6672848: (Escape Analysis) improve lock elimination with EA

Remove lock/unlock MemBar nodes and specify locks in debug info for deoptimization.

Reviewed-by: never
This commit is contained in:
Vladimir Kozlov 2008-03-14 16:40:42 -07:00
parent fc0117cb9a
commit 20046c1a18
6 changed files with 123 additions and 92 deletions

View File

@ -1364,7 +1364,7 @@ void AbstractLockNode::set_eliminated() {
//=============================================================================
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// perform any generic optimizations first
// perform any generic optimizations first (returns 'this' or NULL)
Node *result = SafePointNode::Ideal(phase, can_reshape);
// Now see if we can optimize away this lock. We don't actually
@ -1372,7 +1372,20 @@ Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// prevents macro expansion from expanding the lock. Since we don't
// modify the graph, the value returned from this function is the
// one computed above.
if (EliminateLocks && !is_eliminated()) {
if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
//
// If we are locking an unescaped object, the lock/unlock is unnecessary
//
ConnectionGraph *cgr = Compile::current()->congraph();
PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
if (cgr != NULL)
es = cgr->escape_state(obj_node(), phase);
if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
// Mark it eliminated to update any counters
this->set_eliminated();
return result;
}
//
// Try lock coarsening
//
@ -1412,8 +1425,10 @@ Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
int unlocks = 0;
for (int i = 0; i < lock_ops.length(); i++) {
AbstractLockNode* lock = lock_ops.at(i);
if (lock->Opcode() == Op_Lock) locks++;
else unlocks++;
if (lock->Opcode() == Op_Lock)
locks++;
else
unlocks++;
if (Verbose) {
lock->dump(1);
}
@ -1450,7 +1465,7 @@ uint UnlockNode::size_of() const { return sizeof(*this); }
//=============================================================================
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// perform any generic optimizations first
// perform any generic optimizations first (returns 'this' or NULL)
Node * result = SafePointNode::Ideal(phase, can_reshape);
// Now see if we can optimize away this unlock. We don't actually
@ -1458,66 +1473,18 @@ Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
// prevents macro expansion from expanding the unlock. Since we don't
// modify the graph, the value returned from this function is the
// one computed above.
if (EliminateLocks && !is_eliminated()) {
// Escape state is defined after Parse phase.
if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
//
// If we are unlocking an unescaped object, the lock/unlock is unnecessary
// We can eliminate them if there are no safepoints in the locked region.
// If we are unlocking an unescaped object, the lock/unlock is unnecessary.
//
ConnectionGraph *cgr = Compile::current()->congraph();
if (cgr != NULL && cgr->escape_state(obj_node(), phase) == PointsToNode::NoEscape) {
GrowableArray<AbstractLockNode*> lock_ops;
LockNode *lock = find_matching_lock(this);
if (lock != NULL) {
lock_ops.append(this);
lock_ops.append(lock);
// find other unlocks which pair with the lock we found and add them
// to the list
Node * box = box_node();
for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
Node *use = box->fast_out(i);
if (use->is_Unlock() && use != this) {
UnlockNode *unlock1 = use->as_Unlock();
if (!unlock1->is_eliminated()) {
LockNode *lock1 = find_matching_lock(unlock1);
if (lock == lock1)
lock_ops.append(unlock1);
else if (lock1 == NULL) {
// we can't find a matching lock, we must assume the worst
lock_ops.trunc_to(0);
break;
}
}
}
}
if (lock_ops.length() > 0) {
#ifndef PRODUCT
if (PrintEliminateLocks) {
int locks = 0;
int unlocks = 0;
for (int i = 0; i < lock_ops.length(); i++) {
AbstractLockNode* lock = lock_ops.at(i);
if (lock->Opcode() == Op_Lock) locks++;
else unlocks++;
if (Verbose) {
lock->dump(1);
}
}
tty->print_cr("***Eliminated %d unescaped unlocks and %d unescaped locks", unlocks, locks);
}
#endif
// for each of the identified locks, mark them
// as eliminatable
for (int i = 0; i < lock_ops.length(); i++) {
AbstractLockNode* lock = lock_ops.at(i);
// Mark it eliminated to update any counters
lock->set_eliminated();
}
}
}
PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
if (cgr != NULL)
es = cgr->escape_state(obj_node(), phase);
if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
// Mark it eliminated to update any counters
this->set_eliminated();
}
}
return result;

View File

@ -36,7 +36,8 @@ const RegMask &BoxLockNode::out_RegMask() const {
uint BoxLockNode::size_of() const { return sizeof(*this); }
BoxLockNode::BoxLockNode( int slot ) : Node( Compile::current()->root() ), _slot(slot) {
BoxLockNode::BoxLockNode( int slot ) : Node( Compile::current()->root() ),
_slot(slot), _is_eliminated(false) {
init_class_id(Class_BoxLock);
init_flags(Flag_rematerialize);
OptoReg::Name reg = OptoReg::stack2reg(_slot);

View File

@ -27,6 +27,7 @@ class BoxLockNode : public Node {
public:
const int _slot;
RegMask _inmask;
bool _is_eliminated; // indicates this lock was safely eliminated
BoxLockNode( int lock );
virtual int Opcode() const;
@ -42,6 +43,10 @@ public:
static OptoReg::Name stack_slot(Node* box_node);
bool is_eliminated() { return _is_eliminated; }
// mark lock as eliminated.
void set_eliminated() { _is_eliminated = true; }
#ifndef PRODUCT
virtual void format( PhaseRegAlloc *, outputStream *st ) const;
virtual void dump_spec(outputStream *st) const { st->print(" Lock %d",_slot); }

View File

@ -828,43 +828,102 @@ void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
// Note: The membar's associated with the lock/unlock are currently not
// eliminated. This should be investigated as a future enhancement.
//
void PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
Node* mem = alock->in(TypeFunc::Memory);
bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
if (!alock->is_eliminated()) {
return false;
}
// Mark the box lock as eliminated if all correspondent locks are eliminated
// to construct correct debug info.
BoxLockNode* box = alock->box_node()->as_BoxLock();
if (!box->is_eliminated()) {
bool eliminate = true;
for (DUIterator_Fast imax, i = box->fast_outs(imax); i < imax; i++) {
Node *lck = box->fast_out(i);
if (lck->is_Lock() && !lck->as_AbstractLock()->is_eliminated()) {
eliminate = false;
break;
}
}
if (eliminate)
box->set_eliminated();
}
#ifndef PRODUCT
if (PrintEliminateLocks) {
if (alock->is_Lock()) {
tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
} else {
tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
}
}
#endif
Node* mem = alock->in(TypeFunc::Memory);
Node* ctrl = alock->in(TypeFunc::Control);
extract_call_projections(alock);
// There are 2 projections from the lock. The lock node will
// be deleted when its last use is subsumed below.
assert(alock->outcnt() == 2 &&
_fallthroughproj != NULL &&
_memproj_fallthrough != NULL,
"Unexpected projections from Lock/Unlock");
Node* fallthroughproj = _fallthroughproj;
Node* memproj_fallthrough = _memproj_fallthrough;
// The memory projection from a lock/unlock is RawMem
// The input to a Lock is merged memory, so extract its RawMem input
// (unless the MergeMem has been optimized away.)
if (alock->is_Lock()) {
if (mem->is_MergeMem())
mem = mem->as_MergeMem()->in(Compile::AliasIdxRaw);
// Seach for MemBarAcquire node and delete it also.
MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
Node* ctrlproj = membar->proj_out(TypeFunc::Control);
Node* memproj = membar->proj_out(TypeFunc::Memory);
_igvn.hash_delete(ctrlproj);
_igvn.subsume_node(ctrlproj, fallthroughproj);
_igvn.hash_delete(memproj);
_igvn.subsume_node(memproj, memproj_fallthrough);
}
extract_call_projections(alock);
// There are 2 projections from the lock. The lock node will
// be deleted when its last use is subsumed below.
assert(alock->outcnt() == 2 && _fallthroughproj != NULL &&
_memproj_fallthrough != NULL, "Unexpected projections from Lock/Unlock");
_igvn.hash_delete(_fallthroughproj);
_igvn.subsume_node(_fallthroughproj, alock->in(TypeFunc::Control));
_igvn.hash_delete(_memproj_fallthrough);
_igvn.subsume_node(_memproj_fallthrough, mem);
return;
// Seach for MemBarRelease node and delete it also.
if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
ctrl->in(0)->is_MemBar()) {
MemBarNode* membar = ctrl->in(0)->as_MemBar();
assert(membar->Opcode() == Op_MemBarRelease &&
mem->is_Proj() && membar == mem->in(0), "");
_igvn.hash_delete(fallthroughproj);
_igvn.subsume_node(fallthroughproj, ctrl);
_igvn.hash_delete(memproj_fallthrough);
_igvn.subsume_node(memproj_fallthrough, mem);
fallthroughproj = ctrl;
memproj_fallthrough = mem;
ctrl = membar->in(TypeFunc::Control);
mem = membar->in(TypeFunc::Memory);
}
_igvn.hash_delete(fallthroughproj);
_igvn.subsume_node(fallthroughproj, ctrl);
_igvn.hash_delete(memproj_fallthrough);
_igvn.subsume_node(memproj_fallthrough, mem);
return true;
}
//------------------------------expand_lock_node----------------------
void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
if (eliminate_locking_node(lock)) {
return;
}
Node* ctrl = lock->in(TypeFunc::Control);
Node* mem = lock->in(TypeFunc::Memory);
Node* obj = lock->obj_node();
Node* box = lock->box_node();
Node *flock = lock->fastlock_node();
if (lock->is_eliminated()) {
eliminate_locking_node(lock);
return;
}
Node* flock = lock->fastlock_node();
// Make the merge point
Node *region = new (C, 3) RegionNode(3);
@ -913,17 +972,15 @@ void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
//------------------------------expand_unlock_node----------------------
void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
Node *ctrl = unlock->in(TypeFunc::Control);
if (eliminate_locking_node(unlock)) {
return;
}
Node* ctrl = unlock->in(TypeFunc::Control);
Node* mem = unlock->in(TypeFunc::Memory);
Node* obj = unlock->obj_node();
Node* box = unlock->box_node();
if (unlock->is_eliminated()) {
eliminate_locking_node(unlock);
return;
}
// No need for a null check on unlock
// Make the merge point

View File

@ -78,7 +78,7 @@ private:
Node* length,
const TypeFunc* slow_call_type,
address slow_call_address);
void eliminate_locking_node(AbstractLockNode *alock);
bool eliminate_locking_node(AbstractLockNode *alock);
void expand_lock_node(LockNode *lock);
void expand_unlock_node(UnlockNode *unlock);

View File

@ -882,7 +882,8 @@ void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
}
OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
monarray->append(new MonitorValue(scval, Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg))));
Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
}
// We dump the object pool first, since deoptimization reads it in first.