This commit is contained in:
Vladimir Kozlov 2015-06-19 15:24:07 -07:00
commit 2691776621
33 changed files with 944 additions and 69 deletions

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, Red Hat Inc. All rights reserved. * Copyright (c) 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
@ -190,6 +190,11 @@ void VM_Version::get_processor_features() {
} }
} }
if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) { if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
UseCRC32Intrinsics = true; UseCRC32Intrinsics = true;
} }

View File

@ -176,6 +176,11 @@ void VM_Version::initialize() {
FLAG_SET_DEFAULT(UseAESIntrinsics, false); FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} }
if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (UseSHA) { if (UseSHA) {
warning("SHA instructions are not available on this CPU"); warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false); FLAG_SET_DEFAULT(UseSHA, false);

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -129,6 +129,7 @@ class Assembler : public AbstractAssembler {
flog3_op3 = 0x36, flog3_op3 = 0x36,
edge_op3 = 0x36, edge_op3 = 0x36,
fsrc_op3 = 0x36, fsrc_op3 = 0x36,
xmulx_op3 = 0x36,
impdep2_op3 = 0x37, impdep2_op3 = 0x37,
stpartialf_op3 = 0x37, stpartialf_op3 = 0x37,
jmpl_op3 = 0x38, jmpl_op3 = 0x38,
@ -220,6 +221,8 @@ class Assembler : public AbstractAssembler {
mdtox_opf = 0x110, mdtox_opf = 0x110,
mstouw_opf = 0x111, mstouw_opf = 0x111,
mstosw_opf = 0x113, mstosw_opf = 0x113,
xmulx_opf = 0x115,
xmulxhi_opf = 0x116,
mxtod_opf = 0x118, mxtod_opf = 0x118,
mwtos_opf = 0x119, mwtos_opf = 0x119,
@ -1212,6 +1215,9 @@ public:
void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); } void movwtos( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::S) | op3(mftoi_op3) | opf(mwtos_opf) | rs2(s)); }
void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); } void movxtod( Register s, FloatRegister d ) { vis3_only(); emit_int32( op(arith_op) | fd(d, FloatRegisterImpl::D) | op3(mftoi_op3) | opf(mxtod_opf) | rs2(s)); }
void xmulx(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulx_opf) | rs2(s2)); }
void xmulxhi(Register s1, Register s2, Register d) { vis3_only(); emit_int32( op(arith_op) | rd(d) | op3(xmulx_op3) | rs1(s1) | opf(xmulxhi_opf) | rs2(s2)); }
// Crypto SHA instructions // Crypto SHA instructions
void sha1() { sha1_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha1_opf)); } void sha1() { sha1_only(); emit_int32( op(arith_op) | op3(sha_op3) | opf(sha1_opf)); }

View File

@ -4786,6 +4786,130 @@ class StubGenerator: public StubCodeGenerator {
return start; return start;
} }
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_aligned, L_main;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
Register state = I0;
Register subkeyH = I1;
Register data = I2;
Register len = I3;
__ save_frame(0);
__ ldx(state, 0, O0);
__ ldx(state, 8, O1);
// Loop label for multiblock operations
__ BIND(L_ghash_loop);
// Check if 'data' is unaligned
__ andcc(data, 7, G1);
__ br(Assembler::zero, false, Assembler::pt, L_aligned);
__ delayed()->nop();
Register left_shift = L1;
Register right_shift = L2;
Register data_ptr = L3;
// Get left and right shift values in bits
__ sll(G1, LogBitsPerByte, left_shift);
__ mov(64, right_shift);
__ sub(right_shift, left_shift, right_shift);
// Align to read 'data'
__ sub(data, G1, data_ptr);
// Load first 8 bytes of 'data'
__ ldx(data_ptr, 0, O4);
__ sllx(O4, left_shift, O4);
__ ldx(data_ptr, 8, O5);
__ srlx(O5, right_shift, G4);
__ bset(G4, O4);
// Load second 8 bytes of 'data'
__ sllx(O5, left_shift, O5);
__ ldx(data_ptr, 16, G4);
__ srlx(G4, right_shift, G4);
__ ba(L_main);
__ delayed()->bset(G4, O5);
// If 'data' is aligned, load normally
__ BIND(L_aligned);
__ ldx(data, 0, O4);
__ ldx(data, 8, O5);
__ BIND(L_main);
__ ldx(subkeyH, 0, O2);
__ ldx(subkeyH, 8, O3);
__ xor3(O0, O4, O0);
__ xor3(O1, O5, O1);
__ xmulxhi(O0, O3, G3);
__ xmulx(O0, O2, O5);
__ xmulxhi(O1, O2, G4);
__ xmulxhi(O1, O3, G5);
__ xmulx(O0, O3, G1);
__ xmulx(O1, O3, G2);
__ xmulx(O1, O2, O3);
__ xmulxhi(O0, O2, O4);
__ mov(0xE1, O0);
__ sllx(O0, 56, O0);
__ xor3(O5, G3, O5);
__ xor3(O5, G4, O5);
__ xor3(G5, G1, G1);
__ xor3(G1, O3, G1);
__ srlx(G2, 63, O1);
__ srlx(G1, 63, G3);
__ sllx(G2, 63, O3);
__ sllx(G2, 58, O2);
__ xor3(O3, O2, O2);
__ sllx(G1, 1, G1);
__ or3(G1, O1, G1);
__ xor3(G1, O2, G1);
__ sllx(G2, 1, G2);
__ xmulxhi(G1, O0, O1);
__ xmulx(G1, O0, O2);
__ xmulxhi(G2, O0, O3);
__ xmulx(G2, O0, G1);
__ xor3(O4, O1, O4);
__ xor3(O5, O2, O5);
__ xor3(O5, O3, O5);
__ sllx(O4, 1, O2);
__ srlx(O5, 63, O3);
__ or3(O2, O3, O0);
__ sllx(O5, 1, O1);
__ srlx(G1, 63, O2);
__ or3(O1, O2, O1);
__ xor3(O1, G3, O1);
__ deccc(len);
__ br(Assembler::notZero, true, Assembler::pt, L_ghash_loop);
__ delayed()->add(data, 16, data);
__ stx(O0, I0, 0);
__ stx(O1, I0, 8);
__ ret();
__ delayed()->restore();
return start;
}
void generate_initial() { void generate_initial() {
// Generates all stubs and initializes the entry points // Generates all stubs and initializes the entry points
@ -4859,6 +4983,10 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
} }
// generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
// generate SHA1/SHA256/SHA512 intrinsics code // generate SHA1/SHA256/SHA512 intrinsics code
if (UseSHA1Intrinsics) { if (UseSHA1Intrinsics) {

View File

@ -300,6 +300,17 @@ void VM_Version::initialize() {
} }
} }
// GHASH/GCM intrinsics
if (has_vis3() && (UseVIS > 2)) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
UseGHASHIntrinsics = true;
}
} else if (UseGHASHIntrinsics) {
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
warning("GHASH intrinsics require VIS3 insructions support. Intriniscs will be disabled");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
// SHA1, SHA256, and SHA512 instructions were added to SPARC T-series at different times // SHA1, SHA256, and SHA512 instructions were added to SPARC T-series at different times
if (has_sha1() || has_sha256() || has_sha512()) { if (has_sha1() || has_sha256() || has_sha512()) {
if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions if (UseVIS > 0) { // SHA intrinsics use VIS1 instructions

View File

@ -3095,8 +3095,16 @@ void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
void Assembler::psrldq(XMMRegister dst, int shift) { void Assembler::psrldq(XMMRegister dst, int shift) {
// Shift 128 bit value in xmm register by number of bytes. // Shift 128 bit value in xmm register by number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), "")); NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
false, AVX_128bit, (VM_Version::supports_avx512bw() == false)); emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift);
}
void Assembler::pslldq(XMMRegister dst, int shift) {
// Shift left 128 bit value in xmm register by number of bytes.
NOT_LP64(assert(VM_Version::supports_sse2(), ""));
int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
emit_int8(0x73); emit_int8(0x73);
emit_int8((unsigned char)(0xC0 | encode)); emit_int8((unsigned char)(0xC0 | encode));
emit_int8(shift); emit_int8(shift);

View File

@ -1666,6 +1666,8 @@ private:
// Shift Right by bytes Logical DoubleQuadword Immediate // Shift Right by bytes Logical DoubleQuadword Immediate
void psrldq(XMMRegister dst, int shift); void psrldq(XMMRegister dst, int shift);
// Shift Left by bytes Logical DoubleQuadword Immediate
void pslldq(XMMRegister dst, int shift);
// Logical Compare 128bit // Logical Compare 128bit
void ptest(XMMRegister dst, XMMRegister src); void ptest(XMMRegister dst, XMMRegister src);

View File

@ -58,4 +58,6 @@ void Compile::pd_compiler2_init() {
OptoReg::invalidate(i); OptoReg::invalidate(i);
} }
} }
SuperWordLoopUnrollAnalysis = true;
} }

View File

@ -2727,6 +2727,167 @@ class StubGenerator: public StubCodeGenerator {
return start; return start;
} }
// byte swap x86 long
address generate_ghash_long_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
address start = __ pc();
__ emit_data(0x0b0a0908, relocInfo::none, 0);
__ emit_data(0x0f0e0d0c, relocInfo::none, 0);
__ emit_data(0x03020100, relocInfo::none, 0);
__ emit_data(0x07060504, relocInfo::none, 0);
return start;
}
// byte swap x86 byte array
address generate_ghash_byte_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
address start = __ pc();
__ emit_data(0x0c0d0e0f, relocInfo::none, 0);
__ emit_data(0x08090a0b, relocInfo::none, 0);
__ emit_data(0x04050607, relocInfo::none, 0);
__ emit_data(0x00010203, relocInfo::none, 0);
return start;
}
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
assert(UseGHASHIntrinsics, "need GHASH intrinsics and CLMUL support");
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_exit;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
const Register state = rdi;
const Register subkeyH = rsi;
const Register data = rdx;
const Register blocks = rcx;
const Address state_param(rbp, 8+0);
const Address subkeyH_param(rbp, 8+4);
const Address data_param(rbp, 8+8);
const Address blocks_param(rbp, 8+12);
const XMMRegister xmm_temp0 = xmm0;
const XMMRegister xmm_temp1 = xmm1;
const XMMRegister xmm_temp2 = xmm2;
const XMMRegister xmm_temp3 = xmm3;
const XMMRegister xmm_temp4 = xmm4;
const XMMRegister xmm_temp5 = xmm5;
const XMMRegister xmm_temp6 = xmm6;
const XMMRegister xmm_temp7 = xmm7;
__ enter();
__ movptr(state, state_param);
__ movptr(subkeyH, subkeyH_param);
__ movptr(data, data_param);
__ movptr(blocks, blocks_param);
__ movdqu(xmm_temp0, Address(state, 0));
__ pshufb(xmm_temp0, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(xmm_temp1, Address(subkeyH, 0));
__ pshufb(xmm_temp1, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ BIND(L_ghash_loop);
__ movdqu(xmm_temp2, Address(data, 0));
__ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
__ pxor(xmm_temp0, xmm_temp2);
//
// Multiply with the hash key
//
__ movdqu(xmm_temp3, xmm_temp0);
__ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0
__ movdqu(xmm_temp4, xmm_temp0);
__ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1
__ movdqu(xmm_temp5, xmm_temp0);
__ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0
__ movdqu(xmm_temp6, xmm_temp0);
__ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1
__ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0
__ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5
__ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right
__ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left
__ pxor(xmm_temp3, xmm_temp5);
__ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result
// of the carry-less multiplication of
// xmm0 by xmm1.
// We shift the result of the multiplication by one bit position
// to the left to cope for the fact that the bits are reversed.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp6);
__ pslld (xmm_temp3, 1);
__ pslld(xmm_temp6, 1);
__ psrld(xmm_temp7, 31);
__ psrld(xmm_temp4, 31);
__ movdqu(xmm_temp5, xmm_temp7);
__ pslldq(xmm_temp4, 4);
__ pslldq(xmm_temp7, 4);
__ psrldq(xmm_temp5, 12);
__ por(xmm_temp3, xmm_temp7);
__ por(xmm_temp6, xmm_temp4);
__ por(xmm_temp6, xmm_temp5);
//
// First phase of the reduction
//
// Move xmm3 into xmm4, xmm5, xmm7 in order to perform the shifts
// independently.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ pslld(xmm_temp7, 31); // packed right shift shifting << 31
__ pslld(xmm_temp4, 30); // packed right shift shifting << 30
__ pslld(xmm_temp5, 25); // packed right shift shifting << 25
__ pxor(xmm_temp7, xmm_temp4); // xor the shifted versions
__ pxor(xmm_temp7, xmm_temp5);
__ movdqu(xmm_temp4, xmm_temp7);
__ pslldq(xmm_temp7, 12);
__ psrldq(xmm_temp4, 4);
__ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete
//
// Second phase of the reduction
//
// Make 3 copies of xmm3 in xmm2, xmm5, xmm7 for doing these
// shift operations.
__ movdqu(xmm_temp2, xmm_temp3);
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ psrld(xmm_temp2, 1); // packed left shifting >> 1
__ psrld(xmm_temp7, 2); // packed left shifting >> 2
__ psrld(xmm_temp5, 7); // packed left shifting >> 7
__ pxor(xmm_temp2, xmm_temp7); // xor the shifted versions
__ pxor(xmm_temp2, xmm_temp5);
__ pxor(xmm_temp2, xmm_temp4);
__ pxor(xmm_temp3, xmm_temp2);
__ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6
__ decrement(blocks);
__ jcc(Assembler::zero, L_exit);
__ movdqu(xmm_temp0, xmm_temp6);
__ addptr(data, 16);
__ jmp(L_ghash_loop);
__ BIND(L_exit);
// Byte swap 16-byte result
__ pshufb(xmm_temp6, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(Address(state, 0), xmm_temp6); // store the result
__ leave();
__ ret(0);
return start;
}
/** /**
* Arguments: * Arguments:
* *
@ -3026,6 +3187,13 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt(); StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
} }
// Generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
// Safefetch stubs. // Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_fault_pc,

View File

@ -3681,6 +3681,175 @@ class StubGenerator: public StubCodeGenerator {
return start; return start;
} }
// byte swap x86 long
address generate_ghash_long_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
address start = __ pc();
__ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none );
__ emit_data64(0x0706050403020100, relocInfo::none );
return start;
}
// byte swap x86 byte array
address generate_ghash_byte_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
address start = __ pc();
__ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none );
__ emit_data64(0x0001020304050607, relocInfo::none );
return start;
}
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_exit;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
const Register state = c_rarg0;
const Register subkeyH = c_rarg1;
const Register data = c_rarg2;
const Register blocks = c_rarg3;
#ifdef _WIN64
const int XMM_REG_LAST = 10;
#endif
const XMMRegister xmm_temp0 = xmm0;
const XMMRegister xmm_temp1 = xmm1;
const XMMRegister xmm_temp2 = xmm2;
const XMMRegister xmm_temp3 = xmm3;
const XMMRegister xmm_temp4 = xmm4;
const XMMRegister xmm_temp5 = xmm5;
const XMMRegister xmm_temp6 = xmm6;
const XMMRegister xmm_temp7 = xmm7;
const XMMRegister xmm_temp8 = xmm8;
const XMMRegister xmm_temp9 = xmm9;
const XMMRegister xmm_temp10 = xmm10;
__ enter();
#ifdef _WIN64
// save the xmm registers which must be preserved 6-10
__ subptr(rsp, -rsp_after_call_off * wordSize);
for (int i = 6; i <= XMM_REG_LAST; i++) {
__ movdqu(xmm_save(i), as_XMMRegister(i));
}
#endif
__ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(xmm_temp0, Address(state, 0));
__ pshufb(xmm_temp0, xmm_temp10);
__ BIND(L_ghash_loop);
__ movdqu(xmm_temp2, Address(data, 0));
__ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
__ movdqu(xmm_temp1, Address(subkeyH, 0));
__ pshufb(xmm_temp1, xmm_temp10);
__ pxor(xmm_temp0, xmm_temp2);
//
// Multiply with the hash key
//
__ movdqu(xmm_temp3, xmm_temp0);
__ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0
__ movdqu(xmm_temp4, xmm_temp0);
__ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1
__ movdqu(xmm_temp5, xmm_temp0);
__ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0
__ movdqu(xmm_temp6, xmm_temp0);
__ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1
__ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0
__ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5
__ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right
__ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left
__ pxor(xmm_temp3, xmm_temp5);
__ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result
// of the carry-less multiplication of
// xmm0 by xmm1.
// We shift the result of the multiplication by one bit position
// to the left to cope for the fact that the bits are reversed.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp8, xmm_temp6);
__ pslld(xmm_temp3, 1);
__ pslld(xmm_temp6, 1);
__ psrld(xmm_temp7, 31);
__ psrld(xmm_temp8, 31);
__ movdqu(xmm_temp9, xmm_temp7);
__ pslldq(xmm_temp8, 4);
__ pslldq(xmm_temp7, 4);
__ psrldq(xmm_temp9, 12);
__ por(xmm_temp3, xmm_temp7);
__ por(xmm_temp6, xmm_temp8);
__ por(xmm_temp6, xmm_temp9);
//
// First phase of the reduction
//
// Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts
// independently.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp8, xmm_temp3);
__ movdqu(xmm_temp9, xmm_temp3);
__ pslld(xmm_temp7, 31); // packed right shift shifting << 31
__ pslld(xmm_temp8, 30); // packed right shift shifting << 30
__ pslld(xmm_temp9, 25); // packed right shift shifting << 25
__ pxor(xmm_temp7, xmm_temp8); // xor the shifted versions
__ pxor(xmm_temp7, xmm_temp9);
__ movdqu(xmm_temp8, xmm_temp7);
__ pslldq(xmm_temp7, 12);
__ psrldq(xmm_temp8, 4);
__ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete
//
// Second phase of the reduction
//
// Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these
// shift operations.
__ movdqu(xmm_temp2, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ psrld(xmm_temp2, 1); // packed left shifting >> 1
__ psrld(xmm_temp4, 2); // packed left shifting >> 2
__ psrld(xmm_temp5, 7); // packed left shifting >> 7
__ pxor(xmm_temp2, xmm_temp4); // xor the shifted versions
__ pxor(xmm_temp2, xmm_temp5);
__ pxor(xmm_temp2, xmm_temp8);
__ pxor(xmm_temp3, xmm_temp2);
__ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6
__ decrement(blocks);
__ jcc(Assembler::zero, L_exit);
__ movdqu(xmm_temp0, xmm_temp6);
__ addptr(data, 16);
__ jmp(L_ghash_loop);
__ BIND(L_exit);
__ pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result
__ movdqu(Address(state, 0), xmm_temp6); // store the result
#ifdef _WIN64
// restore xmm regs belonging to calling function
for (int i = 6; i <= XMM_REG_LAST; i++) {
__ movdqu(as_XMMRegister(i), xmm_save(i));
}
#endif
__ leave();
__ ret(0);
return start;
}
/** /**
* Arguments: * Arguments:
* *
@ -4120,6 +4289,13 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
} }
// Generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
// Safefetch stubs. // Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_fault_pc,

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -33,6 +33,8 @@
address StubRoutines::x86::_verify_mxcsr_entry = NULL; address StubRoutines::x86::_verify_mxcsr_entry = NULL;
address StubRoutines::x86::_key_shuffle_mask_addr = NULL; address StubRoutines::x86::_key_shuffle_mask_addr = NULL;
address StubRoutines::x86::_ghash_long_swap_mask_addr = NULL;
address StubRoutines::x86::_ghash_byte_swap_mask_addr = NULL;
uint64_t StubRoutines::x86::_crc_by128_masks[] = uint64_t StubRoutines::x86::_crc_by128_masks[] =
{ {

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -36,10 +36,15 @@
// masks and table for CRC32 // masks and table for CRC32
static uint64_t _crc_by128_masks[]; static uint64_t _crc_by128_masks[];
static juint _crc_table[]; static juint _crc_table[];
// swap mask for ghash
static address _ghash_long_swap_mask_addr;
static address _ghash_byte_swap_mask_addr;
public: public:
static address verify_mxcsr_entry() { return _verify_mxcsr_entry; } static address verify_mxcsr_entry() { return _verify_mxcsr_entry; }
static address key_shuffle_mask_addr() { return _key_shuffle_mask_addr; } static address key_shuffle_mask_addr() { return _key_shuffle_mask_addr; }
static address crc_by128_masks_addr() { return (address)_crc_by128_masks; } static address crc_by128_masks_addr() { return (address)_crc_by128_masks; }
static address ghash_long_swap_mask_addr() { return _ghash_long_swap_mask_addr; }
static address ghash_byte_swap_mask_addr() { return _ghash_byte_swap_mask_addr; }
#endif // CPU_X86_VM_STUBROUTINES_X86_32_HPP #endif // CPU_X86_VM_STUBROUTINES_X86_32_HPP

View File

@ -677,6 +677,17 @@ void VM_Version::get_processor_features() {
FLAG_SET_DEFAULT(UseAESIntrinsics, false); FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} }
// GHASH/GCM intrinsics
if (UseCLMUL && (UseSSE > 2)) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
UseGHASHIntrinsics = true;
}
} else if (UseGHASHIntrinsics) {
if (!FLAG_IS_DEFAULT(UseGHASHIntrinsics))
warning("GHASH intrinsic requires CLMUL and SSE2 instructions on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (UseSHA) { if (UseSHA) {
warning("SHA instructions are not available on this CPU"); warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false); FLAG_SET_DEFAULT(UseSHA, false);

View File

@ -846,6 +846,12 @@
do_name( implCompressMB_name, "implCompressMultiBlock") \ do_name( implCompressMB_name, "implCompressMultiBlock") \
do_signature(implCompressMB_signature, "([BII)I") \ do_signature(implCompressMB_signature, "([BII)I") \
\ \
/* support for com.sun.crypto.provider.GHASH */ \
do_class(com_sun_crypto_provider_ghash, "com/sun/crypto/provider/GHASH") \
do_intrinsic(_ghash_processBlocks, com_sun_crypto_provider_ghash, processBlocks_name, ghash_processBlocks_signature, F_S) \
do_name(processBlocks_name, "processBlocks") \
do_signature(ghash_processBlocks_signature, "([BII[J[J)V") \
\
/* support for java.util.zip */ \ /* support for java.util.zip */ \
do_class(java_util_zip_CRC32, "java/util/zip/CRC32") \ do_class(java_util_zip_CRC32, "java/util/zip/CRC32") \
do_intrinsic(_updateCRC32, java_util_zip_CRC32, update_name, int2_int_signature, F_SN) \ do_intrinsic(_updateCRC32, java_util_zip_CRC32, update_name, int2_int_signature, F_SN) \

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -26,6 +26,7 @@
#include "code/debugInfo.hpp" #include "code/debugInfo.hpp"
#include "code/debugInfoRec.hpp" #include "code/debugInfoRec.hpp"
#include "code/nmethod.hpp" #include "code/nmethod.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/handles.inline.hpp" #include "runtime/handles.inline.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
@ -47,6 +48,12 @@ void DebugInfoWriteStream::write_metadata(Metadata* h) {
write_int(recorder()->oop_recorder()->find_index(h)); write_int(recorder()->oop_recorder()->find_index(h));
} }
oop DebugInfoReadStream::read_oop() {
oop o = code()->oop_at(read_int());
assert(o->is_oop_or_null(), "oop only");
return o;
}
ScopeValue* DebugInfoReadStream::read_object_value() { ScopeValue* DebugInfoReadStream::read_object_value() {
int id = read_int(); int id = read_int();
#ifdef ASSERT #ifdef ASSERT

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -266,11 +266,7 @@ class DebugInfoReadStream : public CompressedReadStream {
} ; } ;
oop read_oop() { oop read_oop();
oop o = code()->oop_at(read_int());
assert(o == NULL || o->is_oop(), "oop only");
return o;
}
Method* read_method() { Method* read_method() {
Method* o = (Method*)(code()->metadata_at(read_int())); Method* o = (Method*)(code()->metadata_at(read_int()));
// is_metadata() is a faster check than is_metaspace_object() // is_metadata() is a faster check than is_metaspace_object()

View File

@ -191,6 +191,13 @@
product(intx, LoopMaxUnroll, 16, \ product(intx, LoopMaxUnroll, 16, \
"Maximum number of unrolls for main loop") \ "Maximum number of unrolls for main loop") \
\ \
product(bool, SuperWordLoopUnrollAnalysis, false, \
"Map number of unrolls for main loop via " \
"Superword Level Parallelism analysis") \
\
notproduct(bool, TraceSuperWordLoopUnrollAnalysis, false, \
"Trace what Superword Level Parallelism analysis applies") \
\
product(intx, LoopUnrollMin, 4, \ product(intx, LoopUnrollMin, 4, \
"Minimum number of unroll loop bodies before checking progress" \ "Minimum number of unroll loop bodies before checking progress" \
"of rounds of unroll,optimize,..") \ "of rounds of unroll,optimize,..") \

View File

@ -966,6 +966,7 @@ void ConnectionGraph::process_call_arguments(CallNode *call) {
strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 || strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 || strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 || strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 || strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 || strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 || strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||

View File

@ -278,6 +278,7 @@ class LibraryCallKit : public GraphKit {
Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting); Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
Node* get_key_start_from_aescrypt_object(Node* aescrypt_object); Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object); Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
bool inline_ghash_processBlocks();
bool inline_sha_implCompress(vmIntrinsics::ID id); bool inline_sha_implCompress(vmIntrinsics::ID id);
bool inline_digestBase_implCompressMB(int predicate); bool inline_digestBase_implCompressMB(int predicate);
bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA, bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
@ -528,6 +529,10 @@ CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
predicates = 3; predicates = 3;
break; break;
case vmIntrinsics::_ghash_processBlocks:
if (!UseGHASHIntrinsics) return NULL;
break;
case vmIntrinsics::_updateCRC32: case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32: case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32: case vmIntrinsics::_updateByteBufferCRC32:
@ -929,6 +934,9 @@ bool LibraryCallKit::try_to_inline(int predicate) {
case vmIntrinsics::_mulAdd: case vmIntrinsics::_mulAdd:
return inline_mulAdd(); return inline_mulAdd();
case vmIntrinsics::_ghash_processBlocks:
return inline_ghash_processBlocks();
case vmIntrinsics::_encodeISOArray: case vmIntrinsics::_encodeISOArray:
return inline_encodeISOArray(); return inline_encodeISOArray();
@ -5858,6 +5866,35 @@ Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypt
return _gvn.transform(region); return _gvn.transform(region);
} }
//------------------------------inline_ghash_processBlocks
bool LibraryCallKit::inline_ghash_processBlocks() {
address stubAddr;
const char *stubName;
assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
stubAddr = StubRoutines::ghash_processBlocks();
stubName = "ghash_processBlocks";
Node* data = argument(0);
Node* offset = argument(1);
Node* len = argument(2);
Node* state = argument(3);
Node* subkeyH = argument(4);
Node* state_start = array_element_address(state, intcon(0), T_LONG);
assert(state_start, "state is NULL");
Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG);
assert(subkeyH_start, "subkeyH is NULL");
Node* data_start = array_element_address(data, offset, T_BYTE);
assert(data_start, "data is NULL");
Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
OptoRuntime::ghash_processBlocks_Type(),
stubAddr, stubName, TypePtr::BOTTOM,
state_start, subkeyH_start, data_start, len);
return true;
}
//------------------------------inline_sha_implCompress----------------------- //------------------------------inline_sha_implCompress-----------------------
// //
// Calculate SHA (i.e., SHA-1) for single-block byte[] array. // Calculate SHA (i.e., SHA-1) for single-block byte[] array.

View File

@ -38,6 +38,7 @@
#include "opto/rootnode.hpp" #include "opto/rootnode.hpp"
#include "opto/runtime.hpp" #include "opto/runtime.hpp"
#include "opto/subnode.hpp" #include "opto/subnode.hpp"
#include "opto/superword.hpp"
#include "opto/vectornode.hpp" #include "opto/vectornode.hpp"
//------------------------------is_loop_exit----------------------------------- //------------------------------is_loop_exit-----------------------------------
@ -640,7 +641,7 @@ bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
//------------------------------policy_unroll---------------------------------- //------------------------------policy_unroll----------------------------------
// Return TRUE or FALSE if the loop should be unrolled or not. Unroll if // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
// the loop is a CountedLoop and the body is small enough. // the loop is a CountedLoop and the body is small enough.
bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const { bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
CountedLoopNode *cl = _head->as_CountedLoop(); CountedLoopNode *cl = _head->as_CountedLoop();
assert(cl->is_normal_loop() || cl->is_main_loop(), ""); assert(cl->is_normal_loop() || cl->is_main_loop(), "");
@ -652,6 +653,8 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
// After split at least one iteration will be executed in pre-loop. // After split at least one iteration will be executed in pre-loop.
if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false; if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
_local_loop_unroll_limit = LoopUnrollLimit;
_local_loop_unroll_factor = 4;
int future_unroll_ct = cl->unrolled_count() * 2; int future_unroll_ct = cl->unrolled_count() * 2;
if (future_unroll_ct > LoopMaxUnroll) return false; if (future_unroll_ct > LoopMaxUnroll) return false;
@ -747,8 +750,24 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
} // switch } // switch
} }
if (UseSuperWord) {
if (!cl->is_reduction_loop()) {
phase->mark_reductions(this);
}
// Only attempt slp analysis when user controls do not prohibit it
if (LoopMaxUnroll > _local_loop_unroll_factor) {
// Once policy_slp_analysis succeeds, mark the loop with the
// maximal unroll factor so that we minimize analysis passes
if ((future_unroll_ct > _local_loop_unroll_factor) ||
(body_size > (uint)_local_loop_unroll_limit)) {
policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
}
}
}
// Check for being too big // Check for being too big
if (body_size > (uint)LoopUnrollLimit) { if (body_size > (uint)_local_loop_unroll_limit) {
if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true; if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
// Normal case: loop too big // Normal case: loop too big
return false; return false;
@ -758,6 +777,36 @@ bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
return true; return true;
} }
void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
// Enable this functionality target by target as needed
if (SuperWordLoopUnrollAnalysis) {
if (!cl->has_passed_slp()) {
SuperWord sw(phase);
sw.transform_loop(this, false);
// If the loop is slp canonical analyze it
if (sw.early_return() == false) {
sw.unrolling_analysis(cl, _local_loop_unroll_factor);
}
}
int slp_max_unroll_factor = cl->slp_max_unroll();
if ((slp_max_unroll_factor > 4) &&
(slp_max_unroll_factor >= future_unroll_ct)) {
int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
if (new_limit > LoopUnrollLimit) {
#ifndef PRODUCT
if (TraceSuperWordLoopUnrollAnalysis) {
tty->print_cr("slp analysis is applying unroll limit %d, the original limit was %d\n",
new_limit, _local_loop_unroll_limit);
}
#endif
_local_loop_unroll_limit = new_limit;
}
}
}
}
//------------------------------policy_align----------------------------------- //------------------------------policy_align-----------------------------------
// Return TRUE or FALSE if the loop should be cache-line aligned. Gather the // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
// expression that does the alignment. Note that only one array base can be // expression that does the alignment. Note that only one array base can be
@ -1611,6 +1660,7 @@ void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
// iff the uses conform // iff the uses conform
if (ok) { if (ok) {
def_node->add_flag(Node::Flag_is_reduction); def_node->add_flag(Node::Flag_is_reduction);
loop_head->mark_has_reductions();
} }
} }
} }
@ -2517,7 +2567,6 @@ bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_
// and we'd rather unroll the post-RCE'd loop SO... do not unroll if // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
// peeling. // peeling.
if (should_unroll && !should_peel) { if (should_unroll && !should_peel) {
phase->mark_reductions(this);
phase->do_unroll(this, old_new, true); phase->do_unroll(this, old_new, true);
} }

View File

@ -2408,7 +2408,7 @@ void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool skip_loop_opts)
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) { for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
IdealLoopTree* lpt = iter.current(); IdealLoopTree* lpt = iter.current();
if (lpt->is_counted()) { if (lpt->is_counted()) {
sw.transform_loop(lpt); sw.transform_loop(lpt, true);
} }
} }
} }

View File

@ -62,7 +62,9 @@ protected:
HasExactTripCount=8, HasExactTripCount=8,
InnerLoop=16, InnerLoop=16,
PartialPeelLoop=32, PartialPeelLoop=32,
PartialPeelFailed=64 }; PartialPeelFailed=64,
HasReductions=128,
PassedSlpAnalysis=256 };
char _unswitch_count; char _unswitch_count;
enum { _unswitch_max=3 }; enum { _unswitch_max=3 };
@ -77,6 +79,8 @@ public:
void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; } void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; } int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; } void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
void mark_has_reductions() { _loop_flags |= HasReductions; }
void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
int unswitch_max() { return _unswitch_max; } int unswitch_max() { return _unswitch_max; }
int unswitch_count() { return _unswitch_count; } int unswitch_count() { return _unswitch_count; }
@ -155,11 +159,15 @@ class CountedLoopNode : public LoopNode {
// unroll,optimize,unroll,optimize,... is making progress // unroll,optimize,unroll,optimize,... is making progress
int _node_count_before_unroll; int _node_count_before_unroll;
// If slp analysis is performed we record the maximum
// vector mapped unroll factor here
int _slp_maximum_unroll_factor;
public: public:
CountedLoopNode( Node *entry, Node *backedge ) CountedLoopNode( Node *entry, Node *backedge )
: LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint), : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
_profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0), _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
_node_count_before_unroll(0) { _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
init_class_id(Class_CountedLoop); init_class_id(Class_CountedLoop);
// Initialize _trip_count to the largest possible value. // Initialize _trip_count to the largest possible value.
// Will be reset (lower) if the loop's trip count is known. // Will be reset (lower) if the loop's trip count is known.
@ -199,10 +207,12 @@ public:
// A 'main' loop that is ONLY unrolled or peeled, never RCE'd or // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
// Aligned, may be missing it's pre-loop. // Aligned, may be missing it's pre-loop.
int is_normal_loop() const { return (_loop_flags&PreMainPostFlagsMask) == Normal; } int is_normal_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
int is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; } int is_pre_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Pre; }
int is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; } int is_main_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Main; }
int is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; } int is_post_loop () const { return (_loop_flags&PreMainPostFlagsMask) == Post; }
int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
int has_passed_slp () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; } int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; } void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
@ -232,8 +242,10 @@ public:
void double_unrolled_count() { _unrolled_count_log2++; } void double_unrolled_count() { _unrolled_count_log2++; }
int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); } int unrolled_count() { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; } void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
int node_count_before_unroll() { return _node_count_before_unroll; } int node_count_before_unroll() { return _node_count_before_unroll; }
void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
int slp_max_unroll() const { return _slp_maximum_unroll_factor; }
#ifndef PRODUCT #ifndef PRODUCT
virtual void dump_spec(outputStream *st) const; virtual void dump_spec(outputStream *st) const;
@ -336,6 +348,8 @@ public:
Node *_tail; // Tail of loop Node *_tail; // Tail of loop
inline Node *tail(); // Handle lazy update of _tail field inline Node *tail(); // Handle lazy update of _tail field
PhaseIdealLoop* _phase; PhaseIdealLoop* _phase;
int _local_loop_unroll_limit;
int _local_loop_unroll_factor;
Node_List _body; // Loop body for inner loops Node_List _body; // Loop body for inner loops
@ -356,7 +370,8 @@ public:
_safepts(NULL), _safepts(NULL),
_required_safept(NULL), _required_safept(NULL),
_allow_optimizations(true), _allow_optimizations(true),
_nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0) _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
_local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
{ } { }
// Is 'l' a member of 'this'? // Is 'l' a member of 'this'?
@ -444,7 +459,10 @@ public:
// Return TRUE or FALSE if the loop should be unrolled or not. Unroll if // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
// the loop is a CountedLoop and the body is small enough. // the loop is a CountedLoop and the body is small enough.
bool policy_unroll( PhaseIdealLoop *phase ) const; bool policy_unroll(PhaseIdealLoop *phase);
// Loop analyses to map to a maximal superword unrolling for vectorization.
void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
// Return TRUE or FALSE if the loop should be range-check-eliminated. // Return TRUE or FALSE if the loop should be range-check-eliminated.
// Gather a list of IF tests that are dominated by iteration splitting; // Gather a list of IF tests that are dominated by iteration splitting;

View File

@ -987,7 +987,25 @@ const TypeFunc* OptoRuntime::mulAdd_Type() {
return TypeFunc::make(domain, range); return TypeFunc::make(domain, range);
} }
// GHASH block processing
const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
int argcnt = 4;
const Type** fields = TypeTuple::fields(argcnt);
int argp = TypeFunc::Parms;
fields[argp++] = TypePtr::NOTNULL; // state
fields[argp++] = TypePtr::NOTNULL; // subkeyH
fields[argp++] = TypePtr::NOTNULL; // data
fields[argp++] = TypeInt::INT; // blocks
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
// result type needed
fields = TypeTuple::fields(1);
fields[TypeFunc::Parms+0] = NULL; // void
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
return TypeFunc::make(domain, range);
}
//------------- Interpreter state access for on stack replacement //------------- Interpreter state access for on stack replacement
const TypeFunc* OptoRuntime::osr_end_Type() { const TypeFunc* OptoRuntime::osr_end_Type() {

View File

@ -316,6 +316,8 @@ private:
static const TypeFunc* mulAdd_Type(); static const TypeFunc* mulAdd_Type();
static const TypeFunc* ghash_processBlocks_Type();
static const TypeFunc* updateBytesCRC32_Type(); static const TypeFunc* updateBytesCRC32_Type();
// leaf on stack replacement interpreter accessor types // leaf on stack replacement interpreter accessor types

View File

@ -68,6 +68,7 @@ SuperWord::SuperWord(PhaseIdealLoop* phase) :
_bb(NULL), // basic block _bb(NULL), // basic block
_iv(NULL), // induction var _iv(NULL), // induction var
_race_possible(false), // cases where SDMU is true _race_possible(false), // cases where SDMU is true
_early_return(true), // analysis evaluations routine
_num_work_vecs(0), // amount of vector work we have _num_work_vecs(0), // amount of vector work we have
_num_reductions(0), // amount of reduction work we have _num_reductions(0), // amount of reduction work we have
_do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style _do_vector_loop(phase->C->do_vector_loop()), // whether to do vectorization/simd style
@ -78,7 +79,7 @@ SuperWord::SuperWord(PhaseIdealLoop* phase) :
{} {}
//------------------------------transform_loop--------------------------- //------------------------------transform_loop---------------------------
void SuperWord::transform_loop(IdealLoopTree* lpt) { void SuperWord::transform_loop(IdealLoopTree* lpt, bool do_optimization) {
assert(UseSuperWord, "should be"); assert(UseSuperWord, "should be");
// Do vectors exist on this architecture? // Do vectors exist on this architecture?
if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return; if (Matcher::vector_width_in_bytes(T_BYTE) < 2) return;
@ -113,8 +114,156 @@ void SuperWord::transform_loop(IdealLoopTree* lpt) {
// For now, define one block which is the entire loop body // For now, define one block which is the entire loop body
set_bb(cl); set_bb(cl);
assert(_packset.length() == 0, "packset must be empty"); if (do_optimization) {
SLP_extract(); assert(_packset.length() == 0, "packset must be empty");
SLP_extract();
}
}
//------------------------------early unrolling analysis------------------------------
void SuperWord::unrolling_analysis(CountedLoopNode *cl, int &local_loop_unroll_factor) {
bool is_slp = true;
ResourceMark rm;
size_t ignored_size = lpt()->_body.size();
int *ignored_loop_nodes = NEW_RESOURCE_ARRAY(int, ignored_size);
Node_Stack nstack((int)ignored_size);
Node *cl_exit = cl->loopexit();
// First clear the entries
for (uint i = 0; i < lpt()->_body.size(); i++) {
ignored_loop_nodes[i] = -1;
}
int max_vector = Matcher::max_vector_size(T_INT);
// Process the loop, some/all of the stack entries will not be in order, ergo
// need to preprocess the ignored initial state before we process the loop
for (uint i = 0; i < lpt()->_body.size(); i++) {
Node* n = lpt()->_body.at(i);
if (n == cl->incr() ||
n->is_reduction() ||
n->is_AddP() ||
n->is_Cmp() ||
n->is_IfTrue() ||
n->is_CountedLoop() ||
(n == cl_exit)) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
if (n->is_If()) {
IfNode *iff = n->as_If();
if (iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN) {
if (lpt()->is_loop_exit(iff)) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
}
}
if (n->is_Phi() && (n->bottom_type() == Type::MEMORY)) {
Node* n_tail = n->in(LoopNode::LoopBackControl);
if (n_tail != n->in(LoopNode::EntryControl)) {
if (!n_tail->is_Mem()) {
is_slp = false;
break;
}
}
}
// This must happen after check of phi/if
if (n->is_Phi() || n->is_If()) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
if (n->is_LoadStore() || n->is_MergeMem() ||
(n->is_Proj() && !n->as_Proj()->is_CFG())) {
is_slp = false;
break;
}
if (n->is_Mem()) {
MemNode* current = n->as_Mem();
BasicType bt = current->memory_type();
if (is_java_primitive(bt) == false) {
ignored_loop_nodes[i] = n->_idx;
continue;
}
Node* adr = n->in(MemNode::Address);
Node* n_ctrl = _phase->get_ctrl(adr);
// save a queue of post process nodes
if (n_ctrl != NULL && lpt()->is_member(_phase->get_loop(n_ctrl))) {
// Process the memory expression
int stack_idx = 0;
bool have_side_effects = true;
if (adr->is_AddP() == false) {
nstack.push(adr, stack_idx++);
} else {
// Mark the components of the memory operation in nstack
SWPointer p1(current, this, &nstack, true);
have_side_effects = p1.node_stack()->is_nonempty();
}
// Process the pointer stack
while (have_side_effects) {
Node* pointer_node = nstack.node();
for (uint j = 0; j < lpt()->_body.size(); j++) {
Node* cur_node = lpt()->_body.at(j);
if (cur_node == pointer_node) {
ignored_loop_nodes[j] = cur_node->_idx;
break;
}
}
nstack.pop();
have_side_effects = nstack.is_nonempty();
}
}
}
}
if (is_slp) {
// Now we try to find the maximum supported consistent vector which the machine
// description can use
for (uint i = 0; i < lpt()->_body.size(); i++) {
if (ignored_loop_nodes[i] != -1) continue;
BasicType bt;
Node* n = lpt()->_body.at(i);
if (n->is_Store()) {
bt = n->as_Mem()->memory_type();
} else {
bt = n->bottom_type()->basic_type();
}
int cur_max_vector = Matcher::max_vector_size(bt);
// If a max vector exists which is not larger than _local_loop_unroll_factor
// stop looking, we already have the max vector to map to.
if (cur_max_vector <= local_loop_unroll_factor) {
is_slp = false;
#ifndef PRODUCT
if (TraceSuperWordLoopUnrollAnalysis) {
tty->print_cr("slp analysis fails: unroll limit equals max vector\n");
}
#endif
break;
}
// Map the maximal common vector
if (VectorNode::implemented(n->Opcode(), cur_max_vector, bt)) {
if (cur_max_vector < max_vector) {
max_vector = cur_max_vector;
}
}
}
if (is_slp) {
local_loop_unroll_factor = max_vector;
}
cl->mark_passed_slp();
cl->set_slp_max_unroll(local_loop_unroll_factor);
}
} }
//------------------------------SLP_extract--------------------------- //------------------------------SLP_extract---------------------------
@ -268,12 +417,12 @@ void SuperWord::find_adjacent_refs() {
best_iv_adjustment = iv_adjustment; best_iv_adjustment = iv_adjustment;
} }
SWPointer align_to_ref_p(mem_ref, this); SWPointer align_to_ref_p(mem_ref, this, NULL, false);
// Set alignment relative to "align_to_ref" for all related memory operations. // Set alignment relative to "align_to_ref" for all related memory operations.
for (int i = memops.size() - 1; i >= 0; i--) { for (int i = memops.size() - 1; i >= 0; i--) {
MemNode* s = memops.at(i)->as_Mem(); MemNode* s = memops.at(i)->as_Mem();
if (isomorphic(s, mem_ref)) { if (isomorphic(s, mem_ref)) {
SWPointer p2(s, this); SWPointer p2(s, this, NULL, false);
if (p2.comparable(align_to_ref_p)) { if (p2.comparable(align_to_ref_p)) {
int align = memory_alignment(s, iv_adjustment); int align = memory_alignment(s, iv_adjustment);
set_alignment(s, align); set_alignment(s, align);
@ -294,7 +443,7 @@ void SuperWord::find_adjacent_refs() {
// iterations in pre-loop will be not enough to align it. // iterations in pre-loop will be not enough to align it.
create_pack = false; create_pack = false;
} else { } else {
SWPointer p2(best_align_to_mem_ref, this); SWPointer p2(best_align_to_mem_ref, this, NULL, false);
if (align_to_ref_p.invar() != p2.invar()) { if (align_to_ref_p.invar() != p2.invar()) {
// Do not vectorize memory accesses with different invariants // Do not vectorize memory accesses with different invariants
// if unaligned memory accesses are not allowed. // if unaligned memory accesses are not allowed.
@ -411,7 +560,7 @@ MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
// Count number of comparable memory ops // Count number of comparable memory ops
for (uint i = 0; i < memops.size(); i++) { for (uint i = 0; i < memops.size(); i++) {
MemNode* s1 = memops.at(i)->as_Mem(); MemNode* s1 = memops.at(i)->as_Mem();
SWPointer p1(s1, this); SWPointer p1(s1, this, NULL, false);
// Discard if pre loop can't align this reference // Discard if pre loop can't align this reference
if (!ref_is_alignable(p1)) { if (!ref_is_alignable(p1)) {
*cmp_ct.adr_at(i) = 0; *cmp_ct.adr_at(i) = 0;
@ -420,7 +569,7 @@ MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
for (uint j = i+1; j < memops.size(); j++) { for (uint j = i+1; j < memops.size(); j++) {
MemNode* s2 = memops.at(j)->as_Mem(); MemNode* s2 = memops.at(j)->as_Mem();
if (isomorphic(s1, s2)) { if (isomorphic(s1, s2)) {
SWPointer p2(s2, this); SWPointer p2(s2, this, NULL, false);
if (p1.comparable(p2)) { if (p1.comparable(p2)) {
(*cmp_ct.adr_at(i))++; (*cmp_ct.adr_at(i))++;
(*cmp_ct.adr_at(j))++; (*cmp_ct.adr_at(j))++;
@ -441,7 +590,7 @@ MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
if (s->is_Store()) { if (s->is_Store()) {
int vw = vector_width_in_bytes(s); int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity"); assert(vw > 1, "sanity");
SWPointer p(s, this); SWPointer p(s, this, NULL, false);
if (cmp_ct.at(j) > max_ct || if (cmp_ct.at(j) > max_ct ||
cmp_ct.at(j) == max_ct && cmp_ct.at(j) == max_ct &&
(vw > max_vw || (vw > max_vw ||
@ -464,7 +613,7 @@ MemNode* SuperWord::find_align_to_ref(Node_List &memops) {
if (s->is_Load()) { if (s->is_Load()) {
int vw = vector_width_in_bytes(s); int vw = vector_width_in_bytes(s);
assert(vw > 1, "sanity"); assert(vw > 1, "sanity");
SWPointer p(s, this); SWPointer p(s, this, NULL, false);
if (cmp_ct.at(j) > max_ct || if (cmp_ct.at(j) > max_ct ||
cmp_ct.at(j) == max_ct && cmp_ct.at(j) == max_ct &&
(vw > max_vw || (vw > max_vw ||
@ -575,7 +724,7 @@ bool SuperWord::ref_is_alignable(SWPointer& p) {
//---------------------------get_iv_adjustment--------------------------- //---------------------------get_iv_adjustment---------------------------
// Calculate loop's iv adjustment for this memory ops. // Calculate loop's iv adjustment for this memory ops.
int SuperWord::get_iv_adjustment(MemNode* mem_ref) { int SuperWord::get_iv_adjustment(MemNode* mem_ref) {
SWPointer align_to_ref_p(mem_ref, this); SWPointer align_to_ref_p(mem_ref, this, NULL, false);
int offset = align_to_ref_p.offset_in_bytes(); int offset = align_to_ref_p.offset_in_bytes();
int scale = align_to_ref_p.scale_in_bytes(); int scale = align_to_ref_p.scale_in_bytes();
int elt_size = align_to_ref_p.memory_size(); int elt_size = align_to_ref_p.memory_size();
@ -649,13 +798,13 @@ void SuperWord::dependence_graph() {
if (_dg.dep(s1)->in_cnt() == 0) { if (_dg.dep(s1)->in_cnt() == 0) {
_dg.make_edge(slice, s1); _dg.make_edge(slice, s1);
} }
SWPointer p1(s1->as_Mem(), this); SWPointer p1(s1->as_Mem(), this, NULL, false);
bool sink_dependent = true; bool sink_dependent = true;
for (int k = j - 1; k >= 0; k--) { for (int k = j - 1; k >= 0; k--) {
Node* s2 = _nlist.at(k); Node* s2 = _nlist.at(k);
if (s1->is_Load() && s2->is_Load()) if (s1->is_Load() && s2->is_Load())
continue; continue;
SWPointer p2(s2->as_Mem(), this); SWPointer p2(s2->as_Mem(), this, NULL, false);
int cmp = p1.cmp(p2); int cmp = p1.cmp(p2);
if (SuperWordRTDepCheck && if (SuperWordRTDepCheck &&
@ -795,8 +944,8 @@ bool SuperWord::are_adjacent_refs(Node* s1, Node* s2) {
if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) != if (_phase->C->get_alias_index(s1->as_Mem()->adr_type()) !=
_phase->C->get_alias_index(s2->as_Mem()->adr_type())) _phase->C->get_alias_index(s2->as_Mem()->adr_type()))
return false; return false;
SWPointer p1(s1->as_Mem(), this); SWPointer p1(s1->as_Mem(), this, NULL, false);
SWPointer p2(s2->as_Mem(), this); SWPointer p2(s2->as_Mem(), this, NULL, false);
if (p1.base() != p2.base() || !p1.comparable(p2)) return false; if (p1.base() != p2.base() || !p1.comparable(p2)) return false;
int diff = p2.offset_in_bytes() - p1.offset_in_bytes(); int diff = p2.offset_in_bytes() - p1.offset_in_bytes();
return diff == data_size(s1); return diff == data_size(s1);
@ -1615,13 +1764,13 @@ void SuperWord::output() {
if (n->is_Load()) { if (n->is_Load()) {
Node* ctl = n->in(MemNode::Control); Node* ctl = n->in(MemNode::Control);
Node* mem = first->in(MemNode::Memory); Node* mem = first->in(MemNode::Memory);
SWPointer p1(n->as_Mem(), this); SWPointer p1(n->as_Mem(), this, NULL, false);
// Identify the memory dependency for the new loadVector node by // Identify the memory dependency for the new loadVector node by
// walking up through memory chain. // walking up through memory chain.
// This is done to give flexibility to the new loadVector node so that // This is done to give flexibility to the new loadVector node so that
// it can move above independent storeVector nodes. // it can move above independent storeVector nodes.
while (mem->is_StoreVector()) { while (mem->is_StoreVector()) {
SWPointer p2(mem->as_Mem(), this); SWPointer p2(mem->as_Mem(), this, NULL, false);
int cmp = p1.cmp(p2); int cmp = p1.cmp(p2);
if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) { if (SWPointer::not_equal(cmp) || !SWPointer::comparable(cmp)) {
mem = mem->in(MemNode::Memory); mem = mem->in(MemNode::Memory);
@ -2138,7 +2287,7 @@ void SuperWord::compute_vector_element_type() {
//------------------------------memory_alignment--------------------------- //------------------------------memory_alignment---------------------------
// Alignment within a vector memory reference // Alignment within a vector memory reference
int SuperWord::memory_alignment(MemNode* s, int iv_adjust) { int SuperWord::memory_alignment(MemNode* s, int iv_adjust) {
SWPointer p(s, this); SWPointer p(s, this, NULL, false);
if (!p.valid()) { if (!p.valid()) {
return bottom_align; return bottom_align;
} }
@ -2315,7 +2464,7 @@ void SuperWord::align_initial_loop_index(MemNode* align_to_ref) {
Node *orig_limit = pre_opaq->original_loop_limit(); Node *orig_limit = pre_opaq->original_loop_limit();
assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, ""); assert(orig_limit != NULL && _igvn.type(orig_limit) != Type::TOP, "");
SWPointer align_to_ref_p(align_to_ref, this); SWPointer align_to_ref_p(align_to_ref, this, NULL, false);
assert(align_to_ref_p.valid(), "sanity"); assert(align_to_ref_p.valid(), "sanity");
// Given: // Given:
@ -2489,6 +2638,7 @@ void SuperWord::init() {
_bb = NULL; _bb = NULL;
_iv = NULL; _iv = NULL;
_race_possible = 0; _race_possible = 0;
_early_return = false;
_num_work_vecs = 0; _num_work_vecs = 0;
_num_reductions = 0; _num_reductions = 0;
} }
@ -2559,9 +2709,11 @@ char* SuperWord::blank(uint depth) {
//==============================SWPointer=========================== //==============================SWPointer===========================
//----------------------------SWPointer------------------------ //----------------------------SWPointer------------------------
SWPointer::SWPointer(MemNode* mem, SuperWord* slp) : SWPointer::SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only) :
_mem(mem), _slp(slp), _base(NULL), _adr(NULL), _mem(mem), _slp(slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) { _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
_nstack(nstack), _analyze_only(analyze_only),
_stack_idx(0) {
Node* adr = mem->in(MemNode::Address); Node* adr = mem->in(MemNode::Address);
if (!adr->is_AddP()) { if (!adr->is_AddP()) {
@ -2599,7 +2751,9 @@ SWPointer::SWPointer(MemNode* mem, SuperWord* slp) :
// the pattern match of an address expression. // the pattern match of an address expression.
SWPointer::SWPointer(SWPointer* p) : SWPointer::SWPointer(SWPointer* p) :
_mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL), _mem(p->_mem), _slp(p->_slp), _base(NULL), _adr(NULL),
_scale(0), _offset(0), _invar(NULL), _negate_invar(false) {} _scale(0), _offset(0), _invar(NULL), _negate_invar(false),
_nstack(p->_nstack), _analyze_only(p->_analyze_only),
_stack_idx(p->_stack_idx) {}
//------------------------scaled_iv_plus_offset-------------------- //------------------------scaled_iv_plus_offset--------------------
// Match: k*iv + offset // Match: k*iv + offset
@ -2642,6 +2796,9 @@ bool SWPointer::scaled_iv(Node* n) {
_scale = 1; _scale = 1;
return true; return true;
} }
if (_analyze_only && (invariant(n) == false)) {
_nstack->push(n, _stack_idx++);
}
int opc = n->Opcode(); int opc = n->Opcode();
if (opc == Op_MulI) { if (opc == Op_MulI) {
if (n->in(1) == iv() && n->in(2)->is_Con()) { if (n->in(1) == iv() && n->in(2)->is_Con()) {
@ -2699,6 +2856,9 @@ bool SWPointer::offset_plus_k(Node* n, bool negate) {
return false; return false;
} }
if (_invar != NULL) return false; // already have an invariant if (_invar != NULL) return false; // already have an invariant
if (_analyze_only && (invariant(n) == false)) {
_nstack->push(n, _stack_idx++);
}
if (opc == Op_AddI) { if (opc == Op_AddI) {
if (n->in(2)->is_Con() && invariant(n->in(1))) { if (n->in(2)->is_Con() && invariant(n->in(1))) {
_negate_invar = negate; _negate_invar = negate;

View File

@ -239,12 +239,15 @@ class SuperWord : public ResourceObj {
public: public:
SuperWord(PhaseIdealLoop* phase); SuperWord(PhaseIdealLoop* phase);
void transform_loop(IdealLoopTree* lpt); void transform_loop(IdealLoopTree* lpt, bool do_optimization);
void unrolling_analysis(CountedLoopNode *cl, int &local_loop_unroll_factor);
// Accessors for SWPointer // Accessors for SWPointer
PhaseIdealLoop* phase() { return _phase; } PhaseIdealLoop* phase() { return _phase; }
IdealLoopTree* lpt() { return _lpt; } IdealLoopTree* lpt() { return _lpt; }
PhiNode* iv() { return _iv; } PhiNode* iv() { return _iv; }
bool early_return() { return _early_return; }
private: private:
IdealLoopTree* _lpt; // Current loop tree node IdealLoopTree* _lpt; // Current loop tree node
@ -252,6 +255,7 @@ class SuperWord : public ResourceObj {
Node* _bb; // Current basic block Node* _bb; // Current basic block
PhiNode* _iv; // Induction var PhiNode* _iv; // Induction var
bool _race_possible; // In cases where SDMU is true bool _race_possible; // In cases where SDMU is true
bool _early_return; // True if we do not initialize
bool _do_vector_loop; // whether to do vectorization/simd style bool _do_vector_loop; // whether to do vectorization/simd style
bool _vector_loop_debug; // provide more printing in debug mode bool _vector_loop_debug; // provide more printing in debug mode
int _num_work_vecs; // Number of non memory vector operations int _num_work_vecs; // Number of non memory vector operations
@ -462,15 +466,18 @@ class SuperWord : public ResourceObj {
// Information about an address for dependence checking and vector alignment // Information about an address for dependence checking and vector alignment
class SWPointer VALUE_OBJ_CLASS_SPEC { class SWPointer VALUE_OBJ_CLASS_SPEC {
protected: protected:
MemNode* _mem; // My memory reference node MemNode* _mem; // My memory reference node
SuperWord* _slp; // SuperWord class SuperWord* _slp; // SuperWord class
Node* _base; // NULL if unsafe nonheap reference Node* _base; // NULL if unsafe nonheap reference
Node* _adr; // address pointer Node* _adr; // address pointer
jint _scale; // multiplier for iv (in bytes), 0 if no loop iv jint _scale; // multiplier for iv (in bytes), 0 if no loop iv
jint _offset; // constant offset (in bytes) jint _offset; // constant offset (in bytes)
Node* _invar; // invariant offset (in bytes), NULL if none Node* _invar; // invariant offset (in bytes), NULL if none
bool _negate_invar; // if true then use: (0 - _invar) bool _negate_invar; // if true then use: (0 - _invar)
Node_Stack* _nstack; // stack used to record a swpointer trace of variants
bool _analyze_only; // Used in loop unrolling only for swpointer trace
uint _stack_idx; // Used in loop unrolling only for swpointer trace
PhaseIdealLoop* phase() { return _slp->phase(); } PhaseIdealLoop* phase() { return _slp->phase(); }
IdealLoopTree* lpt() { return _slp->lpt(); } IdealLoopTree* lpt() { return _slp->lpt(); }
@ -497,7 +504,7 @@ class SWPointer VALUE_OBJ_CLASS_SPEC {
NotComparable = (Less | Greater | Equal) NotComparable = (Less | Greater | Equal)
}; };
SWPointer(MemNode* mem, SuperWord* slp); SWPointer(MemNode* mem, SuperWord* slp, Node_Stack *nstack, bool analyze_only);
// Following is used to create a temporary object during // Following is used to create a temporary object during
// the pattern match of an address expression. // the pattern match of an address expression.
SWPointer(SWPointer* p); SWPointer(SWPointer* p);
@ -505,14 +512,15 @@ class SWPointer VALUE_OBJ_CLASS_SPEC {
bool valid() { return _adr != NULL; } bool valid() { return _adr != NULL; }
bool has_iv() { return _scale != 0; } bool has_iv() { return _scale != 0; }
Node* base() { return _base; } Node* base() { return _base; }
Node* adr() { return _adr; } Node* adr() { return _adr; }
MemNode* mem() { return _mem; } MemNode* mem() { return _mem; }
int scale_in_bytes() { return _scale; } int scale_in_bytes() { return _scale; }
Node* invar() { return _invar; } Node* invar() { return _invar; }
bool negate_invar() { return _negate_invar; } bool negate_invar() { return _negate_invar; }
int offset_in_bytes() { return _offset; } int offset_in_bytes() { return _offset; }
int memory_size() { return _mem->memory_size(); } int memory_size() { return _mem->memory_size(); }
Node_Stack* node_stack() { return _nstack; }
// Comparable? // Comparable?
int cmp(SWPointer& q) { int cmp(SWPointer& q) {

View File

@ -674,6 +674,9 @@ class CommandLineFlags {
product(bool, UseSHA, false, \ product(bool, UseSHA, false, \
"Control whether SHA instructions can be used on SPARC") \ "Control whether SHA instructions can be used on SPARC") \
\ \
product(bool, UseGHASHIntrinsics, false, \
"Use intrinsics for GHASH versions of crypto") \
\
product(size_t, LargePageSizeInBytes, 0, \ product(size_t, LargePageSizeInBytes, 0, \
"Large page size (0 to let VM choose the page size)") \ "Large page size (0 to let VM choose the page size)") \
\ \

View File

@ -125,6 +125,7 @@ address StubRoutines::_aescrypt_encryptBlock = NULL;
address StubRoutines::_aescrypt_decryptBlock = NULL; address StubRoutines::_aescrypt_decryptBlock = NULL;
address StubRoutines::_cipherBlockChaining_encryptAESCrypt = NULL; address StubRoutines::_cipherBlockChaining_encryptAESCrypt = NULL;
address StubRoutines::_cipherBlockChaining_decryptAESCrypt = NULL; address StubRoutines::_cipherBlockChaining_decryptAESCrypt = NULL;
address StubRoutines::_ghash_processBlocks = NULL;
address StubRoutines::_sha1_implCompress = NULL; address StubRoutines::_sha1_implCompress = NULL;
address StubRoutines::_sha1_implCompressMB = NULL; address StubRoutines::_sha1_implCompressMB = NULL;

View File

@ -185,6 +185,7 @@ class StubRoutines: AllStatic {
static address _aescrypt_decryptBlock; static address _aescrypt_decryptBlock;
static address _cipherBlockChaining_encryptAESCrypt; static address _cipherBlockChaining_encryptAESCrypt;
static address _cipherBlockChaining_decryptAESCrypt; static address _cipherBlockChaining_decryptAESCrypt;
static address _ghash_processBlocks;
static address _sha1_implCompress; static address _sha1_implCompress;
static address _sha1_implCompressMB; static address _sha1_implCompressMB;
@ -346,6 +347,7 @@ class StubRoutines: AllStatic {
static address aescrypt_decryptBlock() { return _aescrypt_decryptBlock; } static address aescrypt_decryptBlock() { return _aescrypt_decryptBlock; }
static address cipherBlockChaining_encryptAESCrypt() { return _cipherBlockChaining_encryptAESCrypt; } static address cipherBlockChaining_encryptAESCrypt() { return _cipherBlockChaining_encryptAESCrypt; }
static address cipherBlockChaining_decryptAESCrypt() { return _cipherBlockChaining_decryptAESCrypt; } static address cipherBlockChaining_decryptAESCrypt() { return _cipherBlockChaining_decryptAESCrypt; }
static address ghash_processBlocks() { return _ghash_processBlocks; }
static address sha1_implCompress() { return _sha1_implCompress; } static address sha1_implCompress() { return _sha1_implCompress; }
static address sha1_implCompressMB() { return _sha1_implCompressMB; } static address sha1_implCompressMB() { return _sha1_implCompressMB; }

View File

@ -828,6 +828,7 @@ typedef CompactHashtable<Symbol*, char> SymbolCompactHashTable;
static_field(StubRoutines, _aescrypt_decryptBlock, address) \ static_field(StubRoutines, _aescrypt_decryptBlock, address) \
static_field(StubRoutines, _cipherBlockChaining_encryptAESCrypt, address) \ static_field(StubRoutines, _cipherBlockChaining_encryptAESCrypt, address) \
static_field(StubRoutines, _cipherBlockChaining_decryptAESCrypt, address) \ static_field(StubRoutines, _cipherBlockChaining_decryptAESCrypt, address) \
static_field(StubRoutines, _ghash_processBlocks, address) \
static_field(StubRoutines, _updateBytesCRC32, address) \ static_field(StubRoutines, _updateBytesCRC32, address) \
static_field(StubRoutines, _crc_table_adr, address) \ static_field(StubRoutines, _crc_table_adr, address) \
static_field(StubRoutines, _multiplyToLen, address) \ static_field(StubRoutines, _multiplyToLen, address) \

View File

@ -31,6 +31,7 @@ import java.security.AlgorithmParameters;
import java.util.Random; import java.util.Random;
import javax.crypto.Cipher; import javax.crypto.Cipher;
import javax.crypto.SecretKey; import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.IvParameterSpec; import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec; import javax.crypto.spec.SecretKeySpec;
@ -62,6 +63,10 @@ abstract public class TestAESBase {
Cipher dCipher; Cipher dCipher;
AlgorithmParameters algParams; AlgorithmParameters algParams;
SecretKey key; SecretKey key;
GCMParameterSpec gcm_spec;
byte[] aad;
int tlen = 12;
byte[] iv;
static int numThreads = 0; static int numThreads = 0;
int threadId; int threadId;
@ -100,6 +105,12 @@ abstract public class TestAESBase {
int ivLen = (algorithm.equals("AES") ? 16 : algorithm.equals("DES") ? 8 : 0); int ivLen = (algorithm.equals("AES") ? 16 : algorithm.equals("DES") ? 8 : 0);
IvParameterSpec initVector = new IvParameterSpec(new byte[ivLen]); IvParameterSpec initVector = new IvParameterSpec(new byte[ivLen]);
cipher.init(Cipher.ENCRYPT_MODE, key, initVector); cipher.init(Cipher.ENCRYPT_MODE, key, initVector);
} else if (mode.equals("GCM")) {
iv = new byte[64];
random.nextBytes(iv);
aad = new byte[5];
random.nextBytes(aad);
gcm_init();
} else { } else {
algParams = cipher.getParameters(); algParams = cipher.getParameters();
cipher.init(Cipher.ENCRYPT_MODE, key, algParams); cipher.init(Cipher.ENCRYPT_MODE, key, algParams);
@ -186,4 +197,12 @@ abstract public class TestAESBase {
} }
abstract void childShowCipher(); abstract void childShowCipher();
void gcm_init() throws Exception {
tlen = 12;
gcm_spec = new GCMParameterSpec(tlen * 8, iv);
cipher = Cipher.getInstance(algorithm + "/" + mode + "/" + paddingStr, "SunJCE");
cipher.init(Cipher.ENCRYPT_MODE, key, gcm_spec);
cipher.update(aad);
}
} }

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2012, 2014, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -32,7 +32,11 @@ public class TestAESEncode extends TestAESBase {
@Override @Override
public void run() { public void run() {
try { try {
if (!noReinit) cipher.init(Cipher.ENCRYPT_MODE, key, algParams); if (mode.equals("GCM")) {
gcm_init();
} else if (!noReinit) {
cipher.init(Cipher.ENCRYPT_MODE, key, algParams);
}
encode = new byte[encodeLength]; encode = new byte[encodeLength];
if (testingMisalignment) { if (testingMisalignment) {
int tempSize = cipher.update(input, encInputOffset, (msgSize - lastChunkSize), encode, encOutputOffset); int tempSize = cipher.update(input, encInputOffset, (msgSize - lastChunkSize), encode, encOutputOffset);

View File

@ -44,6 +44,13 @@
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 TestAESMain * @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 TestAESMain * @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 -DpaddingStr=NoPadding -DmsgSize=640 TestAESMain * @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=ECB -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 -DpaddingStr=NoPadding -DmsgSize=640 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DencInputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DencOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DdecOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DencInputOffset=1 -DencOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 TestAESMain
* @run main/othervm/timeout=600 -Xbatch -DcheckOutput=true -Dmode=GCM -DencInputOffset=1 -DencOutputOffset=1 -DdecOutputOffset=1 -DpaddingStr=NoPadding -DmsgSize=640 TestAESMain
* *
* @author Tom Deneau * @author Tom Deneau
*/ */