This commit is contained in:
Stefan Karlsson 2013-08-26 07:01:23 -07:00
commit 15464d7992
20 changed files with 796 additions and 159 deletions

View File

@ -2325,7 +2325,9 @@ void os::large_page_init() {
} }
char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) { char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
fatal("This code is not used or maintained.");
// "exec" is passed in but not used. Creating the shared image for // "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check. // the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages && UseSHM, "only for SHM large pages"); assert(UseLargePages && UseSHM, "only for SHM large pages");
@ -4752,3 +4754,8 @@ int os::get_core_path(char* buffer, size_t bufferSize) {
return n; return n;
} }
#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
// No tests available for this platform
}
#endif

View File

@ -40,6 +40,9 @@
product(bool, UseHugeTLBFS, false, \ product(bool, UseHugeTLBFS, false, \
"Use MAP_HUGETLB for large pages") \ "Use MAP_HUGETLB for large pages") \
\ \
product(bool, UseTransparentHugePages, false, \
"Use MADV_HUGEPAGE for large pages") \
\
product(bool, LoadExecStackDllInVMThread, true, \ product(bool, LoadExecStackDllInVMThread, true, \
"Load DLLs with executable-stack attribute in the VM Thread") \ "Load DLLs with executable-stack attribute in the VM Thread") \
\ \

View File

@ -2720,36 +2720,7 @@ void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
int os::Linux::commit_memory_impl(char* addr, size_t size, int os::Linux::commit_memory_impl(char* addr, size_t size,
size_t alignment_hint, bool exec) { size_t alignment_hint, bool exec) {
int err; int err = os::Linux::commit_memory_impl(addr, size, exec);
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
uintptr_t res =
(uintptr_t) ::mmap(addr, size, prot,
MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0);
if (res != (uintptr_t) MAP_FAILED) {
if (UseNUMAInterleaving) {
numa_make_global(addr, size);
}
return 0;
}
err = errno; // save errno from mmap() call above
if (!recoverable_mmap_error(err)) {
// However, it is not clear that this loss of our reserved mapping
// happens with large pages on Linux or that we cannot recover
// from the loss. For now, we just issue a warning and we don't
// call vm_exit_out_of_memory(). This issue is being tracked by
// JBS-8007074.
warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
// vm_exit_out_of_memory(size, OOM_MMAP_ERROR,
// "committing reserved memory.");
}
// Fall through and try to use small pages
}
err = os::Linux::commit_memory_impl(addr, size, exec);
if (err == 0) { if (err == 0) {
realign_memory(addr, size, alignment_hint); realign_memory(addr, size, alignment_hint);
} }
@ -2774,7 +2745,7 @@ void os::pd_commit_memory_or_exit(char* addr, size_t size,
} }
void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) { if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
// We don't check the return value: madvise(MADV_HUGEPAGE) may not // We don't check the return value: madvise(MADV_HUGEPAGE) may not
// be supported or the memory may already be backed by huge pages. // be supported or the memory may already be backed by huge pages.
::madvise(addr, bytes, MADV_HUGEPAGE); ::madvise(addr, bytes, MADV_HUGEPAGE);
@ -2787,7 +2758,7 @@ void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
// uncommitted at all. We don't do anything in this case to avoid creating a segment with // uncommitted at all. We don't do anything in this case to avoid creating a segment with
// small pages on top of the SHM segment. This method always works for small pages, so we // small pages on top of the SHM segment. This method always works for small pages, so we
// allow that in any case. // allow that in any case.
if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) { if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
commit_memory(addr, bytes, alignment_hint, !ExecMem); commit_memory(addr, bytes, alignment_hint, !ExecMem);
} }
} }
@ -3157,11 +3128,31 @@ bool os::unguard_memory(char* addr, size_t size) {
return linux_mprotect(addr, size, PROT_READ|PROT_WRITE); return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
} }
bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
bool result = false;
void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE,
-1, 0);
if (p != MAP_FAILED) {
void *aligned_p = align_ptr_up(p, page_size);
result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
munmap(p, page_size * 2);
}
if (warn && !result) {
warning("TransparentHugePages is not supported by the operating system.");
}
return result;
}
bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) { bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
bool result = false; bool result = false;
void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE, void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB, MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
-1, 0); -1, 0);
if (p != MAP_FAILED) { if (p != MAP_FAILED) {
// We don't know if this really is a huge page or not. // We don't know if this really is a huge page or not.
@ -3182,12 +3173,10 @@ bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
} }
fclose(fp); fclose(fp);
} }
munmap (p, page_size); munmap(p, page_size);
if (result)
return true;
} }
if (warn) { if (warn && !result) {
warning("HugeTLBFS is not supported by the operating system."); warning("HugeTLBFS is not supported by the operating system.");
} }
@ -3235,82 +3224,114 @@ static void set_coredump_filter(void) {
static size_t _large_page_size = 0; static size_t _large_page_size = 0;
void os::large_page_init() { size_t os::Linux::find_large_page_size() {
if (!UseLargePages) { size_t large_page_size = 0;
UseHugeTLBFS = false;
UseSHM = false;
return;
}
if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) { // large_page_size on Linux is used to round up heap size. x86 uses either
// If UseLargePages is specified on the command line try both methods, // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
// if it's default, then try only HugeTLBFS. // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
if (FLAG_IS_DEFAULT(UseLargePages)) { // page as large as 256M.
UseHugeTLBFS = true; //
} else { // Here we try to figure out page size by parsing /proc/meminfo and looking
UseHugeTLBFS = UseSHM = true; // for a line with the following format:
} // Hugepagesize: 2048 kB
} //
// If we can't determine the value (e.g. /proc is not mounted, or the text
if (LargePageSizeInBytes) { // format has been changed), we'll use the largest page size supported by
_large_page_size = LargePageSizeInBytes; // the processor.
} else {
// large_page_size on Linux is used to round up heap size. x86 uses either
// 2M or 4M page, depending on whether PAE (Physical Address Extensions)
// mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
// page as large as 256M.
//
// Here we try to figure out page size by parsing /proc/meminfo and looking
// for a line with the following format:
// Hugepagesize: 2048 kB
//
// If we can't determine the value (e.g. /proc is not mounted, or the text
// format has been changed), we'll use the largest page size supported by
// the processor.
#ifndef ZERO #ifndef ZERO
_large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M) large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
ARM_ONLY(2 * M) PPC_ONLY(4 * M); ARM_ONLY(2 * M) PPC_ONLY(4 * M);
#endif // ZERO #endif // ZERO
FILE *fp = fopen("/proc/meminfo", "r"); FILE *fp = fopen("/proc/meminfo", "r");
if (fp) { if (fp) {
while (!feof(fp)) { while (!feof(fp)) {
int x = 0; int x = 0;
char buf[16]; char buf[16];
if (fscanf(fp, "Hugepagesize: %d", &x) == 1) { if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) { if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
_large_page_size = x * K; large_page_size = x * K;
break; break;
} }
} else { } else {
// skip to next line // skip to next line
for (;;) { for (;;) {
int ch = fgetc(fp); int ch = fgetc(fp);
if (ch == EOF || ch == (int)'\n') break; if (ch == EOF || ch == (int)'\n') break;
}
} }
} }
fclose(fp);
} }
fclose(fp);
} }
// print a warning if any large page related flag is specified on command line if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS); warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
proper_unit_for_byte_size(large_page_size));
}
return large_page_size;
}
size_t os::Linux::setup_large_page_size() {
_large_page_size = Linux::find_large_page_size();
const size_t default_page_size = (size_t)Linux::page_size(); const size_t default_page_size = (size_t)Linux::page_size();
if (_large_page_size > default_page_size) { if (_large_page_size > default_page_size) {
_page_sizes[0] = _large_page_size; _page_sizes[0] = _large_page_size;
_page_sizes[1] = default_page_size; _page_sizes[1] = default_page_size;
_page_sizes[2] = 0; _page_sizes[2] = 0;
} }
UseHugeTLBFS = UseHugeTLBFS &&
Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
if (UseHugeTLBFS) return _large_page_size;
}
bool os::Linux::setup_large_page_type(size_t page_size) {
if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
FLAG_IS_DEFAULT(UseSHM) &&
FLAG_IS_DEFAULT(UseTransparentHugePages)) {
// If UseLargePages is specified on the command line try all methods,
// if it's default, then try only UseTransparentHugePages.
if (FLAG_IS_DEFAULT(UseLargePages)) {
UseTransparentHugePages = true;
} else {
UseHugeTLBFS = UseTransparentHugePages = UseSHM = true;
}
}
if (UseTransparentHugePages) {
bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
UseHugeTLBFS = false;
UseSHM = false;
return true;
}
UseTransparentHugePages = false;
}
if (UseHugeTLBFS) {
bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
UseSHM = false;
return true;
}
UseHugeTLBFS = false;
}
return UseSHM;
}
void os::large_page_init() {
if (!UseLargePages) {
UseHugeTLBFS = false;
UseTransparentHugePages = false;
UseSHM = false; UseSHM = false;
return;
}
UseLargePages = UseHugeTLBFS || UseSHM; size_t large_page_size = Linux::setup_large_page_size();
UseLargePages = Linux::setup_large_page_type(large_page_size);
set_coredump_filter(); set_coredump_filter();
} }
@ -3319,16 +3340,22 @@ void os::large_page_init() {
#define SHM_HUGETLB 04000 #define SHM_HUGETLB 04000
#endif #endif
char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) { char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
// "exec" is passed in but not used. Creating the shared image for // "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check. // the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages && UseSHM, "only for SHM large pages"); assert(UseLargePages && UseSHM, "only for SHM large pages");
assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
return NULL; // Fallback to small pages.
}
key_t key = IPC_PRIVATE; key_t key = IPC_PRIVATE;
char *addr; char *addr;
bool warn_on_failure = UseLargePages && bool warn_on_failure = UseLargePages &&
(!FLAG_IS_DEFAULT(UseLargePages) || (!FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(UseSHM) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes) !FLAG_IS_DEFAULT(LargePageSizeInBytes)
); );
char msg[128]; char msg[128];
@ -3376,42 +3403,219 @@ char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
return NULL; return NULL;
} }
if ((addr != NULL) && UseNUMAInterleaving) { return addr;
numa_make_global(addr, bytes); }
static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
assert(error == ENOMEM, "Only expect to fail if no memory is available");
bool warn_on_failure = UseLargePages &&
(!FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(UseHugeTLBFS) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
if (warn_on_failure) {
char msg[128];
jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
warning(msg);
}
}
char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
char* addr = (char*)::mmap(req_addr, bytes, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
-1, 0);
if (addr == MAP_FAILED) {
warn_on_large_pages_failure(req_addr, bytes, errno);
return NULL;
} }
// The memory is committed assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
return addr; return addr;
} }
char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
size_t large_page_size = os::large_page_size();
assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
// Allocate small pages.
char* start;
if (req_addr != NULL) {
assert(is_ptr_aligned(req_addr, alignment), "Must be");
assert(is_size_aligned(bytes, alignment), "Must be");
start = os::reserve_memory(bytes, req_addr);
assert(start == NULL || start == req_addr, "Must be");
} else {
start = os::reserve_memory_aligned(bytes, alignment);
}
if (start == NULL) {
return NULL;
}
assert(is_ptr_aligned(start, alignment), "Must be");
// os::reserve_memory_special will record this memory area.
// Need to release it here to prevent overlapping reservations.
MemTracker::record_virtual_memory_release((address)start, bytes);
char* end = start + bytes;
// Find the regions of the allocated chunk that can be promoted to large pages.
char* lp_start = (char*)align_ptr_up(start, large_page_size);
char* lp_end = (char*)align_ptr_down(end, large_page_size);
size_t lp_bytes = lp_end - lp_start;
assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
if (lp_bytes == 0) {
// The mapped region doesn't even span the start and the end of a large page.
// Fall back to allocate a non-special area.
::munmap(start, end - start);
return NULL;
}
int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
void* result;
if (start != lp_start) {
result = ::mmap(start, lp_start - start, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
-1, 0);
if (result == MAP_FAILED) {
::munmap(lp_start, end - lp_start);
return NULL;
}
}
result = ::mmap(lp_start, lp_bytes, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
-1, 0);
if (result == MAP_FAILED) {
warn_on_large_pages_failure(req_addr, bytes, errno);
// If the mmap above fails, the large pages region will be unmapped and we
// have regions before and after with small pages. Release these regions.
//
// | mapped | unmapped | mapped |
// ^ ^ ^ ^
// start lp_start lp_end end
//
::munmap(start, lp_start - start);
::munmap(lp_end, end - lp_end);
return NULL;
}
if (lp_end != end) {
result = ::mmap(lp_end, end - lp_end, prot,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
-1, 0);
if (result == MAP_FAILED) {
::munmap(start, lp_end - start);
return NULL;
}
}
return start;
}
char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
assert(is_ptr_aligned(req_addr, alignment), "Must be");
assert(is_power_of_2(alignment), "Must be");
assert(is_power_of_2(os::large_page_size()), "Must be");
assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
} else {
return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
}
}
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
assert(UseLargePages, "only for large pages");
char* addr;
if (UseSHM) {
addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
} else {
assert(UseHugeTLBFS, "must be");
addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
}
if (addr != NULL) {
if (UseNUMAInterleaving) {
numa_make_global(addr, bytes);
}
// The memory is committed
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
}
return addr;
}
bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
// detaching the SHM segment will also delete it, see reserve_memory_special_shm()
return shmdt(base) == 0;
}
bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
return pd_release_memory(base, bytes);
}
bool os::release_memory_special(char* base, size_t bytes) { bool os::release_memory_special(char* base, size_t bytes) {
assert(UseLargePages, "only for large pages");
MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker(); MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
// detaching the SHM segment will also delete it, see reserve_memory_special()
int rslt = shmdt(base); bool res;
if (rslt == 0) { if (UseSHM) {
res = os::Linux::release_memory_special_shm(base, bytes);
} else {
assert(UseHugeTLBFS, "must be");
res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
}
if (res) {
tkr.record((address)base, bytes); tkr.record((address)base, bytes);
return true;
} else { } else {
tkr.discard(); tkr.discard();
return false;
} }
return res;
} }
size_t os::large_page_size() { size_t os::large_page_size() {
return _large_page_size; return _large_page_size;
} }
// HugeTLBFS allows application to commit large page memory on demand; // With SysV SHM the entire memory region must be allocated as shared
// with SysV SHM the entire memory region must be allocated as shared
// memory. // memory.
// HugeTLBFS allows application to commit large page memory on demand.
// However, when committing memory with HugeTLBFS fails, the region
// that was supposed to be committed will lose the old reservation
// and allow other threads to steal that memory region. Because of this
// behavior we can't commit HugeTLBFS memory.
bool os::can_commit_large_page_memory() { bool os::can_commit_large_page_memory() {
return UseHugeTLBFS; return UseTransparentHugePages;
} }
bool os::can_execute_large_page_memory() { bool os::can_execute_large_page_memory() {
return UseHugeTLBFS; return UseTransparentHugePages || UseHugeTLBFS;
} }
// Reserve memory at an arbitrary address, only if that area is // Reserve memory at an arbitrary address, only if that area is
@ -4563,21 +4767,23 @@ jint os::init_2(void)
UseNUMA = false; UseNUMA = false;
} }
} }
// With SHM large pages we cannot uncommit a page, so there's not way // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
// we can make the adaptive lgrp chunk resizing work. If the user specified // we can make the adaptive lgrp chunk resizing work. If the user specified
// both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
// disable adaptive resizing. // disable adaptive resizing.
if (UseNUMA && UseLargePages && UseSHM) { if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
if (!FLAG_IS_DEFAULT(UseNUMA)) { if (FLAG_IS_DEFAULT(UseNUMA)) {
if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) { UseNUMA = false;
} else {
if (FLAG_IS_DEFAULT(UseLargePages) &&
FLAG_IS_DEFAULT(UseSHM) &&
FLAG_IS_DEFAULT(UseHugeTLBFS)) {
UseLargePages = false; UseLargePages = false;
} else { } else {
warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing"); warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
UseAdaptiveSizePolicy = false; UseAdaptiveSizePolicy = false;
UseAdaptiveNUMAChunkSizing = false; UseAdaptiveNUMAChunkSizing = false;
} }
} else {
UseNUMA = false;
} }
} }
if (!UseNUMA && ForceNUMA) { if (!UseNUMA && ForceNUMA) {
@ -5848,3 +6054,149 @@ void MemNotifyThread::start() {
} }
#endif // JAVASE_EMBEDDED #endif // JAVASE_EMBEDDED
/////////////// Unit tests ///////////////
#ifndef PRODUCT
#define test_log(...) \
do {\
if (VerboseInternalVMTests) { \
tty->print_cr(__VA_ARGS__); \
tty->flush(); \
}\
} while (false)
class TestReserveMemorySpecial : AllStatic {
public:
static void small_page_write(void* addr, size_t size) {
size_t page_size = os::vm_page_size();
char* end = (char*)addr + size;
for (char* p = (char*)addr; p < end; p += page_size) {
*p = 1;
}
}
static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
if (!UseHugeTLBFS) {
return;
}
test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
if (addr != NULL) {
small_page_write(addr, size);
os::Linux::release_memory_special_huge_tlbfs(addr, size);
}
}
static void test_reserve_memory_special_huge_tlbfs_only() {
if (!UseHugeTLBFS) {
return;
}
size_t lp = os::large_page_size();
for (size_t size = lp; size <= lp * 10; size += lp) {
test_reserve_memory_special_huge_tlbfs_only(size);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
if (!UseHugeTLBFS) {
return;
}
test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
size, alignment);
assert(size >= os::large_page_size(), "Incorrect input to test");
char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
if (addr != NULL) {
small_page_write(addr, size);
os::Linux::release_memory_special_huge_tlbfs(addr, size);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
}
}
static void test_reserve_memory_special_huge_tlbfs_mixed() {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
}
static void test_reserve_memory_special_huge_tlbfs() {
if (!UseHugeTLBFS) {
return;
}
test_reserve_memory_special_huge_tlbfs_only();
test_reserve_memory_special_huge_tlbfs_mixed();
}
static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
if (!UseSHM) {
return;
}
test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
if (addr != NULL) {
assert(is_ptr_aligned(addr, alignment), "Check");
assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
small_page_write(addr, size);
os::Linux::release_memory_special_shm(addr, size);
}
}
static void test_reserve_memory_special_shm() {
size_t lp = os::large_page_size();
size_t ag = os::vm_allocation_granularity();
for (size_t size = ag; size < lp * 3; size += ag) {
for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
test_reserve_memory_special_shm(size, alignment);
}
}
}
static void test() {
test_reserve_memory_special_huge_tlbfs();
test_reserve_memory_special_shm();
}
};
void TestReserveMemorySpecial_test() {
TestReserveMemorySpecial::test();
}
#endif

View File

@ -32,6 +32,7 @@ typedef int (*pthread_getattr_func_type) (pthread_t, pthread_attr_t *);
class Linux { class Linux {
friend class os; friend class os;
friend class TestReserveMemorySpecial;
// For signal-chaining // For signal-chaining
#define MAXSIGNUM 32 #define MAXSIGNUM 32
@ -92,8 +93,21 @@ class Linux {
static void rebuild_cpu_to_node_map(); static void rebuild_cpu_to_node_map();
static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; } static GrowableArray<int>* cpu_to_node() { return _cpu_to_node; }
static size_t find_large_page_size();
static size_t setup_large_page_size();
static bool setup_large_page_type(size_t page_size);
static bool transparent_huge_pages_sanity_check(bool warn, size_t pages_size);
static bool hugetlbfs_sanity_check(bool warn, size_t page_size); static bool hugetlbfs_sanity_check(bool warn, size_t page_size);
static char* reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec);
static char* reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec);
static bool release_memory_special_shm(char* base, size_t bytes);
static bool release_memory_special_huge_tlbfs(char* base, size_t bytes);
static void print_full_memory_info(outputStream* st); static void print_full_memory_info(outputStream* st);
static void print_distro_info(outputStream* st); static void print_distro_info(outputStream* st);
static void print_libversion_info(outputStream* st); static void print_libversion_info(outputStream* st);

View File

@ -3385,7 +3385,7 @@ bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
return true; return true;
} }
char* os::reserve_memory_special(size_t size, char* addr, bool exec) { char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
fatal("os::reserve_memory_special should not be called on Solaris."); fatal("os::reserve_memory_special should not be called on Solaris.");
return NULL; return NULL;
} }
@ -6601,3 +6601,9 @@ int os::get_core_path(char* buffer, size_t bufferSize) {
return strlen(buffer); return strlen(buffer);
} }
#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
// No tests available for this platform
}
#endif

View File

@ -3156,7 +3156,12 @@ bool os::can_execute_large_page_memory() {
return true; return true;
} }
char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) { char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
assert(UseLargePages, "only for large pages");
if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
return NULL; // Fallback to small pages.
}
const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES; const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
@ -5638,3 +5643,9 @@ BOOL os::Advapi32Dll::AdvapiAvailable() {
} }
#endif #endif
#ifndef PRODUCT
void TestReserveMemorySpecial_test() {
// No tests available for this platform
}
#endif

View File

@ -2006,10 +2006,12 @@ jint G1CollectedHeap::initialize() {
size_t init_byte_size = collector_policy()->initial_heap_byte_size(); size_t init_byte_size = collector_policy()->initial_heap_byte_size();
size_t max_byte_size = collector_policy()->max_heap_byte_size(); size_t max_byte_size = collector_policy()->max_heap_byte_size();
size_t heap_alignment = collector_policy()->max_alignment();
// Ensure that the sizes are properly aligned. // Ensure that the sizes are properly aligned.
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap"); Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap"); Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
_cg1r = new ConcurrentG1Refine(this); _cg1r = new ConcurrentG1Refine(this);
@ -2026,12 +2028,8 @@ jint G1CollectedHeap::initialize() {
// If this happens then we could end up using a non-optimal // If this happens then we could end up using a non-optimal
// compressed oops mode. // compressed oops mode.
// Since max_byte_size is aligned to the size of a heap region (checked
// above).
Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size, ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
HeapRegion::GrainBytes); heap_alignment);
// It is important to do this in a way such that concurrent readers can't // It is important to do this in a way such that concurrent readers can't
// temporarily think something is in the heap. (I've actually seen this // temporarily think something is in the heap. (I've actually seen this

View File

@ -313,7 +313,8 @@ G1CollectorPolicy::G1CollectorPolicy() :
void G1CollectorPolicy::initialize_flags() { void G1CollectorPolicy::initialize_flags() {
set_min_alignment(HeapRegion::GrainBytes); set_min_alignment(HeapRegion::GrainBytes);
size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name()); size_t card_table_alignment = GenRemSet::max_alignment_constraint(rem_set_name());
set_max_alignment(MAX2(card_table_alignment, min_alignment())); size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
set_max_alignment(MAX3(card_table_alignment, min_alignment(), page_size));
if (SurvivorRatio < 1) { if (SurvivorRatio < 1) {
vm_exit_during_initialization("Invalid survivor ratio specified"); vm_exit_during_initialization("Invalid survivor ratio specified");
} }

View File

@ -193,6 +193,8 @@ size_t GenCollectorPolicy::compute_max_alignment() {
alignment = lcm(os::large_page_size(), alignment); alignment = lcm(os::large_page_size(), alignment);
} }
assert(alignment >= min_alignment(), "Must be");
return alignment; return alignment;
} }

View File

@ -95,13 +95,13 @@ jint GenCollectedHeap::initialize() {
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize"); guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
// The heap must be at least as aligned as generations. // The heap must be at least as aligned as generations.
size_t alignment = Generation::GenGrain; size_t gen_alignment = Generation::GenGrain;
_gen_specs = gen_policy()->generations(); _gen_specs = gen_policy()->generations();
// Make sure the sizes are all aligned. // Make sure the sizes are all aligned.
for (i = 0; i < _n_gens; i++) { for (i = 0; i < _n_gens; i++) {
_gen_specs[i]->align(alignment); _gen_specs[i]->align(gen_alignment);
} }
// Allocate space for the heap. // Allocate space for the heap.
@ -109,9 +109,11 @@ jint GenCollectedHeap::initialize() {
char* heap_address; char* heap_address;
size_t total_reserved = 0; size_t total_reserved = 0;
int n_covered_regions = 0; int n_covered_regions = 0;
ReservedSpace heap_rs(0); ReservedSpace heap_rs;
heap_address = allocate(alignment, &total_reserved, size_t heap_alignment = collector_policy()->max_alignment();
heap_address = allocate(heap_alignment, &total_reserved,
&n_covered_regions, &heap_rs); &n_covered_regions, &heap_rs);
if (!heap_rs.is_reserved()) { if (!heap_rs.is_reserved()) {
@ -168,6 +170,8 @@ char* GenCollectedHeap::allocate(size_t alignment,
const size_t pageSize = UseLargePages ? const size_t pageSize = UseLargePages ?
os::large_page_size() : os::vm_page_size(); os::large_page_size() : os::vm_page_size();
assert(alignment % pageSize == 0, "Must be");
for (int i = 0; i < _n_gens; i++) { for (int i = 0; i < _n_gens; i++) {
total_reserved += _gen_specs[i]->max_size(); total_reserved += _gen_specs[i]->max_size();
if (total_reserved < _gen_specs[i]->max_size()) { if (total_reserved < _gen_specs[i]->max_size()) {
@ -175,24 +179,17 @@ char* GenCollectedHeap::allocate(size_t alignment,
} }
n_covered_regions += _gen_specs[i]->n_covered_regions(); n_covered_regions += _gen_specs[i]->n_covered_regions();
} }
assert(total_reserved % pageSize == 0, assert(total_reserved % alignment == 0,
err_msg("Gen size; total_reserved=" SIZE_FORMAT ", pageSize=" err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
SIZE_FORMAT, total_reserved, pageSize)); SIZE_FORMAT, total_reserved, alignment));
// Needed until the cardtable is fixed to have the right number // Needed until the cardtable is fixed to have the right number
// of covered regions. // of covered regions.
n_covered_regions += 2; n_covered_regions += 2;
if (UseLargePages) { *_total_reserved = total_reserved;
assert(total_reserved != 0, "total_reserved cannot be 0"); *_n_covered_regions = n_covered_regions;
total_reserved = round_to(total_reserved, os::large_page_size());
if (total_reserved < os::large_page_size()) {
vm_exit_during_initialization(overflow_msg);
}
}
*_total_reserved = total_reserved;
*_n_covered_regions = n_covered_regions;
*heap_rs = Universe::reserve_heap(total_reserved, alignment); *heap_rs = Universe::reserve_heap(total_reserved, alignment);
return heap_rs->base(); return heap_rs->base();
} }

View File

@ -345,7 +345,7 @@ class VirtualSpaceNode : public CHeapObj<mtClass> {
}; };
// byte_size is the size of the associated virtualspace. // byte_size is the size of the associated virtualspace.
VirtualSpaceNode::VirtualSpaceNode(size_t byte_size) : _top(NULL), _next(NULL), _rs(0), _container_count(0) { VirtualSpaceNode::VirtualSpaceNode(size_t byte_size) : _top(NULL), _next(NULL), _rs(), _container_count(0) {
// align up to vm allocation granularity // align up to vm allocation granularity
byte_size = align_size_up(byte_size, os::vm_allocation_granularity()); byte_size = align_size_up(byte_size, os::vm_allocation_granularity());

View File

@ -681,17 +681,23 @@ static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
// 32Gb // 32Gb
// OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes; // OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) { char* Universe::preferred_heap_base(size_t heap_size, size_t alignment, NARROW_OOP_MODE mode) {
assert(is_size_aligned((size_t)OopEncodingHeapMax, alignment), "Must be");
assert(is_size_aligned((size_t)NarrowOopHeapMax, alignment), "Must be");
assert(is_size_aligned(heap_size, alignment), "Must be");
uintx heap_base_min_address_aligned = align_size_up(HeapBaseMinAddress, alignment);
size_t base = 0; size_t base = 0;
#ifdef _LP64 #ifdef _LP64
if (UseCompressedOops) { if (UseCompressedOops) {
assert(mode == UnscaledNarrowOop || assert(mode == UnscaledNarrowOop ||
mode == ZeroBasedNarrowOop || mode == ZeroBasedNarrowOop ||
mode == HeapBasedNarrowOop, "mode is invalid"); mode == HeapBasedNarrowOop, "mode is invalid");
const size_t total_size = heap_size + HeapBaseMinAddress; const size_t total_size = heap_size + heap_base_min_address_aligned;
// Return specified base for the first request. // Return specified base for the first request.
if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) { if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
base = HeapBaseMinAddress; base = heap_base_min_address_aligned;
// If the total size is small enough to allow UnscaledNarrowOop then // If the total size is small enough to allow UnscaledNarrowOop then
// just use UnscaledNarrowOop. // just use UnscaledNarrowOop.
@ -742,6 +748,8 @@ char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
} }
} }
#endif #endif
assert(is_ptr_aligned((char*)base, alignment), "Must be");
return (char*)base; // also return NULL (don't care) for 32-bit VM return (char*)base; // also return NULL (don't care) for 32-bit VM
} }
@ -867,27 +875,33 @@ ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
size_t total_reserved = align_size_up(heap_size, alignment); size_t total_reserved = align_size_up(heap_size, alignment);
assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())), assert(!UseCompressedOops || (total_reserved <= (OopEncodingHeapMax - os::vm_page_size())),
"heap size is too big for compressed oops"); "heap size is too big for compressed oops");
char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
ReservedHeapSpace total_rs(total_reserved, alignment, UseLargePages, addr); bool use_large_pages = UseLargePages && is_size_aligned(alignment, os::large_page_size());
assert(!UseLargePages
|| UseParallelOldGC
|| use_large_pages, "Wrong alignment to use large pages");
char* addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);
if (UseCompressedOops) { if (UseCompressedOops) {
if (addr != NULL && !total_rs.is_reserved()) { if (addr != NULL && !total_rs.is_reserved()) {
// Failed to reserve at specified address - the requested memory // Failed to reserve at specified address - the requested memory
// region is taken already, for example, by 'java' launcher. // region is taken already, for example, by 'java' launcher.
// Try again to reserver heap higher. // Try again to reserver heap higher.
addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop); addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::ZeroBasedNarrowOop);
ReservedHeapSpace total_rs0(total_reserved, alignment, ReservedHeapSpace total_rs0(total_reserved, alignment,
UseLargePages, addr); use_large_pages, addr);
if (addr != NULL && !total_rs0.is_reserved()) { if (addr != NULL && !total_rs0.is_reserved()) {
// Failed to reserve at specified address again - give up. // Failed to reserve at specified address again - give up.
addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop); addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::HeapBasedNarrowOop);
assert(addr == NULL, ""); assert(addr == NULL, "");
ReservedHeapSpace total_rs1(total_reserved, alignment, ReservedHeapSpace total_rs1(total_reserved, alignment,
UseLargePages, addr); use_large_pages, addr);
total_rs = total_rs1; total_rs = total_rs1;
} else { } else {
total_rs = total_rs0; total_rs = total_rs0;

View File

@ -346,7 +346,7 @@ class Universe: AllStatic {
}; };
static NARROW_OOP_MODE narrow_oop_mode(); static NARROW_OOP_MODE narrow_oop_mode();
static const char* narrow_oop_mode_to_string(NARROW_OOP_MODE mode); static const char* narrow_oop_mode_to_string(NARROW_OOP_MODE mode);
static char* preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode); static char* preferred_heap_base(size_t heap_size, size_t alignment, NARROW_OOP_MODE mode);
static char* preferred_metaspace_base(size_t heap_size, NARROW_OOP_MODE mode); static char* preferred_metaspace_base(size_t heap_size, NARROW_OOP_MODE mode);
static address narrow_oop_base() { return _narrow_oop._base; } static address narrow_oop_base() { return _narrow_oop._base; }
static bool is_narrow_oop_base(void* addr) { return (narrow_oop_base() == (address)addr); } static bool is_narrow_oop_base(void* addr) { return (narrow_oop_base() == (address)addr); }

View File

@ -5045,9 +5045,15 @@ _JNI_IMPORT_OR_EXPORT_ jint JNICALL JNI_GetDefaultJavaVMInitArgs(void *args_) {
tty->print_cr("Running test: " #unit_test_function_call); \ tty->print_cr("Running test: " #unit_test_function_call); \
unit_test_function_call unit_test_function_call
// Forward declaration
void TestReservedSpace_test();
void TestReserveMemorySpecial_test();
void execute_internal_vm_tests() { void execute_internal_vm_tests() {
if (ExecuteInternalVMTests) { if (ExecuteInternalVMTests) {
tty->print_cr("Running internal VM tests"); tty->print_cr("Running internal VM tests");
run_unit_test(TestReservedSpace_test());
run_unit_test(TestReserveMemorySpecial_test());
run_unit_test(GlobalDefinitions::test_globals()); run_unit_test(GlobalDefinitions::test_globals());
run_unit_test(GCTimerAllTest::all()); run_unit_test(GCTimerAllTest::all());
run_unit_test(arrayOopDesc::test_max_array_length()); run_unit_test(arrayOopDesc::test_max_array_length());

View File

@ -1933,6 +1933,9 @@ class CommandLineFlags {
notproduct(bool, ExecuteInternalVMTests, false, \ notproduct(bool, ExecuteInternalVMTests, false, \
"Enable execution of internal VM tests.") \ "Enable execution of internal VM tests.") \
\ \
notproduct(bool, VerboseInternalVMTests, false, \
"Turn on logging for internal VM tests.") \
\
product_pd(bool, UseTLAB, "Use thread-local object allocation") \ product_pd(bool, UseTLAB, "Use thread-local object allocation") \
\ \
product_pd(bool, ResizeTLAB, \ product_pd(bool, ResizeTLAB, \

View File

@ -328,8 +328,8 @@ class os: AllStatic {
static char* non_memory_address_word(); static char* non_memory_address_word();
// reserve, commit and pin the entire memory region // reserve, commit and pin the entire memory region
static char* reserve_memory_special(size_t size, char* addr = NULL, static char* reserve_memory_special(size_t size, size_t alignment,
bool executable = false); char* addr, bool executable);
static bool release_memory_special(char* addr, size_t bytes); static bool release_memory_special(char* addr, size_t bytes);
static void large_page_init(); static void large_page_init();
static size_t large_page_size(); static size_t large_page_size();

View File

@ -42,8 +42,19 @@
// ReservedSpace // ReservedSpace
// Dummy constructor
ReservedSpace::ReservedSpace() : _base(NULL), _size(0), _noaccess_prefix(0),
_alignment(0), _special(false), _executable(false) {
}
ReservedSpace::ReservedSpace(size_t size) { ReservedSpace::ReservedSpace(size_t size) {
initialize(size, 0, false, NULL, 0, false); size_t page_size = os::page_size_for_region(size, size, 1);
bool large_pages = page_size != (size_t)os::vm_page_size();
// Don't force the alignment to be large page aligned,
// since that will waste memory.
size_t alignment = os::vm_allocation_granularity();
initialize(size, alignment, large_pages, NULL, 0, false);
} }
ReservedSpace::ReservedSpace(size_t size, size_t alignment, ReservedSpace::ReservedSpace(size_t size, size_t alignment,
@ -129,16 +140,18 @@ void ReservedSpace::initialize(size_t size, size_t alignment, bool large,
if (special) { if (special) {
base = os::reserve_memory_special(size, requested_address, executable); base = os::reserve_memory_special(size, alignment, requested_address, executable);
if (base != NULL) { if (base != NULL) {
if (failed_to_reserve_as_requested(base, requested_address, size, true)) { if (failed_to_reserve_as_requested(base, requested_address, size, true)) {
// OS ignored requested address. Try different address. // OS ignored requested address. Try different address.
return; return;
} }
// Check alignment constraints // Check alignment constraints.
assert((uintptr_t) base % alignment == 0, assert((uintptr_t) base % alignment == 0,
"Large pages returned a non-aligned address"); err_msg("Large pages returned a non-aligned address, base: "
PTR_FORMAT " alignment: " PTR_FORMAT,
base, (void*)(uintptr_t)alignment));
_special = true; _special = true;
} else { } else {
// failed; try to reserve regular memory below // failed; try to reserve regular memory below
@ -715,4 +728,188 @@ void VirtualSpace::print() {
tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low_boundary(), high_boundary()); tty->print_cr(" - [low_b, high_b]: [" INTPTR_FORMAT ", " INTPTR_FORMAT "]", low_boundary(), high_boundary());
} }
/////////////// Unit tests ///////////////
#ifndef PRODUCT
#define test_log(...) \
do {\
if (VerboseInternalVMTests) { \
tty->print_cr(__VA_ARGS__); \
tty->flush(); \
}\
} while (false)
class TestReservedSpace : AllStatic {
public:
static void small_page_write(void* addr, size_t size) {
size_t page_size = os::vm_page_size();
char* end = (char*)addr + size;
for (char* p = (char*)addr; p < end; p += page_size) {
*p = 1;
}
}
static void release_memory_for_test(ReservedSpace rs) {
if (rs.special()) {
guarantee(os::release_memory_special(rs.base(), rs.size()), "Shouldn't fail");
} else {
guarantee(os::release_memory(rs.base(), rs.size()), "Shouldn't fail");
}
}
static void test_reserved_space1(size_t size, size_t alignment) {
test_log("test_reserved_space1(%p)", (void*) (uintptr_t) size);
assert(is_size_aligned(size, alignment), "Incorrect input parameters");
ReservedSpace rs(size, // size
alignment, // alignment
UseLargePages, // large
NULL, // requested_address
0); // noacces_prefix
test_log(" rs.special() == %d", rs.special());
assert(rs.base() != NULL, "Must be");
assert(rs.size() == size, "Must be");
assert(is_ptr_aligned(rs.base(), alignment), "aligned sizes should always give aligned addresses");
assert(is_size_aligned(rs.size(), alignment), "aligned sizes should always give aligned addresses");
if (rs.special()) {
small_page_write(rs.base(), size);
}
release_memory_for_test(rs);
}
static void test_reserved_space2(size_t size) {
test_log("test_reserved_space2(%p)", (void*)(uintptr_t)size);
assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
ReservedSpace rs(size);
test_log(" rs.special() == %d", rs.special());
assert(rs.base() != NULL, "Must be");
assert(rs.size() == size, "Must be");
if (rs.special()) {
small_page_write(rs.base(), size);
}
release_memory_for_test(rs);
}
static void test_reserved_space3(size_t size, size_t alignment, bool maybe_large) {
test_log("test_reserved_space3(%p, %p, %d)",
(void*)(uintptr_t)size, (void*)(uintptr_t)alignment, maybe_large);
assert(is_size_aligned(size, os::vm_allocation_granularity()), "Must be at least AG aligned");
assert(is_size_aligned(size, alignment), "Must be at least aligned against alignment");
bool large = maybe_large && UseLargePages && size >= os::large_page_size();
ReservedSpace rs(size, alignment, large, false);
test_log(" rs.special() == %d", rs.special());
assert(rs.base() != NULL, "Must be");
assert(rs.size() == size, "Must be");
if (rs.special()) {
small_page_write(rs.base(), size);
}
release_memory_for_test(rs);
}
static void test_reserved_space1() {
size_t size = 2 * 1024 * 1024;
size_t ag = os::vm_allocation_granularity();
test_reserved_space1(size, ag);
test_reserved_space1(size * 2, ag);
test_reserved_space1(size * 10, ag);
}
static void test_reserved_space2() {
size_t size = 2 * 1024 * 1024;
size_t ag = os::vm_allocation_granularity();
test_reserved_space2(size * 1);
test_reserved_space2(size * 2);
test_reserved_space2(size * 10);
test_reserved_space2(ag);
test_reserved_space2(size - ag);
test_reserved_space2(size);
test_reserved_space2(size + ag);
test_reserved_space2(size * 2);
test_reserved_space2(size * 2 - ag);
test_reserved_space2(size * 2 + ag);
test_reserved_space2(size * 3);
test_reserved_space2(size * 3 - ag);
test_reserved_space2(size * 3 + ag);
test_reserved_space2(size * 10);
test_reserved_space2(size * 10 + size / 2);
}
static void test_reserved_space3() {
size_t ag = os::vm_allocation_granularity();
test_reserved_space3(ag, ag , false);
test_reserved_space3(ag * 2, ag , false);
test_reserved_space3(ag * 3, ag , false);
test_reserved_space3(ag * 2, ag * 2, false);
test_reserved_space3(ag * 4, ag * 2, false);
test_reserved_space3(ag * 8, ag * 2, false);
test_reserved_space3(ag * 4, ag * 4, false);
test_reserved_space3(ag * 8, ag * 4, false);
test_reserved_space3(ag * 16, ag * 4, false);
if (UseLargePages) {
size_t lp = os::large_page_size();
// Without large pages
test_reserved_space3(lp, ag * 4, false);
test_reserved_space3(lp * 2, ag * 4, false);
test_reserved_space3(lp * 4, ag * 4, false);
test_reserved_space3(lp, lp , false);
test_reserved_space3(lp * 2, lp , false);
test_reserved_space3(lp * 3, lp , false);
test_reserved_space3(lp * 2, lp * 2, false);
test_reserved_space3(lp * 4, lp * 2, false);
test_reserved_space3(lp * 8, lp * 2, false);
// With large pages
test_reserved_space3(lp, ag * 4 , true);
test_reserved_space3(lp * 2, ag * 4, true);
test_reserved_space3(lp * 4, ag * 4, true);
test_reserved_space3(lp, lp , true);
test_reserved_space3(lp * 2, lp , true);
test_reserved_space3(lp * 3, lp , true);
test_reserved_space3(lp * 2, lp * 2, true);
test_reserved_space3(lp * 4, lp * 2, true);
test_reserved_space3(lp * 8, lp * 2, true);
}
}
static void test_reserved_space() {
test_reserved_space1();
test_reserved_space2();
test_reserved_space3();
}
};
void TestReservedSpace_test() {
TestReservedSpace::test_reserved_space();
}
#endif // PRODUCT
#endif #endif

View File

@ -53,6 +53,7 @@ class ReservedSpace VALUE_OBJ_CLASS_SPEC {
public: public:
// Constructor // Constructor
ReservedSpace();
ReservedSpace(size_t size); ReservedSpace(size_t size);
ReservedSpace(size_t size, size_t alignment, bool large, ReservedSpace(size_t size, size_t alignment, bool large,
char* requested_address = NULL, char* requested_address = NULL,

View File

@ -87,6 +87,8 @@ class MemTracker : AllStatic {
MEMFLAGS flags, address pc = 0, Thread* thread = NULL) { } MEMFLAGS flags, address pc = 0, Thread* thread = NULL) { }
static inline void record_virtual_memory_commit(address addr, size_t size, static inline void record_virtual_memory_commit(address addr, size_t size,
address pc = 0, Thread* thread = NULL) { } address pc = 0, Thread* thread = NULL) { }
static inline void record_virtual_memory_release(address addr, size_t size,
Thread* thread = NULL) { }
static inline void record_virtual_memory_type(address base, MEMFLAGS flags, static inline void record_virtual_memory_type(address base, MEMFLAGS flags,
Thread* thread = NULL) { } Thread* thread = NULL) { }
static inline Tracker get_realloc_tracker() { return _tkr; } static inline Tracker get_realloc_tracker() { return _tkr; }
@ -372,6 +374,13 @@ class MemTracker : AllStatic {
tkr.record(addr, size, flags, pc); tkr.record(addr, size, flags, pc);
} }
static inline void record_virtual_memory_release(address addr, size_t size,
Thread* thread = NULL) {
if (is_on()) {
Tracker tkr(Tracker::Release, thread);
tkr.record(addr, size);
}
}
// record memory type on virtual memory base address // record memory type on virtual memory base address
static inline void record_virtual_memory_type(address base, MEMFLAGS flags, static inline void record_virtual_memory_type(address base, MEMFLAGS flags,

View File

@ -402,6 +402,14 @@ const jlong CompressedKlassPointersBase = NOT_LP64(0) LP64_ONLY(CONST64(0x800000
#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1)) #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
inline bool is_size_aligned(size_t size, size_t alignment) {
return align_size_up_(size, alignment) == size;
}
inline bool is_ptr_aligned(void* ptr, size_t alignment) {
return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
}
inline intptr_t align_size_up(intptr_t size, intptr_t alignment) { inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
return align_size_up_(size, alignment); return align_size_up_(size, alignment);
} }
@ -414,6 +422,14 @@ inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment))) #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
inline void* align_ptr_up(void* ptr, size_t alignment) {
return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
}
inline void* align_ptr_down(void* ptr, size_t alignment) {
return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
}
// Align objects by rounding up their size, in HeapWord units. // Align objects by rounding up their size, in HeapWord units.
#define align_object_size_(size) align_size_up_(size, MinObjAlignment) #define align_object_size_(size) align_size_up_(size, MinObjAlignment)