6259129: (Escape Analysis) scalar replacement for not escaping objects

Use scalar replacement with EA to remove allocations for objects which do not escape the compiled method.

Reviewed-by: rasbold, never, jrose
This commit is contained in:
Vladimir Kozlov 2008-03-20 13:51:55 -07:00
parent a2b4f55757
commit 1ba2523386
3 changed files with 670 additions and 11 deletions

View File

@ -181,6 +181,622 @@ void PhaseMacroExpand::extract_call_projections(CallNode *call) {
}
// Eliminate a card mark sequence. p2x is a ConvP2XNode
void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
Node *shift = p2x->unique_out();
Node *addp = shift->unique_out();
for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
Node *st = addp->last_out(j);
assert(st->is_Store(), "store required");
_igvn.replace_node(st, st->in(MemNode::Memory));
}
}
// Search for a memory operation for the specified memory slice.
static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc) {
Node *orig_mem = mem;
Node *alloc_mem = alloc->in(TypeFunc::Memory);
while (true) {
if (mem == alloc_mem || mem == start_mem ) {
return mem; // hit one of our sentinals
} else if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(alias_idx);
} else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
Node *in = mem->in(0);
// we can safely skip over safepoints, calls, locks and membars because we
// already know that the object is safe to eliminate.
if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
return in;
} else if (in->is_Call() || in->is_MemBar()) {
mem = in->in(TypeFunc::Memory);
} else {
assert(false, "unexpected projection");
}
} else if (mem->is_Store()) {
const TypePtr* atype = mem->as_Store()->adr_type();
int adr_idx = Compile::current()->get_alias_index(atype);
if (adr_idx == alias_idx) {
assert(atype->isa_oopptr(), "address type must be oopptr");
int adr_offset = atype->offset();
uint adr_iid = atype->is_oopptr()->instance_id();
// Array elements references have the same alias_idx
// but different offset and different instance_id.
if (adr_offset == offset && adr_iid == alloc->_idx)
return mem;
} else {
assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
}
mem = mem->in(MemNode::Memory);
} else {
return mem;
}
if (mem == orig_mem)
return mem;
}
}
//
// Given a Memory Phi, compute a value Phi containing the values from stores
// on the input paths.
// Note: this function is recursive, its depth is limied by the "level" argument
// Returns the computed Phi, or NULL if it cannot compute it.
Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, int level) {
if (level <= 0) {
return NULL;
}
int alias_idx = C->get_alias_index(adr_t);
int offset = adr_t->offset();
int instance_id = adr_t->instance_id();
Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
Node *alloc_mem = alloc->in(TypeFunc::Memory);
uint length = mem->req();
GrowableArray <Node *> values(length, length, NULL);
for (uint j = 1; j < length; j++) {
Node *in = mem->in(j);
if (in == NULL || in->is_top()) {
values.at_put(j, in);
} else {
Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc);
if (val == start_mem || val == alloc_mem) {
// hit a sentinel, return appropriate 0 value
values.at_put(j, _igvn.zerocon(ft));
continue;
}
if (val->is_Initialize()) {
val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
}
if (val == NULL) {
return NULL; // can't find a value on this path
}
if (val == mem) {
values.at_put(j, mem);
} else if (val->is_Store()) {
values.at_put(j, val->in(MemNode::ValueIn));
} else if(val->is_Proj() && val->in(0) == alloc) {
values.at_put(j, _igvn.zerocon(ft));
} else if (val->is_Phi()) {
// Check if an appropriate node already exists.
Node* region = val->in(0);
Node* old_phi = NULL;
for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
Node* phi = region->fast_out(k);
if (phi->is_Phi() && phi != val &&
phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
old_phi = phi;
break;
}
}
if (old_phi == NULL) {
val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, level-1);
if (val == NULL) {
return NULL;
}
values.at_put(j, val);
} else {
values.at_put(j, old_phi);
}
} else {
return NULL; // unknown node on this path
}
}
}
// create a new Phi for the value
PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
for (uint j = 1; j < length; j++) {
if (values.at(j) == mem) {
phi->init_req(j, phi);
} else {
phi->init_req(j, values.at(j));
}
}
transform_later(phi);
return phi;
}
// Search the last value stored into the object's field.
Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
assert(adr_t->is_instance_field(), "instance required");
uint instance_id = adr_t->instance_id();
assert(instance_id == alloc->_idx, "wrong allocation");
int alias_idx = C->get_alias_index(adr_t);
int offset = adr_t->offset();
Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
Node *alloc_ctrl = alloc->in(TypeFunc::Control);
Node *alloc_mem = alloc->in(TypeFunc::Memory);
VectorSet visited(Thread::current()->resource_area());
bool done = sfpt_mem == alloc_mem;
Node *mem = sfpt_mem;
while (!done) {
if (visited.test_set(mem->_idx)) {
return NULL; // found a loop, give up
}
mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc);
if (mem == start_mem || mem == alloc_mem) {
done = true; // hit a sentinel, return appropriate 0 value
} else if (mem->is_Initialize()) {
mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
if (mem == NULL) {
done = true; // Something go wrong.
} else if (mem->is_Store()) {
const TypePtr* atype = mem->as_Store()->adr_type();
assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
done = true;
}
} else if (mem->is_Store()) {
const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
assert(atype != NULL, "address type must be oopptr");
assert(C->get_alias_index(atype) == alias_idx &&
atype->is_instance_field() && atype->offset() == offset &&
atype->instance_id() == instance_id, "store is correct memory slice");
done = true;
} else if (mem->is_Phi()) {
// try to find a phi's unique input
Node *unique_input = NULL;
Node *top = C->top();
for (uint i = 1; i < mem->req(); i++) {
Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc);
if (n == NULL || n == top || n == mem) {
continue;
} else if (unique_input == NULL) {
unique_input = n;
} else if (unique_input != n) {
unique_input = top;
break;
}
}
if (unique_input != NULL && unique_input != top) {
mem = unique_input;
} else {
done = true;
}
} else {
assert(false, "unexpected node");
}
}
if (mem != NULL) {
if (mem == start_mem || mem == alloc_mem) {
// hit a sentinel, return appropriate 0 value
return _igvn.zerocon(ft);
} else if (mem->is_Store()) {
return mem->in(MemNode::ValueIn);
} else if (mem->is_Phi()) {
// attempt to produce a Phi reflecting the values on the input paths of the Phi
Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, 8);
if (phi != NULL) {
return phi;
}
}
}
// Something go wrong.
return NULL;
}
// Check the possibility of scalar replacement.
bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
// Scan the uses of the allocation to check for anything that would
// prevent us from eliminating it.
NOT_PRODUCT( const char* fail_eliminate = NULL; )
DEBUG_ONLY( Node* disq_node = NULL; )
bool can_eliminate = true;
Node* res = alloc->result_cast();
const TypeOopPtr* res_type = NULL;
if (res == NULL) {
// All users were eliminated.
} else if (!res->is_CheckCastPP()) {
alloc->_is_scalar_replaceable = false; // don't try again
NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
can_eliminate = false;
} else {
res_type = _igvn.type(res)->isa_oopptr();
if (res_type == NULL) {
NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
can_eliminate = false;
} else if (res_type->isa_aryptr()) {
int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
if (length < 0) {
NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
can_eliminate = false;
}
}
}
if (can_eliminate && res != NULL) {
for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
j < jmax && can_eliminate; j++) {
Node* use = res->fast_out(j);
if (use->is_AddP()) {
const TypePtr* addp_type = _igvn.type(use)->is_ptr();
int offset = addp_type->offset();
if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
can_eliminate = false;
break;
}
for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
k < kmax && can_eliminate; k++) {
Node* n = use->fast_out(k);
if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
DEBUG_ONLY(disq_node = n;)
if (n->is_Load()) {
NOT_PRODUCT(fail_eliminate = "Field load";)
} else {
NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
}
can_eliminate = false;
}
}
} else if (use->is_SafePoint()) {
SafePointNode* sfpt = use->as_SafePoint();
if (sfpt->has_non_debug_use(res)) {
// Object is passed as argument.
DEBUG_ONLY(disq_node = use;)
NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
can_eliminate = false;
}
Node* sfptMem = sfpt->memory();
if (sfptMem == NULL || sfptMem->is_top()) {
DEBUG_ONLY(disq_node = use;)
NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
can_eliminate = false;
} else {
safepoints.append_if_missing(sfpt);
}
} else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
if (use->is_Phi()) {
if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
NOT_PRODUCT(fail_eliminate = "Object is return value";)
} else {
NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
}
DEBUG_ONLY(disq_node = use;)
} else {
if (use->Opcode() == Op_Return) {
NOT_PRODUCT(fail_eliminate = "Object is return value";)
}else {
NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
}
DEBUG_ONLY(disq_node = use;)
}
can_eliminate = false;
}
}
}
#ifndef PRODUCT
if (PrintEliminateAllocations) {
if (can_eliminate) {
tty->print("Scalar ");
if (res == NULL)
alloc->dump();
else
res->dump();
} else {
tty->print("NotScalar (%s)", fail_eliminate);
if (res == NULL)
alloc->dump();
else
res->dump();
#ifdef ASSERT
if (disq_node != NULL) {
tty->print(" >>>> ");
disq_node->dump();
}
#endif /*ASSERT*/
}
}
#endif
return can_eliminate;
}
// Do scalar replacement.
bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
GrowableArray <SafePointNode *> safepoints_done;
ciKlass* klass = NULL;
ciInstanceKlass* iklass = NULL;
int nfields = 0;
int array_base;
int element_size;
BasicType basic_elem_type;
ciType* elem_type;
Node* res = alloc->result_cast();
const TypeOopPtr* res_type = NULL;
if (res != NULL) { // Could be NULL when there are no users
res_type = _igvn.type(res)->isa_oopptr();
}
if (res != NULL) {
klass = res_type->klass();
if (res_type->isa_instptr()) {
// find the fields of the class which will be needed for safepoint debug information
assert(klass->is_instance_klass(), "must be an instance klass.");
iklass = klass->as_instance_klass();
nfields = iklass->nof_nonstatic_fields();
} else {
// find the array's elements which will be needed for safepoint debug information
nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
elem_type = klass->as_array_klass()->element_type();
basic_elem_type = elem_type->basic_type();
array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
element_size = type2aelembytes(basic_elem_type);
}
}
//
// Process the safepoint uses
//
while (safepoints.length() > 0) {
SafePointNode* sfpt = safepoints.pop();
Node* mem = sfpt->memory();
uint first_ind = sfpt->req();
SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
#ifdef ASSERT
alloc,
#endif
first_ind, nfields);
sobj->init_req(0, sfpt->in(TypeFunc::Control));
transform_later(sobj);
// Scan object's fields adding an input to the safepoint for each field.
for (int j = 0; j < nfields; j++) {
int offset;
ciField* field = NULL;
if (iklass != NULL) {
field = iklass->nonstatic_field_at(j);
offset = field->offset();
elem_type = field->type();
basic_elem_type = field->layout_type();
} else {
offset = array_base + j * element_size;
}
const Type *field_type;
// The next code is taken from Parse::do_get_xxx().
if (basic_elem_type == T_OBJECT) {
if (!elem_type->is_loaded()) {
field_type = TypeInstPtr::BOTTOM;
} else if (field != NULL && field->is_constant()) {
// This can happen if the constant oop is non-perm.
ciObject* con = field->constant_value().as_object();
// Do not "join" in the previous type; it doesn't add value,
// and may yield a vacuous result if the field is of interface type.
field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
assert(field_type != NULL, "field singleton type must be consistent");
} else {
field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
}
} else {
field_type = Type::get_const_basic_type(basic_elem_type);
}
const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
if (field_val == NULL) {
// we weren't able to find a value for this field,
// give up on eliminating this allocation
alloc->_is_scalar_replaceable = false; // don't try again
// remove any extra entries we added to the safepoint
uint last = sfpt->req() - 1;
for (int k = 0; k < j; k++) {
sfpt->del_req(last--);
}
// rollback processed safepoints
while (safepoints_done.length() > 0) {
SafePointNode* sfpt_done = safepoints_done.pop();
// remove any extra entries we added to the safepoint
last = sfpt_done->req() - 1;
for (int k = 0; k < nfields; k++) {
sfpt_done->del_req(last--);
}
JVMState *jvms = sfpt_done->jvms();
jvms->set_endoff(sfpt_done->req());
// Now make a pass over the debug information replacing any references
// to SafePointScalarObjectNode with the allocated object.
int start = jvms->debug_start();
int end = jvms->debug_end();
for (int i = start; i < end; i++) {
if (sfpt_done->in(i)->is_SafePointScalarObject()) {
SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
if (scobj->first_index() == sfpt_done->req() &&
scobj->n_fields() == (uint)nfields) {
assert(scobj->alloc() == alloc, "sanity");
sfpt_done->set_req(i, res);
}
}
}
}
#ifndef PRODUCT
if (PrintEliminateAllocations) {
if (field != NULL) {
tty->print("=== At SafePoint node %d can't find value of Field: ",
sfpt->_idx);
field->print();
int field_idx = C->get_alias_index(field_addr_type);
tty->print(" (alias_idx=%d)", field_idx);
} else { // Array's element
tty->print("=== At SafePoint node %d can't find value of array element [%d]",
sfpt->_idx, j);
}
tty->print(", which prevents elimination of: ");
if (res == NULL)
alloc->dump();
else
res->dump();
}
#endif
return false;
}
sfpt->add_req(field_val);
}
JVMState *jvms = sfpt->jvms();
jvms->set_endoff(sfpt->req());
// Now make a pass over the debug information replacing any references
// to the allocated object with "sobj"
int start = jvms->debug_start();
int end = jvms->debug_end();
for (int i = start; i < end; i++) {
if (sfpt->in(i) == res) {
sfpt->set_req(i, sobj);
}
}
safepoints_done.append_if_missing(sfpt); // keep it for rollback
}
return true;
}
// Process users of eliminated allocation.
void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
Node* res = alloc->result_cast();
if (res != NULL) {
for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
Node *use = res->last_out(j);
uint oc1 = res->outcnt();
if (use->is_AddP()) {
for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
Node *n = use->last_out(k);
uint oc2 = use->outcnt();
if (n->is_Store()) {
_igvn.replace_node(n, n->in(MemNode::Memory));
} else {
assert( n->Opcode() == Op_CastP2X, "CastP2X required");
eliminate_card_mark(n);
}
k -= (oc2 - use->outcnt());
}
} else {
assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
assert( use->Opcode() == Op_CastP2X, "CastP2X required");
eliminate_card_mark(use);
}
j -= (oc1 - res->outcnt());
}
assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
_igvn.remove_dead_node(res);
}
//
// Process other users of allocation's projections
//
if (_resproj != NULL && _resproj->outcnt() != 0) {
for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
Node *use = _resproj->last_out(j);
uint oc1 = _resproj->outcnt();
if (use->is_Initialize()) {
// Eliminate Initialize node.
InitializeNode *init = use->as_Initialize();
assert(init->outcnt() <= 2, "only a control and memory projection expected");
Node *ctrl_proj = init->proj_out(TypeFunc::Control);
if (ctrl_proj != NULL) {
assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
_igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
}
Node *mem_proj = init->proj_out(TypeFunc::Memory);
if (mem_proj != NULL) {
Node *mem = init->in(TypeFunc::Memory);
#ifdef ASSERT
if (mem->is_MergeMem()) {
assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
} else {
assert(mem == _memproj_fallthrough, "allocation memory projection");
}
#endif
_igvn.replace_node(mem_proj, mem);
}
} else if (use->is_AddP()) {
// raw memory addresses used only by the initialization
_igvn.hash_delete(use);
_igvn.subsume_node(use, C->top());
} else {
assert(false, "only Initialize or AddP expected");
}
j -= (oc1 - _resproj->outcnt());
}
}
if (_fallthroughcatchproj != NULL) {
_igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
}
if (_memproj_fallthrough != NULL) {
_igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
}
if (_memproj_catchall != NULL) {
_igvn.replace_node(_memproj_catchall, C->top());
}
if (_ioproj_fallthrough != NULL) {
_igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
}
if (_ioproj_catchall != NULL) {
_igvn.replace_node(_ioproj_catchall, C->top());
}
if (_catchallcatchproj != NULL) {
_igvn.replace_node(_catchallcatchproj, C->top());
}
}
bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
return false;
}
extract_call_projections(alloc);
GrowableArray <SafePointNode *> safepoints;
if (!can_eliminate_allocation(alloc, safepoints)) {
return false;
}
if (!scalar_replacement(alloc, safepoints)) {
return false;
}
process_users_of_allocation(alloc);
#ifndef PRODUCT
if (PrintEliminateAllocations) {
if (alloc->is_AllocateArray())
tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
else
tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
}
#endif
return true;
}
//---------------------------set_eden_pointers-------------------------
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
@ -285,6 +901,13 @@ void PhaseMacroExpand::expand_allocate_common(
Node* klass_node = alloc->in(AllocateNode::KlassNode);
Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
// With escape analysis, the entire memory state was needed to be able to
// eliminate the allocation. Since the allocations cannot be eliminated,
// optimize it to the raw slice.
if (mem->is_MergeMem()) {
mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
}
Node* eden_top_adr;
Node* eden_end_adr;
set_eden_pointers(eden_top_adr, eden_end_adr);
@ -915,10 +1538,6 @@ bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
//------------------------------expand_lock_node----------------------
void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
if (eliminate_locking_node(lock)) {
return;
}
Node* ctrl = lock->in(TypeFunc::Control);
Node* mem = lock->in(TypeFunc::Memory);
Node* obj = lock->obj_node();
@ -972,10 +1591,6 @@ void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
//------------------------------expand_unlock_node----------------------
void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
if (eliminate_locking_node(unlock)) {
return;
}
Node* ctrl = unlock->in(TypeFunc::Control);
Node* mem = unlock->in(TypeFunc::Memory);
Node* obj = unlock->obj_node();
@ -1030,14 +1645,41 @@ void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
bool PhaseMacroExpand::expand_macro_nodes() {
if (C->macro_count() == 0)
return false;
// Make sure expansion will not cause node limit to be exceeded. Worst case is a
// macro node gets expanded into about 50 nodes. Allow 50% more for optimization
// attempt to eliminate allocations
bool progress = true;
while (progress) {
progress = false;
for (int i = C->macro_count(); i > 0; i--) {
Node * n = C->macro_node(i-1);
bool success = false;
debug_only(int old_macro_count = C->macro_count(););
switch (n->class_id()) {
case Node::Class_Allocate:
case Node::Class_AllocateArray:
success = eliminate_allocate_node(n->as_Allocate());
break;
case Node::Class_Lock:
case Node::Class_Unlock:
success = eliminate_locking_node(n->as_AbstractLock());
break;
default:
assert(false, "unknown node type in macro list");
}
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
progress = progress || success;
}
}
// Make sure expansion will not cause node limit to be exceeded.
// Worst case is a macro node gets expanded into about 50 nodes.
// Allow 50% more for optimization.
if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
return true;
// expand "macro" nodes
// nodes are removed from the macro list as they are processed
while (C->macro_count() > 0) {
Node * n = C->macro_node(0);
int macro_count = C->macro_count();
Node * n = C->macro_node(macro_count-1);
assert(n->is_macro(), "only macro nodes expected here");
if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
// node is unreachable, so don't try to expand it
@ -1060,6 +1702,7 @@ bool PhaseMacroExpand::expand_macro_nodes() {
default:
assert(false, "unknown node type in macro list");
}
assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
if (C->failing()) return true;
}
_igvn.optimize();

View File

@ -78,6 +78,15 @@ private:
Node* length,
const TypeFunc* slow_call_type,
address slow_call_address);
Node *value_from_mem(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc);
Node *value_from_mem_phi(Node *mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc, int level);
bool eliminate_allocate_node(AllocateNode *alloc);
bool can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints);
bool scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints_done);
void process_users_of_allocation(AllocateNode *alloc);
void eliminate_card_mark(Node *cm);
bool eliminate_locking_node(AbstractLockNode *alock);
void expand_lock_node(LockNode *lock);
void expand_unlock_node(UnlockNode *unlock);

View File

@ -439,6 +439,13 @@ public:
void add_users_to_worklist0( Node *n );
void add_users_to_worklist ( Node *n );
// Replace old node with new one.
void replace_node( Node *old, Node *nn ) {
add_users_to_worklist(old);
hash_delete(old);
subsume_node(old, nn);
}
#ifndef PRODUCT
protected:
// Sub-quadratic implementation of VerifyIterativeGVN.