8033416: Remove sun.misc.FpUtils

Reviewed-by: alanb, bpb, psandoz
This commit is contained in:
Joe Darcy 2014-02-03 09:52:36 -08:00
parent b2af3087a4
commit 1c57114347
8 changed files with 203 additions and 969 deletions

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,7 +26,6 @@
package java.lang;
import sun.misc.FloatingDecimal;
import sun.misc.FpUtils;
import sun.misc.DoubleConsts;
/**

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -77,9 +77,7 @@ public class DoubleConsts {
/**
* The exponent the smallest positive <code>double</code>
* subnormal value would have if it could be normalized. It is
* equal to the value returned by
* <code>FpUtils.ilogb(Double.MIN_VALUE)</code>.
* subnormal value would have if it could be normalized..
*/
public static final int MIN_SUB_EXPONENT = MIN_EXPONENT -
(SIGNIFICAND_WIDTH - 1);

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -73,8 +73,7 @@ public class FloatConsts {
/**
* The exponent the smallest positive <code>float</code> subnormal
* value would have if it could be normalized. It is equal to the
* value returned by <code>FpUtils.ilogb(Float.MIN_VALUE)</code>.
* value would have if it could be normalized.
*/
public static final int MIN_SUB_EXPONENT = MIN_EXPONENT -
(SIGNIFICAND_WIDTH - 1);

View File

@ -1,931 +0,0 @@
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.misc;
import sun.misc.FloatConsts;
import sun.misc.DoubleConsts;
/**
* The class {@code FpUtils} contains static utility methods for
* manipulating and inspecting {@code float} and
* {@code double} floating-point numbers. These methods include
* functionality recommended or required by the IEEE 754
* floating-point standard.
*
* @author Joseph D. Darcy
*/
public class FpUtils {
/*
* The methods in this class are reasonably implemented using
* direct or indirect bit-level manipulation of floating-point
* values. However, having access to the IEEE 754 recommended
* functions would obviate the need for most programmers to engage
* in floating-point bit-twiddling.
*
* An IEEE 754 number has three fields, from most significant bit
* to to least significant, sign, exponent, and significand.
*
* msb lsb
* [sign|exponent| fractional_significand]
*
* Using some encoding cleverness, explained below, the high order
* bit of the logical significand does not need to be explicitly
* stored, thus "fractional_significand" instead of simply
* "significand" in the figure above.
*
* For finite normal numbers, the numerical value encoded is
*
* (-1)^sign * 2^(exponent)*(1.fractional_significand)
*
* Most finite floating-point numbers are normalized; the exponent
* value is reduced until the leading significand bit is 1.
* Therefore, the leading 1 is redundant and is not explicitly
* stored. If a numerical value is so small it cannot be
* normalized, it has a subnormal representation. Subnormal
* numbers don't have a leading 1 in their significand; subnormals
* are encoding using a special exponent value. In other words,
* the high-order bit of the logical significand can be elided in
* from the representation in either case since the bit's value is
* implicit from the exponent value.
*
* The exponent field uses a biased representation; if the bits of
* the exponent are interpreted as a unsigned integer E, the
* exponent represented is E - E_bias where E_bias depends on the
* floating-point format. E can range between E_min and E_max,
* constants which depend on the floating-point format. E_min and
* E_max are -126 and +127 for float, -1022 and +1023 for double.
*
* The 32-bit float format has 1 sign bit, 8 exponent bits, and 23
* bits for the significand (which is logically 24 bits wide
* because of the implicit bit). The 64-bit double format has 1
* sign bit, 11 exponent bits, and 52 bits for the significand
* (logically 53 bits).
*
* Subnormal numbers and zero have the special exponent value
* E_min -1; the numerical value represented by a subnormal is:
*
* (-1)^sign * 2^(E_min)*(0.fractional_significand)
*
* Zero is represented by all zero bits in the exponent and all
* zero bits in the significand; zero can have either sign.
*
* Infinity and NaN are encoded using the exponent value E_max +
* 1. Signed infinities have all significand bits zero; NaNs have
* at least one non-zero significand bit.
*
* The details of IEEE 754 floating-point encoding will be used in
* the methods below without further comment. For further
* exposition on IEEE 754 numbers, see "IEEE Standard for Binary
* Floating-Point Arithmetic" ANSI/IEEE Std 754-1985 or William
* Kahan's "Lecture Notes on the Status of IEEE Standard 754 for
* Binary Floating-Point Arithmetic",
* http://www.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps.
*
* Many of this class's methods are members of the set of IEEE 754
* recommended functions or similar functions recommended or
* required by IEEE 754R. Discussion of various implementation
* techniques for these functions have occurred in:
*
* W.J. Cody and Jerome T. Coonen, "Algorithm 772 Functions to
* Support the IEEE Standard for Binary Floating-Point
* Arithmetic," ACM Transactions on Mathematical Software,
* vol. 19, no. 4, December 1993, pp. 443-451.
*
* Joseph D. Darcy, "Writing robust IEEE recommended functions in
* ``100% Pure Java''(TM)," University of California, Berkeley
* technical report UCB//CSD-98-1009.
*/
/**
* Don't let anyone instantiate this class.
*/
private FpUtils() {}
// Helper Methods
// The following helper methods are used in the implementation of
// the public recommended functions; they generally omit certain
// tests for exception cases.
/**
* Returns unbiased exponent of a {@code double}.
* @deprecated Use Math.getExponent.
*/
@Deprecated
public static int getExponent(double d){
return Math.getExponent(d);
}
/**
* Returns unbiased exponent of a {@code float}.
* @deprecated Use Math.getExponent.
*/
@Deprecated
public static int getExponent(float f){
return Math.getExponent(f);
}
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. Note that unlike the {@link
* FpUtils#copySign(double, double) copySign} method, this method
* does not require NaN {@code sign} arguments to be treated
* as positive values; implementations are permitted to treat some
* NaN arguments as positive and other NaN arguments as negative
* to allow greater performance.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
* @return a value with the magnitude of {@code magnitude}
* and the sign of {@code sign}.
* @author Joseph D. Darcy
* @deprecated Use Math.copySign.
*/
@Deprecated
public static double rawCopySign(double magnitude, double sign) {
return Math.copySign(magnitude, sign);
}
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. Note that unlike the {@link
* FpUtils#copySign(float, float) copySign} method, this method
* does not require NaN {@code sign} arguments to be treated
* as positive values; implementations are permitted to treat some
* NaN arguments as positive and other NaN arguments as negative
* to allow greater performance.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
* @return a value with the magnitude of {@code magnitude}
* and the sign of {@code sign}.
* @author Joseph D. Darcy
* @deprecated Use Math.copySign.
*/
@Deprecated
public static float rawCopySign(float magnitude, float sign) {
return Math.copySign(magnitude, sign);
}
/* ***************************************************************** */
/**
* Returns {@code true} if the argument is a finite
* floating-point value; returns {@code false} otherwise (for
* NaN and infinity arguments).
*
* @param d the {@code double} value to be tested
* @return {@code true} if the argument is a finite
* floating-point value, {@code false} otherwise.
* @deprecated Use Double.isFinite.
*/
@Deprecated
public static boolean isFinite(double d) {
return Double.isFinite(d);
}
/**
* Returns {@code true} if the argument is a finite
* floating-point value; returns {@code false} otherwise (for
* NaN and infinity arguments).
*
* @param f the {@code float} value to be tested
* @return {@code true} if the argument is a finite
* floating-point value, {@code false} otherwise.
* @deprecated Use Float.isFinite.
*/
@Deprecated
public static boolean isFinite(float f) {
return Float.isFinite(f);
}
/**
* Returns {@code true} if the specified number is infinitely
* large in magnitude, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Double#isInfinite(double) Double.isInfinite} method; the
* functionality is included in this class for convenience.
*
* @param d the value to be tested.
* @return {@code true} if the value of the argument is positive
* infinity or negative infinity; {@code false} otherwise.
*/
public static boolean isInfinite(double d) {
return Double.isInfinite(d);
}
/**
* Returns {@code true} if the specified number is infinitely
* large in magnitude, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Float#isInfinite(float) Float.isInfinite} method; the
* functionality is included in this class for convenience.
*
* @param f the value to be tested.
* @return {@code true} if the argument is positive infinity or
* negative infinity; {@code false} otherwise.
*/
public static boolean isInfinite(float f) {
return Float.isInfinite(f);
}
/**
* Returns {@code true} if the specified number is a
* Not-a-Number (NaN) value, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Double#isNaN(double) Double.isNaN} method; the functionality is
* included in this class for convenience.
*
* @param d the value to be tested.
* @return {@code true} if the value of the argument is NaN;
* {@code false} otherwise.
*/
public static boolean isNaN(double d) {
return Double.isNaN(d);
}
/**
* Returns {@code true} if the specified number is a
* Not-a-Number (NaN) value, {@code false} otherwise.
*
* <p>Note that this method is equivalent to the {@link
* Float#isNaN(float) Float.isNaN} method; the functionality is
* included in this class for convenience.
*
* @param f the value to be tested.
* @return {@code true} if the argument is NaN;
* {@code false} otherwise.
*/
public static boolean isNaN(float f) {
return Float.isNaN(f);
}
/**
* Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
* at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
* @return {@code true} if at least one argument is a NaN,
* {@code false} otherwise.
*/
public static boolean isUnordered(double arg1, double arg2) {
return isNaN(arg1) || isNaN(arg2);
}
/**
* Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
* at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
* @return {@code true} if at least one argument is a NaN,
* {@code false} otherwise.
*/
public static boolean isUnordered(float arg1, float arg2) {
return isNaN(arg1) || isNaN(arg2);
}
/**
* Returns unbiased exponent of a {@code double}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
* always in the range [1, 2).
* <p>
* Special cases:
* <ul>
* <li> If the argument is NaN, then the result is 2<sup>30</sup>.
* <li> If the argument is infinite, then the result is 2<sup>28</sup>.
* <li> If the argument is zero, then the result is -(2<sup>28</sup>).
* </ul>
*
* @param d floating-point number whose exponent is to be extracted
* @return unbiased exponent of the argument.
* @author Joseph D. Darcy
*/
public static int ilogb(double d) {
int exponent = getExponent(d);
switch (exponent) {
case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity
if( isNaN(d) )
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal
if(d == 0.0) {
return -(1<<28); // -(2^28)
}
else {
long transducer = Double.doubleToRawLongBits(d);
/*
* To avoid causing slow arithmetic on subnormals,
* the scaling to determine when d's significand
* is normalized is done in integer arithmetic.
* (there must be at least one "1" bit in the
* significand since zero has been screened out.
*/
// isolate significand bits
transducer &= DoubleConsts.SIGNIF_BIT_MASK;
assert(transducer != 0L);
// This loop is simple and functional. We might be
// able to do something more clever that was faster;
// e.g. number of leading zero detection on
// (transducer << (# exponent and sign bits).
while (transducer <
(1L << (DoubleConsts.SIGNIFICAND_WIDTH - 1))) {
transducer *= 2;
exponent--;
}
exponent++;
assert( exponent >=
DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1) &&
exponent < DoubleConsts.MIN_EXPONENT);
return exponent;
}
default:
assert( exponent >= DoubleConsts.MIN_EXPONENT &&
exponent <= DoubleConsts.MAX_EXPONENT);
return exponent;
}
}
/**
* Returns unbiased exponent of a {@code float}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
* always in the range [1, 2).
* <p>
* Special cases:
* <ul>
* <li> If the argument is NaN, then the result is 2<sup>30</sup>.
* <li> If the argument is infinite, then the result is 2<sup>28</sup>.
* <li> If the argument is zero, then the result is -(2<sup>28</sup>).
* </ul>
*
* @param f floating-point number whose exponent is to be extracted
* @return unbiased exponent of the argument.
* @author Joseph D. Darcy
*/
public static int ilogb(float f) {
int exponent = getExponent(f);
switch (exponent) {
case FloatConsts.MAX_EXPONENT+1: // NaN or infinity
if( isNaN(f) )
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
case FloatConsts.MIN_EXPONENT-1: // zero or subnormal
if(f == 0.0f) {
return -(1<<28); // -(2^28)
}
else {
int transducer = Float.floatToRawIntBits(f);
/*
* To avoid causing slow arithmetic on subnormals,
* the scaling to determine when f's significand
* is normalized is done in integer arithmetic.
* (there must be at least one "1" bit in the
* significand since zero has been screened out.
*/
// isolate significand bits
transducer &= FloatConsts.SIGNIF_BIT_MASK;
assert(transducer != 0);
// This loop is simple and functional. We might be
// able to do something more clever that was faster;
// e.g. number of leading zero detection on
// (transducer << (# exponent and sign bits).
while (transducer <
(1 << (FloatConsts.SIGNIFICAND_WIDTH - 1))) {
transducer *= 2;
exponent--;
}
exponent++;
assert( exponent >=
FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1) &&
exponent < FloatConsts.MIN_EXPONENT);
return exponent;
}
default:
assert( exponent >= FloatConsts.MIN_EXPONENT &&
exponent <= FloatConsts.MAX_EXPONENT);
return exponent;
}
}
/*
* The scalb operation should be reasonably fast; however, there
* are tradeoffs in writing a method to minimize the worst case
* performance and writing a method to minimize the time for
* expected common inputs. Some processors operate very slowly on
* subnormal operands, taking hundreds or thousands of cycles for
* one floating-point add or multiply as opposed to, say, four
* cycles for normal operands. For processors with very slow
* subnormal execution, scalb would be fastest if written entirely
* with integer operations; in other words, scalb would need to
* include the logic of performing correct rounding of subnormal
* values. This could be reasonably done in at most a few hundred
* cycles. However, this approach may penalize normal operations
* since at least the exponent of the floating-point argument must
* be examined.
*
* The approach taken in this implementation is a compromise.
* Floating-point multiplication is used to do most of the work;
* but knowingly multiplying by a subnormal scaling factor is
* avoided. However, the floating-point argument is not examined
* to see whether or not it is subnormal since subnormal inputs
* are assumed to be rare. At most three multiplies are needed to
* scale from the largest to smallest exponent ranges (scaling
* down, at most two multiplies are needed if subnormal scaling
* factors are allowed). However, in this implementation an
* expensive integer remainder operation is avoided at the cost of
* requiring five floating-point multiplies in the worst case,
* which should still be a performance win.
*
* If scaling of entire arrays is a concern, it would probably be
* more efficient to provide a double[] scalb(double[], int)
* version of scalb to avoid having to recompute the needed
* scaling factors for each floating-point value.
*/
/**
* Return {@code d} &times;
* 2<sup>{@code scale_factor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the double value set. See section 4.2.3 of
* <cite>The Java&trade; Language Specification</cite>
* for a discussion of floating-point
* value sets. If the exponent of the result is between the
* {@code double}'s minimum exponent and maximum exponent,
* the answer is calculated exactly. If the exponent of the
* result would be larger than {@code doubles}'s maximum
* exponent, an infinity is returned. Note that if the result is
* subnormal, precision may be lost; that is, when {@code scalb(x,
* n)} is subnormal, {@code scalb(scalb(x, n), -n)} may
* not equal <i>x</i>. When the result is non-NaN, the result has
* the same sign as {@code d}.
*
*<p>
* Special cases:
* <ul>
* <li> If the first argument is NaN, NaN is returned.
* <li> If the first argument is infinite, then an infinity of the
* same sign is returned.
* <li> If the first argument is zero, then a zero of the same
* sign is returned.
* </ul>
*
* @param d number to be scaled by a power of two.
* @param scale_factor power of 2 used to scale {@code d}
* @return {@code d * }2<sup>{@code scale_factor}</sup>
* @author Joseph D. Darcy
* @deprecated Use Math.scalb.
*/
@Deprecated
public static double scalb(double d, int scale_factor) {
return Math.scalb(d, scale_factor);
}
/**
* Return {@code f} &times;
* 2<sup>{@code scale_factor}</sup> rounded as if performed
* by a single correctly rounded floating-point multiply to a
* member of the float value set. See section 4.2.3 of
* <cite>The Java&trade; Language Specification</cite>
* for a discussion of floating-point
* value sets. If the exponent of the result is between the
* {@code float}'s minimum exponent and maximum exponent, the
* answer is calculated exactly. If the exponent of the result
* would be larger than {@code float}'s maximum exponent, an
* infinity is returned. Note that if the result is subnormal,
* precision may be lost; that is, when {@code scalb(x, n)}
* is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
* <i>x</i>. When the result is non-NaN, the result has the same
* sign as {@code f}.
*
*<p>
* Special cases:
* <ul>
* <li> If the first argument is NaN, NaN is returned.
* <li> If the first argument is infinite, then an infinity of the
* same sign is returned.
* <li> If the first argument is zero, then a zero of the same
* sign is returned.
* </ul>
*
* @param f number to be scaled by a power of two.
* @param scale_factor power of 2 used to scale {@code f}
* @return {@code f * }2<sup>{@code scale_factor}</sup>
* @author Joseph D. Darcy
* @deprecated Use Math.scalb.
*/
@Deprecated
public static float scalb(float f, int scale_factor) {
return Math.scalb(f, scale_factor);
}
/**
* Returns the floating-point number adjacent to the first
* argument in the direction of the second argument. If both
* arguments compare as equal the second argument is returned.
*
* <p>
* Special cases:
* <ul>
* <li> If either argument is a NaN, then NaN is returned.
*
* <li> If both arguments are signed zeros, {@code direction}
* is returned unchanged (as implied by the requirement of
* returning the second argument if the arguments compare as
* equal).
*
* <li> If {@code start} is
* &plusmn;{@code Double.MIN_VALUE} and {@code direction}
* has a value such that the result should have a smaller
* magnitude, then a zero with the same sign as {@code start}
* is returned.
*
* <li> If {@code start} is infinite and
* {@code direction} has a value such that the result should
* have a smaller magnitude, {@code Double.MAX_VALUE} with the
* same sign as {@code start} is returned.
*
* <li> If {@code start} is equal to &plusmn;
* {@code Double.MAX_VALUE} and {@code direction} has a
* value such that the result should have a larger magnitude, an
* infinity with same sign as {@code start} is returned.
* </ul>
*
* @param start starting floating-point value
* @param direction value indicating which of
* {@code start}'s neighbors or {@code start} should
* be returned
* @return The floating-point number adjacent to {@code start} in the
* direction of {@code direction}.
* @author Joseph D. Darcy
* @deprecated Use Math.nextAfter
*/
@Deprecated
public static double nextAfter(double start, double direction) {
return Math.nextAfter(start, direction);
}
/**
* Returns the floating-point number adjacent to the first
* argument in the direction of the second argument. If both
* arguments compare as equal, the second argument is returned.
*
* <p>
* Special cases:
* <ul>
* <li> If either argument is a NaN, then NaN is returned.
*
* <li> If both arguments are signed zeros, a {@code float}
* zero with the same sign as {@code direction} is returned
* (as implied by the requirement of returning the second argument
* if the arguments compare as equal).
*
* <li> If {@code start} is
* &plusmn;{@code Float.MIN_VALUE} and {@code direction}
* has a value such that the result should have a smaller
* magnitude, then a zero with the same sign as {@code start}
* is returned.
*
* <li> If {@code start} is infinite and
* {@code direction} has a value such that the result should
* have a smaller magnitude, {@code Float.MAX_VALUE} with the
* same sign as {@code start} is returned.
*
* <li> If {@code start} is equal to &plusmn;
* {@code Float.MAX_VALUE} and {@code direction} has a
* value such that the result should have a larger magnitude, an
* infinity with same sign as {@code start} is returned.
* </ul>
*
* @param start starting floating-point value
* @param direction value indicating which of
* {@code start}'s neighbors or {@code start} should
* be returned
* @return The floating-point number adjacent to {@code start} in the
* direction of {@code direction}.
* @author Joseph D. Darcy
* @deprecated Use Math.nextAfter.
*/
@Deprecated
public static float nextAfter(float start, double direction) {
return Math.nextAfter(start, direction);
}
/**
* Returns the floating-point value adjacent to {@code d} in
* the direction of positive infinity. This method is
* semantically equivalent to {@code nextAfter(d,
* Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
* implementation may run faster than its equivalent
* {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, the result is NaN.
*
* <li> If the argument is positive infinity, the result is
* positive infinity.
*
* <li> If the argument is zero, the result is
* {@code Double.MIN_VALUE}
*
* </ul>
*
* @param d starting floating-point value
* @return The adjacent floating-point value closer to positive
* infinity.
* @author Joseph D. Darcy
* @deprecated use Math.nextUp.
*/
@Deprecated
public static double nextUp(double d) {
return Math.nextUp(d);
}
/**
* Returns the floating-point value adjacent to {@code f} in
* the direction of positive infinity. This method is
* semantically equivalent to {@code nextAfter(f,
* Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
* implementation may run faster than its equivalent
* {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, the result is NaN.
*
* <li> If the argument is positive infinity, the result is
* positive infinity.
*
* <li> If the argument is zero, the result is
* {@code Float.MIN_VALUE}
*
* </ul>
*
* @param f starting floating-point value
* @return The adjacent floating-point value closer to positive
* infinity.
* @author Joseph D. Darcy
* @deprecated Use Math.nextUp.
*/
@Deprecated
public static float nextUp(float f) {
return Math.nextUp(f);
}
/**
* Returns the floating-point value adjacent to {@code d} in
* the direction of negative infinity. This method is
* semantically equivalent to {@code nextAfter(d,
* Double.NEGATIVE_INFINITY)}; however, a
* {@code nextDown} implementation may run faster than its
* equivalent {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, the result is NaN.
*
* <li> If the argument is negative infinity, the result is
* negative infinity.
*
* <li> If the argument is zero, the result is
* {@code -Double.MIN_VALUE}
*
* </ul>
*
* @param d starting floating-point value
* @return The adjacent floating-point value closer to negative
* infinity.
* @author Joseph D. Darcy
* @deprecated Use Math.nextDown.
*/
@Deprecated
public static double nextDown(double d) {
return Math.nextDown(d);
}
/**
* Returns the floating-point value adjacent to {@code f} in
* the direction of negative infinity. This method is
* semantically equivalent to {@code nextAfter(f,
* Float.NEGATIVE_INFINITY)}; however, a
* {@code nextDown} implementation may run faster than its
* equivalent {@code nextAfter} call.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, the result is NaN.
*
* <li> If the argument is negative infinity, the result is
* negative infinity.
*
* <li> If the argument is zero, the result is
* {@code -Float.MIN_VALUE}
*
* </ul>
*
* @param f starting floating-point value
* @return The adjacent floating-point value closer to negative
* infinity.
* @author Joseph D. Darcy
* @deprecated Use Math.nextDown.
*/
@Deprecated
public static double nextDown(float f) {
return Math.nextDown(f);
}
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. For this method, a NaN
* {@code sign} argument is always treated as if it were
* positive.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
* @return a value with the magnitude of {@code magnitude}
* and the sign of {@code sign}.
* @author Joseph D. Darcy
* @since 1.5
* @deprecated Use StrictMath.copySign.
*/
@Deprecated
public static double copySign(double magnitude, double sign) {
return StrictMath.copySign(magnitude, sign);
}
/**
* Returns the first floating-point argument with the sign of the
* second floating-point argument. For this method, a NaN
* {@code sign} argument is always treated as if it were
* positive.
*
* @param magnitude the parameter providing the magnitude of the result
* @param sign the parameter providing the sign of the result
* @return a value with the magnitude of {@code magnitude}
* and the sign of {@code sign}.
* @author Joseph D. Darcy
* @deprecated Use StrictMath.copySign.
*/
@Deprecated
public static float copySign(float magnitude, float sign) {
return StrictMath.copySign(magnitude, sign);
}
/**
* Returns the size of an ulp of the argument. An ulp of a
* {@code double} value is the positive distance between this
* floating-point value and the {@code double} value next
* larger in magnitude. Note that for non-NaN <i>x</i>,
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, then the result is NaN.
* <li> If the argument is positive or negative infinity, then the
* result is positive infinity.
* <li> If the argument is positive or negative zero, then the result is
* {@code Double.MIN_VALUE}.
* <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
* the result is equal to 2<sup>971</sup>.
* </ul>
*
* @param d the floating-point value whose ulp is to be returned
* @return the size of an ulp of the argument
* @author Joseph D. Darcy
* @since 1.5
* @deprecated Use Math.ulp.
*/
@Deprecated
public static double ulp(double d) {
return Math.ulp(d);
}
/**
* Returns the size of an ulp of the argument. An ulp of a
* {@code float} value is the positive distance between this
* floating-point value and the {@code float} value next
* larger in magnitude. Note that for non-NaN <i>x</i>,
* <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, then the result is NaN.
* <li> If the argument is positive or negative infinity, then the
* result is positive infinity.
* <li> If the argument is positive or negative zero, then the result is
* {@code Float.MIN_VALUE}.
* <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
* the result is equal to 2<sup>104</sup>.
* </ul>
*
* @param f the floating-point value whose ulp is to be returned
* @return the size of an ulp of the argument
* @author Joseph D. Darcy
* @since 1.5
* @deprecated Use Math.ulp.
*/
@Deprecated
public static float ulp(float f) {
return Math.ulp(f);
}
/**
* Returns the signum function of the argument; zero if the argument
* is zero, 1.0 if the argument is greater than zero, -1.0 if the
* argument is less than zero.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, then the result is NaN.
* <li> If the argument is positive zero or negative zero, then the
* result is the same as the argument.
* </ul>
*
* @param d the floating-point value whose signum is to be returned
* @return the signum function of the argument
* @author Joseph D. Darcy
* @since 1.5
* @deprecated Use Math.signum.
*/
@Deprecated
public static double signum(double d) {
return Math.signum(d);
}
/**
* Returns the signum function of the argument; zero if the argument
* is zero, 1.0f if the argument is greater than zero, -1.0f if the
* argument is less than zero.
*
* <p>Special Cases:
* <ul>
* <li> If the argument is NaN, then the result is NaN.
* <li> If the argument is positive zero or negative zero, then the
* result is the same as the argument.
* </ul>
*
* @param f the floating-point value whose signum is to be returned
* @return the signum function of the argument
* @author Joseph D. Darcy
* @since 1.5
* @deprecated Use Math.signum.
*/
@Deprecated
public static float signum(float f) {
return Math.signum(f);
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,7 +29,6 @@
*/
import sun.misc.DoubleConsts;
import sun.misc.FpUtils;
public class HypotTests {
private HypotTests(){}
@ -127,7 +126,7 @@ public class HypotTests {
double d = rand.nextDouble();
// Scale d to have an exponent equal to MAX_EXPONENT -15
d = Math.scalb(d, DoubleConsts.MAX_EXPONENT
-15 - FpUtils.ilogb(d));
-15 - Tests.ilogb(d));
for(int j = 0; j <= 13; j += 1) {
failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
d *= 2.0; // increase exponent by 1

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -28,7 +28,6 @@
* @author Joseph D. Darcy
*/
import sun.misc.FpUtils;
import sun.misc.DoubleConsts;
import sun.misc.FloatConsts;
@ -708,21 +707,21 @@ public class IeeeRecommendedTests {
for(int i = 0; i < testCases.length; i++) {
// isNaN
failures+=Tests.test("FpUtils.isNaN(float)", testCases[i],
FpUtils.isNaN(testCases[i]), (i ==0));
failures+=Tests.test("Float.isNaN(float)", testCases[i],
Float.isNaN(testCases[i]), (i ==0));
// isFinite
failures+=Tests.test("Float.isFinite(float)", testCases[i],
Float.isFinite(testCases[i]), (i >= 3));
// isInfinite
failures+=Tests.test("FpUtils.isInfinite(float)", testCases[i],
FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
failures+=Tests.test("Float.isInfinite(float)", testCases[i],
Float.isInfinite(testCases[i]), (i==1 || i==2));
// isUnorderd
for(int j = 0; j < testCases.length; j++) {
failures+=Tests.test("FpUtils.isUnordered(float, float)", testCases[i],testCases[j],
FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
failures+=Tests.test("Tests.isUnordered(float, float)", testCases[i],testCases[j],
Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
}
}
@ -758,21 +757,21 @@ public class IeeeRecommendedTests {
for(int i = 0; i < testCases.length; i++) {
// isNaN
failures+=Tests.test("FpUtils.isNaN(double)", testCases[i],
FpUtils.isNaN(testCases[i]), (i ==0));
failures+=Tests.test("Double.isNaN(double)", testCases[i],
Double.isNaN(testCases[i]), (i ==0));
// isFinite
failures+=Tests.test("Double.isFinite(double)", testCases[i],
Double.isFinite(testCases[i]), (i >= 3));
// isInfinite
failures+=Tests.test("FpUtils.isInfinite(double)", testCases[i],
FpUtils.isInfinite(testCases[i]), (i==1 || i==2));
failures+=Tests.test("Double.isInfinite(double)", testCases[i],
Double.isInfinite(testCases[i]), (i==1 || i==2));
// isUnorderd
for(int j = 0; j < testCases.length; j++) {
failures+=Tests.test("FpUtils.isUnordered(double, double)", testCases[i],testCases[j],
FpUtils.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
failures+=Tests.test("Tests.isUnordered(double, double)", testCases[i],testCases[j],
Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
}
}
@ -1023,8 +1022,8 @@ public class IeeeRecommendedTests {
2*FloatConsts.MIN_EXPONENT, // -252
2*FloatConsts.MIN_EXPONENT+1, // -251
FpUtils.ilogb(Float.MIN_VALUE)-1, // -150
FpUtils.ilogb(Float.MIN_VALUE), // -149
FloatConsts.MIN_EXPONENT - FloatConsts.SIGNIFICAND_WIDTH,
FloatConsts.MIN_SUB_EXPONENT,
-FloatConsts.MAX_EXPONENT, // -127
FloatConsts.MIN_EXPONENT, // -126
@ -1100,7 +1099,7 @@ public class IeeeRecommendedTests {
failures+=testScalbCase(value,
scaleFactor,
(FpUtils.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
(Tests.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
Math.copySign(infinityF, value) : // overflow
// calculate right answer
twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
@ -1230,8 +1229,9 @@ public class IeeeRecommendedTests {
2*DoubleConsts.MIN_EXPONENT, // -2044
2*DoubleConsts.MIN_EXPONENT+1, // -2043
FpUtils.ilogb(Double.MIN_VALUE)-1, // -1076
FpUtils.ilogb(Double.MIN_VALUE), // -1075
DoubleConsts.MIN_EXPONENT, // -1022
DoubleConsts.MIN_EXPONENT - DoubleConsts.SIGNIFICAND_WIDTH,
DoubleConsts.MIN_SUB_EXPONENT,
-DoubleConsts.MAX_EXPONENT, // -1023
DoubleConsts.MIN_EXPONENT, // -1022
@ -1307,7 +1307,7 @@ public class IeeeRecommendedTests {
failures+=testScalbCase(value,
scaleFactor,
(FpUtils.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
(Tests.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
Math.copySign(infinityD, value) : // overflow
// calculate right answer
twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -29,7 +29,6 @@
*/
import sun.misc.DoubleConsts;
import sun.misc.FpUtils;
public class Log1pTests {
private Log1pTests(){}
@ -105,7 +104,7 @@ public class Log1pTests {
for(int i = 0; i < 1000; i++) {
double d = rand.nextDouble();
d = Math.scalb(d, -53 - FpUtils.ilogb(d));
d = Math.scalb(d, -53 - Tests.ilogb(d));
for(int j = -53; j <= 52; j++) {
failures += testLog1pCaseWithUlpDiff(d, hp15cLogp(d), 5);

View File

@ -30,7 +30,8 @@
* and finally the expected result.
*/
import sun.misc.FpUtils;
import sun.misc.FloatConsts;
import sun.misc.DoubleConsts;
public class Tests {
private Tests(){}; // do not instantiate
@ -59,6 +60,176 @@ public class Tests {
return -Math.nextUp(-d);
}
/**
* Returns unbiased exponent of a {@code float}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
* always in the range [1, 2).
* <p>
* Special cases:
* <ul>
* <li> If the argument is NaN, then the result is 2<sup>30</sup>.
* <li> If the argument is infinite, then the result is 2<sup>28</sup>.
* <li> If the argument is zero, then the result is -(2<sup>28</sup>).
* </ul>
*
* @param f floating-point number whose exponent is to be extracted
* @return unbiased exponent of the argument.
*/
public static int ilogb(double d) {
int exponent = Math.getExponent(d);
switch (exponent) {
case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity
if( Double.isNaN(d) )
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal
if(d == 0.0) {
return -(1<<28); // -(2^28)
}
else {
long transducer = Double.doubleToRawLongBits(d);
/*
* To avoid causing slow arithmetic on subnormals,
* the scaling to determine when d's significand
* is normalized is done in integer arithmetic.
* (there must be at least one "1" bit in the
* significand since zero has been screened out.
*/
// isolate significand bits
transducer &= DoubleConsts.SIGNIF_BIT_MASK;
assert(transducer != 0L);
// This loop is simple and functional. We might be
// able to do something more clever that was faster;
// e.g. number of leading zero detection on
// (transducer << (# exponent and sign bits).
while (transducer <
(1L << (DoubleConsts.SIGNIFICAND_WIDTH - 1))) {
transducer *= 2;
exponent--;
}
exponent++;
assert( exponent >=
DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1) &&
exponent < DoubleConsts.MIN_EXPONENT);
return exponent;
}
default:
assert( exponent >= DoubleConsts.MIN_EXPONENT &&
exponent <= DoubleConsts.MAX_EXPONENT);
return exponent;
}
}
/**
* Returns unbiased exponent of a {@code float}; for
* subnormal values, the number is treated as if it were
* normalized. That is for all finite, non-zero, positive numbers
* <i>x</i>, <code>scalb(<i>x</i>, -ilogb(<i>x</i>))</code> is
* always in the range [1, 2).
* <p>
* Special cases:
* <ul>
* <li> If the argument is NaN, then the result is 2<sup>30</sup>.
* <li> If the argument is infinite, then the result is 2<sup>28</sup>.
* <li> If the argument is zero, then the result is -(2<sup>28</sup>).
* </ul>
*
* @param f floating-point number whose exponent is to be extracted
* @return unbiased exponent of the argument.
*/
public static int ilogb(float f) {
int exponent = Math.getExponent(f);
switch (exponent) {
case FloatConsts.MAX_EXPONENT+1: // NaN or infinity
if( Float.isNaN(f) )
return (1<<30); // 2^30
else // infinite value
return (1<<28); // 2^28
case FloatConsts.MIN_EXPONENT-1: // zero or subnormal
if(f == 0.0f) {
return -(1<<28); // -(2^28)
}
else {
int transducer = Float.floatToRawIntBits(f);
/*
* To avoid causing slow arithmetic on subnormals,
* the scaling to determine when f's significand
* is normalized is done in integer arithmetic.
* (there must be at least one "1" bit in the
* significand since zero has been screened out.
*/
// isolate significand bits
transducer &= FloatConsts.SIGNIF_BIT_MASK;
assert(transducer != 0);
// This loop is simple and functional. We might be
// able to do something more clever that was faster;
// e.g. number of leading zero detection on
// (transducer << (# exponent and sign bits).
while (transducer <
(1 << (FloatConsts.SIGNIFICAND_WIDTH - 1))) {
transducer *= 2;
exponent--;
}
exponent++;
assert( exponent >=
FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1) &&
exponent < FloatConsts.MIN_EXPONENT);
return exponent;
}
default:
assert( exponent >= FloatConsts.MIN_EXPONENT &&
exponent <= FloatConsts.MAX_EXPONENT);
return exponent;
}
}
/**
* Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
* at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
* @return {@code true} if at least one argument is a NaN,
* {@code false} otherwise.
*/
public static boolean isUnordered(float arg1, float arg2) {
return Float.isNaN(arg1) || Float.isNaN(arg2);
}
/**
* Returns {@code true} if the unordered relation holds
* between the two arguments. When two floating-point values are
* unordered, one value is neither less than, equal to, nor
* greater than the other. For the unordered relation to be true,
* at least one argument must be a {@code NaN}.
*
* @param arg1 the first argument
* @param arg2 the second argument
* @return {@code true} if at least one argument is a NaN,
* {@code false} otherwise.
*/
public static boolean isUnordered(double arg1, double arg2) {
return Double.isNaN(arg1) || Double.isNaN(arg2);
}
public static int test(String testName, float input,
boolean result, boolean expected) {
if (expected != result) {
@ -237,7 +408,7 @@ public class Tests {
return 1;
} else {
double difference = expected - result;
if (FpUtils.isUnordered(expected, result) ||
if (isUnordered(expected, result) ||
Double.isNaN(difference) ||
// fail if greater than or unordered
!(Math.abs( difference/Math.ulp(expected) ) <= Math.abs(ulps)) ) {
@ -332,7 +503,7 @@ public class Tests {
double result, double expected, double tolerance) {
if (Double.compare(expected, result ) != 0) {
double difference = expected - result;
if (FpUtils.isUnordered(expected, result) ||
if (isUnordered(expected, result) ||
Double.isNaN(difference) ||
// fail if greater than or unordered
!(Math.abs((difference)/expected) <= StrictMath.pow(10, -tolerance)) ) {