedHeap and SharedHeap have SubTasksDone.
// This seems too many.
// 3) SequentialSubTasksDone has an _n_threads that is used in
// a way similar to SubTasksDone and has the same dependency on the
// number of active GC workers. CompactibleFreeListSpace and Space
// have SequentialSubTasksDone's.
// Example of using SubTasksDone and SequentialSubTasksDone
// G1CollectedHeap::g1_process_strong_roots() calls
// process_strong_roots(false, // no scoping; this is parallel code
// collecting_perm_gen, so,
// &buf_scan_non_heap_roots,
// &eager_scan_code_roots,
// &buf_scan_perm);
// which delegates to SharedHeap::process_strong_roots() and uses
// SubTasksDone* _process_strong_tasks to claim tasks.
// process_strong_roots() calls
// rem_set()->younger_refs_iterate(perm_gen(), perm_blk);
// to scan the card table and which eventually calls down into
// CardTableModRefBS::par_non_clean_card_iterate_work(). This method
// uses SequentialSubTasksDone* _pst to claim tasks.
// Both SubTasksDone and SequentialSubTasksDone call their method
// all_tasks_completed() to count the number of GC workers that have
// finished their work. That logic is "when all the workers are
// finished the tasks are finished".
//
// The pattern that appears in the code is to set _n_threads
// to a value > 1 before a task that you would like executed in parallel
// and then to set it to 0 after that task has completed. A value of
// 0 is a "special" value in set_n_threads() which translates to
// setting _n_threads to 1.
//
// Some code uses _n_terminiation to decide if work should be done in
// parallel. The notorious possibly_parallel_oops_do() in threads.cpp
// is an example of such code. Look for variable "is_par" for other
// examples.
//
// The active_workers is not reset to 0 after a parallel phase. It's
// value may be used in later phases and in one instance at least
// (the parallel remark) it has to be used (the parallel remark depends
// on the partitioning done in the previous parallel scavenge).
class SharedHeap : public CollectedHeap { class SharedHeap : public CollectedHeap {
friend class VMStructs; friend class VMStructs;
@ -84,11 +140,6 @@ protected:
// If we're doing parallel GC, use this gang of threads. // If we're doing parallel GC, use this gang of threads.
FlexibleWorkGang* _workers; FlexibleWorkGang* _workers;
// Number of parallel threads currently working on GC tasks.
// O indicates use sequential code; 1 means use parallel code even with
// only one thread, for performance testing purposes.
int _n_par_threads;
// Full initialization is done in a concrete subtype's "initialize" // Full initialization is done in a concrete subtype's "initialize"
// function. // function.
SharedHeap(CollectorPolicy* policy_); SharedHeap(CollectorPolicy* policy_);
@ -107,6 +158,7 @@ public:
CollectorPolicy *collector_policy() const { return _collector_policy; } CollectorPolicy *collector_policy() const { return _collector_policy; }
void set_barrier_set(BarrierSet* bs); void set_barrier_set(BarrierSet* bs);
SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
// Does operations required after initialization has been done. // Does operations required after initialization has been done.
virtual void post_initialize(); virtual void post_initialize();
@ -198,13 +250,6 @@ public:
FlexibleWorkGang* workers() const { return _workers; } FlexibleWorkGang* workers() const { return _workers; }
// Sets the number of parallel threads that will be doing tasks
// (such as process strong roots) subsequently.
virtual void set_par_threads(int t);
// Number of threads currently working on GC tasks.
int n_par_threads() { return _n_par_threads; }
// Invoke the "do_oop" method the closure "roots" on all root locations. // Invoke the "do_oop" method the closure "roots" on all root locations.
// If "collecting_perm_gen" is false, then roots that may only contain // If "collecting_perm_gen" is false, then roots that may only contain
// references to permGen objects are not scanned; instead, in that case, // references to permGen objects are not scanned; instead, in that case,
@ -240,6 +285,13 @@ public:
virtual void gc_prologue(bool full) = 0; virtual void gc_prologue(bool full) = 0;
virtual void gc_epilogue(bool full) = 0; virtual void gc_epilogue(bool full) = 0;
// Sets the number of parallel threads that will be doing tasks
// (such as process strong roots) subsequently.
virtual void set_par_threads(int t);
int n_termination();
void set_n_termination(int t);
// //
// New methods from CollectedHeap // New methods from CollectedHeap
// //

View File

@ -1394,7 +1394,7 @@ void Arguments::set_parallel_gc_flags() {
// If no heap maximum was requested explicitly, use some reasonable fraction // If no heap maximum was requested explicitly, use some reasonable fraction
// of the physical memory, up to a maximum of 1GB. // of the physical memory, up to a maximum of 1GB.
if (UseParallelGC) { if (UseParallelGC) {
FLAG_SET_ERGO(uintx, ParallelGCThreads, FLAG_SET_DEFAULT(ParallelGCThreads,
Abstract_VM_Version::parallel_worker_threads()); Abstract_VM_Version::parallel_worker_threads());
// If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the // If InitialSurvivorRatio or MinSurvivorRatio were not specified, but the

View File

@ -1416,6 +1416,21 @@ class CommandLineFlags {
product(uintx, ParallelGCThreads, 0, \ product(uintx, ParallelGCThreads, 0, \
"Number of parallel threads parallel gc will use") \ "Number of parallel threads parallel gc will use") \
\ \
product(bool, UseDynamicNumberOfGCThreads, false, \
"Dynamically choose the number of parallel threads " \
"parallel gc will use") \
\
diagnostic(bool, ForceDynamicNumberOfGCThreads, false, \
"Force dynamic selection of the number of" \
"parallel threads parallel gc will use to aid debugging") \
\
product(uintx, HeapSizePerGCThread, ScaleForWordSize(64*M), \
"Size of heap (bytes) per GC thread used in calculating the " \
"number of GC threads") \
\
product(bool, TraceDynamicGCThreads, false, \
"Trace the dynamic GC thread usage") \
\
develop(bool, ParallelOldGCSplitALot, false, \ develop(bool, ParallelOldGCSplitALot, false, \
"Provoke splitting (copying data from a young gen space to" \ "Provoke splitting (copying data from a young gen space to" \
"multiple destination spaces)") \ "multiple destination spaces)") \
@ -2357,7 +2372,7 @@ class CommandLineFlags {
develop(bool, TraceGCTaskQueue, false, \ develop(bool, TraceGCTaskQueue, false, \
"Trace actions of the GC task queues") \ "Trace actions of the GC task queues") \
\ \
develop(bool, TraceGCTaskThread, false, \ diagnostic(bool, TraceGCTaskThread, false, \
"Trace actions of the GC task threads") \ "Trace actions of the GC task threads") \
\ \
product(bool, PrintParallelOldGCPhaseTimes, false, \ product(bool, PrintParallelOldGCPhaseTimes, false, \

View File

@ -778,12 +778,12 @@ bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
return true; return true;
} else { } else {
guarantee(res == strong_roots_parity, "Or else what?"); guarantee(res == strong_roots_parity, "Or else what?");
assert(SharedHeap::heap()->n_par_threads() > 0, assert(SharedHeap::heap()->workers()->active_workers() > 0,
"Should only fail when parallel."); "Should only fail when parallel.");
return false; return false;
} }
} }
assert(SharedHeap::heap()->n_par_threads() > 0, assert(SharedHeap::heap()->workers()->active_workers() > 0,
"Should only fail when parallel."); "Should only fail when parallel.");
return false; return false;
} }
@ -3939,7 +3939,15 @@ void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
// root groups. Overhead should be small enough to use all the time, // root groups. Overhead should be small enough to use all the time,
// even in sequential code. // even in sequential code.
SharedHeap* sh = SharedHeap::heap(); SharedHeap* sh = SharedHeap::heap();
bool is_par = (sh->n_par_threads() > 0); // Cannot yet substitute active_workers for n_par_threads
// because of G1CollectedHeap::verify() use of
// SharedHeap::process_strong_roots(). n_par_threads == 0 will
// turn off parallelism in process_strong_roots while active_workers
// is being used for parallelism elsewhere.
bool is_par = sh->n_par_threads() > 0;
assert(!is_par ||
(SharedHeap::heap()->n_par_threads() ==
SharedHeap::heap()->workers()->active_workers()), "Mismatch");
int cp = SharedHeap::heap()->strong_roots_parity(); int cp = SharedHeap::heap()->strong_roots_parity();
ALL_JAVA_THREADS(p) { ALL_JAVA_THREADS(p) {
if (p->claim_oops_do(is_par, cp)) { if (p->claim_oops_do(is_par, cp)) {

View File

@ -57,7 +57,6 @@ WorkGang::WorkGang(const char* name,
bool are_GC_task_threads, bool are_GC_task_threads,
bool are_ConcurrentGC_threads) : bool are_ConcurrentGC_threads) :
AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) { AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) {
// Save arguments.
_total_workers = workers; _total_workers = workers;
} }
@ -127,6 +126,12 @@ GangWorker* AbstractWorkGang::gang_worker(int i) const {
} }
void WorkGang::run_task(AbstractGangTask* task) { void WorkGang::run_task(AbstractGangTask* task) {
run_task(task, total_workers());
}
void WorkGang::run_task(AbstractGangTask* task, uint no_of_parallel_workers) {
task->set_for_termination(no_of_parallel_workers);
// This thread is executed by the VM thread which does not block // This thread is executed by the VM thread which does not block
// on ordinary MutexLocker's. // on ordinary MutexLocker's.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
@ -143,22 +148,32 @@ void WorkGang::run_task(AbstractGangTask* task) {
// Tell the workers to get to work. // Tell the workers to get to work.
monitor()->notify_all(); monitor()->notify_all();
// Wait for them to be finished // Wait for them to be finished
while (finished_workers() < total_workers()) { while (finished_workers() < (int) no_of_parallel_workers) {
if (TraceWorkGang) { if (TraceWorkGang) {
tty->print_cr("Waiting in work gang %s: %d/%d finished sequence %d", tty->print_cr("Waiting in work gang %s: %d/%d finished sequence %d",
name(), finished_workers(), total_workers(), name(), finished_workers(), no_of_parallel_workers,
_sequence_number); _sequence_number);
} }
monitor()->wait(/* no_safepoint_check */ true); monitor()->wait(/* no_safepoint_check */ true);
} }
_task = NULL; _task = NULL;
if (TraceWorkGang) { if (TraceWorkGang) {
tty->print_cr("/nFinished work gang %s: %d/%d sequence %d", tty->print_cr("\nFinished work gang %s: %d/%d sequence %d",
name(), finished_workers(), total_workers(), name(), finished_workers(), no_of_parallel_workers,
_sequence_number); _sequence_number);
Thread* me = Thread::current();
tty->print_cr(" T: 0x%x VM_thread: %d", me, me->is_VM_thread());
} }
} }
void FlexibleWorkGang::run_task(AbstractGangTask* task) {
// If active_workers() is passed, _finished_workers
// must only be incremented for workers that find non_null
// work (as opposed to all those that just check that the
// task is not null).
WorkGang::run_task(task, (uint) active_workers());
}
void AbstractWorkGang::stop() { void AbstractWorkGang::stop() {
// Tell all workers to terminate, then wait for them to become inactive. // Tell all workers to terminate, then wait for them to become inactive.
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
@ -168,10 +183,10 @@ void AbstractWorkGang::stop() {
_task = NULL; _task = NULL;
_terminate = true; _terminate = true;
monitor()->notify_all(); monitor()->notify_all();
while (finished_workers() < total_workers()) { while (finished_workers() < active_workers()) {
if (TraceWorkGang) { if (TraceWorkGang) {
tty->print_cr("Waiting in work gang %s: %d/%d finished", tty->print_cr("Waiting in work gang %s: %d/%d finished",
name(), finished_workers(), total_workers()); name(), finished_workers(), active_workers());
} }
monitor()->wait(/* no_safepoint_check */ true); monitor()->wait(/* no_safepoint_check */ true);
} }
@ -275,11 +290,13 @@ void GangWorker::loop() {
// Check for new work. // Check for new work.
if ((data.task() != NULL) && if ((data.task() != NULL) &&
(data.sequence_number() != previous_sequence_number)) { (data.sequence_number() != previous_sequence_number)) {
if (gang()->needs_more_workers()) {
gang()->internal_note_start(); gang()->internal_note_start();
gang_monitor->notify_all(); gang_monitor->notify_all();
part = gang()->started_workers() - 1; part = gang()->started_workers() - 1;
break; break;
} }
}
// Nothing to do. // Nothing to do.
gang_monitor->wait(/* no_safepoint_check */ true); gang_monitor->wait(/* no_safepoint_check */ true);
gang()->internal_worker_poll(&data); gang()->internal_worker_poll(&data);
@ -350,6 +367,9 @@ const char* AbstractGangTask::name() const {
#endif /* PRODUCT */ #endif /* PRODUCT */
// FlexibleWorkGang
// *** WorkGangBarrierSync // *** WorkGangBarrierSync
WorkGangBarrierSync::WorkGangBarrierSync() WorkGangBarrierSync::WorkGangBarrierSync()
@ -411,10 +431,8 @@ bool SubTasksDone::valid() {
} }
void SubTasksDone::set_n_threads(int t) { void SubTasksDone::set_n_threads(int t) {
#ifdef ASSERT
assert(_claimed == 0 || _threads_completed == _n_threads, assert(_claimed == 0 || _threads_completed == _n_threads,
"should not be called while tasks are being processed!"); "should not be called while tasks are being processed!");
#endif
_n_threads = (t == 0 ? 1 : t); _n_threads = (t == 0 ? 1 : t);
} }

View File

@ -96,11 +96,14 @@ private:
protected: protected:
// Constructor and desctructor: only construct subclasses. // Constructor and desctructor: only construct subclasses.
AbstractGangTask(const char* name) { AbstractGangTask(const char* name)
{
NOT_PRODUCT(_name = name); NOT_PRODUCT(_name = name);
_counter = 0; _counter = 0;
} }
virtual ~AbstractGangTask() { } virtual ~AbstractGangTask() { }
public:
}; };
class AbstractGangTaskWOopQueues : public AbstractGangTask { class AbstractGangTaskWOopQueues : public AbstractGangTask {
@ -116,6 +119,7 @@ class AbstractGangTaskWOopQueues : public AbstractGangTask {
OopTaskQueueSet* queues() { return _queues; } OopTaskQueueSet* queues() { return _queues; }
}; };
// Class AbstractWorkGang: // Class AbstractWorkGang:
// An abstract class representing a gang of workers. // An abstract class representing a gang of workers.
// You subclass this to supply an implementation of run_task(). // You subclass this to supply an implementation of run_task().
@ -130,6 +134,8 @@ public:
virtual void run_task(AbstractGangTask* task) = 0; virtual void run_task(AbstractGangTask* task) = 0;
// Stop and terminate all workers. // Stop and terminate all workers.
virtual void stop(); virtual void stop();
// Return true if more workers should be applied to the task.
virtual bool needs_more_workers() const { return true; }
public: public:
// Debugging. // Debugging.
const char* name() const; const char* name() const;
@ -287,20 +293,62 @@ public:
AbstractWorkGang* gang() const { return _gang; } AbstractWorkGang* gang() const { return _gang; }
}; };
// Dynamic number of worker threads
//
// This type of work gang is used to run different numbers of
// worker threads at different times. The
// number of workers run for a task is "_active_workers"
// instead of "_total_workers" in a WorkGang. The method
// "needs_more_workers()" returns true until "_active_workers"
// have been started and returns false afterwards. The
// implementation of "needs_more_workers()" in WorkGang always
// returns true so that all workers are started. The method
// "loop()" in GangWorker was modified to ask "needs_more_workers()"
// in its loop to decide if it should start working on a task.
// A worker in "loop()" waits for notification on the WorkGang
// monitor and execution of each worker as it checks for work
// is serialized via the same monitor. The "needs_more_workers()"
// call is serialized and additionally the calculation for the
// "part" (effectively the worker id for executing the task) is
// serialized to give each worker a unique "part". Workers that
// are not needed for this tasks (i.e., "_active_workers" have
// been started before it, continue to wait for work.
class FlexibleWorkGang: public WorkGang { class FlexibleWorkGang: public WorkGang {
// The currently active workers in this gang.
// This is a number that is dynamically adjusted
// and checked in the run_task() method at each invocation.
// As described above _active_workers determines the number
// of threads started on a task. It must also be used to
// determine completion.
protected: protected:
int _active_workers; int _active_workers;
public: public:
// Constructor and destructor. // Constructor and destructor.
// Initialize active_workers to a minimum value. Setting it to
// the parameter "workers" will initialize it to a maximum
// value which is not desirable.
FlexibleWorkGang(const char* name, int workers, FlexibleWorkGang(const char* name, int workers,
bool are_GC_task_threads, bool are_GC_task_threads,
bool are_ConcurrentGC_threads) : bool are_ConcurrentGC_threads) :
WorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads) { WorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
_active_workers = ParallelGCThreads; _active_workers(UseDynamicNumberOfGCThreads ? 1 : ParallelGCThreads) {};
};
// Accessors for fields // Accessors for fields
virtual int active_workers() const { return _active_workers; } virtual int active_workers() const { return _active_workers; }
void set_active_workers(int v) { _active_workers = v; } void set_active_workers(int v) {
assert(v <= _total_workers,
"Trying to set more workers active than there are");
_active_workers = MIN2(v, _total_workers);
assert(v != 0, "Trying to set active workers to 0");
_active_workers = MAX2(1, _active_workers);
assert(UseDynamicNumberOfGCThreads || _active_workers == _total_workers,
"Unless dynamic should use total workers");
}
virtual void run_task(AbstractGangTask* task);
virtual bool needs_more_workers() const {
return _started_workers < _active_workers;
}
}; };
// Work gangs in garbage collectors: 2009-06-10 // Work gangs in garbage collectors: 2009-06-10
@ -357,6 +405,11 @@ public:
class SubTasksDone: public CHeapObj { class SubTasksDone: public CHeapObj {
jint* _tasks; jint* _tasks;
int _n_tasks; int _n_tasks;
// _n_threads is used to determine when a sub task is done.
// It does not control how many threads will execute the subtask
// but must be initialized to the number that do execute the task
// in order to correctly decide when the subtask is done (all the
// threads working on the task have finished).
int _n_threads; int _n_threads;
jint _threads_completed; jint _threads_completed;
#ifdef ASSERT #ifdef ASSERT

View File

@ -125,7 +125,7 @@ void YieldingFlexibleWorkGang::start_task(YieldingFlexibleGangTask* new_task) {
if (requested_size != 0) { if (requested_size != 0) {
_active_workers = MIN2(requested_size, total_workers()); _active_workers = MIN2(requested_size, total_workers());
} else { } else {
_active_workers = total_workers(); _active_workers = active_workers();
} }
new_task->set_actual_size(_active_workers); new_task->set_actual_size(_active_workers);
new_task->set_for_termination(_active_workers); new_task->set_for_termination(_active_workers);
@ -148,22 +148,22 @@ void YieldingFlexibleWorkGang::wait_for_gang() {
for (Status status = yielding_task()->status(); for (Status status = yielding_task()->status();
status != COMPLETED && status != YIELDED && status != ABORTED; status != COMPLETED && status != YIELDED && status != ABORTED;
status = yielding_task()->status()) { status = yielding_task()->status()) {
assert(started_workers() <= total_workers(), "invariant"); assert(started_workers() <= active_workers(), "invariant");
assert(finished_workers() <= total_workers(), "invariant"); assert(finished_workers() <= active_workers(), "invariant");
assert(yielded_workers() <= total_workers(), "invariant"); assert(yielded_workers() <= active_workers(), "invariant");
monitor()->wait(Mutex::_no_safepoint_check_flag); monitor()->wait(Mutex::_no_safepoint_check_flag);
} }
switch (yielding_task()->status()) { switch (yielding_task()->status()) {
case COMPLETED: case COMPLETED:
case ABORTED: { case ABORTED: {
assert(finished_workers() == total_workers(), "Inconsistent status"); assert(finished_workers() == active_workers(), "Inconsistent status");
assert(yielded_workers() == 0, "Invariant"); assert(yielded_workers() == 0, "Invariant");
reset(); // for next task; gang<->task binding released reset(); // for next task; gang<->task binding released
break; break;
} }
case YIELDED: { case YIELDED: {
assert(yielded_workers() > 0, "Invariant"); assert(yielded_workers() > 0, "Invariant");
assert(yielded_workers() + finished_workers() == total_workers(), assert(yielded_workers() + finished_workers() == active_workers(),
"Inconsistent counts"); "Inconsistent counts");
break; break;
} }
@ -182,7 +182,6 @@ void YieldingFlexibleWorkGang::continue_task(
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
assert(task() != NULL && task() == gang_task, "Incorrect usage"); assert(task() != NULL && task() == gang_task, "Incorrect usage");
// assert(_active_workers == total_workers(), "For now");
assert(_started_workers == _active_workers, "Precondition"); assert(_started_workers == _active_workers, "Precondition");
assert(_yielded_workers > 0 && yielding_task()->status() == YIELDED, assert(_yielded_workers > 0 && yielding_task()->status() == YIELDED,
"Else why are we calling continue_task()"); "Else why are we calling continue_task()");
@ -202,7 +201,7 @@ void YieldingFlexibleWorkGang::reset() {
void YieldingFlexibleWorkGang::yield() { void YieldingFlexibleWorkGang::yield() {
assert(task() != NULL, "Inconsistency; should have task binding"); assert(task() != NULL, "Inconsistency; should have task binding");
MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
assert(yielded_workers() < total_workers(), "Consistency check"); assert(yielded_workers() < active_workers(), "Consistency check");
if (yielding_task()->status() == ABORTING) { if (yielding_task()->status() == ABORTING) {
// Do not yield; we need to abort as soon as possible // Do not yield; we need to abort as soon as possible
// XXX NOTE: This can cause a performance pathology in the // XXX NOTE: This can cause a performance pathology in the
@ -213,7 +212,7 @@ void YieldingFlexibleWorkGang::yield() {
// us to return at each potential yield point. // us to return at each potential yield point.
return; return;
} }
if (++_yielded_workers + finished_workers() == total_workers()) { if (++_yielded_workers + finished_workers() == active_workers()) {
yielding_task()->set_status(YIELDED); yielding_task()->set_status(YIELDED);
monitor()->notify_all(); monitor()->notify_all();
} else { } else {

View File

@ -199,16 +199,10 @@ public:
void abort(); void abort();
private: private:
int _active_workers;
int _yielded_workers; int _yielded_workers;
void wait_for_gang(); void wait_for_gang();
public: public:
// Accessors for fields
int active_workers() const {
return _active_workers;
}
// Accessors for fields // Accessors for fields
int yielded_workers() const { int yielded_workers() const {
return _yielded_workers; return _yielded_workers;