This commit is contained in:
Alejandro Murillo 2015-08-10 18:58:25 -07:00
commit 29ad7ba848
151 changed files with 6813 additions and 3845 deletions

View File

@ -318,3 +318,4 @@ f66c185284727f6e6ffd27e9c45ed2dd9da0a691 jdk9-b71
9b3a9d72f07b40c648de79961679f42283af1bb5 jdk9-b73
7c577fda1855d03c04546694d514678f596508c9 jdk9-b74
f55df5cfe11c97e4b58998b76f5bd00a73cde12d jdk9-b75
eeea9adfd1e3d075ef82148c00a4847a1aab4d26 jdk9-b76

View File

@ -318,3 +318,4 @@ c706ef5ea5da00078dc5e4334660315f7d99c15b jdk9-b71
4c2cbaae528bce970dabbb5676005d379357f4b6 jdk9-b73
57f3134853ecdd4a3ee2d4d26f22ba981d653d79 jdk9-b74
8fd6eeb878606e39c908f12535f34ebbfd225a4a jdk9-b75
d82072b699b880a1f647a5e2d7c0f86cec958941 jdk9-b76

View File

@ -318,3 +318,4 @@ f9f3706bd24c42c07cb260fe05730a749b8e52f4 jdk9-b72
29096b78d93b01a2f8882509cd40755e3d6b8cd9 jdk9-b73
622fe934e351e89107edf3c667d6b57f543f58f1 jdk9-b74
960b56805abd8460598897481820bd6a75f979e7 jdk9-b75
d8126bc88fa5cd1ae4e44d86a4b1280ca1c9e2aa jdk9-b76

View File

@ -478,3 +478,4 @@ c1b2825ef47e75cb34dd18450d1c4280b7c5853c jdk9-b72
e37d432868be0aa7cb5e0f3d7caff1e825d8ead3 jdk9-b73
fff6b54e9770ac4c12c2fb4cab5aa7672affa4bd jdk9-b74
2f354281e9915275693c4e519a959b8a6f22d3a3 jdk9-b75
0bc8d1656d6f2b1fdfe803c1305a108bb9939f35 jdk9-b76

View File

@ -0,0 +1,162 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot;
import java.util.Arrays;
import java.util.List;
public class SAGetopt {
private String[] _argv;
private int _optind; // index in arguments array
private int _optopt; // index within an argument
private String _optarg; // last option argument
private boolean _optreset; // special handling of first call
public SAGetopt(String[] args) {
_argv = args;
_optind = 0;
_optopt = 1;
_optarg = null;
_optreset = true;
}
public String getOptarg() {
return _optarg;
}
public int getOptind() {
return _optind;
}
private void extractOptarg(String opt) {
// Argument expected
if (_optind > _argv.length) {
throw new RuntimeException("Not enough arguments for '" + opt + "'");
}
if (! _argv[_optind].isEmpty() && _argv[_optind].charAt(0) == '-') {
throw new RuntimeException("Argument is expected for '" + opt + "'");
}
_optarg = _argv[_optind];
_optind += 1;
}
private String processLongOptions(String carg, String[] longOptStr) {
List<String> los = Arrays.asList(longOptStr);
String[] ca = carg.split("=", 2);
if (los.contains(ca[0])) {
if (ca.length > 1) {
throw new RuntimeException("Argument is not expected for '" + ca[0] + "'");
}
return carg;
}
if (los.contains(ca[0] + "=")) {
if (ca.length > 1) {
// GNU style options --file=name
_optarg = ca[1];
}
else {
// Mixed style options --file name
extractOptarg(ca[0]);
}
return ca[0];
}
throw new RuntimeException("Invalid option '" + ca[0] + "'");
}
public String next(String optStr, String[] longOptStr) {
if (_optind >= _argv.length || _argv[_optind] == null) {
// All arguments processed
return null;
}
String carg = _argv[_optind];
_optarg = null;
if (_optreset) {
// End of option batch like '-abc' reached, expect option to start from '-'
if (carg.isEmpty() || carg.charAt(0) != '-' || carg.equals("--")) {
// Stop processing on -- or first non-option argument;
return null;
}
if (carg.startsWith("--")) {
// Handle long options, it can't be combined so it's simple
if (longOptStr == null || longOptStr.length == 0) {
// No long options expected, stop options processing
return null;
}
++ _optind;
// at this point carg contains at least one character besides --
carg = carg.substring(2);
return processLongOptions(carg, longOptStr);
}
if (optStr == null || optStr.length() == 0) {
// No short options
return null;
}
// At this point carg[0] contains '-'
_optreset = false;
_optopt = 1;
}
char ch = carg.charAt(_optopt);
// adjust pointer to next character
_optopt += 1;
// Okay, ready to process options like
// -abc -d bla -ef
int chIndex = optStr.indexOf(ch);
if (chIndex == -1) {
throw new RuntimeException("Invalid option '" + ch + "'");
}
if (_optopt >= carg.length()) {
_optind += 1;
_optreset = true;
}
if (chIndex < optStr.length()-1 && optStr.charAt(chIndex+1) == ':') {
// Argument expected
extractOptarg(String.valueOf(ch));
}
return String.valueOf(ch);
}
}

View File

@ -0,0 +1,359 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot;
import java.util.ArrayList;
import java.util.Arrays;
import sun.jvm.hotspot.tools.JStack;
import sun.jvm.hotspot.tools.JMap;
import sun.jvm.hotspot.tools.JInfo;
public class SALauncher {
private static boolean launcherHelp() {
System.out.println(" clhsdb \tcommand line debugger");
System.out.println(" hsdb \tui debugger");
System.out.println(" jstack --help\tto get more information");
System.out.println(" jmap --help\tto get more information");
System.out.println(" jinfo --help\tto get more information");
return false;
}
private static boolean commonHelp() {
// --pid <pid>
// --exe <exe>
// --core <core>
System.out.println(" --exe\texecutable image name");
System.out.println(" --core\tpath to coredump");
System.out.println(" --pid\tpid of process to attach");
return false;
}
private static boolean jinfoHelp() {
// --flags -> -flags
// --sysprops -> -sysprops
System.out.println(" --flags\tto print VM flags");
System.out.println(" --sysprops\tto print Java System properties");
System.out.println(" <no option>\tto print both of the above");
return commonHelp();
}
private static boolean jmapHelp() {
// --heap -> -heap
// --binaryheap -> -heap:format=b
// --histo -> -histo
// --clstats -> -clstats
// --finalizerinfo -> -finalizerinfo
System.out.println(" <no option>\tto print same info as Solaris pmap");
System.out.println(" --heap\tto print java heap summary");
System.out.println(" --binaryheap\tto dump java heap in hprof binary format");
System.out.println(" --histo\tto print histogram of java object heap");
System.out.println(" --clstats\tto print class loader statistics");
System.out.println(" --finalizerinfo\tto print information on objects awaiting finalization");
return commonHelp();
}
private static boolean jstackHelp() {
// --locks -> -l
// --mixed -> -m
System.out.println(" --locks\tto print java.util.concurrent locks");
System.out.println(" --mixed\tto print both java and native frames (mixed mode)");
return commonHelp();
}
private static boolean toolHelp(String toolName) {
if (toolName.equals("jstack")) {
return jstackHelp();
}
if (toolName.equals("jinfo")) {
return jinfoHelp();
}
if (toolName.equals("jmap")) {
return jmapHelp();
}
if (toolName.equals("hsdb") || toolName.equals("clhsdb")) {
return commonHelp();
}
return launcherHelp();
}
private static void runCLHSDB(String[] oldArgs) {
SAGetopt sg = new SAGetopt(oldArgs);
String[] longOpts = {"exe=", "core=", "pid="};
ArrayList<String> newArgs = new ArrayList();
String exeORpid = null;
String core = null;
String s = null;
while((s = sg.next(null, longOpts)) != null) {
if (s.equals("exe")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("core")) {
core = sg.getOptarg();
continue;
}
if (s.equals("pid")) {
exeORpid = sg.getOptarg();
continue;
}
}
if (exeORpid != null) {
newArgs.add(exeORpid);
if (core != null) {
newArgs.add(core);
}
}
CLHSDB.main(newArgs.toArray(new String[newArgs.size()]));
}
private static void runHSDB(String[] oldArgs) {
SAGetopt sg = new SAGetopt(oldArgs);
String[] longOpts = {"exe=", "core=", "pid="};
ArrayList<String> newArgs = new ArrayList();
String exeORpid = null;
String core = null;
String s = null;
while((s = sg.next(null, longOpts)) != null) {
if (s.equals("exe")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("core")) {
core = sg.getOptarg();
continue;
}
if (s.equals("pid")) {
exeORpid = sg.getOptarg();
continue;
}
}
if (exeORpid != null) {
newArgs.add(exeORpid);
if (core != null) {
newArgs.add(core);
}
}
HSDB.main(newArgs.toArray(new String[newArgs.size()]));
}
private static void runJSTACK(String[] oldArgs) {
SAGetopt sg = new SAGetopt(oldArgs);
String[] longOpts = {"exe=", "core=", "pid=",
"mixed", "locks"};
ArrayList<String> newArgs = new ArrayList();
String exeORpid = null;
String core = null;
String s = null;
while((s = sg.next(null, longOpts)) != null) {
if (s.equals("exe")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("core")) {
core = sg.getOptarg();
continue;
}
if (s.equals("pid")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("mixed")) {
newArgs.add("-m");
continue;
}
if (s.equals("locks")) {
newArgs.add("-l");
continue;
}
}
if (exeORpid != null) {
newArgs.add(exeORpid);
if (core != null) {
newArgs.add(core);
}
}
JStack.main(newArgs.toArray(new String[newArgs.size()]));
}
private static void runJMAP(String[] oldArgs) {
SAGetopt sg = new SAGetopt(oldArgs);
String[] longOpts = {"exe=", "core=", "pid=",
"heap", "binaryheap", "histo", "clstats", "finalizerinfo"};
ArrayList<String> newArgs = new ArrayList();
String exeORpid = null;
String core = null;
String s = null;
while((s = sg.next(null, longOpts)) != null) {
if (s.equals("exe")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("core")) {
core = sg.getOptarg();
continue;
}
if (s.equals("pid")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("heap")) {
newArgs.add("-heap");
continue;
}
if (s.equals("binaryheap")) {
newArgs.add("-heap:format=b");
continue;
}
if (s.equals("histo")) {
newArgs.add("-histo");
continue;
}
if (s.equals("clstats")) {
newArgs.add("-clstats");
continue;
}
if (s.equals("finalizerinfo")) {
newArgs.add("-finalizerinfo");
continue;
}
}
if (exeORpid != null) {
newArgs.add(exeORpid);
if (core != null) {
newArgs.add(core);
}
}
JMap.main(newArgs.toArray(new String[newArgs.size()]));
}
private static void runJINFO(String[] oldArgs) {
SAGetopt sg = new SAGetopt(oldArgs);
String[] longOpts = {"exe=", "core=", "pid=",
"flags", "sysprops"};
ArrayList<String> newArgs = new ArrayList();
String exeORpid = null;
String core = null;
String s = null;
while((s = sg.next(null, longOpts)) != null) {
if (s.equals("exe")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("core")) {
core = sg.getOptarg();
continue;
}
if (s.equals("pid")) {
exeORpid = sg.getOptarg();
continue;
}
if (s.equals("flags")) {
newArgs.add("-flags");
continue;
}
if (s.equals("sysprops")) {
newArgs.add("-sysprops");
continue;
}
}
if (exeORpid != null) {
newArgs.add(exeORpid);
if (core != null) {
newArgs.add(core);
}
}
JInfo.main(newArgs.toArray(new String[newArgs.size()]));
}
public static void main(String[] args) {
// Provide a help
if (args.length == 0) {
launcherHelp();
return;
}
// No arguments imply help for jstack, jmap, jinfo but launch clhsdb and hsdb
if (args.length == 1 && !args[0].equals("clhsdb") && !args[0].equals("hsdb")) {
toolHelp(args[0]);
return;
}
for (String arg : args) {
if (arg.equals("-h") || arg.equals("-help") || arg.equals("--help")) {
toolHelp(args[0]);
return;
}
}
String[] oldArgs = Arrays.copyOfRange(args, 1, args.length);
// Run SA interactive mode
if (args[0].equals("clhsdb")) {
runCLHSDB(oldArgs);
return;
}
if (args[0].equals("hsdb")) {
runHSDB(oldArgs);
return;
}
// Run SA tmtools mode
if (args[0].equals("jstack")) {
runJSTACK(oldArgs);
return;
}
if (args[0].equals("jmap")) {
runJMAP(oldArgs);
return;
}
if (args[0].equals("jinfo")) {
runJINFO(oldArgs);
return;
}
}
}

View File

@ -37,6 +37,21 @@ import sun.jvm.hotspot.debugger.cdbg.*;
public abstract class AARCH64ThreadContext implements ThreadContext {
// Taken from /usr/include/asm/sigcontext.h on Linux/AARCH64.
// /*
// * Signal context structure - contains all info to do with the state
// * before the signal handler was invoked.
// */
// struct sigcontext {
// __u64 fault_address;
// /* AArch64 registers */
// __u64 regs[31];
// __u64 sp;
// __u64 pc;
// __u64 pstate;
// /* 4K reserved for FP/SIMD state and future expansion */
// __u8 __reserved[4096] __attribute__((__aligned__(16)));
// };
// NOTE: the indices for the various registers must be maintained as
// listed across various operating systems. However, only a small
// subset of the registers' values are guaranteed to be present (and
@ -78,8 +93,9 @@ public abstract class AARCH64ThreadContext implements ThreadContext {
public static final int LR = 30;
public static final int SP = 31;
public static final int PC = 32;
public static final int PSTATE = 33;
public static final int NPRGREG = 33;
public static final int NPRGREG = 34;
private long[] data;

View File

@ -1,40 +0,0 @@
package sun.jvm.hotspot.gc.g1;
import java.util.Observable;
import java.util.Observer;
import sun.jvm.hotspot.debugger.Address;
import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.runtime.VMObject;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase;
public class G1Allocator extends VMObject {
//size_t _summary_bytes_used;
static private CIntegerField summaryBytesUsedField;
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
static private synchronized void initialize(TypeDataBase db) {
Type type = db.lookupType("G1Allocator");
summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used");
}
public long getSummaryBytes() {
return summaryBytesUsedField.getValue(addr);
}
public G1Allocator(Address addr) {
super(addr);
}
}

View File

@ -36,6 +36,7 @@ import sun.jvm.hotspot.memory.MemRegion;
import sun.jvm.hotspot.runtime.VM;
import sun.jvm.hotspot.runtime.VMObjectFactory;
import sun.jvm.hotspot.types.AddressField;
import sun.jvm.hotspot.types.CIntegerField;
import sun.jvm.hotspot.types.Type;
import sun.jvm.hotspot.types.TypeDataBase;
@ -46,8 +47,8 @@ public class G1CollectedHeap extends CollectedHeap {
static private long hrmFieldOffset;
// MemRegion _g1_reserved;
static private long g1ReservedFieldOffset;
// G1Allocator* _allocator
static private AddressField g1Allocator;
// size_t _summary_bytes_used;
static private CIntegerField summaryBytesUsedField;
// G1MonitoringSupport* _g1mm;
static private AddressField g1mmField;
// HeapRegionSet _old_set;
@ -67,7 +68,7 @@ public class G1CollectedHeap extends CollectedHeap {
Type type = db.lookupType("G1CollectedHeap");
hrmFieldOffset = type.getField("_hrm").getOffset();
g1Allocator = type.getAddressField("_allocator");
summaryBytesUsedField = type.getCIntegerField("_summary_bytes_used");
g1mmField = type.getAddressField("_g1mm");
oldSetFieldOffset = type.getField("_old_set").getOffset();
humongousSetFieldOffset = type.getField("_humongous_set").getOffset();
@ -78,7 +79,7 @@ public class G1CollectedHeap extends CollectedHeap {
}
public long used() {
return allocator().getSummaryBytes();
return summaryBytesUsedField.getValue(addr);
}
public long n_regions() {
@ -96,11 +97,6 @@ public class G1CollectedHeap extends CollectedHeap {
return (G1MonitoringSupport) VMObjectFactory.newObject(G1MonitoringSupport.class, g1mmAddr);
}
public G1Allocator allocator() {
Address g1AllocatorAddr = g1Allocator.getValue(addr);
return (G1Allocator) VMObjectFactory.newObject(G1Allocator.class, g1AllocatorAddr);
}
public HeapRegionSetBase oldSet() {
Address oldSetAddr = addr.addOffsetTo(oldSetFieldOffset);
return (HeapRegionSetBase) VMObjectFactory.newObject(HeapRegionSetBase.class,

View File

@ -2167,8 +2167,12 @@ uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, boo
return 0; // Self copy, no move.
}
bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
int src_offset = ra_->reg2offset(src_lo);
int dst_offset = ra_->reg2offset(dst_lo);
if (bottom_type()->isa_vect() != NULL) {
uint len = 4;
uint ireg = ideal_reg();
assert(ireg == Op_VecD || ireg == Op_VecX, "must be 64 bit or 128 bit vector");
if (cbuf) {
@ -2176,334 +2180,115 @@ uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, boo
assert((src_lo_rc != rc_int && dst_lo_rc != rc_int), "sanity");
if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
// stack->stack
int src_offset = ra_->reg2offset(src_lo);
int dst_offset = ra_->reg2offset(dst_lo);
assert((src_offset & 7) && (dst_offset & 7), "unaligned stack offset");
len = 8;
if (ireg == Op_VecD) {
__ ldr(rscratch1, Address(sp, src_offset));
__ str(rscratch1, Address(sp, dst_offset));
__ unspill(rscratch1, true, src_offset);
__ spill(rscratch1, true, dst_offset);
} else {
if (src_offset < 512) {
__ ldp(rscratch1, rscratch2, Address(sp, src_offset));
} else {
__ ldr(rscratch1, Address(sp, src_offset));
__ ldr(rscratch2, Address(sp, src_offset+4));
len += 4;
}
if (dst_offset < 512) {
__ stp(rscratch1, rscratch2, Address(sp, dst_offset));
} else {
__ str(rscratch1, Address(sp, dst_offset));
__ str(rscratch2, Address(sp, dst_offset+4));
len += 4;
}
__ spill_copy128(src_offset, dst_offset);
}
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
__ orr(as_FloatRegister(Matcher::_regEncode[dst_lo]),
__ mov(as_FloatRegister(Matcher::_regEncode[dst_lo]),
ireg == Op_VecD ? __ T8B : __ T16B,
as_FloatRegister(Matcher::_regEncode[src_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
__ str(as_FloatRegister(Matcher::_regEncode[src_lo]),
ireg == Op_VecD ? __ D : __ Q,
Address(sp, ra_->reg2offset(dst_lo)));
__ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
ireg == Op_VecD ? __ D : __ Q,
ra_->reg2offset(dst_lo));
} else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
__ ldr(as_FloatRegister(Matcher::_regEncode[dst_lo]),
ireg == Op_VecD ? __ D : __ Q,
Address(sp, ra_->reg2offset(src_lo)));
__ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
ireg == Op_VecD ? __ D : __ Q,
ra_->reg2offset(src_lo));
} else {
ShouldNotReachHere();
}
} else if (st) {
if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
// stack->stack
int src_offset = ra_->reg2offset(src_lo);
int dst_offset = ra_->reg2offset(dst_lo);
if (ireg == Op_VecD) {
st->print("ldr rscratch1, [sp, #%d]", src_offset);
st->print("str rscratch1, [sp, #%d]", dst_offset);
}
} else if (cbuf) {
MacroAssembler _masm(cbuf);
switch (src_lo_rc) {
case rc_int:
if (dst_lo_rc == rc_int) { // gpr --> gpr copy
if (is64) {
__ mov(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else {
if (src_offset < 512) {
st->print("ldp rscratch1, rscratch2, [sp, #%d]", src_offset);
} else {
st->print("ldr rscratch1, [sp, #%d]", src_offset);
st->print("\nldr rscratch2, [sp, #%d]", src_offset+4);
}
if (dst_offset < 512) {
st->print("\nstp rscratch1, rscratch2, [sp, #%d]", dst_offset);
} else {
st->print("\nstr rscratch1, [sp, #%d]", dst_offset);
st->print("\nstr rscratch2, [sp, #%d]", dst_offset+4);
}
MacroAssembler _masm(cbuf);
__ movw(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
}
st->print("\t# vector spill, stack to stack");
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_float) {
st->print("mov %s, %s\t# vector spill, reg to reg",
Matcher::regName[dst_lo], Matcher::regName[src_lo]);
} else if (src_lo_rc == rc_float && dst_lo_rc == rc_stack) {
st->print("str %s, [sp, #%d]\t# vector spill, reg to stack",
Matcher::regName[src_lo], ra_->reg2offset(dst_lo));
} else if (src_lo_rc == rc_stack && dst_lo_rc == rc_float) {
st->print("ldr %s, [sp, #%d]\t# vector spill, stack to reg",
Matcher::regName[dst_lo], ra_->reg2offset(src_lo));
} else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
if (is64) {
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
}
} else { // gpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
}
}
return len;
}
switch (src_lo_rc) {
case rc_int:
if (dst_lo_rc == rc_int) { // gpr --> gpr copy
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ mov(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("mov %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
break;
case rc_float:
if (dst_lo_rc == rc_int) { // fpr --> gpr copy
if (is64) {
__ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ movw(as_Register(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("movw %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
} else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
if (cbuf) {
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else {
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
}
} else { // fpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
is64 ? __ D : __ S, dst_offset);
}
} else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovd %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_Register(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovs %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
break;
case rc_stack:
if (dst_lo_rc == rc_int) { // stack --> gpr load
__ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
} else if (dst_lo_rc == rc_float) { // stack --> fpr load
__ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
is64 ? __ D : __ S, src_offset);
} else { // stack --> stack copy
assert(dst_lo_rc == rc_stack, "spill to bad register class");
__ unspill(rscratch1, is64, src_offset);
__ spill(rscratch1, is64, dst_offset);
}
} else { // gpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
int dst_offset = ra_->reg2offset(dst_lo);
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ str(as_Register(Matcher::_regEncode[src_lo]),
Address(sp, dst_offset));
} else if (st) {
st->print("str %s, [sp, #%d]\t# spill",
Matcher::regName[src_lo],
dst_offset);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ strw(as_Register(Matcher::_regEncode[src_lo]),
Address(sp, dst_offset));
} else if (st) {
st->print("strw %s, [sp, #%d]\t# spill",
Matcher::regName[src_lo],
dst_offset);
}
}
}
return 4;
case rc_float:
if (dst_lo_rc == rc_int) { // fpr --> gpr copy
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovd(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovd %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovs(as_Register(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovs %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
}
} else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovd %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ fmovs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
as_FloatRegister(Matcher::_regEncode[src_lo]));
} else if (st) {
st->print("fmovs %s, %s\t# shuffle",
Matcher::regName[dst_lo],
Matcher::regName[src_lo]);
}
}
} else { // fpr --> stack spill
assert(dst_lo_rc == rc_stack, "spill to bad register class");
int dst_offset = ra_->reg2offset(dst_lo);
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ strd(as_FloatRegister(Matcher::_regEncode[src_lo]),
Address(sp, dst_offset));
} else if (st) {
st->print("strd %s, [sp, #%d]\t# spill",
Matcher::regName[src_lo],
dst_offset);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ strs(as_FloatRegister(Matcher::_regEncode[src_lo]),
Address(sp, dst_offset));
} else if (st) {
st->print("strs %s, [sp, #%d]\t# spill",
Matcher::regName[src_lo],
dst_offset);
}
}
}
return 4;
case rc_stack:
int src_offset = ra_->reg2offset(src_lo);
if (dst_lo_rc == rc_int) { // stack --> gpr load
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldr(as_Register(Matcher::_regEncode[dst_lo]),
Address(sp, src_offset));
} else if (st) {
st->print("ldr %s, [sp, %d]\t# restore",
Matcher::regName[dst_lo],
src_offset);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldrw(as_Register(Matcher::_regEncode[dst_lo]),
Address(sp, src_offset));
} else if (st) {
st->print("ldr %s, [sp, %d]\t# restore",
Matcher::regName[dst_lo],
src_offset);
}
}
return 4;
} else if (dst_lo_rc == rc_float) { // stack --> fpr load
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldrd(as_FloatRegister(Matcher::_regEncode[dst_lo]),
Address(sp, src_offset));
} else if (st) {
st->print("ldrd %s, [sp, %d]\t# restore",
Matcher::regName[dst_lo],
src_offset);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldrs(as_FloatRegister(Matcher::_regEncode[dst_lo]),
Address(sp, src_offset));
} else if (st) {
st->print("ldrs %s, [sp, %d]\t# restore",
Matcher::regName[dst_lo],
src_offset);
}
}
return 4;
} else { // stack --> stack copy
assert(dst_lo_rc == rc_stack, "spill to bad register class");
int dst_offset = ra_->reg2offset(dst_lo);
if (((src_lo & 1) == 0 && src_lo + 1 == src_hi) &&
(dst_lo & 1) == 0 && dst_lo + 1 == dst_hi) {
// 64 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldr(rscratch1, Address(sp, src_offset));
__ str(rscratch1, Address(sp, dst_offset));
} else if (st) {
st->print("ldr rscratch1, [sp, %d]\t# mem-mem spill",
src_offset);
st->print("\n\t");
st->print("str rscratch1, [sp, %d]",
dst_offset);
}
} else {
// 32 bit
if (cbuf) {
MacroAssembler _masm(cbuf);
__ ldrw(rscratch1, Address(sp, src_offset));
__ strw(rscratch1, Address(sp, dst_offset));
} else if (st) {
st->print("ldrw rscratch1, [sp, %d]\t# mem-mem spill",
src_offset);
st->print("\n\t");
st->print("strw rscratch1, [sp, %d]",
dst_offset);
}
}
return 8;
break;
default:
assert(false, "bad rc_class for spill");
ShouldNotReachHere();
}
}
if (st) {
st->print("spill ");
if (src_lo_rc == rc_stack) {
st->print("[sp, #%d] -> ", ra_->reg2offset(src_lo));
} else {
st->print("%s -> ", Matcher::regName[src_lo]);
}
if (dst_lo_rc == rc_stack) {
st->print("[sp, #%d]", ra_->reg2offset(dst_lo));
} else {
st->print("%s", Matcher::regName[dst_lo]);
}
if (bottom_type()->isa_vect() != NULL) {
st->print("\t# vector spill size = %d", ideal_reg()==Op_VecD ? 64:128);
} else {
st->print("\t# spill size = %d", is64 ? 64:32);
}
}
assert(false," bad rc_class for spill ");
Unimplemented();
return 0;
}
@ -2522,7 +2307,7 @@ void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
}
uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
return implementation(NULL, ra_, true, NULL);
return MachNode::size(ra_);
}
//=============================================================================

View File

@ -1896,7 +1896,7 @@ public:
public:
enum SIMD_Arrangement {
T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D
T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
};
enum SIMD_RegVariant {
@ -2225,14 +2225,16 @@ public:
f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
}
// We do not handle the 1Q arrangement.
void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
starti;
assert(Ta == T8H && (Tb == T8B || Tb == T16B), "Invalid Size specifier");
f(0, 31), f(Tb & 1, 30), f(0b001110001, 29, 21), rf(Vm, 16), f(0b111000, 15, 10);
rf(Vn, 5), rf(Vd, 0);
assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
(Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
int size = (Ta == T1Q) ? 0b11 : 0b00;
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
pmull(Vd, Ta, Vn, Vm, Tb);
}
@ -2245,15 +2247,6 @@ public:
f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
}
void rev32(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn)
{
starti;
assert(T <= T8H, "must be one of T8B, T16B, T4H, T8H");
f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24);
f(T <= T16B ? 0b00 : 0b01, 23, 22), f(0b100000000010, 21, 10);
rf(Vn, 5), rf(Vd, 0);
}
void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
{
starti;
@ -2290,6 +2283,57 @@ public:
#undef INSN
// Table vector lookup
#define INSN(NAME, op) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
starti; \
assert(T == T8B || T == T16B, "invalid arrangement"); \
assert(0 < registers && registers <= 4, "invalid number of registers"); \
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(tbl, 0);
INSN(tbx, 1);
#undef INSN
#define INSN(NAME, U, opcode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert((ASSERTION), MSG); \
f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \
f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12); \
f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
#define MSG "invalid arrangement"
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
INSN(rev64, 0, 0b00000);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
INSN(rev32, 1, 0b00000);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B)
INSN(rev16, 0, 0b00001);
#undef ASSERTION
#undef MSG
#undef INSN
void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
{
starti;
assert(T == T8B || T == T16B, "invalid arrangement");
assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
rf(Vm, 16), f(0, 15), f(index, 14, 11);
f(0, 10), rf(Vn, 5), rf(Vd, 0);
}
/* Simulator extensions to the ISA

View File

@ -2009,6 +2009,14 @@ void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment
}
}
void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
if (decrement.is_register()) {
sub(Rd, Rn, decrement.as_register());
} else {
sub(Rd, Rn, decrement.as_constant());
}
}
void MacroAssembler::reinit_heapbase()
{
if (UseCompressedOops) {
@ -2307,6 +2315,28 @@ Address MacroAssembler::offsetted_address(Register r, Register r1,
}
}
Address MacroAssembler::spill_address(int size, int offset, Register tmp)
{
assert(offset >= 0, "spill to negative address?");
// Offset reachable ?
// Not aligned - 9 bits signed offset
// Aligned - 12 bits unsigned offset shifted
Register base = sp;
if ((offset & (size-1)) && offset >= (1<<8)) {
add(tmp, base, offset & ((1<<12)-1));
base = tmp;
offset &= -1<<12;
}
if (offset >= (1<<12) * size) {
add(tmp, base, offset & (((1<<12)-1)<<12));
base = tmp;
offset &= ~(((1<<12)-1)<<12);
}
return Address(base, offset);
}
/**
* Multiply 64 bit by 64 bit first loop.
*/

View File

@ -464,10 +464,21 @@ public:
mov(dst, (long)i);
}
void mov(Register dst, RegisterOrConstant src) {
if (src.is_register())
mov(dst, src.as_register());
else
mov(dst, src.as_constant());
}
void movptr(Register r, uintptr_t imm64);
void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
orr(Vd, T, Vn, Vn);
}
// macro instructions for accessing and updating floating point
// status register
//
@ -1045,6 +1056,7 @@ public:
void add(Register Rd, Register Rn, RegisterOrConstant increment);
void addw(Register Rd, Register Rn, RegisterOrConstant increment);
void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
@ -1161,6 +1173,46 @@ private:
// Uses rscratch2.
Address offsetted_address(Register r, Register r1, Address::extend ext,
int offset, int size);
private:
// Returns an address on the stack which is reachable with a ldr/str of size
// Uses rscratch2 if the address is not directly reachable
Address spill_address(int size, int offset, Register tmp=rscratch2);
public:
void spill(Register Rx, bool is64, int offset) {
if (is64) {
str(Rx, spill_address(8, offset));
} else {
strw(Rx, spill_address(4, offset));
}
}
void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
str(Vx, T, spill_address(1 << (int)T, offset));
}
void unspill(Register Rx, bool is64, int offset) {
if (is64) {
ldr(Rx, spill_address(8, offset));
} else {
ldrw(Rx, spill_address(4, offset));
}
}
void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
ldr(Vx, T, spill_address(1 << (int)T, offset));
}
void spill_copy128(int src_offset, int dst_offset,
Register tmp1=rscratch1, Register tmp2=rscratch2) {
if (src_offset < 512 && (src_offset & 7) == 0 &&
dst_offset < 512 && (dst_offset & 7) == 0) {
ldp(tmp1, tmp2, Address(sp, src_offset));
stp(tmp1, tmp2, Address(sp, dst_offset));
} else {
unspill(tmp1, true, src_offset);
spill(tmp1, true, dst_offset);
unspill(tmp1, true, src_offset+8);
spill(tmp1, true, dst_offset+8);
}
}
};
#ifdef ASSERT

File diff suppressed because it is too large Load Diff

View File

@ -45,6 +45,10 @@
#define HWCAP_AES (1<<3)
#endif
#ifndef HWCAP_PMULL
#define HWCAP_PMULL (1<<4)
#endif
#ifndef HWCAP_SHA1
#define HWCAP_SHA1 (1<<5)
#endif
@ -190,11 +194,6 @@ void VM_Version::get_processor_features() {
}
}
if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
if (FLAG_IS_DEFAULT(UseCRC32Intrinsics)) {
UseCRC32Intrinsics = true;
}
@ -232,7 +231,7 @@ void VM_Version::get_processor_features() {
}
} else if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA512Intrinsics) {
@ -244,6 +243,15 @@ void VM_Version::get_processor_features() {
FLAG_SET_DEFAULT(UseSHA, false);
}
if (auxv & HWCAP_PMULL) {
if (FLAG_IS_DEFAULT(UseGHASHIntrinsics)) {
FLAG_SET_DEFAULT(UseGHASHIntrinsics, true);
}
} else if (UseGHASHIntrinsics) {
warning("GHASH intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseGHASHIntrinsics, false);
}
// This machine allows unaligned memory accesses
if (FLAG_IS_DEFAULT(UseUnalignedAccesses)) {
FLAG_SET_DEFAULT(UseUnalignedAccesses, true);
@ -261,6 +269,13 @@ void VM_Version::get_processor_features() {
UsePopCountInstruction = true;
}
if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
UseMontgomeryMultiplyIntrinsic = true;
}
if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
UseMontgomerySquareIntrinsic = true;
}
#ifdef COMPILER2
if (FLAG_IS_DEFAULT(OptoScheduling)) {
OptoScheduling = true;

View File

@ -1550,6 +1550,13 @@ void os::print_dll_info(outputStream *st) {
LoadedLibraries::print(st);
}
void os::get_summary_os_info(char* buf, size_t buflen) {
// There might be something more readable than uname results for AIX.
struct utsname name;
uname(&name);
snprintf(buf, buflen, "%s %s", name.release, name.version);
}
void os::print_os_info(outputStream* st) {
st->print("OS:");
@ -1654,6 +1661,17 @@ void os::print_memory_info(outputStream* st) {
}
}
// Get a string for the cpuinfo that is a summary of the cpu type
void os::get_summary_cpu_info(char* buf, size_t buflen) {
// This looks good
os::Aix::cpuinfo_t ci;
if (os::Aix::get_cpuinfo(&ci)) {
strncpy(buf, ci.version, buflen);
} else {
strncpy(buf, "AIX", buflen);
}
}
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
}

View File

@ -1600,24 +1600,6 @@ void* os::dll_lookup(void* handle, const char* name) {
return dlsym(handle, name);
}
static bool _print_ascii_file(const char* filename, outputStream* st) {
int fd = ::open(filename, O_RDONLY);
if (fd == -1) {
return false;
}
char buf[32];
int bytes;
while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
st->print_raw(buf, bytes);
}
::close(fd);
return true;
}
int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
outputStream * out = (outputStream *) param;
out->print_cr(PTR_FORMAT " \t%s", base_address, name);
@ -1678,15 +1660,38 @@ int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *pa
#endif
}
void os::print_os_info_brief(outputStream* st) {
st->print("Bsd");
void os::get_summary_os_info(char* buf, size_t buflen) {
// These buffers are small because we want this to be brief
// and not use a lot of stack while generating the hs_err file.
char os[100];
size_t size = sizeof(os);
int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
#ifdef __APPLE__
strncpy(os, "Darwin", sizeof(os));
#elif __OpenBSD__
strncpy(os, "OpenBSD", sizeof(os));
#else
strncpy(os, "BSD", sizeof(os));
#endif
}
char release[100];
size = sizeof(release);
int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
// if error, leave blank
strncpy(release, "", sizeof(release));
}
snprintf(buf, buflen, "%s %s", os, release);
}
void os::print_os_info_brief(outputStream* st) {
os::Posix::print_uname_info(st);
}
void os::print_os_info(outputStream* st) {
st->print("OS:");
st->print("Bsd");
os::Posix::print_uname_info(st);
@ -1699,6 +1704,33 @@ void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
// Nothing to do for now.
}
void os::get_summary_cpu_info(char* buf, size_t buflen) {
unsigned int mhz;
size_t size = sizeof(mhz);
int mib[] = { CTL_HW, HW_CPU_FREQ };
if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
mhz = 1; // looks like an error but can be divided by
} else {
mhz /= 1000000; // reported in millions
}
char model[100];
size = sizeof(model);
int mib_model[] = { CTL_HW, HW_MODEL };
if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
strncpy(model, cpu_arch, sizeof(model));
}
char machine[100];
size = sizeof(machine);
int mib_machine[] = { CTL_HW, HW_MACHINE };
if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
strncpy(machine, "", sizeof(machine));
}
snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
}
void os::print_memory_info(outputStream* st) {
st->print("Memory:");
@ -1709,11 +1741,6 @@ void os::print_memory_info(outputStream* st) {
st->print("(" UINT64_FORMAT "k free)",
os::available_memory() >> 10);
st->cr();
// meminfo
st->print("\n/proc/meminfo:\n");
_print_ascii_file("/proc/meminfo", st);
st->cr();
}
void os::print_siginfo(outputStream* st, void* siginfo) {

View File

@ -2043,31 +2043,96 @@ void os::print_os_info(outputStream* st) {
// Searching for the debian_version file is the last resort. It contains
// an informative string like "6.0.6" or "wheezy/sid". Because of this
// "Debian " is printed before the contents of the debian_version file.
void os::Linux::print_distro_info(outputStream* st) {
if (!_print_ascii_file("/etc/oracle-release", st) &&
!_print_ascii_file("/etc/mandriva-release", st) &&
!_print_ascii_file("/etc/mandrake-release", st) &&
!_print_ascii_file("/etc/sun-release", st) &&
!_print_ascii_file("/etc/redhat-release", st) &&
!_print_ascii_file("/etc/lsb-release", st) &&
!_print_ascii_file("/etc/SuSE-release", st) &&
!_print_ascii_file("/etc/turbolinux-release", st) &&
!_print_ascii_file("/etc/gentoo-release", st) &&
!_print_ascii_file("/etc/ltib-release", st) &&
!_print_ascii_file("/etc/angstrom-version", st) &&
!_print_ascii_file("/etc/system-release", st) &&
!_print_ascii_file("/etc/os-release", st)) {
if (file_exists("/etc/debian_version")) {
st->print("Debian ");
_print_ascii_file("/etc/debian_version", st);
} else {
st->print("Linux");
const char* distro_files[] = {
"/etc/oracle-release",
"/etc/mandriva-release",
"/etc/mandrake-release",
"/etc/sun-release",
"/etc/redhat-release",
"/etc/lsb-release",
"/etc/SuSE-release",
"/etc/turbolinux-release",
"/etc/gentoo-release",
"/etc/ltib-release",
"/etc/angstrom-version",
"/etc/system-release",
"/etc/os-release",
NULL };
void os::Linux::print_distro_info(outputStream* st) {
for (int i = 0;; i++) {
const char* file = distro_files[i];
if (file == NULL) {
break; // done
}
// If file prints, we found it.
if (_print_ascii_file(file, st)) {
return;
}
}
if (file_exists("/etc/debian_version")) {
st->print("Debian ");
_print_ascii_file("/etc/debian_version", st);
} else {
st->print("Linux");
}
st->cr();
}
static void parse_os_info(char* distro, size_t length, const char* file) {
FILE* fp = fopen(file, "r");
if (fp != NULL) {
char buf[256];
// get last line of the file.
while (fgets(buf, sizeof(buf), fp)) { }
// Edit out extra stuff in expected ubuntu format
if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
char* ptr = strstr(buf, "\""); // the name is in quotes
if (ptr != NULL) {
ptr++; // go beyond first quote
char* nl = strchr(ptr, '\"');
if (nl != NULL) *nl = '\0';
strncpy(distro, ptr, length);
} else {
ptr = strstr(buf, "=");
ptr++; // go beyond equals then
char* nl = strchr(ptr, '\n');
if (nl != NULL) *nl = '\0';
strncpy(distro, ptr, length);
}
} else {
// if not in expected Ubuntu format, print out whole line minus \n
char* nl = strchr(buf, '\n');
if (nl != NULL) *nl = '\0';
strncpy(distro, buf, length);
}
// close distro file
fclose(fp);
}
}
void os::get_summary_os_info(char* buf, size_t buflen) {
for (int i = 0;; i++) {
const char* file = distro_files[i];
if (file == NULL) {
break; // ran out of distro_files
}
if (file_exists(file)) {
parse_os_info(buf, buflen, file);
return;
}
}
// special case for debian
if (file_exists("/etc/debian_version")) {
strncpy(buf, "Debian ", buflen);
parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
} else {
strncpy(buf, "Linux", buflen);
}
}
void os::Linux::print_libversion_info(outputStream* st) {
// libc, pthread
st->print("libc:");
@ -2150,6 +2215,48 @@ void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
}
}
const char* search_string = IA32_ONLY("model name") AMD64_ONLY("model name")
IA64_ONLY("") SPARC_ONLY("cpu")
ARM32_ONLY("Processor") PPC_ONLY("Processor") AARCH64_ONLY("Processor");
// Parses the cpuinfo file for string representing the model name.
void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
FILE* fp = fopen("/proc/cpuinfo", "r");
if (fp != NULL) {
while (!feof(fp)) {
char buf[256];
if (fgets(buf, sizeof(buf), fp)) {
char* start = strstr(buf, search_string);
if (start != NULL) {
char *ptr = start + strlen(search_string);
char *end = buf + strlen(buf);
while (ptr != end) {
// skip whitespace and colon for the rest of the name.
if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
break;
}
ptr++;
}
if (ptr != end) {
// reasonable string, get rid of newline and keep the rest
char* nl = strchr(buf, '\n');
if (nl != NULL) *nl = '\0';
strncpy(cpuinfo, ptr, length);
fclose(fp);
return;
}
}
}
}
fclose(fp);
}
// cpuinfo not found or parsing failed, just print generic string. The entire
// /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
strncpy(cpuinfo, IA32_ONLY("x86_32") AMD64_ONLY("x86_32")
IA64_ONLY("IA64") SPARC_ONLY("sparcv9")
ARM32_ONLY("ARM") PPC_ONLY("PPC64") AARCH64_ONLY("AArch64"), length);
}
void os::print_siginfo(outputStream* st, void* siginfo) {
const siginfo_t* si = (const siginfo_t*)siginfo;

View File

@ -236,6 +236,15 @@ void os::Posix::print_uname_info(outputStream* st) {
st->cr();
}
#ifndef PRODUCT
bool os::get_host_name(char* buf, size_t buflen) {
struct utsname name;
uname(&name);
jio_snprintf(buf, buflen, "%s", name.nodename);
return true;
}
#endif // PRODUCT
bool os::has_allocatable_memory_limit(julong* limit) {
struct rlimit rlim;
int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
@ -1070,7 +1079,7 @@ bool PosixSemaphore::trywait() {
return ret == 0;
}
bool PosixSemaphore::timedwait(const struct timespec ts) {
bool PosixSemaphore::timedwait(struct timespec ts) {
while (true) {
int result = sem_timedwait(&_semaphore, &ts);
if (result == 0) {

View File

@ -1971,6 +1971,26 @@ void os::Solaris::print_distro_info(outputStream* st) {
st->cr();
}
void os::get_summary_os_info(char* buf, size_t buflen) {
strncpy(buf, "Solaris", buflen); // default to plain solaris
FILE* fp = fopen("/etc/release", "r");
if (fp != NULL) {
char tmp[256];
// Only get the first line and chop out everything but the os name.
if (fgets(tmp, sizeof(tmp), fp)) {
char* ptr = tmp;
// skip past whitespace characters
while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
if (*ptr != '\0') {
char* nl = strchr(ptr, '\n');
if (nl != NULL) *nl = '\0';
strncpy(buf, ptr, buflen);
}
}
fclose(fp);
}
}
void os::Solaris::print_libversion_info(outputStream* st) {
st->print(" (T2 libthread)");
st->cr();
@ -1998,6 +2018,22 @@ static bool check_addr0(outputStream* st) {
return status;
}
void os::get_summary_cpu_info(char* buf, size_t buflen) {
// Get MHz with system call. We don't seem to already have this.
processor_info_t stats;
processorid_t id = getcpuid();
int clock = 0;
if (processor_info(id, &stats) != -1) {
clock = stats.pi_clock; // pi_processor_type isn't more informative than below
}
#ifdef AMD64
snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
#else
// must be sparc
snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
#endif
}
void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
// Nothing to do for now.
}

View File

@ -1593,6 +1593,21 @@ int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *pa
return result;
}
#ifndef PRODUCT
bool os::get_host_name(char* buf, size_t buflen) {
DWORD size = (DWORD)buflen;
return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
}
#endif // PRODUCT
void os::get_summary_os_info(char* buf, size_t buflen) {
stringStream sst(buf, buflen);
os::win32::print_windows_version(&sst);
// chop off newline character
char* nl = strchr(buf, '\n');
if (nl != NULL) *nl = '\0';
}
void os::print_os_info_brief(outputStream* st) {
os::print_os_info(st);
}
@ -1600,15 +1615,14 @@ void os::print_os_info_brief(outputStream* st) {
void os::print_os_info(outputStream* st) {
#ifdef ASSERT
char buffer[1024];
DWORD size = sizeof(buffer);
st->print(" HostName: ");
if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
st->print("%s", buffer);
st->print("HostName: ");
if (get_host_name(buffer, sizeof(buffer))) {
st->print("%s ", buffer);
} else {
st->print("N/A");
st->print("N/A ");
}
#endif
st->print(" OS:");
st->print("OS:");
os::win32::print_windows_version(st);
}
@ -1738,6 +1752,23 @@ void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
// Nothing to do for now.
}
void os::get_summary_cpu_info(char* buf, size_t buflen) {
HKEY key;
DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
"HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
if (status == ERROR_SUCCESS) {
DWORD size = (DWORD)buflen;
status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
if (status != ERROR_SUCCESS) {
strncpy(buf, "## __CPU__", buflen);
}
RegCloseKey(key);
} else {
// Put generic cpu info to return
strncpy(buf, "## __CPU__", buflen);
}
}
void os::print_memory_info(outputStream* st) {
st->print("Memory:");
st->print(" %dk page", os::vm_page_size()>>10);

View File

@ -99,6 +99,164 @@ BufferBlob* Compiler::init_buffer_blob() {
return buffer_blob;
}
bool Compiler::is_intrinsic_supported(methodHandle method) {
vmIntrinsics::ID id = method->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (method->is_synchronized()) {
// C1 does not support intrinsification of synchronized methods.
return false;
}
switch (id) {
case vmIntrinsics::_compareAndSwapLong:
if (!VM_Version::supports_cx8()) return false;
break;
case vmIntrinsics::_getAndAddInt:
if (!VM_Version::supports_atomic_getadd4()) return false;
break;
case vmIntrinsics::_getAndAddLong:
if (!VM_Version::supports_atomic_getadd8()) return false;
break;
case vmIntrinsics::_getAndSetInt:
if (!VM_Version::supports_atomic_getset4()) return false;
break;
case vmIntrinsics::_getAndSetLong:
if (!VM_Version::supports_atomic_getset8()) return false;
break;
case vmIntrinsics::_getAndSetObject:
#ifdef _LP64
if (!UseCompressedOops && !VM_Version::supports_atomic_getset8()) return false;
if (UseCompressedOops && !VM_Version::supports_atomic_getset4()) return false;
#else
if (!VM_Version::supports_atomic_getset4()) return false;
#endif
break;
case vmIntrinsics::_arraycopy:
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
case vmIntrinsics::_Reference_get:
// Use the intrinsic version of Reference.get() so that the value in
// the referent field can be registered by the G1 pre-barrier code.
// Also to prevent commoning reads from this field across safepoint
// since GC can change its value.
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_getClass:
case vmIntrinsics::_isInstance:
case vmIntrinsics::_currentThread:
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
case vmIntrinsics::_getObject:
case vmIntrinsics::_getBoolean:
case vmIntrinsics::_getByte:
case vmIntrinsics::_getShort:
case vmIntrinsics::_getChar:
case vmIntrinsics::_getInt:
case vmIntrinsics::_getLong:
case vmIntrinsics::_getFloat:
case vmIntrinsics::_getDouble:
case vmIntrinsics::_putObject:
case vmIntrinsics::_putBoolean:
case vmIntrinsics::_putByte:
case vmIntrinsics::_putShort:
case vmIntrinsics::_putChar:
case vmIntrinsics::_putInt:
case vmIntrinsics::_putLong:
case vmIntrinsics::_putFloat:
case vmIntrinsics::_putDouble:
case vmIntrinsics::_getObjectVolatile:
case vmIntrinsics::_getBooleanVolatile:
case vmIntrinsics::_getByteVolatile:
case vmIntrinsics::_getShortVolatile:
case vmIntrinsics::_getCharVolatile:
case vmIntrinsics::_getIntVolatile:
case vmIntrinsics::_getLongVolatile:
case vmIntrinsics::_getFloatVolatile:
case vmIntrinsics::_getDoubleVolatile:
case vmIntrinsics::_putObjectVolatile:
case vmIntrinsics::_putBooleanVolatile:
case vmIntrinsics::_putByteVolatile:
case vmIntrinsics::_putShortVolatile:
case vmIntrinsics::_putCharVolatile:
case vmIntrinsics::_putIntVolatile:
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getByte_raw:
case vmIntrinsics::_getShort_raw:
case vmIntrinsics::_getChar_raw:
case vmIntrinsics::_getInt_raw:
case vmIntrinsics::_getLong_raw:
case vmIntrinsics::_getFloat_raw:
case vmIntrinsics::_getDouble_raw:
case vmIntrinsics::_putByte_raw:
case vmIntrinsics::_putShort_raw:
case vmIntrinsics::_putChar_raw:
case vmIntrinsics::_putInt_raw:
case vmIntrinsics::_putLong_raw:
case vmIntrinsics::_putFloat_raw:
case vmIntrinsics::_putDouble_raw:
case vmIntrinsics::_putOrderedObject:
case vmIntrinsics::_putOrderedInt:
case vmIntrinsics::_putOrderedLong:
case vmIntrinsics::_getShortUnaligned:
case vmIntrinsics::_getCharUnaligned:
case vmIntrinsics::_getIntUnaligned:
case vmIntrinsics::_getLongUnaligned:
case vmIntrinsics::_putShortUnaligned:
case vmIntrinsics::_putCharUnaligned:
case vmIntrinsics::_putIntUnaligned:
case vmIntrinsics::_putLongUnaligned:
case vmIntrinsics::_checkIndex:
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_compareAndSwapObject:
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID:
case vmIntrinsics::_threadID:
case vmIntrinsics::_counterTime:
#endif
break;
default:
return false; // Intrinsics not on the previous list are not available.
}
return true;
}
bool Compiler::is_intrinsic_disabled_by_flag(methodHandle method) {
vmIntrinsics::ID id = method->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (vmIntrinsics::is_disabled_by_flags(id)) {
return true;
}
if (!InlineNatives && id != vmIntrinsics::_Reference_get) {
return true;
}
if (!InlineClassNatives && id == vmIntrinsics::_getClass) {
return true;
}
return false;
}
void Compiler::compile_method(ciEnv* env, ciMethod* method, int entry_bci) {
BufferBlob* buffer_blob = CompilerThread::current()->get_buffer_blob();
@ -117,3 +275,7 @@ void Compiler::compile_method(ciEnv* env, ciMethod* method, int entry_bci) {
void Compiler::print_timers() {
Compilation::print_timers();
}
bool Compiler::is_intrinsic_available(methodHandle method, methodHandle compilation_context) {
return is_intrinsic_supported(method) && !is_intrinsic_disabled_by_flag(method);
}

View File

@ -55,6 +55,18 @@ class Compiler: public AbstractCompiler {
// Print compilation timers and statistics
virtual void print_timers();
// Check the availability of an intrinsic for 'method' given a compilation context.
// The compilation context is needed to support per-method usage of the
// DisableIntrinsic flag. However, as C1 ignores the DisableIntrinsic flag, it
// ignores the compilation context.
virtual bool is_intrinsic_available(methodHandle method, methodHandle compilation_context);
// Check if the C1 compiler supports an intrinsic for 'method'.
virtual bool is_intrinsic_supported(methodHandle method);
// Processing of command-line flags specific to the C1 compiler.
virtual bool is_intrinsic_disabled_by_flag(methodHandle method);
// Size of the code buffer
static int code_buffer_size();
};

View File

@ -3372,231 +3372,85 @@ const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
return NULL;
}
bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
if (callee->is_synchronized()) {
// We don't currently support any synchronized intrinsics
return false;
}
// callee seems like a good candidate
// determine id
void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee) {
vmIntrinsics::ID id = callee->intrinsic_id();
if (!InlineNatives && id != vmIntrinsics::_Reference_get) {
// InlineNatives does not control Reference.get
INLINE_BAILOUT("intrinsic method inlining disabled");
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
// Some intrinsics need special IR nodes.
switch(id) {
case vmIntrinsics::_getObject : append_unsafe_get_obj(callee, T_OBJECT, false); return;
case vmIntrinsics::_getBoolean : append_unsafe_get_obj(callee, T_BOOLEAN, false); return;
case vmIntrinsics::_getByte : append_unsafe_get_obj(callee, T_BYTE, false); return;
case vmIntrinsics::_getShort : append_unsafe_get_obj(callee, T_SHORT, false); return;
case vmIntrinsics::_getChar : append_unsafe_get_obj(callee, T_CHAR, false); return;
case vmIntrinsics::_getInt : append_unsafe_get_obj(callee, T_INT, false); return;
case vmIntrinsics::_getLong : append_unsafe_get_obj(callee, T_LONG, false); return;
case vmIntrinsics::_getFloat : append_unsafe_get_obj(callee, T_FLOAT, false); return;
case vmIntrinsics::_getDouble : append_unsafe_get_obj(callee, T_DOUBLE, false); return;
case vmIntrinsics::_putObject : append_unsafe_put_obj(callee, T_OBJECT, false); return;
case vmIntrinsics::_putBoolean : append_unsafe_put_obj(callee, T_BOOLEAN, false); return;
case vmIntrinsics::_putByte : append_unsafe_put_obj(callee, T_BYTE, false); return;
case vmIntrinsics::_putShort : append_unsafe_put_obj(callee, T_SHORT, false); return;
case vmIntrinsics::_putChar : append_unsafe_put_obj(callee, T_CHAR, false); return;
case vmIntrinsics::_putInt : append_unsafe_put_obj(callee, T_INT, false); return;
case vmIntrinsics::_putLong : append_unsafe_put_obj(callee, T_LONG, false); return;
case vmIntrinsics::_putFloat : append_unsafe_put_obj(callee, T_FLOAT, false); return;
case vmIntrinsics::_putDouble : append_unsafe_put_obj(callee, T_DOUBLE, false); return;
case vmIntrinsics::_getShortUnaligned : append_unsafe_get_obj(callee, T_SHORT, false); return;
case vmIntrinsics::_getCharUnaligned : append_unsafe_get_obj(callee, T_CHAR, false); return;
case vmIntrinsics::_getIntUnaligned : append_unsafe_get_obj(callee, T_INT, false); return;
case vmIntrinsics::_getLongUnaligned : append_unsafe_get_obj(callee, T_LONG, false); return;
case vmIntrinsics::_putShortUnaligned : append_unsafe_put_obj(callee, T_SHORT, false); return;
case vmIntrinsics::_putCharUnaligned : append_unsafe_put_obj(callee, T_CHAR, false); return;
case vmIntrinsics::_putIntUnaligned : append_unsafe_put_obj(callee, T_INT, false); return;
case vmIntrinsics::_putLongUnaligned : append_unsafe_put_obj(callee, T_LONG, false); return;
case vmIntrinsics::_getObjectVolatile : append_unsafe_get_obj(callee, T_OBJECT, true); return;
case vmIntrinsics::_getBooleanVolatile : append_unsafe_get_obj(callee, T_BOOLEAN, true); return;
case vmIntrinsics::_getByteVolatile : append_unsafe_get_obj(callee, T_BYTE, true); return;
case vmIntrinsics::_getShortVolatile : append_unsafe_get_obj(callee, T_SHORT, true); return;
case vmIntrinsics::_getCharVolatile : append_unsafe_get_obj(callee, T_CHAR, true); return;
case vmIntrinsics::_getIntVolatile : append_unsafe_get_obj(callee, T_INT, true); return;
case vmIntrinsics::_getLongVolatile : append_unsafe_get_obj(callee, T_LONG, true); return;
case vmIntrinsics::_getFloatVolatile : append_unsafe_get_obj(callee, T_FLOAT, true); return;
case vmIntrinsics::_getDoubleVolatile : append_unsafe_get_obj(callee, T_DOUBLE, true); return;
case vmIntrinsics::_putObjectVolatile : append_unsafe_put_obj(callee, T_OBJECT, true); return;
case vmIntrinsics::_putBooleanVolatile : append_unsafe_put_obj(callee, T_BOOLEAN, true); return;
case vmIntrinsics::_putByteVolatile : append_unsafe_put_obj(callee, T_BYTE, true); return;
case vmIntrinsics::_putShortVolatile : append_unsafe_put_obj(callee, T_SHORT, true); return;
case vmIntrinsics::_putCharVolatile : append_unsafe_put_obj(callee, T_CHAR, true); return;
case vmIntrinsics::_putIntVolatile : append_unsafe_put_obj(callee, T_INT, true); return;
case vmIntrinsics::_putLongVolatile : append_unsafe_put_obj(callee, T_LONG, true); return;
case vmIntrinsics::_putFloatVolatile : append_unsafe_put_obj(callee, T_FLOAT, true); return;
case vmIntrinsics::_putDoubleVolatile : append_unsafe_put_obj(callee, T_DOUBLE, true); return;
case vmIntrinsics::_getByte_raw : append_unsafe_get_raw(callee, T_BYTE ); return;
case vmIntrinsics::_getShort_raw : append_unsafe_get_raw(callee, T_SHORT ); return;
case vmIntrinsics::_getChar_raw : append_unsafe_get_raw(callee, T_CHAR ); return;
case vmIntrinsics::_getInt_raw : append_unsafe_get_raw(callee, T_INT ); return;
case vmIntrinsics::_getLong_raw : append_unsafe_get_raw(callee, T_LONG ); return;
case vmIntrinsics::_getFloat_raw : append_unsafe_get_raw(callee, T_FLOAT ); return;
case vmIntrinsics::_getDouble_raw : append_unsafe_get_raw(callee, T_DOUBLE); return;
case vmIntrinsics::_putByte_raw : append_unsafe_put_raw(callee, T_BYTE ); return;
case vmIntrinsics::_putShort_raw : append_unsafe_put_raw(callee, T_SHORT ); return;
case vmIntrinsics::_putChar_raw : append_unsafe_put_raw(callee, T_CHAR ); return;
case vmIntrinsics::_putInt_raw : append_unsafe_put_raw(callee, T_INT ); return;
case vmIntrinsics::_putLong_raw : append_unsafe_put_raw(callee, T_LONG ); return;
case vmIntrinsics::_putFloat_raw : append_unsafe_put_raw(callee, T_FLOAT ); return;
case vmIntrinsics::_putDouble_raw : append_unsafe_put_raw(callee, T_DOUBLE); return;
case vmIntrinsics::_putOrderedObject : append_unsafe_put_obj(callee, T_OBJECT, true); return;
case vmIntrinsics::_putOrderedInt : append_unsafe_put_obj(callee, T_INT, true); return;
case vmIntrinsics::_putOrderedLong : append_unsafe_put_obj(callee, T_LONG, true); return;
case vmIntrinsics::_compareAndSwapLong:
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_compareAndSwapObject: append_unsafe_CAS(callee); return;
case vmIntrinsics::_getAndAddInt:
case vmIntrinsics::_getAndAddLong : append_unsafe_get_and_set_obj(callee, true); return;
case vmIntrinsics::_getAndSetInt :
case vmIntrinsics::_getAndSetLong :
case vmIntrinsics::_getAndSetObject : append_unsafe_get_and_set_obj(callee, false); return;
default:
break;
}
bool preserves_state = false;
bool cantrap = true;
switch (id) {
case vmIntrinsics::_arraycopy:
if (!InlineArrayCopy) return false;
break;
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID:
case vmIntrinsics::_threadID:
preserves_state = true;
cantrap = true;
break;
case vmIntrinsics::_counterTime:
preserves_state = true;
cantrap = false;
break;
#endif
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_floatToRawIntBits :
case vmIntrinsics::_intBitsToFloat :
case vmIntrinsics::_doubleToRawLongBits :
case vmIntrinsics::_longBitsToDouble :
if (!InlineMathNatives) return false;
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_getClass :
case vmIntrinsics::_isInstance :
if (!InlineClassNatives) return false;
preserves_state = true;
break;
case vmIntrinsics::_currentThread :
if (!InlineThreadNatives) return false;
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_dabs : // fall through
case vmIntrinsics::_dsqrt : // fall through
case vmIntrinsics::_dsin : // fall through
case vmIntrinsics::_dcos : // fall through
case vmIntrinsics::_dtan : // fall through
case vmIntrinsics::_dlog : // fall through
case vmIntrinsics::_dlog10 : // fall through
case vmIntrinsics::_dexp : // fall through
case vmIntrinsics::_dpow : // fall through
if (!InlineMathNatives) return false;
cantrap = false;
preserves_state = true;
break;
// Use special nodes for Unsafe instructions so we can more easily
// perform an address-mode optimization on the raw variants
case vmIntrinsics::_getObject : return append_unsafe_get_obj(callee, T_OBJECT, false);
case vmIntrinsics::_getBoolean: return append_unsafe_get_obj(callee, T_BOOLEAN, false);
case vmIntrinsics::_getByte : return append_unsafe_get_obj(callee, T_BYTE, false);
case vmIntrinsics::_getShort : return append_unsafe_get_obj(callee, T_SHORT, false);
case vmIntrinsics::_getChar : return append_unsafe_get_obj(callee, T_CHAR, false);
case vmIntrinsics::_getInt : return append_unsafe_get_obj(callee, T_INT, false);
case vmIntrinsics::_getLong : return append_unsafe_get_obj(callee, T_LONG, false);
case vmIntrinsics::_getFloat : return append_unsafe_get_obj(callee, T_FLOAT, false);
case vmIntrinsics::_getDouble : return append_unsafe_get_obj(callee, T_DOUBLE, false);
case vmIntrinsics::_putObject : return append_unsafe_put_obj(callee, T_OBJECT, false);
case vmIntrinsics::_putBoolean: return append_unsafe_put_obj(callee, T_BOOLEAN, false);
case vmIntrinsics::_putByte : return append_unsafe_put_obj(callee, T_BYTE, false);
case vmIntrinsics::_putShort : return append_unsafe_put_obj(callee, T_SHORT, false);
case vmIntrinsics::_putChar : return append_unsafe_put_obj(callee, T_CHAR, false);
case vmIntrinsics::_putInt : return append_unsafe_put_obj(callee, T_INT, false);
case vmIntrinsics::_putLong : return append_unsafe_put_obj(callee, T_LONG, false);
case vmIntrinsics::_putFloat : return append_unsafe_put_obj(callee, T_FLOAT, false);
case vmIntrinsics::_putDouble : return append_unsafe_put_obj(callee, T_DOUBLE, false);
case vmIntrinsics::_getShortUnaligned :
return UseUnalignedAccesses ? append_unsafe_get_obj(callee, T_SHORT, false) : false;
case vmIntrinsics::_getCharUnaligned :
return UseUnalignedAccesses ? append_unsafe_get_obj(callee, T_CHAR, false) : false;
case vmIntrinsics::_getIntUnaligned :
return UseUnalignedAccesses ? append_unsafe_get_obj(callee, T_INT, false) : false;
case vmIntrinsics::_getLongUnaligned :
return UseUnalignedAccesses ? append_unsafe_get_obj(callee, T_LONG, false) : false;
case vmIntrinsics::_putShortUnaligned :
return UseUnalignedAccesses ? append_unsafe_put_obj(callee, T_SHORT, false) : false;
case vmIntrinsics::_putCharUnaligned :
return UseUnalignedAccesses ? append_unsafe_put_obj(callee, T_CHAR, false) : false;
case vmIntrinsics::_putIntUnaligned :
return UseUnalignedAccesses ? append_unsafe_put_obj(callee, T_INT, false) : false;
case vmIntrinsics::_putLongUnaligned :
return UseUnalignedAccesses ? append_unsafe_put_obj(callee, T_LONG, false) : false;
case vmIntrinsics::_getObjectVolatile : return append_unsafe_get_obj(callee, T_OBJECT, true);
case vmIntrinsics::_getBooleanVolatile: return append_unsafe_get_obj(callee, T_BOOLEAN, true);
case vmIntrinsics::_getByteVolatile : return append_unsafe_get_obj(callee, T_BYTE, true);
case vmIntrinsics::_getShortVolatile : return append_unsafe_get_obj(callee, T_SHORT, true);
case vmIntrinsics::_getCharVolatile : return append_unsafe_get_obj(callee, T_CHAR, true);
case vmIntrinsics::_getIntVolatile : return append_unsafe_get_obj(callee, T_INT, true);
case vmIntrinsics::_getLongVolatile : return append_unsafe_get_obj(callee, T_LONG, true);
case vmIntrinsics::_getFloatVolatile : return append_unsafe_get_obj(callee, T_FLOAT, true);
case vmIntrinsics::_getDoubleVolatile : return append_unsafe_get_obj(callee, T_DOUBLE, true);
case vmIntrinsics::_putObjectVolatile : return append_unsafe_put_obj(callee, T_OBJECT, true);
case vmIntrinsics::_putBooleanVolatile: return append_unsafe_put_obj(callee, T_BOOLEAN, true);
case vmIntrinsics::_putByteVolatile : return append_unsafe_put_obj(callee, T_BYTE, true);
case vmIntrinsics::_putShortVolatile : return append_unsafe_put_obj(callee, T_SHORT, true);
case vmIntrinsics::_putCharVolatile : return append_unsafe_put_obj(callee, T_CHAR, true);
case vmIntrinsics::_putIntVolatile : return append_unsafe_put_obj(callee, T_INT, true);
case vmIntrinsics::_putLongVolatile : return append_unsafe_put_obj(callee, T_LONG, true);
case vmIntrinsics::_putFloatVolatile : return append_unsafe_put_obj(callee, T_FLOAT, true);
case vmIntrinsics::_putDoubleVolatile : return append_unsafe_put_obj(callee, T_DOUBLE, true);
case vmIntrinsics::_getByte_raw : return append_unsafe_get_raw(callee, T_BYTE);
case vmIntrinsics::_getShort_raw : return append_unsafe_get_raw(callee, T_SHORT);
case vmIntrinsics::_getChar_raw : return append_unsafe_get_raw(callee, T_CHAR);
case vmIntrinsics::_getInt_raw : return append_unsafe_get_raw(callee, T_INT);
case vmIntrinsics::_getLong_raw : return append_unsafe_get_raw(callee, T_LONG);
case vmIntrinsics::_getFloat_raw : return append_unsafe_get_raw(callee, T_FLOAT);
case vmIntrinsics::_getDouble_raw : return append_unsafe_get_raw(callee, T_DOUBLE);
case vmIntrinsics::_putByte_raw : return append_unsafe_put_raw(callee, T_BYTE);
case vmIntrinsics::_putShort_raw : return append_unsafe_put_raw(callee, T_SHORT);
case vmIntrinsics::_putChar_raw : return append_unsafe_put_raw(callee, T_CHAR);
case vmIntrinsics::_putInt_raw : return append_unsafe_put_raw(callee, T_INT);
case vmIntrinsics::_putLong_raw : return append_unsafe_put_raw(callee, T_LONG);
case vmIntrinsics::_putFloat_raw : return append_unsafe_put_raw(callee, T_FLOAT);
case vmIntrinsics::_putDouble_raw : return append_unsafe_put_raw(callee, T_DOUBLE);
case vmIntrinsics::_checkIndex :
if (!InlineNIOCheckIndex) return false;
preserves_state = true;
break;
case vmIntrinsics::_putOrderedObject : return append_unsafe_put_obj(callee, T_OBJECT, true);
case vmIntrinsics::_putOrderedInt : return append_unsafe_put_obj(callee, T_INT, true);
case vmIntrinsics::_putOrderedLong : return append_unsafe_put_obj(callee, T_LONG, true);
case vmIntrinsics::_compareAndSwapLong:
if (!VM_Version::supports_cx8()) return false;
// fall through
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_compareAndSwapObject:
append_unsafe_CAS(callee);
return true;
case vmIntrinsics::_getAndAddInt:
if (!VM_Version::supports_atomic_getadd4()) {
return false;
}
return append_unsafe_get_and_set_obj(callee, true);
case vmIntrinsics::_getAndAddLong:
if (!VM_Version::supports_atomic_getadd8()) {
return false;
}
return append_unsafe_get_and_set_obj(callee, true);
case vmIntrinsics::_getAndSetInt:
if (!VM_Version::supports_atomic_getset4()) {
return false;
}
return append_unsafe_get_and_set_obj(callee, false);
case vmIntrinsics::_getAndSetLong:
if (!VM_Version::supports_atomic_getset8()) {
return false;
}
return append_unsafe_get_and_set_obj(callee, false);
case vmIntrinsics::_getAndSetObject:
#ifdef _LP64
if (!UseCompressedOops && !VM_Version::supports_atomic_getset8()) {
return false;
}
if (UseCompressedOops && !VM_Version::supports_atomic_getset4()) {
return false;
}
#else
if (!VM_Version::supports_atomic_getset4()) {
return false;
}
#endif
return append_unsafe_get_and_set_obj(callee, false);
case vmIntrinsics::_Reference_get:
// Use the intrinsic version of Reference.get() so that the value in
// the referent field can be registered by the G1 pre-barrier code.
// Also to prevent commoning reads from this field across safepoint
// since GC can change its value.
preserves_state = true;
break;
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
if (!UseCRC32Intrinsics) return false;
cantrap = false;
preserves_state = true;
break;
case vmIntrinsics::_loadFence :
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence :
break;
default : return false; // do not inline
}
// create intrinsic node
const bool has_receiver = !callee->is_static();
ValueType* result_type = as_ValueType(callee->return_type());
@ -3621,8 +3475,10 @@ bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
}
}
Intrinsic* result = new Intrinsic(result_type, id, args, has_receiver, state_before,
preserves_state, cantrap);
Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
args, has_receiver, state_before,
vmIntrinsics::preserves_state(id),
vmIntrinsics::can_trap(id));
// append instruction & push result
Value value = append_split(result);
if (result_type != voidType) push(result_type, value);
@ -3630,8 +3486,22 @@ bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
if (callee != method() && profile_return() && result_type->is_object_kind()) {
profile_return_type(result, callee);
}
}
// done
bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
// For calling is_intrinsic_available we need to transition to
// the '_thread_in_vm' state because is_intrinsic_available()
// does not accesses critical VM-internal data.
if (!_compilation->compiler()->is_intrinsic_available(callee->get_Method(), NULL)) {
if (!InlineNatives) {
// Return false and also set message that the inlining of
// intrinsics has been disabled in general.
INLINE_BAILOUT("intrinsic method inlining disabled");
} else {
return false;
}
}
build_graph_for_intrinsic(callee);
return true;
}
@ -4224,58 +4094,46 @@ void GraphBuilder::pop_scope_for_jsr() {
_scope_data = scope_data()->parent();
}
bool GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
void GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
bool GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
void GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, args->at(3), is_volatile));
compilation()->set_has_unsafe_access(true);
kill_all();
}
return InlineUnsafeOps;
Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, args->at(3), is_volatile));
compilation()->set_has_unsafe_access(true);
kill_all();
}
bool GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
void GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
bool GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
void GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
compilation()->set_has_unsafe_access(true);
}
@ -4352,21 +4210,18 @@ void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool succes
}
}
bool GraphBuilder::append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
BasicType t = callee->return_type()->basic_type();
null_check(args->at(0));
Instruction* offset = args->at(2);
void GraphBuilder::append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add) {
Values* args = state()->pop_arguments(callee->arg_size());
BasicType t = callee->return_type()->basic_type();
null_check(args->at(0));
Instruction* offset = args->at(2);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = append(new UnsafeGetAndSetObject(t, args->at(1), offset, args->at(3), is_add));
compilation()->set_has_unsafe_access(true);
kill_all();
push(op->type(), op);
}
return InlineUnsafeOps;
Instruction* op = append(new UnsafeGetAndSetObject(t, args->at(1), offset, args->at(3), is_add));
compilation()->set_has_unsafe_access(true);
kill_all();
push(op->type(), op);
}
#ifndef PRODUCT

View File

@ -339,6 +339,8 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
void inline_sync_entry(Value lock, BlockBegin* sync_handler);
void fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler = false);
void build_graph_for_intrinsic(ciMethod* callee);
// inliners
bool try_inline( ciMethod* callee, bool holder_known, Bytecodes::Code bc = Bytecodes::_illegal, Value receiver = NULL);
bool try_inline_intrinsics(ciMethod* callee);
@ -364,12 +366,12 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
void pop_scope();
void pop_scope_for_jsr();
bool append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile);
bool append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile);
bool append_unsafe_get_raw(ciMethod* callee, BasicType t);
bool append_unsafe_put_raw(ciMethod* callee, BasicType t);
void append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile);
void append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile);
void append_unsafe_get_raw(ciMethod* callee, BasicType t);
void append_unsafe_put_raw(ciMethod* callee, BasicType t);
void append_unsafe_CAS(ciMethod* callee);
bool append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add);
void append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add);
void print_inlining(ciMethod* callee, const char* msg = NULL, bool success = true);

View File

@ -153,7 +153,19 @@ ValueType* as_ValueType(ciConstant value) {
case T_FLOAT : return new FloatConstant (value.as_float ());
case T_DOUBLE : return new DoubleConstant(value.as_double());
case T_ARRAY : // fall through (ciConstant doesn't have an array accessor)
case T_OBJECT : return new ObjectConstant(value.as_object());
case T_OBJECT : {
// TODO: Common the code with GraphBuilder::load_constant?
ciObject* obj = value.as_object();
if (obj->is_null_object())
return objectNull;
if (obj->is_loaded()) {
if (obj->is_array())
return new ArrayConstant(obj->as_array());
else if (obj->is_instance())
return new InstanceConstant(obj->as_instance());
}
return new ObjectConstant(obj);
}
}
ShouldNotReachHere();
return illegalType;

View File

@ -809,6 +809,22 @@ Symbol* java_lang_Class::as_signature(oop java_class, bool intern_if_not_found,
return name;
}
// Returns the Java name for this Java mirror (Resource allocated)
// See Klass::external_name().
// For primitive type Java mirrors, its type name is returned.
const char* java_lang_Class::as_external_name(oop java_class) {
assert(java_lang_Class::is_instance(java_class), "must be a Class object");
const char* name = NULL;
if (is_primitive(java_class)) {
name = type2name(primitive_type(java_class));
} else {
name = as_Klass(java_class)->external_name();
}
if (name == NULL) {
name = "<null>";
}
return name;
}
Klass* java_lang_Class::array_klass(oop java_class) {
Klass* k = ((Klass*)java_class->metadata_field(_array_klass_offset));
@ -1468,6 +1484,19 @@ class BacktraceBuilder: public StackObj {
};
Symbol* get_source_file_name(InstanceKlass* holder, int version) {
// Find the specific ik version that contains this source_file_name_index
// via the previous versions list, but use the current version's
// constant pool to look it up. The previous version's index has been
// merged for the current constant pool.
InstanceKlass* ik = holder->get_klass_version(version);
// This version has been cleaned up.
if (ik == NULL) return NULL;
int source_file_name_index = ik->source_file_name_index();
return (source_file_name_index == 0) ?
(Symbol*)NULL : holder->constants()->symbol_at(source_file_name_index);
}
// Print stack trace element to resource allocated buffer
char* java_lang_Throwable::print_stack_element_to_buffer(Handle mirror,
int method_id, int version, int bci, int cpref) {
@ -1484,17 +1513,11 @@ char* java_lang_Throwable::print_stack_element_to_buffer(Handle mirror,
char* method_name = sym->as_C_string();
buf_len += (int)strlen(method_name);
// Use specific ik version as a holder since the mirror might
// refer to version that is now obsolete and no longer accessible
// via the previous versions list.
holder = holder->get_klass_version(version);
char* source_file_name = NULL;
if (holder != NULL) {
Symbol* source = holder->source_file_name();
if (source != NULL) {
source_file_name = source->as_C_string();
buf_len += (int)strlen(source_file_name);
}
Symbol* source = get_source_file_name(holder, version);
if (source != NULL) {
source_file_name = source->as_C_string();
buf_len += (int)strlen(source_file_name);
}
// Allocate temporary buffer with extra space for formatting and line number
@ -1909,12 +1932,7 @@ oop java_lang_StackTraceElement::create(Handle mirror, int method_id,
java_lang_StackTraceElement::set_lineNumber(element(), -1);
} else {
// Fill in source file name and line number.
// Use specific ik version as a holder since the mirror might
// refer to version that is now obsolete and no longer accessible
// via the previous versions list.
holder = holder->get_klass_version(version);
assert(holder != NULL, "sanity check");
Symbol* source = holder->source_file_name();
Symbol* source = get_source_file_name(holder, version);
if (ShowHiddenFrames && source == NULL)
source = vmSymbols::unknown_class_name();
oop filename = StringTable::intern(source, CHECK_0);

View File

@ -276,6 +276,7 @@ class java_lang_Class : AllStatic {
}
static Symbol* as_signature(oop java_class, bool intern_if_not_found, TRAPS);
static void print_signature(oop java_class, outputStream *st);
static const char* as_external_name(oop java_class);
// Testing
static bool is_instance(oop obj);

View File

@ -86,7 +86,7 @@ bool VerificationType::is_reference_assignable_from(
VerificationType comp_this = get_component(context, CHECK_false);
VerificationType comp_from = from.get_component(context, CHECK_false);
if (!comp_this.is_bogus() && !comp_from.is_bogus()) {
return comp_this.is_assignable_from(comp_from, context,
return comp_this.is_component_assignable_from(comp_from, context,
from_field_is_protected, CHECK_false);
}
}

View File

@ -297,6 +297,26 @@ class VerificationType VALUE_OBJ_CLASS_SPEC {
}
}
// Check to see if one array component type is assignable to another.
// Same as is_assignable_from() except int primitives must be identical.
bool is_component_assignable_from(
const VerificationType& from, ClassVerifier* context,
bool from_field_is_protected, TRAPS) const {
if (equals(from) || is_bogus()) {
return true;
} else {
switch(_u._data) {
case Boolean:
case Byte:
case Char:
case Short:
return false;
default:
return is_assignable_from(from, context, from_field_is_protected, CHECK_false);
}
}
}
VerificationType get_component(ClassVerifier* context, TRAPS) const;
int dimensions() const {

View File

@ -324,6 +324,319 @@ vmIntrinsics::ID vmIntrinsics::for_raw_conversion(BasicType src, BasicType dest)
return vmIntrinsics::_none;
}
bool vmIntrinsics::preserves_state(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch(id) {
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID:
case vmIntrinsics::_threadID:
case vmIntrinsics::_counterTime:
#endif
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_getClass:
case vmIntrinsics::_isInstance:
case vmIntrinsics::_currentThread:
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
case vmIntrinsics::_checkIndex:
case vmIntrinsics::_Reference_get:
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
return true;
default:
return false;
}
}
bool vmIntrinsics::can_trap(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch(id) {
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_counterTime:
#endif
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_currentThread:
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
return false;
default:
return true;
}
}
bool vmIntrinsics::does_virtual_dispatch(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch(id) {
case vmIntrinsics::_hashCode:
case vmIntrinsics::_clone:
return true;
break;
default:
return false;
}
}
int vmIntrinsics::predicates_needed(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch (id) {
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
return 1;
case vmIntrinsics::_digestBase_implCompressMB:
return 3;
default:
return 0;
}
}
bool vmIntrinsics::is_disabled_by_flags(vmIntrinsics::ID id) {
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
switch (id) {
case vmIntrinsics::_isInstance:
case vmIntrinsics::_isAssignableFrom:
case vmIntrinsics::_getModifiers:
case vmIntrinsics::_isInterface:
case vmIntrinsics::_isArray:
case vmIntrinsics::_isPrimitive:
case vmIntrinsics::_getSuperclass:
case vmIntrinsics::_Class_cast:
case vmIntrinsics::_getLength:
case vmIntrinsics::_newArray:
if (!InlineClassNatives) return true;
break;
case vmIntrinsics::_currentThread:
case vmIntrinsics::_isInterrupted:
if (!InlineThreadNatives) return true;
break;
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_dabs:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dpow:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_datan2:
case vmIntrinsics::_min:
case vmIntrinsics::_max:
case vmIntrinsics::_floatToIntBits:
case vmIntrinsics::_doubleToLongBits:
if (!InlineMathNatives) return true;
break;
case vmIntrinsics::_arraycopy:
if (!InlineArrayCopy) return true;
break;
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
if (!UseCRC32Intrinsics) return true;
break;
case vmIntrinsics::_getObject:
case vmIntrinsics::_getBoolean:
case vmIntrinsics::_getByte:
case vmIntrinsics::_getShort:
case vmIntrinsics::_getChar:
case vmIntrinsics::_getInt:
case vmIntrinsics::_getLong:
case vmIntrinsics::_getFloat:
case vmIntrinsics::_getDouble:
case vmIntrinsics::_putObject:
case vmIntrinsics::_putBoolean:
case vmIntrinsics::_putByte:
case vmIntrinsics::_putShort:
case vmIntrinsics::_putChar:
case vmIntrinsics::_putInt:
case vmIntrinsics::_putLong:
case vmIntrinsics::_putFloat:
case vmIntrinsics::_putDouble:
case vmIntrinsics::_getObjectVolatile:
case vmIntrinsics::_getBooleanVolatile:
case vmIntrinsics::_getByteVolatile:
case vmIntrinsics::_getShortVolatile:
case vmIntrinsics::_getCharVolatile:
case vmIntrinsics::_getIntVolatile:
case vmIntrinsics::_getLongVolatile:
case vmIntrinsics::_getFloatVolatile:
case vmIntrinsics::_getDoubleVolatile:
case vmIntrinsics::_putObjectVolatile:
case vmIntrinsics::_putBooleanVolatile:
case vmIntrinsics::_putByteVolatile:
case vmIntrinsics::_putShortVolatile:
case vmIntrinsics::_putCharVolatile:
case vmIntrinsics::_putIntVolatile:
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getByte_raw:
case vmIntrinsics::_getShort_raw:
case vmIntrinsics::_getChar_raw:
case vmIntrinsics::_getInt_raw:
case vmIntrinsics::_getLong_raw:
case vmIntrinsics::_getFloat_raw:
case vmIntrinsics::_getDouble_raw:
case vmIntrinsics::_putByte_raw:
case vmIntrinsics::_putShort_raw:
case vmIntrinsics::_putChar_raw:
case vmIntrinsics::_putInt_raw:
case vmIntrinsics::_putLong_raw:
case vmIntrinsics::_putFloat_raw:
case vmIntrinsics::_putDouble_raw:
case vmIntrinsics::_putOrderedObject:
case vmIntrinsics::_putOrderedLong:
case vmIntrinsics::_putOrderedInt:
case vmIntrinsics::_getAndAddInt:
case vmIntrinsics::_getAndAddLong:
case vmIntrinsics::_getAndSetInt:
case vmIntrinsics::_getAndSetLong:
case vmIntrinsics::_getAndSetObject:
if (!InlineUnsafeOps) return true;
break;
case vmIntrinsics::_getShortUnaligned:
case vmIntrinsics::_getCharUnaligned:
case vmIntrinsics::_getIntUnaligned:
case vmIntrinsics::_getLongUnaligned:
case vmIntrinsics::_putShortUnaligned:
case vmIntrinsics::_putCharUnaligned:
case vmIntrinsics::_putIntUnaligned:
case vmIntrinsics::_putLongUnaligned:
case vmIntrinsics::_allocateInstance:
case vmIntrinsics::_getAddress_raw:
case vmIntrinsics::_putAddress_raw:
if (!InlineUnsafeOps || !UseUnalignedAccesses) return true;
break;
case vmIntrinsics::_hashCode:
if (!InlineObjectHash) return true;
break;
case vmIntrinsics::_aescrypt_encryptBlock:
case vmIntrinsics::_aescrypt_decryptBlock:
if (!UseAESIntrinsics) return true;
break;
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
if (!UseAESIntrinsics) return true;
break;
case vmIntrinsics::_sha_implCompress:
if (!UseSHA1Intrinsics) return true;
break;
case vmIntrinsics::_sha2_implCompress:
if (!UseSHA256Intrinsics) return true;
break;
case vmIntrinsics::_sha5_implCompress:
if (!UseSHA512Intrinsics) return true;
break;
case vmIntrinsics::_digestBase_implCompressMB:
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return true;
break;
case vmIntrinsics::_ghash_processBlocks:
if (!UseGHASHIntrinsics) return true;
break;
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C:
if (!UseCRC32CIntrinsics) return true;
break;
case vmIntrinsics::_copyMemory:
if (!InlineArrayCopy || !InlineUnsafeOps) return true;
break;
#ifdef COMPILER1
case vmIntrinsics::_checkIndex:
if (!InlineNIOCheckIndex) return true;
break;
#endif // COMPILER1
#ifdef COMPILER2
case vmIntrinsics::_clone:
case vmIntrinsics::_copyOf:
case vmIntrinsics::_copyOfRange:
// These intrinsics use both the objectcopy and the arraycopy
// intrinsic mechanism.
if (!InlineObjectCopy || !InlineArrayCopy) return true;
break;
case vmIntrinsics::_compareTo:
if (!SpecialStringCompareTo) return true;
break;
case vmIntrinsics::_indexOf:
if (!SpecialStringIndexOf) return true;
break;
case vmIntrinsics::_equals:
if (!SpecialStringEquals) return true;
break;
case vmIntrinsics::_equalsC:
if (!SpecialArraysEquals) return true;
break;
case vmIntrinsics::_encodeISOArray:
if (!SpecialEncodeISOArray) return true;
break;
case vmIntrinsics::_getCallerClass:
if (!InlineReflectionGetCallerClass) return true;
break;
case vmIntrinsics::_multiplyToLen:
if (!UseMultiplyToLenIntrinsic) return true;
break;
case vmIntrinsics::_squareToLen:
if (!UseSquareToLenIntrinsic) return true;
break;
case vmIntrinsics::_mulAdd:
if (!UseMulAddIntrinsic) return true;
break;
case vmIntrinsics::_montgomeryMultiply:
if (!UseMontgomeryMultiplyIntrinsic) return true;
break;
case vmIntrinsics::_montgomerySquare:
if (!UseMontgomerySquareIntrinsic) return true;
break;
case vmIntrinsics::_addExactI:
case vmIntrinsics::_addExactL:
case vmIntrinsics::_decrementExactI:
case vmIntrinsics::_decrementExactL:
case vmIntrinsics::_incrementExactI:
case vmIntrinsics::_incrementExactL:
case vmIntrinsics::_multiplyExactI:
case vmIntrinsics::_multiplyExactL:
case vmIntrinsics::_negateExactI:
case vmIntrinsics::_negateExactL:
case vmIntrinsics::_subtractExactI:
case vmIntrinsics::_subtractExactL:
if (!UseMathExactIntrinsics || !InlineMathNatives) return true;
break;
#endif // COMPILER2
default:
return false;
}
return false;
}
#define VM_INTRINSIC_INITIALIZE(id, klass, name, sig, flags) #id "\0"
static const char* vm_intrinsic_name_bodies =

View File

@ -1368,6 +1368,26 @@ public:
// Raw conversion:
static ID for_raw_conversion(BasicType src, BasicType dest);
// The methods below provide information related to compiling intrinsics.
// (1) Information needed by the C1 compiler.
static bool preserves_state(vmIntrinsics::ID id);
static bool can_trap(vmIntrinsics::ID id);
// (2) Information needed by the C2 compiler.
// Returns true if the intrinsic for method 'method' will perform a virtual dispatch.
static bool does_virtual_dispatch(vmIntrinsics::ID id);
// A return value larger than 0 indicates that the intrinsic for method
// 'method' requires predicated logic.
static int predicates_needed(vmIntrinsics::ID id);
// Returns true if an intrinsic is disabled by command-line flags and
// false otherwise. Implements functionality common to the C1
// and the C2 compiler.
static bool is_disabled_by_flags(vmIntrinsics::ID id);
};
#endif // SHARE_VM_CLASSFILE_VMSYMBOLS_HPP

View File

@ -66,6 +66,58 @@ class AbstractCompiler : public CHeapObj<mtCompiler> {
virtual bool supports_osr () { return true; }
virtual bool can_compile_method(methodHandle method) { return true; }
// Determine if the current compiler provides an intrinsic
// for method 'method'. An intrinsic is available if:
// - the intrinsic is enabled (by using the appropriate command-line flag) and
// - the platform on which the VM is running supports the intrinsic
// (i.e., the platform provides the instructions necessary for the compiler
// to generate the intrinsic code).
//
// The second parameter, 'compilation_context', is needed to implement functionality
// related to the DisableIntrinsic command-line flag. The DisableIntrinsic flag can
// be used to prohibit the C2 compiler (but not the C1 compiler) to use an intrinsic.
// There are three ways to disable an intrinsic using the DisableIntrinsic flag:
//
// (1) -XX:DisableIntrinsic=_hashCode,_getClass
// Disables intrinsification of _hashCode and _getClass globally
// (i.e., the intrinsified version the methods will not be used at all).
// (2) -XX:CompileCommand=option,aClass::aMethod,ccstr,DisableIntrinsic,_hashCode
// Disables intrinsification of _hashCode if it is called from
// aClass::aMethod (but not for any other call site of _hashCode)
// (3) -XX:CompileCommand=option,java.lang.ref.Reference::get,ccstr,DisableIntrinsic,_Reference_get
// Some methods are not compiled by C2. Instead, the C2 compiler
// returns directly the intrinsified version of these methods.
// The command above forces C2 to compile _Reference_get, but
// allows using the intrinsified version of _Reference_get at all
// other call sites.
//
// From the modes above, (1) disable intrinsics globally, (2) and (3)
// disable intrinsics on a per-method basis. In cases (2) and (3) the
// compilation context is aClass::aMethod and java.lang.ref.Reference::get,
// respectively.
virtual bool is_intrinsic_available(methodHandle method, methodHandle compilation_context) {
return false;
}
// Determines if an intrinsic is supported by the compiler, that is,
// the compiler provides the instructions necessary to generate
// the intrinsic code for method 'method'.
//
// The 'is_intrinsic_supported' method is a white list, that is,
// by default no intrinsics are supported by a compiler except
// the ones listed in the method. Overriding methods should conform
// to this behavior.
virtual bool is_intrinsic_supported(methodHandle method) {
return false;
}
// Implements compiler-specific processing of command-line flags.
// Processing of command-line flags common to all compilers is implemented
// in vmIntrinsicss::is_disabled_by_flag.
virtual bool is_intrinsic_disabled_by_flag(methodHandle method) {
return false;
}
// Compiler type queries.
bool is_c1() { return _type == c1; }
bool is_c2() { return _type == c2; }

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -345,6 +345,14 @@ void CompileTask::mark_on_stack() {
}
}
// RedefineClasses support
void CompileTask::metadata_do(void f(Metadata*)) {
f(method());
if (hot_method() != NULL && hot_method() != method()) {
f(hot_method());
}
}
// ------------------------------------------------------------------
// CompileTask::print_line_on_error
//
@ -660,6 +668,11 @@ void CompileQueue::free_all() {
* Get the next CompileTask from a CompileQueue
*/
CompileTask* CompileQueue::get() {
// save methods from RedefineClasses across safepoint
// across MethodCompileQueue_lock below.
methodHandle save_method;
methodHandle save_hot_method;
MutexLocker locker(MethodCompileQueue_lock);
// If _first is NULL we have no more compile jobs. There are two reasons for
// having no compile jobs: First, we compiled everything we wanted. Second,
@ -693,6 +706,12 @@ CompileTask* CompileQueue::get() {
No_Safepoint_Verifier nsv;
task = CompilationPolicy::policy()->select_task(this);
}
// Save method pointers across unlock safepoint. The task is removed from
// the compilation queue, which is walked during RedefineClasses.
save_method = methodHandle(task->method());
save_hot_method = methodHandle(task->hot_method());
remove(task);
purge_stale_tasks(); // may temporarily release MCQ lock
return task;

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -80,6 +80,7 @@ class CompileTask : public CHeapObj<mtCompiler> {
int compile_id() const { return _compile_id; }
Method* method() const { return _method; }
Method* hot_method() const { return _hot_method; }
int osr_bci() const { return _osr_bci; }
bool is_complete() const { return _is_complete; }
bool is_blocking() const { return _is_blocking; }
@ -108,6 +109,9 @@ class CompileTask : public CHeapObj<mtCompiler> {
bool is_free() const { return _is_free; }
void set_is_free(bool val) { _is_free = val; }
// RedefineClasses support
void metadata_do(void f(Metadata*));
private:
static void print_compilation_impl(outputStream* st, Method* method, int compile_id, int comp_level,
bool is_osr_method = false, int osr_bci = -1, bool is_blocking = false,

View File

@ -36,10 +36,11 @@
#include "runtime/orderAccess.inline.hpp"
#include "runtime/vmThread.hpp"
void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
OopsInGenClosure* cl,
CardTableRS* ct,
uint n_threads) {
void CardTableModRefBSForCTRS::
non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
OopsInGenClosure* cl,
CardTableRS* ct,
uint n_threads) {
assert(n_threads > 0, "expected n_threads > 0");
assert(n_threads <= ParallelGCThreads,
err_msg("n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads));
@ -81,7 +82,7 @@ void CardTableModRefBS::non_clean_card_iterate_parallel_work(Space* sp, MemRegio
}
void
CardTableModRefBS::
CardTableModRefBSForCTRS::
process_stride(Space* sp,
MemRegion used,
jint stride, int n_strides,
@ -170,7 +171,7 @@ process_stride(Space* sp,
#endif
void
CardTableModRefBS::
CardTableModRefBSForCTRS::
process_chunk_boundaries(Space* sp,
DirtyCardToOopClosure* dcto_cl,
MemRegion chunk_mr,
@ -426,7 +427,7 @@ process_chunk_boundaries(Space* sp,
#undef NOISY
void
CardTableModRefBS::
CardTableModRefBSForCTRS::
get_LNC_array_for_space(Space* sp,
jbyte**& lowest_non_clean,
uintptr_t& lowest_non_clean_base_chunk_index,

View File

@ -403,14 +403,6 @@ void CMMarkStack::note_end_of_gc() {
_saved_index = -1;
}
void CMMarkStack::oops_do(OopClosure* f) {
assert(_saved_index == _index,
err_msg("saved index: %d index: %d", _saved_index, _index));
for (int i = 0; i < _index; i += 1) {
f->do_oop(&_base[i]);
}
}
CMRootRegions::CMRootRegions() :
_young_list(NULL), _cm(NULL), _scan_in_progress(false),
_should_abort(false), _next_survivor(NULL) { }
@ -2717,53 +2709,26 @@ ConcurrentMark::claim_region(uint worker_id) {
}
#ifndef PRODUCT
enum VerifyNoCSetOopsPhase {
VerifyNoCSetOopsStack,
VerifyNoCSetOopsQueues
};
class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure {
class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
private:
G1CollectedHeap* _g1h;
VerifyNoCSetOopsPhase _phase;
const char* _phase;
int _info;
const char* phase_str() {
switch (_phase) {
case VerifyNoCSetOopsStack: return "Stack";
case VerifyNoCSetOopsQueues: return "Queue";
default: ShouldNotReachHere();
}
return NULL;
}
public:
VerifyNoCSetOops(const char* phase, int info = -1) :
_g1h(G1CollectedHeap::heap()),
_phase(phase),
_info(info)
{ }
void do_object_work(oop obj) {
void operator()(oop obj) const {
guarantee(obj->is_oop(),
err_msg("Non-oop " PTR_FORMAT ", phase: %s, info: %d",
p2i(obj), _phase, _info));
guarantee(!_g1h->obj_in_cs(obj),
err_msg("obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
p2i((void*) obj), phase_str(), _info));
}
public:
VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
_phase = phase;
_info = info;
}
virtual void do_oop(oop* p) {
oop obj = oopDesc::load_decode_heap_oop(p);
do_object_work(obj);
}
virtual void do_oop(narrowOop* p) {
// We should not come across narrow oops while scanning marking
// stacks
ShouldNotReachHere();
}
virtual void do_object(oop obj) {
do_object_work(obj);
p2i(obj), _phase, _info));
}
};
@ -2773,17 +2738,13 @@ void ConcurrentMark::verify_no_cset_oops() {
return;
}
VerifyNoCSetOopsClosure cl;
// Verify entries on the global mark stack
cl.set_phase(VerifyNoCSetOopsStack);
_markStack.oops_do(&cl);
_markStack.iterate(VerifyNoCSetOops("Stack"));
// Verify entries on the task queues
for (uint i = 0; i < _max_worker_id; i += 1) {
cl.set_phase(VerifyNoCSetOopsQueues, i);
for (uint i = 0; i < _max_worker_id; ++i) {
CMTaskQueue* queue = _task_queues->queue(i);
queue->oops_do(&cl);
queue->iterate(VerifyNoCSetOops("Queue", i));
}
// Verify the global finger
@ -2806,7 +2767,7 @@ void ConcurrentMark::verify_no_cset_oops() {
// Verify the task fingers
assert(parallel_marking_threads() <= _max_worker_id, "sanity");
for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
for (uint i = 0; i < parallel_marking_threads(); ++i) {
CMTask* task = _tasks[i];
HeapWord* task_finger = task->finger();
if (task_finger != NULL && task_finger < _heap_end) {

View File

@ -246,9 +246,10 @@ class CMMarkStack VALUE_OBJ_CLASS_SPEC {
// Make sure that we have not added any entries to the stack during GC.
void note_end_of_gc();
// iterate over the oops in the mark stack, up to the bound recorded via
// the call above.
void oops_do(OopClosure* f);
// Apply fn to each oop in the mark stack, up to the bound recorded
// via one of the above "note" functions. The mark stack must not
// be modified while iterating.
template<typename Fn> void iterate(Fn fn);
};
class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {

View File

@ -223,6 +223,15 @@ inline bool CMBitMap::parClear(HeapWord* addr) {
#undef check_mark
template<typename Fn>
inline void CMMarkStack::iterate(Fn fn) {
assert(_saved_index == _index,
err_msg("saved index: %d index: %d", _saved_index, _index));
for (int i = 0; i < _index; ++i) {
fn(_base[i]);
}
}
inline void CMTask::push(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
assert(_g1h->is_in_g1_reserved(objAddr), "invariant");

View File

@ -39,13 +39,8 @@ class G1Allocator : public CHeapObj<mtGC> {
protected:
G1CollectedHeap* _g1h;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region.
size_t _summary_bytes_used;
public:
G1Allocator(G1CollectedHeap* heap) :
_g1h(heap), _summary_bytes_used(0) { }
G1Allocator(G1CollectedHeap* heap) : _g1h(heap) { }
static G1Allocator* create_allocator(G1CollectedHeap* g1h);
@ -59,32 +54,13 @@ public:
virtual MutatorAllocRegion* mutator_alloc_region(AllocationContext_t context) = 0;
virtual SurvivorGCAllocRegion* survivor_gc_alloc_region(AllocationContext_t context) = 0;
virtual OldGCAllocRegion* old_gc_alloc_region(AllocationContext_t context) = 0;
virtual size_t used() = 0;
virtual size_t used_in_alloc_regions() = 0;
virtual bool is_retained_old_region(HeapRegion* hr) = 0;
void reuse_retained_old_region(EvacuationInfo& evacuation_info,
OldGCAllocRegion* old,
HeapRegion** retained);
size_t used_unlocked() const {
return _summary_bytes_used;
}
void increase_used(size_t bytes) {
_summary_bytes_used += bytes;
}
void decrease_used(size_t bytes) {
assert(_summary_bytes_used >= bytes,
err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
_summary_bytes_used, bytes));
_summary_bytes_used -= bytes;
}
void set_used(size_t bytes) {
_summary_bytes_used = bytes;
}
virtual HeapRegion* new_heap_region(uint hrs_index,
G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) {
@ -133,10 +109,10 @@ public:
return &_old_gc_alloc_region;
}
virtual size_t used() {
virtual size_t used_in_alloc_regions() {
assert(Heap_lock->owner() != NULL,
"Should be owned on this thread's behalf.");
size_t result = _summary_bytes_used;
size_t result = 0;
// Read only once in case it is set to NULL concurrently
HeapRegion* hr = mutator_alloc_region(AllocationContext::current())->get();

View File

@ -632,7 +632,7 @@ G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
check_bitmaps("Humongous Region Allocation", first_hr);
assert(first_hr->used() == word_size * HeapWordSize, "invariant");
_allocator->increase_used(first_hr->used());
increase_used(first_hr->used());
_humongous_set.add(first_hr);
return new_obj;
@ -998,7 +998,7 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
start_address = start_region->end();
if (start_address > last_address) {
_allocator->increase_used(word_size * HeapWordSize);
increase_used(word_size * HeapWordSize);
start_region->set_top(last_address + 1);
continue;
}
@ -1012,7 +1012,7 @@ bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
return false;
}
_allocator->increase_used(word_size * HeapWordSize);
increase_used(word_size * HeapWordSize);
if (commits != 0) {
ergo_verbose1(ErgoHeapSizing,
"attempt heap expansion",
@ -1104,7 +1104,7 @@ void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
if (start_address != bottom_address) {
size_t fill_size = pointer_delta(start_address, bottom_address);
G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
_allocator->increase_used(fill_size * HeapWordSize);
increase_used(fill_size * HeapWordSize);
}
}
}
@ -1917,7 +1917,6 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_ref_processor_cm(NULL),
_ref_processor_stw(NULL),
_bot_shared(NULL),
_evac_failure_scan_stack(NULL),
_cg1r(NULL),
_g1mm(NULL),
_refine_cte_cl(NULL),
@ -1930,6 +1929,7 @@ G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
_free_regions_coming(false),
_young_list(new YoungList(this)),
_gc_time_stamp(0),
_summary_bytes_used(0),
_survivor_plab_stats(YoungPLABSize, PLABWeight),
_old_plab_stats(OldPLABSize, PLABWeight),
_expand_heap_after_alloc_failure(true),
@ -2204,6 +2204,11 @@ jint G1CollectedHeap::initialize() {
G1StringDedup::initialize();
_preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
for (uint i = 0; i < ParallelGCThreads; i++) {
new (&_preserved_objs[i]) OopAndMarkOopStack();
}
return JNI_OK;
}
@ -2371,7 +2376,7 @@ void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
size_t result = _allocator->used();
size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
if (_archive_allocator != NULL) {
result += _archive_allocator->used();
}
@ -2379,7 +2384,7 @@ size_t G1CollectedHeap::used() const {
}
size_t G1CollectedHeap::used_unlocked() const {
return _allocator->used_unlocked();
return _summary_bytes_used;
}
class SumUsedClosure: public HeapRegionClosure {
@ -3376,7 +3381,7 @@ void G1CollectedHeap::print_extended_on(outputStream* st) const {
// Print the per-region information.
st->cr();
st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
"HS=humongous(starts), HC=humongous(continues), "
"CS=collection set, F=free, A=archive, TS=gc time stamp, "
"PTAMS=previous top-at-mark-start, "
@ -4102,7 +4107,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
_young_list->reset_auxilary_lists();
if (evacuation_failed()) {
_allocator->set_used(recalculate_used());
set_used(recalculate_used());
if (_archive_allocator != NULL) {
_archive_allocator->clear_used();
}
@ -4114,7 +4119,7 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
} else {
// The "used" of the the collection set have already been subtracted
// when they were freed. Add in the bytes evacuated.
_allocator->increase_used(g1_policy()->bytes_copied_during_gc());
increase_used(g1_policy()->bytes_copied_during_gc());
}
if (collector_state()->during_initial_mark_pause()) {
@ -4255,21 +4260,6 @@ G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
return true;
}
void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
_drain_in_progress = false;
set_evac_failure_closure(cl);
_evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
}
void G1CollectedHeap::finalize_for_evac_failure() {
assert(_evac_failure_scan_stack != NULL &&
_evac_failure_scan_stack->length() == 0,
"Postcondition");
assert(!_drain_in_progress, "Postcondition");
delete _evac_failure_scan_stack;
_evac_failure_scan_stack = NULL;
}
void G1CollectedHeap::remove_self_forwarding_pointers() {
double remove_self_forwards_start = os::elapsedTime();
@ -4277,104 +4267,30 @@ void G1CollectedHeap::remove_self_forwarding_pointers() {
workers()->run_task(&rsfp_task);
// Now restore saved marks, if any.
assert(_objs_with_preserved_marks.size() ==
_preserved_marks_of_objs.size(), "Both or none.");
while (!_objs_with_preserved_marks.is_empty()) {
oop obj = _objs_with_preserved_marks.pop();
markOop m = _preserved_marks_of_objs.pop();
obj->set_mark(m);
for (uint i = 0; i < ParallelGCThreads; i++) {
OopAndMarkOopStack& cur = _preserved_objs[i];
while (!cur.is_empty()) {
OopAndMarkOop elem = cur.pop();
elem.set_mark();
}
cur.clear(true);
}
_objs_with_preserved_marks.clear(true);
_preserved_marks_of_objs.clear(true);
g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
}
void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
_evac_failure_scan_stack->push(obj);
}
void G1CollectedHeap::drain_evac_failure_scan_stack() {
assert(_evac_failure_scan_stack != NULL, "precondition");
while (_evac_failure_scan_stack->length() > 0) {
oop obj = _evac_failure_scan_stack->pop();
_evac_failure_closure->set_region(heap_region_containing(obj));
obj->oop_iterate_backwards(_evac_failure_closure);
}
}
oop
G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
oop old) {
assert(obj_in_cs(old),
err_msg("obj: " PTR_FORMAT " should still be in the CSet",
p2i(old)));
markOop m = old->mark();
oop forward_ptr = old->forward_to_atomic(old);
if (forward_ptr == NULL) {
// Forward-to-self succeeded.
assert(_par_scan_state != NULL, "par scan state");
OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
uint queue_num = _par_scan_state->queue_num();
void G1CollectedHeap::preserve_mark_during_evac_failure(uint queue_num, oop obj, markOop m) {
if (!_evacuation_failed) {
_evacuation_failed = true;
_evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
if (_evac_failure_closure != cl) {
MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
assert(!_drain_in_progress,
"Should only be true while someone holds the lock.");
// Set the global evac-failure closure to the current thread's.
assert(_evac_failure_closure == NULL, "Or locking has failed.");
set_evac_failure_closure(cl);
// Now do the common part.
handle_evacuation_failure_common(old, m);
// Reset to NULL.
set_evac_failure_closure(NULL);
} else {
// The lock is already held, and this is recursive.
assert(_drain_in_progress, "This should only be the recursive case.");
handle_evacuation_failure_common(old, m);
}
return old;
} else {
// Forward-to-self failed. Either someone else managed to allocate
// space for this object (old != forward_ptr) or they beat us in
// self-forwarding it (old == forward_ptr).
assert(old == forward_ptr || !obj_in_cs(forward_ptr),
err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
"should not be in the CSet",
p2i(old), p2i(forward_ptr)));
return forward_ptr;
}
}
void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
preserve_mark_if_necessary(old, m);
HeapRegion* r = heap_region_containing(old);
if (!r->evacuation_failed()) {
r->set_evacuation_failed(true);
_hr_printer.evac_failure(r);
}
push_on_evac_failure_scan_stack(old);
_evacuation_failed_info_array[queue_num].register_copy_failure(obj->size());
if (!_drain_in_progress) {
// prevent recursion in copy_to_survivor_space()
_drain_in_progress = true;
drain_evac_failure_scan_stack();
_drain_in_progress = false;
}
}
void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
assert(evacuation_failed(), "Oversaving!");
// We want to call the "for_promotion_failure" version only in the
// case of a promotion failure.
if (m->must_be_preserved_for_promotion_failure(obj)) {
_objs_with_preserved_marks.push(obj);
_preserved_marks_of_objs.push(m);
OopAndMarkOop elem(obj, m);
_preserved_objs[queue_num].push(elem);
}
}
@ -4450,15 +4366,8 @@ void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
mark_object(obj);
}
}
if (barrier == G1BarrierEvac) {
_par_scan_state->update_rs(_from, p, _worker_id);
}
}
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
class G1ParEvacuateFollowersClosure : public VoidClosure {
protected:
G1CollectedHeap* _g1h;
@ -4597,9 +4506,6 @@ public:
ReferenceProcessor* rp = _g1h->ref_processor_stw();
G1ParScanThreadState pss(_g1h, worker_id, rp);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
pss.set_evac_failure_closure(&evac_failure_cl);
bool only_young = _g1h->collector_state()->gcs_are_young();
@ -5269,9 +5175,6 @@ public:
G1STWIsAliveClosure is_alive(_g1h);
G1ParScanThreadState pss(_g1h, worker_id, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
pss.set_evac_failure_closure(&evac_failure_cl);
G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
@ -5368,10 +5271,6 @@ public:
HandleMark hm;
G1ParScanThreadState pss(_g1h, worker_id, NULL);
G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
pss.set_evac_failure_closure(&evac_failure_cl);
assert(pss.queue_is_empty(), "both queue and overflow should be empty");
G1ParScanExtRootClosure only_copy_non_heap_cl(_g1h, &pss, NULL);
@ -5476,15 +5375,11 @@ void G1CollectedHeap::process_discovered_references() {
// Use only a single queue for this PSS.
G1ParScanThreadState pss(this, 0, NULL);
assert(pss.queue_is_empty(), "pre-condition");
// We do not embed a reference processor in the copying/scanning
// closures while we're actually processing the discovered
// reference objects.
G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
pss.set_evac_failure_closure(&evac_failure_cl);
assert(pss.queue_is_empty(), "pre-condition");
G1ParScanExtRootClosure only_copy_non_heap_cl(this, &pss, NULL);
@ -5590,8 +5485,6 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
const uint n_workers = workers()->active_workers();
init_for_evac_failure(NULL);
assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
double start_par_time_sec = os::elapsedTime();
double end_par_time_sec;
@ -5655,8 +5548,6 @@ void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
purge_code_root_memory();
finalize_for_evac_failure();
if (evacuation_failed()) {
remove_self_forwarding_pointers();
@ -5745,7 +5636,7 @@ void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
}
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
_allocator->decrease_used(bytes);
decrease_used(bytes);
}
class G1ParCleanupCTTask : public AbstractGangTask {
@ -6395,6 +6286,21 @@ void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
_hrm.remove_all_free_regions();
}
void G1CollectedHeap::increase_used(size_t bytes) {
_summary_bytes_used += bytes;
}
void G1CollectedHeap::decrease_used(size_t bytes) {
assert(_summary_bytes_used >= bytes,
err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
_summary_bytes_used, bytes));
_summary_bytes_used -= bytes;
}
void G1CollectedHeap::set_used(size_t bytes) {
_summary_bytes_used = bytes;
}
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
bool _free_list_only;
@ -6463,15 +6369,15 @@ void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
heap_region_iterate(&cl);
if (!free_list_only) {
_allocator->set_used(cl.total_used());
set_used(cl.total_used());
if (_archive_allocator != NULL) {
_archive_allocator->clear_used();
}
}
assert(_allocator->used_unlocked() == recalculate_used(),
err_msg("inconsistent _allocator->used_unlocked(), "
assert(used_unlocked() == recalculate_used(),
err_msg("inconsistent used_unlocked(), "
"value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
_allocator->used_unlocked(), recalculate_used()));
used_unlocked(), recalculate_used()));
}
void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
@ -6511,7 +6417,7 @@ void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
_allocator->increase_used(allocated_bytes);
increase_used(allocated_bytes);
_hr_printer.retire(alloc_region);
// We update the eden sizes here, when the region is retired,
// instead of when it's allocated, since this is the point that its

View File

@ -251,6 +251,15 @@ private:
// Class that handles the different kinds of allocations.
G1Allocator* _allocator;
// Outside of GC pauses, the number of bytes used in all regions other
// than the current allocation region(s).
size_t _summary_bytes_used;
void increase_used(size_t bytes);
void decrease_used(size_t bytes);
void set_used(size_t bytes);
// Class that handles archive allocation ranges.
G1ArchiveAllocator* _archive_allocator;
@ -858,44 +867,27 @@ protected:
// forwarding pointers to themselves. Reset them.
void remove_self_forwarding_pointers();
// Together, these store an object with a preserved mark, and its mark value.
Stack<oop, mtGC> _objs_with_preserved_marks;
Stack<markOop, mtGC> _preserved_marks_of_objs;
struct OopAndMarkOop {
private:
oop _o;
markOop _m;
public:
OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
}
void set_mark() {
_o->set_mark(_m);
}
};
typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
// Stores marks with the corresponding oop that we need to preserve during evacuation
// failure.
OopAndMarkOopStack* _preserved_objs;
// Preserve the mark of "obj", if necessary, in preparation for its mark
// word being overwritten with a self-forwarding-pointer.
void preserve_mark_if_necessary(oop obj, markOop m);
// The stack of evac-failure objects left to be scanned.
GrowableArray<oop>* _evac_failure_scan_stack;
// The closure to apply to evac-failure objects.
OopsInHeapRegionClosure* _evac_failure_closure;
// Set the field above.
void
set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
_evac_failure_closure = evac_failure_closure;
}
// Push "obj" on the scan stack.
void push_on_evac_failure_scan_stack(oop obj);
// Process scan stack entries until the stack is empty.
void drain_evac_failure_scan_stack();
// True iff an invocation of "drain_scan_stack" is in progress; to
// prevent unnecessary recursion.
bool _drain_in_progress;
// Do any necessary initialization for evacuation-failure handling.
// "cl" is the closure that will be used to process evac-failure
// objects.
void init_for_evac_failure(OopsInHeapRegionClosure* cl);
// Do any necessary cleanup for evacuation-failure handling data
// structures.
void finalize_for_evac_failure();
// An attempt to evacuate "obj" has failed; take necessary steps.
oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
void handle_evacuation_failure_common(oop obj, markOop m);
void preserve_mark_during_evac_failure(uint queue, oop obj, markOop m);
#ifndef PRODUCT
// Support for forcing evacuation failures. Analogous to

View File

@ -111,7 +111,6 @@ protected:
enum G1Barrier {
G1BarrierNone,
G1BarrierEvac,
G1BarrierKlass
};
@ -148,8 +147,6 @@ typedef G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> G1ParScanAndMar
// We use a separate closure to handle references during evacuation
// failure processing.
typedef G1ParCopyClosure<G1BarrierEvac, G1MarkNone> G1ParScanHeapEvacFailureClosure;
class FilterIntoCSClosure: public ExtendedOopClosure {
G1CollectedHeap* _g1;
OopClosure* _oc;

View File

@ -144,8 +144,6 @@ bool G1ParScanThreadState::verify_task(StarTask ref) const {
#endif // ASSERT
void G1ParScanThreadState::trim_queue() {
assert(_evac_failure_cl != NULL, "not set");
StarTask ref;
do {
// Drain the overflow stack first, so other threads can steal.
@ -222,7 +220,7 @@ oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
if (obj_ptr == NULL) {
// This will either forward-to-self, or detect that someone else has
// installed a forwarding pointer.
return _g1h->handle_evacuation_failure_par(this, old);
return handle_evacuation_failure_par(old, old_mark);
}
}
}
@ -236,7 +234,7 @@ oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
// Doing this after all the allocation attempts also tests the
// undo_allocation() method too.
_g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
return _g1h->handle_evacuation_failure_par(this, old);
return handle_evacuation_failure_par(old, old_mark);
}
#endif // !PRODUCT
@ -301,3 +299,36 @@ oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
return forward_ptr;
}
}
oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
assert(_g1h->obj_in_cs(old),
err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
oop forward_ptr = old->forward_to_atomic(old);
if (forward_ptr == NULL) {
// Forward-to-self succeeded. We are the "owner" of the object.
HeapRegion* r = _g1h->heap_region_containing(old);
if (!r->evacuation_failed()) {
r->set_evacuation_failed(true);
_g1h->hr_printer()->evac_failure(r);
}
_g1h->preserve_mark_during_evac_failure(_queue_num, old, m);
_scanner.set_region(r);
old->oop_iterate_backwards(&_scanner);
return old;
} else {
// Forward-to-self failed. Either someone else managed to allocate
// space for this object (old != forward_ptr) or they beat us in
// self-forwarding it (old == forward_ptr).
assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
"should not be in the CSet",
p2i(old), p2i(forward_ptr)));
return forward_ptr;
}
}

View File

@ -54,8 +54,6 @@ class G1ParScanThreadState : public StackObj {
uint _tenuring_threshold;
G1ParScanClosure _scanner;
OopsInHeapRegionClosure* _evac_failure_cl;
int _hash_seed;
uint _queue_num;
@ -114,12 +112,6 @@ class G1ParScanThreadState : public StackObj {
}
}
void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
_evac_failure_cl = evac_failure_cl;
}
OopsInHeapRegionClosure* evac_failure_closure() { return _evac_failure_cl; }
int* hash_seed() { return &_hash_seed; }
uint queue_num() { return _queue_num; }
@ -211,6 +203,9 @@ class G1ParScanThreadState : public StackObj {
void trim_queue();
inline void steal_and_trim_queue(RefToScanQueueSet *task_queues);
// An attempt to evacuate "obj" has failed; take necessary steps.
oop handle_evacuation_failure_par(oop obj, markOop m);
};
#endif // SHARE_VM_GC_G1_G1PARSCANTHREADSTATE_HPP

View File

@ -252,12 +252,12 @@
"Percentage (0-100) of the heap size to use as default " \
" maximum young gen size.") \
range(0, 100) \
constraint(G1MaxNewSizePercentConstraintFunc) \
constraint(G1MaxNewSizePercentConstraintFunc,AfterErgo) \
\
experimental(uintx, G1NewSizePercent, 5, \
"Percentage (0-100) of the heap size to use as default " \
"minimum young gen size.") \
constraint(G1NewSizePercentConstraintFunc) \
constraint(G1NewSizePercentConstraintFunc,AfterErgo) \
\
experimental(uintx, G1MixedGCLiveThresholdPercent, 85, \
"Threshold for regions to be considered for inclusion in the " \

View File

@ -45,13 +45,11 @@
nonstatic_field(HeapRegionManager, _regions, G1HeapRegionTable) \
nonstatic_field(HeapRegionManager, _num_committed, uint) \
\
nonstatic_field(G1Allocator, _summary_bytes_used, size_t) \
\
nonstatic_field(G1CollectedHeap, _summary_bytes_used, size_t) \
nonstatic_field(G1CollectedHeap, _hrm, HeapRegionManager) \
nonstatic_field(G1CollectedHeap, _g1mm, G1MonitoringSupport*) \
nonstatic_field(G1CollectedHeap, _old_set, HeapRegionSetBase) \
nonstatic_field(G1CollectedHeap, _humongous_set, HeapRegionSetBase) \
nonstatic_field(G1CollectedHeap, _allocator, G1Allocator*) \
\
nonstatic_field(G1MonitoringSupport, _eden_committed, size_t) \
nonstatic_field(G1MonitoringSupport, _eden_used, size_t) \
@ -78,12 +76,10 @@
declare_toplevel_type(HeapRegionSetBase) \
declare_toplevel_type(HeapRegionSetCount) \
declare_toplevel_type(G1MonitoringSupport) \
declare_toplevel_type(G1Allocator) \
\
declare_toplevel_type(G1CollectedHeap*) \
declare_toplevel_type(HeapRegion*) \
declare_toplevel_type(G1MonitoringSupport*) \
declare_toplevel_type(G1Allocator*) \
#endif // SHARE_VM_GC_G1_VMSTRUCTS_G1_HPP

View File

@ -40,7 +40,6 @@ class CheckForUnmarkedOops : public OopClosure {
PSYoungGen* _young_gen;
CardTableExtension* _card_table;
HeapWord* _unmarked_addr;
jbyte* _unmarked_card;
protected:
template <class T> void do_oop_work(T* p) {
@ -50,7 +49,6 @@ class CheckForUnmarkedOops : public OopClosure {
// Don't overwrite the first missing card mark
if (_unmarked_addr == NULL) {
_unmarked_addr = (HeapWord*)p;
_unmarked_card = _card_table->byte_for(p);
}
}
}

View File

@ -623,7 +623,7 @@ void DefNewGeneration::collect(bool full,
{
// DefNew needs to run with n_threads == 0, to make sure the serial
// version of the card table scanning code is used.
// See: CardTableModRefBS::non_clean_card_iterate_possibly_parallel.
// See: CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel.
StrongRootsScope srs(0);
gch->gen_process_roots(&srs,

View File

@ -24,22 +24,12 @@
#include "precompiled.hpp"
#include "gc/shared/cardTableModRefBS.inline.hpp"
#include "gc/shared/cardTableRS.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "gc/shared/genCollectedHeap.hpp"
#include "gc/shared/space.hpp"
#include "gc/shared/space.inline.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/universe.hpp"
#include "memory/virtualspace.hpp"
#include "runtime/java.hpp"
#include "runtime/mutexLocker.hpp"
#include "services/memTracker.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_LIR.hpp"
#include "c1/c1_LIRGenerator.hpp"
#endif
// This kind of "BarrierSet" allows a "CollectedHeap" to detect and
// enumerate ref fields that have been modified (since the last
@ -68,12 +58,7 @@ CardTableModRefBS::CardTableModRefBS(
_committed(NULL),
_cur_covered_regions(0),
_byte_map(NULL),
byte_map_base(NULL),
// LNC functionality
_lowest_non_clean(NULL),
_lowest_non_clean_chunk_size(NULL),
_lowest_non_clean_base_chunk_index(NULL),
_last_LNC_resizing_collection(NULL)
byte_map_base(NULL)
{
assert((uintptr_t(_whole_heap.start()) & (card_size - 1)) == 0, "heap must start at card boundary");
assert((uintptr_t(_whole_heap.end()) & (card_size - 1)) == 0, "heap must end at card boundary");
@ -130,25 +115,6 @@ void CardTableModRefBS::initialize() {
!ExecMem, "card table last card");
*guard_card = last_card;
_lowest_non_clean =
NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
_lowest_non_clean_chunk_size =
NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
_lowest_non_clean_base_chunk_index =
NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
_last_LNC_resizing_collection =
NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
if (_lowest_non_clean == NULL
|| _lowest_non_clean_chunk_size == NULL
|| _lowest_non_clean_base_chunk_index == NULL
|| _last_LNC_resizing_collection == NULL)
vm_exit_during_initialization("couldn't allocate an LNC array.");
for (int i = 0; i < _max_covered_regions; i++) {
_lowest_non_clean[i] = NULL;
_lowest_non_clean_chunk_size[i] = 0;
_last_LNC_resizing_collection[i] = -1;
}
if (TraceCardTableModRefBS) {
gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
gclog_or_tty->print_cr(" "
@ -171,22 +137,6 @@ CardTableModRefBS::~CardTableModRefBS() {
delete[] _committed;
_committed = NULL;
}
if (_lowest_non_clean) {
FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean);
_lowest_non_clean = NULL;
}
if (_lowest_non_clean_chunk_size) {
FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size);
_lowest_non_clean_chunk_size = NULL;
}
if (_lowest_non_clean_base_chunk_index) {
FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index);
_lowest_non_clean_base_chunk_index = NULL;
}
if (_last_LNC_resizing_collection) {
FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection);
_last_LNC_resizing_collection = NULL;
}
}
int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
@ -437,32 +387,6 @@ void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool relea
}
void CardTableModRefBS::non_clean_card_iterate_possibly_parallel(Space* sp,
MemRegion mr,
OopsInGenClosure* cl,
CardTableRS* ct,
uint n_threads) {
if (!mr.is_empty()) {
if (n_threads > 0) {
#if INCLUDE_ALL_GCS
non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
#else // INCLUDE_ALL_GCS
fatal("Parallel gc not supported here.");
#endif // INCLUDE_ALL_GCS
} else {
// clear_cl finds contiguous dirty ranges of cards to process and clear.
// This is the single-threaded version used by DefNew.
const bool parallel = false;
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary(), parallel);
ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
clear_cl.do_MemRegion(mr);
}
}
}
void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
assert((HeapWord*)align_size_up ((uintptr_t)mr.end(), HeapWordSize) == mr.end(), "Unaligned end" );
@ -623,15 +547,3 @@ void CardTableModRefBS::print_on(outputStream* st) const {
p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
}
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
return
CardTableModRefBS::card_will_be_scanned(cv) ||
_rs->is_prev_nonclean_card_val(cv);
};
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
return
cv != clean_card &&
(CardTableModRefBS::card_may_have_been_dirty(cv) ||
CardTableRS::youngergen_may_have_been_dirty(cv));
};

View File

@ -40,23 +40,9 @@
// Closures used to scan dirty cards should take these
// considerations into account.
class Generation;
class OopsInGenClosure;
class DirtyCardToOopClosure;
class ClearNoncleanCardWrapper;
class CardTableRS;
class CardTableModRefBS: public ModRefBarrierSet {
// Some classes get to look at some private stuff.
friend class BytecodeInterpreter;
friend class VMStructs;
friend class CardTableRS;
friend class CheckForUnmarkedOops; // Needs access to raw card bytes.
friend class SharkBuilder;
#ifndef PRODUCT
// For debugging.
friend class GuaranteeNotModClosure;
#endif
protected:
enum CardValues {
@ -75,24 +61,6 @@ class CardTableModRefBS: public ModRefBarrierSet {
// a word's worth (row) of clean card values
static const intptr_t clean_card_row = (intptr_t)(-1);
// dirty and precleaned are equivalent wrt younger_refs_iter.
static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
return cv == dirty_card || cv == precleaned_card;
}
// Returns "true" iff the value "cv" will cause the card containing it
// to be scanned in the current traversal. May be overridden by
// subtypes.
virtual bool card_will_be_scanned(jbyte cv) {
return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
}
// Returns "true" iff the value "cv" may have represented a dirty card at
// some point.
virtual bool card_may_have_been_dirty(jbyte cv) {
return card_is_dirty_wrt_gen_iter(cv);
}
// The declaration order of these const fields is important; see the
// constructor before changing.
const MemRegion _whole_heap; // the region covered by the card table
@ -174,20 +142,6 @@ class CardTableModRefBS: public ModRefBarrierSet {
return byte_for(p) + 1;
}
// Iterate over the portion of the card-table which covers the given
// region mr in the given space and apply cl to any dirty sub-regions
// of mr. Clears the dirty cards as they are processed.
void non_clean_card_iterate_possibly_parallel(Space* sp, MemRegion mr,
OopsInGenClosure* cl, CardTableRS* ct,
uint n_threads);
private:
// Work method used to implement non_clean_card_iterate_possibly_parallel()
// above in the parallel case.
void non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
OopsInGenClosure* cl, CardTableRS* ct,
uint n_threads);
protected:
// Dirty the bytes corresponding to "mr" (not all of which must be
// covered.)
@ -197,65 +151,6 @@ class CardTableModRefBS: public ModRefBarrierSet {
// all of which must be covered.)
void clear_MemRegion(MemRegion mr);
// *** Support for parallel card scanning.
// This is an array, one element per covered region of the card table.
// Each entry is itself an array, with one element per chunk in the
// covered region. Each entry of these arrays is the lowest non-clean
// card of the corresponding chunk containing part of an object from the
// previous chunk, or else NULL.
typedef jbyte* CardPtr;
typedef CardPtr* CardArr;
CardArr* _lowest_non_clean;
size_t* _lowest_non_clean_chunk_size;
uintptr_t* _lowest_non_clean_base_chunk_index;
int* _last_LNC_resizing_collection;
// Initializes "lowest_non_clean" to point to the array for the region
// covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
// index of the corresponding to the first element of that array.
// Ensures that these arrays are of sufficient size, allocating if necessary.
// May be called by several threads concurrently.
void get_LNC_array_for_space(Space* sp,
jbyte**& lowest_non_clean,
uintptr_t& lowest_non_clean_base_chunk_index,
size_t& lowest_non_clean_chunk_size);
// Returns the number of chunks necessary to cover "mr".
size_t chunks_to_cover(MemRegion mr) {
return (size_t)(addr_to_chunk_index(mr.last()) -
addr_to_chunk_index(mr.start()) + 1);
}
// Returns the index of the chunk in a stride which
// covers the given address.
uintptr_t addr_to_chunk_index(const void* addr) {
uintptr_t card = (uintptr_t) byte_for(addr);
return card / ParGCCardsPerStrideChunk;
}
// Apply cl, which must either itself apply dcto_cl or be dcto_cl,
// to the cards in the stride (of n_strides) within the given space.
void process_stride(Space* sp,
MemRegion used,
jint stride, int n_strides,
OopsInGenClosure* cl,
CardTableRS* ct,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size);
// Makes sure that chunk boundaries are handled appropriately, by
// adjusting the min_done of dcto_cl, and by using a special card-table
// value to indicate how min_done should be set.
void process_chunk_boundaries(Space* sp,
DirtyCardToOopClosure* dcto_cl,
MemRegion chunk_mr,
MemRegion used,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size);
public:
// Constants
enum SomePublicConstants {
@ -436,34 +331,5 @@ struct BarrierSet::GetName<CardTableModRefBS> {
static const BarrierSet::Name value = BarrierSet::CardTableModRef;
};
class CardTableRS;
// A specialization for the CardTableRS gen rem set.
class CardTableModRefBSForCTRS: public CardTableModRefBS {
CardTableRS* _rs;
protected:
bool card_will_be_scanned(jbyte cv);
bool card_may_have_been_dirty(jbyte cv);
public:
CardTableModRefBSForCTRS(MemRegion whole_heap) :
CardTableModRefBS(
whole_heap,
// Concrete tag should be BarrierSet::CardTableForRS.
// That will presently break things in a bunch of places though.
// The concrete tag is used as a dispatch key in many places, and
// CardTableForRS does not correctly dispatch in some of those
// uses. This will be addressed as part of a reorganization of the
// BarrierSet hierarchy.
BarrierSet::FakeRtti(BarrierSet::CardTableModRef, 0).add_tag(BarrierSet::CardTableForRS))
{}
void set_CTRS(CardTableRS* rs) { _rs = rs; }
};
template<>
struct BarrierSet::GetName<CardTableModRefBSForCTRS> {
static const BarrierSet::Name value = BarrierSet::CardTableForRS;
};
#endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP

View File

@ -0,0 +1,129 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc/shared/cardTableModRefBS.inline.hpp"
#include "gc/shared/cardTableRS.hpp"
#include "memory/allocation.inline.hpp"
#include "gc/shared/space.inline.hpp"
CardTableModRefBSForCTRS::CardTableModRefBSForCTRS(MemRegion whole_heap) :
CardTableModRefBS(
whole_heap,
// Concrete tag should be BarrierSet::CardTableForRS.
// That will presently break things in a bunch of places though.
// The concrete tag is used as a dispatch key in many places, and
// CardTableForRS does not correctly dispatch in some of those
// uses. This will be addressed as part of a reorganization of the
// BarrierSet hierarchy.
BarrierSet::FakeRtti(BarrierSet::CardTableModRef, 0).add_tag(BarrierSet::CardTableForRS)),
// LNC functionality
_lowest_non_clean(NULL),
_lowest_non_clean_chunk_size(NULL),
_lowest_non_clean_base_chunk_index(NULL),
_last_LNC_resizing_collection(NULL)
{ }
void CardTableModRefBSForCTRS::initialize() {
CardTableModRefBS::initialize();
_lowest_non_clean =
NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
_lowest_non_clean_chunk_size =
NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
_lowest_non_clean_base_chunk_index =
NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
_last_LNC_resizing_collection =
NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
if (_lowest_non_clean == NULL
|| _lowest_non_clean_chunk_size == NULL
|| _lowest_non_clean_base_chunk_index == NULL
|| _last_LNC_resizing_collection == NULL)
vm_exit_during_initialization("couldn't allocate an LNC array.");
for (int i = 0; i < _max_covered_regions; i++) {
_lowest_non_clean[i] = NULL;
_lowest_non_clean_chunk_size[i] = 0;
_last_LNC_resizing_collection[i] = -1;
}
}
CardTableModRefBSForCTRS::~CardTableModRefBSForCTRS() {
if (_lowest_non_clean) {
FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean);
_lowest_non_clean = NULL;
}
if (_lowest_non_clean_chunk_size) {
FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size);
_lowest_non_clean_chunk_size = NULL;
}
if (_lowest_non_clean_base_chunk_index) {
FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index);
_lowest_non_clean_base_chunk_index = NULL;
}
if (_last_LNC_resizing_collection) {
FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection);
_last_LNC_resizing_collection = NULL;
}
}
bool CardTableModRefBSForCTRS::card_will_be_scanned(jbyte cv) {
return
card_is_dirty_wrt_gen_iter(cv) ||
_rs->is_prev_nonclean_card_val(cv);
}
bool CardTableModRefBSForCTRS::card_may_have_been_dirty(jbyte cv) {
return
cv != clean_card &&
(card_is_dirty_wrt_gen_iter(cv) ||
CardTableRS::youngergen_may_have_been_dirty(cv));
}
void CardTableModRefBSForCTRS::non_clean_card_iterate_possibly_parallel(
Space* sp,
MemRegion mr,
OopsInGenClosure* cl,
CardTableRS* ct,
uint n_threads)
{
if (!mr.is_empty()) {
if (n_threads > 0) {
#if INCLUDE_ALL_GCS
non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
#else // INCLUDE_ALL_GCS
fatal("Parallel gc not supported here.");
#endif // INCLUDE_ALL_GCS
} else {
// clear_cl finds contiguous dirty ranges of cards to process and clear.
// This is the single-threaded version used by DefNew.
const bool parallel = false;
DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary(), parallel);
ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
clear_cl.do_MemRegion(mr);
}
}
}

View File

@ -0,0 +1,143 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_SHARED_CARDTABLEMODREFBSFORCTRS_HPP
#define SHARE_VM_GC_SHARED_CARDTABLEMODREFBSFORCTRS_HPP
#include "gc/shared/cardTableModRefBS.hpp"
class CardTableRS;
class DirtyCardToOopClosure;
class OopsInGenClosure;
// A specialization for the CardTableRS gen rem set.
class CardTableModRefBSForCTRS: public CardTableModRefBS {
friend class CardTableRS;
public:
CardTableModRefBSForCTRS(MemRegion whole_heap);
~CardTableModRefBSForCTRS();
virtual void initialize();
void set_CTRS(CardTableRS* rs) { _rs = rs; }
private:
CardTableRS* _rs;
// *** Support for parallel card scanning.
// dirty and precleaned are equivalent wrt younger_refs_iter.
static bool card_is_dirty_wrt_gen_iter(jbyte cv) {
return cv == dirty_card || cv == precleaned_card;
}
// Returns "true" iff the value "cv" will cause the card containing it
// to be scanned in the current traversal. May be overridden by
// subtypes.
bool card_will_be_scanned(jbyte cv);
// Returns "true" iff the value "cv" may have represented a dirty card at
// some point.
bool card_may_have_been_dirty(jbyte cv);
// Iterate over the portion of the card-table which covers the given
// region mr in the given space and apply cl to any dirty sub-regions
// of mr. Clears the dirty cards as they are processed.
void non_clean_card_iterate_possibly_parallel(Space* sp, MemRegion mr,
OopsInGenClosure* cl, CardTableRS* ct,
uint n_threads);
// Work method used to implement non_clean_card_iterate_possibly_parallel()
// above in the parallel case.
void non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
OopsInGenClosure* cl, CardTableRS* ct,
uint n_threads);
// This is an array, one element per covered region of the card table.
// Each entry is itself an array, with one element per chunk in the
// covered region. Each entry of these arrays is the lowest non-clean
// card of the corresponding chunk containing part of an object from the
// previous chunk, or else NULL.
typedef jbyte* CardPtr;
typedef CardPtr* CardArr;
CardArr* _lowest_non_clean;
size_t* _lowest_non_clean_chunk_size;
uintptr_t* _lowest_non_clean_base_chunk_index;
int* _last_LNC_resizing_collection;
// Initializes "lowest_non_clean" to point to the array for the region
// covering "sp", and "lowest_non_clean_base_chunk_index" to the chunk
// index of the corresponding to the first element of that array.
// Ensures that these arrays are of sufficient size, allocating if necessary.
// May be called by several threads concurrently.
void get_LNC_array_for_space(Space* sp,
jbyte**& lowest_non_clean,
uintptr_t& lowest_non_clean_base_chunk_index,
size_t& lowest_non_clean_chunk_size);
// Returns the number of chunks necessary to cover "mr".
size_t chunks_to_cover(MemRegion mr) {
return (size_t)(addr_to_chunk_index(mr.last()) -
addr_to_chunk_index(mr.start()) + 1);
}
// Returns the index of the chunk in a stride which
// covers the given address.
uintptr_t addr_to_chunk_index(const void* addr) {
uintptr_t card = (uintptr_t) byte_for(addr);
return card / ParGCCardsPerStrideChunk;
}
// Apply cl, which must either itself apply dcto_cl or be dcto_cl,
// to the cards in the stride (of n_strides) within the given space.
void process_stride(Space* sp,
MemRegion used,
jint stride, int n_strides,
OopsInGenClosure* cl,
CardTableRS* ct,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size);
// Makes sure that chunk boundaries are handled appropriately, by
// adjusting the min_done of dcto_cl, and by using a special card-table
// value to indicate how min_done should be set.
void process_chunk_boundaries(Space* sp,
DirtyCardToOopClosure* dcto_cl,
MemRegion chunk_mr,
MemRegion used,
jbyte** lowest_non_clean,
uintptr_t lowest_non_clean_base_chunk_index,
size_t lowest_non_clean_chunk_size);
};
template<>
struct BarrierSet::GetName<CardTableModRefBSForCTRS> {
static const BarrierSet::Name value = BarrierSet::CardTableForRS;
};
#endif // include guard

View File

@ -240,7 +240,7 @@ void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
// cur-younger-gen ==> cur_younger_gen
// cur_youngergen_and_prev_nonclean_card ==> no change.
void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
jbyte* entry = ct_bs()->byte_for(field);
jbyte* entry = _ct_bs->byte_for(field);
do {
jbyte entry_val = *entry;
// We put this first because it's probably the most common case.
@ -398,10 +398,10 @@ void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
jbyte* cur_entry = byte_for(used.start());
jbyte* limit = byte_after(used.last());
while (cur_entry < limit) {
if (*cur_entry == CardTableModRefBS::clean_card) {
if (*cur_entry == clean_card_val()) {
jbyte* first_dirty = cur_entry+1;
while (first_dirty < limit &&
*first_dirty == CardTableModRefBS::clean_card) {
*first_dirty == clean_card_val()) {
first_dirty++;
}
// If the first object is a regular object, and it has a
@ -418,7 +418,7 @@ void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
!boundary_obj->is_typeArray()) {
guarantee(cur_entry > byte_for(used.start()),
"else boundary would be boundary_block");
if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
if (*byte_for(boundary_block) != clean_card_val()) {
begin = boundary_block + s->block_size(boundary_block);
start_block = begin;
}

View File

@ -25,7 +25,7 @@
#ifndef SHARE_VM_GC_SHARED_CARDTABLERS_HPP
#define SHARE_VM_GC_SHARED_CARDTABLERS_HPP
#include "gc/shared/cardTableModRefBS.hpp"
#include "gc/shared/cardTableModRefBSForCTRS.hpp"
#include "gc/shared/genRemSet.hpp"
#include "memory/memRegion.hpp"
@ -42,16 +42,16 @@ class CardTableRS: public GenRemSet {
friend class ClearNoncleanCardWrapper;
static jbyte clean_card_val() {
return CardTableModRefBS::clean_card;
return CardTableModRefBSForCTRS::clean_card;
}
static intptr_t clean_card_row() {
return CardTableModRefBS::clean_card_row;
return CardTableModRefBSForCTRS::clean_card_row;
}
static bool
card_is_dirty_wrt_gen_iter(jbyte cv) {
return CardTableModRefBS::card_is_dirty_wrt_gen_iter(cv);
return CardTableModRefBSForCTRS::card_is_dirty_wrt_gen_iter(cv);
}
CardTableModRefBSForCTRS* _ct_bs;
@ -61,17 +61,17 @@ class CardTableRS: public GenRemSet {
void verify_space(Space* s, HeapWord* gen_start);
enum ExtendedCardValue {
youngergen_card = CardTableModRefBS::CT_MR_BS_last_reserved + 1,
youngergen_card = CardTableModRefBSForCTRS::CT_MR_BS_last_reserved + 1,
// These are for parallel collection.
// There are three P (parallel) youngergen card values. In general, this
// needs to be more than the number of generations (including the perm
// gen) that might have younger_refs_do invoked on them separately. So
// if we add more gens, we have to add more values.
youngergenP1_card = CardTableModRefBS::CT_MR_BS_last_reserved + 2,
youngergenP2_card = CardTableModRefBS::CT_MR_BS_last_reserved + 3,
youngergenP3_card = CardTableModRefBS::CT_MR_BS_last_reserved + 4,
youngergenP1_card = CardTableModRefBSForCTRS::CT_MR_BS_last_reserved + 2,
youngergenP2_card = CardTableModRefBSForCTRS::CT_MR_BS_last_reserved + 3,
youngergenP3_card = CardTableModRefBSForCTRS::CT_MR_BS_last_reserved + 4,
cur_youngergen_and_prev_nonclean_card =
CardTableModRefBS::CT_MR_BS_last_reserved + 5
CardTableModRefBSForCTRS::CT_MR_BS_last_reserved + 5
};
// An array that contains, for each generation, the card table value last
@ -107,7 +107,7 @@ public:
// *** GenRemSet functions.
CardTableRS* as_CardTableRS() { return this; }
CardTableModRefBS* ct_bs() { return _ct_bs; }
CardTableModRefBSForCTRS* ct_bs() { return _ct_bs; }
// Override.
void prepare_for_younger_refs_iterate(bool parallel);
@ -147,7 +147,7 @@ public:
void invalidate_or_clear(Generation* old_gen);
static uintx ct_max_alignment_constraint() {
return CardTableModRefBS::ct_max_alignment_constraint();
return CardTableModRefBSForCTRS::ct_max_alignment_constraint();
}
jbyte* byte_for(void* p) { return _ct_bs->byte_for(p); }

View File

@ -295,8 +295,9 @@ public:
// Delete any resource associated with the queue.
~GenericTaskQueue();
// apply the closure to all elements in the task queue
void oops_do(OopClosure* f);
// Apply fn to each element in the task queue. The queue must not
// be modified while iterating.
template<typename Fn> void iterate(Fn fn);
private:
// Element array.

View File

@ -259,20 +259,14 @@ inline typename TaskQueueSuper<N, F>::Age TaskQueueSuper<N, F>::Age::cmpxchg(con
}
template<class E, MEMFLAGS F, unsigned int N>
inline void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
// tty->print_cr("START OopTaskQueue::oops_do");
template<class Fn>
inline void GenericTaskQueue<E, F, N>::iterate(Fn fn) {
uint iters = size();
uint index = _bottom;
for (uint i = 0; i < iters; ++i) {
index = decrement_index(index);
// tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
// index, &_elems[index], _elems[index]);
E* t = (E*)&_elems[index]; // cast away volatility
oop* p = (oop*)t;
assert((*t)->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(*t)));
f->do_oop(p);
fn(const_cast<E&>(_elems[index])); // cast away volatility
}
// tty->print_cr("END OopTaskQueue::oops_do");
}

View File

@ -56,6 +56,7 @@
#include "prims/jvmtiRedefineClassesTrace.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/commandLineFlagConstraintList.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/handles.inline.hpp"
@ -656,6 +657,11 @@ jint universe_init() {
Metaspace::global_initialize();
// Checks 'AfterMemoryInit' constraints.
if (!CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterMemoryInit)) {
return JNI_EINVAL;
}
// Create memory for metadata. Must be after initializing heap for
// DumpSharedSpaces.
ClassLoaderData::init_null_class_loader_data();

View File

@ -200,7 +200,6 @@ class oopDesc {
// Access to fields in a instanceOop through these methods.
oop obj_field(int offset) const;
volatile oop obj_field_volatile(int offset) const;
void obj_field_put(int offset, oop value);
void obj_field_put_raw(int offset, oop value);
void obj_field_put_volatile(int offset, oop value);

View File

@ -284,11 +284,7 @@ inline oop oopDesc::obj_field(int offset) const {
load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
load_decode_heap_oop(obj_field_addr<oop>(offset));
}
inline volatile oop oopDesc::obj_field_volatile(int offset) const {
volatile oop value = obj_field(offset);
OrderAccess::acquire();
return value;
}
inline void oopDesc::obj_field_put(int offset, oop value) {
UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
oop_store(obj_field_addr<oop>(offset), value);

View File

@ -659,7 +659,7 @@
"0 for no aliasing, 1 for oop/field/static/array split, " \
"2 for class split, 3 for unique instances") \
range(0, 3) \
constraint(AliasLevelConstraintFunc) \
constraint(AliasLevelConstraintFunc,AfterErgo) \
\
develop(bool, VerifyAliases, false, \
"perform extra checks on the results of alias analysis") \

View File

@ -79,7 +79,6 @@ bool C2Compiler::init_c2_runtime() {
return OptoRuntime::generate(thread->env());
}
void C2Compiler::initialize() {
// The first compiler thread that gets here will initialize the
// small amount of global state (and runtime stubs) that C2 needs.
@ -154,11 +153,361 @@ void C2Compiler::compile_method(ciEnv* env, ciMethod* target, int entry_bci) {
}
}
void C2Compiler::print_timers() {
Compile::print_timers();
}
bool C2Compiler::is_intrinsic_available(methodHandle method, methodHandle compilation_context) {
// Assume a non-virtual dispatch. A virtual dispatch is
// possible for only a limited set of available intrinsics whereas
// a non-virtual dispatch is possible for all available intrinsics.
return is_intrinsic_supported(method, false) &&
!is_intrinsic_disabled_by_flag(method, compilation_context);
}
bool C2Compiler::is_intrinsic_supported(methodHandle method, bool is_virtual) {
vmIntrinsics::ID id = method->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (id < vmIntrinsics::FIRST_ID || id >= vmIntrinsics::LAST_COMPILER_INLINE) {
return false;
}
// Only Object.hashCode and Object.clone intrinsics implement also a virtual
// dispatch because calling both methods is expensive but both methods are
// frequently overridden. All other intrinsics implement only a non-virtual
// dispatch.
if (is_virtual) {
switch (id) {
case vmIntrinsics::_hashCode:
case vmIntrinsics::_clone:
break;
default:
return false;
}
}
switch (id) {
case vmIntrinsics::_compareTo:
if (!Matcher::match_rule_supported(Op_StrComp)) return false;
break;
case vmIntrinsics::_equals:
if (!Matcher::match_rule_supported(Op_StrEquals)) return false;
break;
case vmIntrinsics::_equalsC:
if (!Matcher::match_rule_supported(Op_AryEq)) return false;
break;
case vmIntrinsics::_copyMemory:
if (StubRoutines::unsafe_arraycopy() == NULL) return false;
break;
case vmIntrinsics::_encodeISOArray:
if (!Matcher::match_rule_supported(Op_EncodeISOArray)) return false;
break;
case vmIntrinsics::_bitCount_i:
if (!Matcher::match_rule_supported(Op_PopCountI)) return false;
break;
case vmIntrinsics::_bitCount_l:
if (!Matcher::match_rule_supported(Op_PopCountL)) return false;
break;
case vmIntrinsics::_numberOfLeadingZeros_i:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
break;
case vmIntrinsics::_numberOfLeadingZeros_l:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
break;
case vmIntrinsics::_numberOfTrailingZeros_i:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
break;
case vmIntrinsics::_numberOfTrailingZeros_l:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
break;
case vmIntrinsics::_reverseBytes_c:
if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return false;
break;
case vmIntrinsics::_reverseBytes_s:
if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return false;
break;
case vmIntrinsics::_reverseBytes_i:
if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return false;
break;
case vmIntrinsics::_reverseBytes_l:
if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return false;
break;
case vmIntrinsics::_compareAndSwapObject:
#ifdef _LP64
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return false;
#endif
break;
case vmIntrinsics::_compareAndSwapLong:
if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return false;
break;
case vmIntrinsics::_getAndAddInt:
if (!Matcher::match_rule_supported(Op_GetAndAddI)) return false;
break;
case vmIntrinsics::_getAndAddLong:
if (!Matcher::match_rule_supported(Op_GetAndAddL)) return false;
break;
case vmIntrinsics::_getAndSetInt:
if (!Matcher::match_rule_supported(Op_GetAndSetI)) return false;
break;
case vmIntrinsics::_getAndSetLong:
if (!Matcher::match_rule_supported(Op_GetAndSetL)) return false;
break;
case vmIntrinsics::_getAndSetObject:
#ifdef _LP64
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return false;
if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return false;
break;
#else
if (!Matcher::match_rule_supported(Op_GetAndSetP)) return false;
break;
#endif
case vmIntrinsics::_incrementExactI:
case vmIntrinsics::_addExactI:
if (!Matcher::match_rule_supported(Op_OverflowAddI)) return false;
break;
case vmIntrinsics::_incrementExactL:
case vmIntrinsics::_addExactL:
if (!Matcher::match_rule_supported(Op_OverflowAddL)) return false;
break;
case vmIntrinsics::_decrementExactI:
case vmIntrinsics::_subtractExactI:
if (!Matcher::match_rule_supported(Op_OverflowSubI)) return false;
break;
case vmIntrinsics::_decrementExactL:
case vmIntrinsics::_subtractExactL:
if (!Matcher::match_rule_supported(Op_OverflowSubL)) return false;
break;
case vmIntrinsics::_negateExactI:
if (!Matcher::match_rule_supported(Op_OverflowSubI)) return false;
break;
case vmIntrinsics::_negateExactL:
if (!Matcher::match_rule_supported(Op_OverflowSubL)) return false;
break;
case vmIntrinsics::_multiplyExactI:
if (!Matcher::match_rule_supported(Op_OverflowMulI)) return false;
break;
case vmIntrinsics::_multiplyExactL:
if (!Matcher::match_rule_supported(Op_OverflowMulL)) return false;
break;
case vmIntrinsics::_getCallerClass:
if (SystemDictionary::reflect_CallerSensitive_klass() == NULL) return false;
break;
case vmIntrinsics::_hashCode:
case vmIntrinsics::_identityHashCode:
case vmIntrinsics::_getClass:
case vmIntrinsics::_dsin:
case vmIntrinsics::_dcos:
case vmIntrinsics::_dtan:
case vmIntrinsics::_dabs:
case vmIntrinsics::_datan2:
case vmIntrinsics::_dsqrt:
case vmIntrinsics::_dexp:
case vmIntrinsics::_dlog:
case vmIntrinsics::_dlog10:
case vmIntrinsics::_dpow:
case vmIntrinsics::_min:
case vmIntrinsics::_max:
case vmIntrinsics::_arraycopy:
case vmIntrinsics::_indexOf:
case vmIntrinsics::_getObject:
case vmIntrinsics::_getBoolean:
case vmIntrinsics::_getByte:
case vmIntrinsics::_getShort:
case vmIntrinsics::_getChar:
case vmIntrinsics::_getInt:
case vmIntrinsics::_getLong:
case vmIntrinsics::_getFloat:
case vmIntrinsics::_getDouble:
case vmIntrinsics::_putObject:
case vmIntrinsics::_putBoolean:
case vmIntrinsics::_putByte:
case vmIntrinsics::_putShort:
case vmIntrinsics::_putChar:
case vmIntrinsics::_putInt:
case vmIntrinsics::_putLong:
case vmIntrinsics::_putFloat:
case vmIntrinsics::_putDouble:
case vmIntrinsics::_getByte_raw:
case vmIntrinsics::_getShort_raw:
case vmIntrinsics::_getChar_raw:
case vmIntrinsics::_getInt_raw:
case vmIntrinsics::_getLong_raw:
case vmIntrinsics::_getFloat_raw:
case vmIntrinsics::_getDouble_raw:
case vmIntrinsics::_getAddress_raw:
case vmIntrinsics::_putByte_raw:
case vmIntrinsics::_putShort_raw:
case vmIntrinsics::_putChar_raw:
case vmIntrinsics::_putInt_raw:
case vmIntrinsics::_putLong_raw:
case vmIntrinsics::_putFloat_raw:
case vmIntrinsics::_putDouble_raw:
case vmIntrinsics::_putAddress_raw:
case vmIntrinsics::_getObjectVolatile:
case vmIntrinsics::_getBooleanVolatile:
case vmIntrinsics::_getByteVolatile:
case vmIntrinsics::_getShortVolatile:
case vmIntrinsics::_getCharVolatile:
case vmIntrinsics::_getIntVolatile:
case vmIntrinsics::_getLongVolatile:
case vmIntrinsics::_getFloatVolatile:
case vmIntrinsics::_getDoubleVolatile:
case vmIntrinsics::_putObjectVolatile:
case vmIntrinsics::_putBooleanVolatile:
case vmIntrinsics::_putByteVolatile:
case vmIntrinsics::_putShortVolatile:
case vmIntrinsics::_putCharVolatile:
case vmIntrinsics::_putIntVolatile:
case vmIntrinsics::_putLongVolatile:
case vmIntrinsics::_putFloatVolatile:
case vmIntrinsics::_putDoubleVolatile:
case vmIntrinsics::_getShortUnaligned:
case vmIntrinsics::_getCharUnaligned:
case vmIntrinsics::_getIntUnaligned:
case vmIntrinsics::_getLongUnaligned:
case vmIntrinsics::_putShortUnaligned:
case vmIntrinsics::_putCharUnaligned:
case vmIntrinsics::_putIntUnaligned:
case vmIntrinsics::_putLongUnaligned:
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_putOrderedObject:
case vmIntrinsics::_putOrderedInt:
case vmIntrinsics::_putOrderedLong:
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_currentThread:
case vmIntrinsics::_isInterrupted:
#ifdef TRACE_HAVE_INTRINSICS
case vmIntrinsics::_classID:
case vmIntrinsics::_threadID:
case vmIntrinsics::_counterTime:
#endif
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
case vmIntrinsics::_allocateInstance:
case vmIntrinsics::_newArray:
case vmIntrinsics::_getLength:
case vmIntrinsics::_copyOf:
case vmIntrinsics::_copyOfRange:
case vmIntrinsics::_clone:
case vmIntrinsics::_isAssignableFrom:
case vmIntrinsics::_isInstance:
case vmIntrinsics::_getModifiers:
case vmIntrinsics::_isInterface:
case vmIntrinsics::_isArray:
case vmIntrinsics::_isPrimitive:
case vmIntrinsics::_getSuperclass:
case vmIntrinsics::_getClassAccessFlags:
case vmIntrinsics::_floatToRawIntBits:
case vmIntrinsics::_floatToIntBits:
case vmIntrinsics::_intBitsToFloat:
case vmIntrinsics::_doubleToRawLongBits:
case vmIntrinsics::_doubleToLongBits:
case vmIntrinsics::_longBitsToDouble:
case vmIntrinsics::_Reference_get:
case vmIntrinsics::_Class_cast:
case vmIntrinsics::_aescrypt_encryptBlock:
case vmIntrinsics::_aescrypt_decryptBlock:
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
case vmIntrinsics::_sha_implCompress:
case vmIntrinsics::_sha2_implCompress:
case vmIntrinsics::_sha5_implCompress:
case vmIntrinsics::_digestBase_implCompressMB:
case vmIntrinsics::_multiplyToLen:
case vmIntrinsics::_squareToLen:
case vmIntrinsics::_mulAdd:
case vmIntrinsics::_montgomeryMultiply:
case vmIntrinsics::_montgomerySquare:
case vmIntrinsics::_ghash_processBlocks:
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C:
case vmIntrinsics::_profileBoolean:
case vmIntrinsics::_isCompileConstant:
break;
default:
return false;
}
return true;
}
bool C2Compiler::is_intrinsic_disabled_by_flag(methodHandle method, methodHandle compilation_context) {
vmIntrinsics::ID id = method->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
if (vmIntrinsics::is_disabled_by_flags(method->intrinsic_id())) {
return true;
}
// Check if the intrinsic corresponding to 'method' has been disabled on
// the command line by using the DisableIntrinsic flag (either globally
// or on a per-method level, see src/share/vm/compiler/abstractCompiler.hpp
// for details).
// Usually, the compilation context is the caller of the method 'method'.
// The only case when for a non-recursive method 'method' the compilation context
// is not the caller of the 'method' (but it is the method itself) is
// java.lang.ref.Referene::get.
// For java.lang.ref.Reference::get, the intrinsic version is used
// instead of the C2-compiled version so that the value in the referent
// field can be registered by the G1 pre-barrier code. The intrinsified
// version of Reference::get also adds a memory barrier to prevent
// commoning reads from the referent field across safepoint since GC
// can change the referent field's value. See Compile::Compile()
// in src/share/vm/opto/compile.cpp for more details.
ccstr disable_intr = NULL;
if ((DisableIntrinsic[0] != '\0' && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
(!compilation_context.is_null() &&
CompilerOracle::has_option_value(compilation_context, "DisableIntrinsic", disable_intr) &&
strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)
) {
return true;
}
// -XX:-InlineNatives disables nearly all intrinsics except the ones listed in
// the following switch statement.
if (!InlineNatives) {
switch (id) {
case vmIntrinsics::_indexOf:
case vmIntrinsics::_compareTo:
case vmIntrinsics::_equals:
case vmIntrinsics::_equalsC:
case vmIntrinsics::_getAndAddInt:
case vmIntrinsics::_getAndAddLong:
case vmIntrinsics::_getAndSetInt:
case vmIntrinsics::_getAndSetLong:
case vmIntrinsics::_getAndSetObject:
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_Reference_get:
break;
default:
return true;
}
}
if (!InlineUnsafeOps) {
switch (id) {
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
case vmIntrinsics::_compareAndSwapObject:
case vmIntrinsics::_compareAndSwapLong:
case vmIntrinsics::_compareAndSwapInt:
return true;
default:
return false;
}
}
return false;
}
int C2Compiler::initial_code_buffer_size() {
assert(SegmentedCodeCache, "Should be only used with a segmented code cache");
return Compile::MAX_inst_size + Compile::MAX_locs_size + initial_const_capacity;

View File

@ -36,7 +36,6 @@ public:
// Name
const char *name() { return "C2"; }
void initialize();
// Compilation entry point for methods
@ -52,6 +51,26 @@ public:
// Print compilation timers and statistics
void print_timers();
// Check the availability of an intrinsic for 'method' given a compilation context.
virtual bool is_intrinsic_available(methodHandle method, methodHandle compilation_context);
// Return true if the intrinsification of a method supported by the compiler
// assuming a non-virtual dispatch. Return false otherwise.
virtual bool is_intrinsic_supported(methodHandle method) {
return is_intrinsic_supported(method, false);
}
// Check if the compiler supports an intrinsic for 'method' given the
// the dispatch mode specified by the 'is_virtual' parameter.
virtual bool is_intrinsic_supported(methodHandle method, bool is_virtual);
// Processing of command-line flags specific to the C2 compiler.
virtual bool is_intrinsic_disabled_by_flag(methodHandle method) {
return is_intrinsic_disabled_by_flag(method, NULL);
}
virtual bool is_intrinsic_disabled_by_flag(methodHandle method, methodHandle compilation_context);
// Initial size of the code buffer (may be increased at runtime)
static int initial_code_buffer_size();
};

View File

@ -31,6 +31,7 @@
#include "oops/objArrayKlass.hpp"
#include "opto/addnode.hpp"
#include "opto/arraycopynode.hpp"
#include "opto/c2compiler.hpp"
#include "opto/callGenerator.hpp"
#include "opto/castnode.hpp"
#include "opto/cfgnode.hpp"
@ -305,330 +306,40 @@ class LibraryCallKit : public GraphKit {
bool inline_isCompileConstant();
};
//---------------------------make_vm_intrinsic----------------------------
CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
vmIntrinsics::ID id = m->intrinsic_id();
assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
ccstr disable_intr = NULL;
if ((DisableIntrinsic[0] != '\0'
&& strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
(method_has_option_value("DisableIntrinsic", disable_intr)
&& strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
// disabled by a user request on the command line:
// example: -XX:DisableIntrinsic=_hashCode,_getClass
return NULL;
}
if (!m->is_loaded()) {
// do not attempt to inline unloaded methods
// Do not attempt to inline unloaded methods.
return NULL;
}
// Only a few intrinsics implement a virtual dispatch.
// They are expensive calls which are also frequently overridden.
if (is_virtual) {
switch (id) {
case vmIntrinsics::_hashCode:
case vmIntrinsics::_clone:
// OK, Object.hashCode and Object.clone intrinsics come in both flavors
break;
default:
return NULL;
}
C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
bool is_available = false;
{
// For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
// the compiler must transition to '_thread_in_vm' state because both
// methods access VM-internal data.
VM_ENTRY_MARK;
methodHandle mh(THREAD, m->get_Method());
methodHandle ct(THREAD, method()->get_Method());
is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
!compiler->is_intrinsic_disabled_by_flag(mh, ct);
}
// -XX:-InlineNatives disables nearly all intrinsics:
if (!InlineNatives) {
switch (id) {
case vmIntrinsics::_indexOf:
case vmIntrinsics::_compareTo:
case vmIntrinsics::_equals:
case vmIntrinsics::_equalsC:
case vmIntrinsics::_getAndAddInt:
case vmIntrinsics::_getAndAddLong:
case vmIntrinsics::_getAndSetInt:
case vmIntrinsics::_getAndSetLong:
case vmIntrinsics::_getAndSetObject:
case vmIntrinsics::_loadFence:
case vmIntrinsics::_storeFence:
case vmIntrinsics::_fullFence:
break; // InlineNatives does not control String.compareTo
case vmIntrinsics::_Reference_get:
break; // InlineNatives does not control Reference.get
default:
return NULL;
}
}
int predicates = 0;
bool does_virtual_dispatch = false;
switch (id) {
case vmIntrinsics::_compareTo:
if (!SpecialStringCompareTo) return NULL;
if (!Matcher::match_rule_supported(Op_StrComp)) return NULL;
break;
case vmIntrinsics::_indexOf:
if (!SpecialStringIndexOf) return NULL;
break;
case vmIntrinsics::_equals:
if (!SpecialStringEquals) return NULL;
if (!Matcher::match_rule_supported(Op_StrEquals)) return NULL;
break;
case vmIntrinsics::_equalsC:
if (!SpecialArraysEquals) return NULL;
if (!Matcher::match_rule_supported(Op_AryEq)) return NULL;
break;
case vmIntrinsics::_arraycopy:
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_copyMemory:
if (StubRoutines::unsafe_arraycopy() == NULL) return NULL;
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_hashCode:
if (!InlineObjectHash) return NULL;
does_virtual_dispatch = true;
break;
case vmIntrinsics::_clone:
does_virtual_dispatch = true;
case vmIntrinsics::_copyOf:
case vmIntrinsics::_copyOfRange:
if (!InlineObjectCopy) return NULL;
// These also use the arraycopy intrinsic mechanism:
if (!InlineArrayCopy) return NULL;
break;
case vmIntrinsics::_encodeISOArray:
if (!SpecialEncodeISOArray) return NULL;
if (!Matcher::match_rule_supported(Op_EncodeISOArray)) return NULL;
break;
case vmIntrinsics::_checkIndex:
// We do not intrinsify this. The optimizer does fine with it.
return NULL;
case vmIntrinsics::_getCallerClass:
if (!InlineReflectionGetCallerClass) return NULL;
if (SystemDictionary::reflect_CallerSensitive_klass() == NULL) return NULL;
break;
case vmIntrinsics::_bitCount_i:
if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
break;
case vmIntrinsics::_bitCount_l:
if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
break;
case vmIntrinsics::_numberOfLeadingZeros_i:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
break;
case vmIntrinsics::_numberOfLeadingZeros_l:
if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
break;
case vmIntrinsics::_numberOfTrailingZeros_i:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
break;
case vmIntrinsics::_numberOfTrailingZeros_l:
if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
break;
case vmIntrinsics::_reverseBytes_c:
if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
break;
case vmIntrinsics::_reverseBytes_s:
if (!Matcher::match_rule_supported(Op_ReverseBytesS)) return NULL;
break;
case vmIntrinsics::_reverseBytes_i:
if (!Matcher::match_rule_supported(Op_ReverseBytesI)) return NULL;
break;
case vmIntrinsics::_reverseBytes_l:
if (!Matcher::match_rule_supported(Op_ReverseBytesL)) return NULL;
break;
case vmIntrinsics::_Reference_get:
// Use the intrinsic version of Reference.get() so that the value in
// the referent field can be registered by the G1 pre-barrier code.
// Also add memory barrier to prevent commoning reads from this field
// across safepoint since GC can change it value.
break;
case vmIntrinsics::_compareAndSwapObject:
#ifdef _LP64
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
#endif
break;
case vmIntrinsics::_compareAndSwapLong:
if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
break;
case vmIntrinsics::_getAndAddInt:
if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
break;
case vmIntrinsics::_getAndAddLong:
if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
break;
case vmIntrinsics::_getAndSetInt:
if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
break;
case vmIntrinsics::_getAndSetLong:
if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
break;
case vmIntrinsics::_getAndSetObject:
#ifdef _LP64
if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
break;
#else
if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
break;
#endif
case vmIntrinsics::_aescrypt_encryptBlock:
case vmIntrinsics::_aescrypt_decryptBlock:
if (!UseAESIntrinsics) return NULL;
break;
case vmIntrinsics::_multiplyToLen:
if (!UseMultiplyToLenIntrinsic) return NULL;
break;
case vmIntrinsics::_squareToLen:
if (!UseSquareToLenIntrinsic) return NULL;
break;
case vmIntrinsics::_mulAdd:
if (!UseMulAddIntrinsic) return NULL;
break;
case vmIntrinsics::_montgomeryMultiply:
if (!UseMontgomeryMultiplyIntrinsic) return NULL;
break;
case vmIntrinsics::_montgomerySquare:
if (!UseMontgomerySquareIntrinsic) return NULL;
break;
case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
if (!UseAESIntrinsics) return NULL;
// these two require the predicated logic
predicates = 1;
break;
case vmIntrinsics::_sha_implCompress:
if (!UseSHA1Intrinsics) return NULL;
break;
case vmIntrinsics::_sha2_implCompress:
if (!UseSHA256Intrinsics) return NULL;
break;
case vmIntrinsics::_sha5_implCompress:
if (!UseSHA512Intrinsics) return NULL;
break;
case vmIntrinsics::_digestBase_implCompressMB:
if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
predicates = 3;
break;
case vmIntrinsics::_ghash_processBlocks:
if (!UseGHASHIntrinsics) return NULL;
break;
case vmIntrinsics::_updateCRC32:
case vmIntrinsics::_updateBytesCRC32:
case vmIntrinsics::_updateByteBufferCRC32:
if (!UseCRC32Intrinsics) return NULL;
break;
case vmIntrinsics::_updateBytesCRC32C:
case vmIntrinsics::_updateDirectByteBufferCRC32C:
if (!UseCRC32CIntrinsics) return NULL;
break;
case vmIntrinsics::_incrementExactI:
case vmIntrinsics::_addExactI:
if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_incrementExactL:
case vmIntrinsics::_addExactL:
if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_decrementExactI:
case vmIntrinsics::_subtractExactI:
if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_decrementExactL:
case vmIntrinsics::_subtractExactL:
if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_negateExactI:
if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_negateExactL:
if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_multiplyExactI:
if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_multiplyExactL:
if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
break;
case vmIntrinsics::_getShortUnaligned:
case vmIntrinsics::_getCharUnaligned:
case vmIntrinsics::_getIntUnaligned:
case vmIntrinsics::_getLongUnaligned:
case vmIntrinsics::_putShortUnaligned:
case vmIntrinsics::_putCharUnaligned:
case vmIntrinsics::_putIntUnaligned:
case vmIntrinsics::_putLongUnaligned:
if (!UseUnalignedAccesses) return NULL;
break;
default:
if (is_available) {
assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
break;
return new LibraryIntrinsic(m, is_virtual,
vmIntrinsics::predicates_needed(id),
vmIntrinsics::does_virtual_dispatch(id),
(vmIntrinsics::ID) id);
} else {
return NULL;
}
// -XX:-InlineClassNatives disables natives from the Class class.
// The flag applies to all reflective calls, notably Array.newArray
// (visible to Java programmers as Array.newInstance).
if (m->holder()->name() == ciSymbol::java_lang_Class() ||
m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
if (!InlineClassNatives) return NULL;
}
// -XX:-InlineThreadNatives disables natives from the Thread class.
if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
if (!InlineThreadNatives) return NULL;
}
// -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
if (m->holder()->name() == ciSymbol::java_lang_Math() ||
m->holder()->name() == ciSymbol::java_lang_Float() ||
m->holder()->name() == ciSymbol::java_lang_Double()) {
if (!InlineMathNatives) return NULL;
}
// -XX:-InlineUnsafeOps disables natives from the Unsafe class.
if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
if (!InlineUnsafeOps) return NULL;
}
return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
}
//----------------------register_library_intrinsics-----------------------
@ -812,7 +523,6 @@ bool LibraryCallKit::try_to_inline(int predicate) {
case vmIntrinsics::_getLong: return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, !is_volatile);
case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, !is_volatile);
case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, !is_volatile);
case vmIntrinsics::_putObject: return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, !is_volatile);
case vmIntrinsics::_putBoolean: return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, !is_volatile);
case vmIntrinsics::_putByte: return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, !is_volatile);

View File

@ -2824,7 +2824,7 @@ inline bool VM_HeapWalkOperation::iterate_over_class(oop java_class) {
if (klass->oop_is_instance()) {
InstanceKlass* ik = InstanceKlass::cast(klass);
// ignore the class if it's has been initialized yet
// Ignore the class if it hasn't been initialized yet
if (!ik->is_linked()) {
return true;
}

View File

@ -528,6 +528,24 @@ WB_ENTRY(jboolean, WB_IsMethodQueuedForCompilation(JNIEnv* env, jobject o, jobje
return mh->queued_for_compilation();
WB_END
WB_ENTRY(jboolean, WB_IsIntrinsicAvailable(JNIEnv* env, jobject o, jobject method, jobject compilation_context, jint compLevel))
if (compLevel < CompLevel_none || compLevel > CompLevel_highest_tier) {
return false; // Intrinsic is not available on a non-existent compilation level.
}
jmethodID method_id, compilation_context_id;
method_id = reflected_method_to_jmid(thread, env, method);
CHECK_JNI_EXCEPTION_(env, JNI_FALSE);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(method_id));
if (compilation_context != NULL) {
compilation_context_id = reflected_method_to_jmid(thread, env, compilation_context);
CHECK_JNI_EXCEPTION_(env, JNI_FALSE);
methodHandle cch(THREAD, Method::checked_resolve_jmethod_id(compilation_context_id));
return CompileBroker::compiler(compLevel)->is_intrinsic_available(mh, cch);
} else {
return CompileBroker::compiler(compLevel)->is_intrinsic_available(mh, NULL);
}
WB_END
WB_ENTRY(jint, WB_GetMethodCompilationLevel(JNIEnv* env, jobject o, jobject method, jboolean is_osr))
jmethodID jmid = reflected_method_to_jmid(thread, env, method);
CHECK_JNI_EXCEPTION_(env, CompLevel_none);
@ -1477,14 +1495,17 @@ static JNINativeMethod methods[] = {
#endif // INCLUDE_NMT
{CC"deoptimizeFrames", CC"(Z)I", (void*)&WB_DeoptimizeFrames },
{CC"deoptimizeAll", CC"()V", (void*)&WB_DeoptimizeAll },
{CC"deoptimizeMethod0", CC"(Ljava/lang/reflect/Executable;Z)I",
(void*)&WB_DeoptimizeMethod },
{CC"deoptimizeMethod0", CC"(Ljava/lang/reflect/Executable;Z)I",
(void*)&WB_DeoptimizeMethod },
{CC"isMethodCompiled0", CC"(Ljava/lang/reflect/Executable;Z)Z",
(void*)&WB_IsMethodCompiled },
{CC"isMethodCompilable0", CC"(Ljava/lang/reflect/Executable;IZ)Z",
(void*)&WB_IsMethodCompilable},
{CC"isMethodQueuedForCompilation0",
CC"(Ljava/lang/reflect/Executable;)Z", (void*)&WB_IsMethodQueuedForCompilation},
{CC"isIntrinsicAvailable0",
CC"(Ljava/lang/reflect/Executable;Ljava/lang/reflect/Executable;I)Z",
(void*)&WB_IsIntrinsicAvailable},
{CC"makeMethodNotCompilable0",
CC"(Ljava/lang/reflect/Executable;IZ)V", (void*)&WB_MakeMethodNotCompilable},
{CC"testSetDontInlineMethod0",

View File

@ -788,9 +788,11 @@ void Arguments::print_on(outputStream* st) {
st->print_cr("VM Arguments:");
if (num_jvm_flags() > 0) {
st->print("jvm_flags: "); print_jvm_flags_on(st);
st->cr();
}
if (num_jvm_args() > 0) {
st->print("jvm_args: "); print_jvm_args_on(st);
st->cr();
}
st->print_cr("java_command: %s", java_command() ? java_command() : "<unknown>");
if (_java_class_path != NULL) {
@ -800,12 +802,32 @@ void Arguments::print_on(outputStream* st) {
st->print_cr("Launcher Type: %s", _sun_java_launcher);
}
void Arguments::print_summary_on(outputStream* st) {
// Print the command line. Environment variables that are helpful for
// reproducing the problem are written later in the hs_err file.
// flags are from setting file
if (num_jvm_flags() > 0) {
st->print_raw("Settings File: ");
print_jvm_flags_on(st);
st->cr();
}
// args are the command line and environment variable arguments.
st->print_raw("Command Line: ");
if (num_jvm_args() > 0) {
print_jvm_args_on(st);
}
// this is the classfile and any arguments to the java program
if (java_command() != NULL) {
st->print("%s", java_command());
}
st->cr();
}
void Arguments::print_jvm_flags_on(outputStream* st) {
if (_num_jvm_flags > 0) {
for (int i=0; i < _num_jvm_flags; i++) {
st->print("%s ", _jvm_flags_array[i]);
}
st->cr();
}
}
@ -814,7 +836,6 @@ void Arguments::print_jvm_args_on(outputStream* st) {
for (int i=0; i < _num_jvm_args; i++) {
st->print("%s ", _jvm_args_array[i]);
}
st->cr();
}
}
@ -1205,32 +1226,6 @@ void Arguments::set_tiered_flags() {
}
}
/**
* Returns the minimum number of compiler threads needed to run the JVM. The following
* configurations are possible.
*
* 1) The JVM is build using an interpreter only. As a result, the minimum number of
* compiler threads is 0.
* 2) The JVM is build using the compiler(s) and tiered compilation is disabled. As
* a result, either C1 or C2 is used, so the minimum number of compiler threads is 1.
* 3) The JVM is build using the compiler(s) and tiered compilation is enabled. However,
* the option "TieredStopAtLevel < CompLevel_full_optimization". As a result, only
* C1 can be used, so the minimum number of compiler threads is 1.
* 4) The JVM is build using the compilers and tiered compilation is enabled. The option
* 'TieredStopAtLevel = CompLevel_full_optimization' (the default value). As a result,
* the minimum number of compiler threads is 2.
*/
int Arguments::get_min_number_of_compiler_threads() {
#if !defined(COMPILER1) && !defined(COMPILER2) && !defined(SHARK)
return 0; // case 1
#else
if (!TieredCompilation || (TieredStopAtLevel < CompLevel_full_optimization)) {
return 1; // case 2 or case 3
}
return 2; // case 4 (tiered)
#endif
}
#if INCLUDE_ALL_GCS
static void disable_adaptive_size_policy(const char* collector_name) {
if (UseAdaptiveSizePolicy) {
@ -2178,10 +2173,6 @@ bool Arguments::check_vm_args_consistency() {
status = false;
}
int min_number_of_compiler_threads = get_min_number_of_compiler_threads();
// The default CICompilerCount's value is CI_COMPILER_COUNT.
assert(min_number_of_compiler_threads <= CI_COMPILER_COUNT, "minimum should be less or equal default number");
if (!FLAG_IS_DEFAULT(CICompilerCount) && !FLAG_IS_DEFAULT(CICompilerCountPerCPU) && CICompilerCountPerCPU) {
warning("The VM option CICompilerCountPerCPU overrides CICompilerCount.");
}
@ -3989,10 +3980,10 @@ jint Arguments::adjust_after_os() {
return JNI_OK;
}
// Any custom code post the final range and constraint check
// Any custom code post the 'CommandLineFlagConstraint::AfterErgo' constraint check
// can be done here. We pass a flag that specifies whether
// the check passed successfully
void Arguments::post_final_range_and_constraint_check(bool check_passed) {
void Arguments::post_after_ergo_constraint_check(bool check_passed) {
// This does not set the flag itself, but stores the value in a safe place for later usage.
_min_heap_free_ratio = MinHeapFreeRatio;
_max_heap_free_ratio = MaxHeapFreeRatio;

View File

@ -445,9 +445,6 @@ class Arguments : AllStatic {
static char* SharedArchivePath;
public:
// Tiered
static int get_min_number_of_compiler_threads();
// Scale compile thresholds
// Returns threshold scaled with CompileThresholdScaling
static intx scaled_compile_threshold(intx threshold, double scale);
@ -466,8 +463,8 @@ class Arguments : AllStatic {
static jint apply_ergo();
// Adjusts the arguments after the OS have adjusted the arguments
static jint adjust_after_os();
// Set any arguments that need to be set after the final range and constraint check
static void post_final_range_and_constraint_check(bool check_passed);
// Set any arguments that need to be set after the 'CommandLineFlagConstraint::AfterErgo' constraint check
static void post_after_ergo_constraint_check(bool check_passed);
static void set_gc_specific_flags();
static inline bool gc_selected(); // whether a gc has been selected
@ -495,6 +492,7 @@ class Arguments : AllStatic {
// print jvm_flags, jvm_args and java_command
static void print_on(outputStream* st);
static void print_summary_on(outputStream* st);
// convenient methods to obtain / print jvm_flags and jvm_args
static const char* jvm_flags() { return build_resource_string(_jvm_flags_array, _num_jvm_flags); }

View File

@ -39,7 +39,9 @@ class CommandLineFlagConstraint_bool : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_bool(const char* name, CommandLineFlagConstraintFunc_bool func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_bool(const char* name,
CommandLineFlagConstraintFunc_bool func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -53,7 +55,9 @@ class CommandLineFlagConstraint_int : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_int(const char* name, CommandLineFlagConstraintFunc_int func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_int(const char* name,
CommandLineFlagConstraintFunc_int func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -67,7 +71,9 @@ class CommandLineFlagConstraint_intx : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_intx(const char* name, CommandLineFlagConstraintFunc_intx func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_intx(const char* name,
CommandLineFlagConstraintFunc_intx func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -81,7 +87,9 @@ class CommandLineFlagConstraint_uint : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_uint(const char* name, CommandLineFlagConstraintFunc_uint func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_uint(const char* name,
CommandLineFlagConstraintFunc_uint func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -95,7 +103,9 @@ class CommandLineFlagConstraint_uintx : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_uintx(const char* name, CommandLineFlagConstraintFunc_uintx func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_uintx(const char* name,
CommandLineFlagConstraintFunc_uintx func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -109,7 +119,9 @@ class CommandLineFlagConstraint_uint64_t : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_uint64_t(const char* name, CommandLineFlagConstraintFunc_uint64_t func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_uint64_t(const char* name,
CommandLineFlagConstraintFunc_uint64_t func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -123,7 +135,9 @@ class CommandLineFlagConstraint_size_t : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_size_t(const char* name, CommandLineFlagConstraintFunc_size_t func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_size_t(const char* name,
CommandLineFlagConstraintFunc_size_t func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -137,7 +151,9 @@ class CommandLineFlagConstraint_double : public CommandLineFlagConstraint {
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint_double(const char* name, CommandLineFlagConstraintFunc_double func) : CommandLineFlagConstraint(name) {
CommandLineFlagConstraint_double(const char* name,
CommandLineFlagConstraintFunc_double func,
ConstraintType type) : CommandLineFlagConstraint(name, type) {
_constraint=func;
}
@ -162,29 +178,29 @@ void emit_constraint_size_t(const char* /*name*/) { /* NOP */ }
void emit_constraint_double(const char* /*name*/) { /* NOP */ }
// CommandLineFlagConstraint emitting code functions if function argument is provided
void emit_constraint_bool(const char* name, CommandLineFlagConstraintFunc_bool func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_bool(name, func));
void emit_constraint_bool(const char* name, CommandLineFlagConstraintFunc_bool func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_bool(name, func, type));
}
void emit_constraint_int(const char* name, CommandLineFlagConstraintFunc_int func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_int(name, func));
void emit_constraint_int(const char* name, CommandLineFlagConstraintFunc_int func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_int(name, func, type));
}
void emit_constraint_intx(const char* name, CommandLineFlagConstraintFunc_intx func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_intx(name, func));
void emit_constraint_intx(const char* name, CommandLineFlagConstraintFunc_intx func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_intx(name, func, type));
}
void emit_constraint_uint(const char* name, CommandLineFlagConstraintFunc_uint func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uint(name, func));
void emit_constraint_uint(const char* name, CommandLineFlagConstraintFunc_uint func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uint(name, func, type));
}
void emit_constraint_uintx(const char* name, CommandLineFlagConstraintFunc_uintx func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uintx(name, func));
void emit_constraint_uintx(const char* name, CommandLineFlagConstraintFunc_uintx func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uintx(name, func, type));
}
void emit_constraint_uint64_t(const char* name, CommandLineFlagConstraintFunc_uint64_t func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uint64_t(name, func));
void emit_constraint_uint64_t(const char* name, CommandLineFlagConstraintFunc_uint64_t func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_uint64_t(name, func, type));
}
void emit_constraint_size_t(const char* name, CommandLineFlagConstraintFunc_size_t func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_size_t(name, func));
void emit_constraint_size_t(const char* name, CommandLineFlagConstraintFunc_size_t func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_size_t(name, func, type));
}
void emit_constraint_double(const char* name, CommandLineFlagConstraintFunc_double func) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_double(name, func));
void emit_constraint_double(const char* name, CommandLineFlagConstraintFunc_double func, CommandLineFlagConstraint::ConstraintType type) {
CommandLineFlagConstraintList::add(new CommandLineFlagConstraint_double(name, func, type));
}
// Generate code to call emit_constraint_xxx function
@ -201,16 +217,17 @@ void emit_constraint_double(const char* name, CommandLineFlagConstraintFunc_doub
#define EMIT_CONSTRAINT_LP64_PRODUCT_FLAG(type, name, value, doc) ); emit_constraint_##type(#name
// Generate func argument to pass into emit_constraint_xxx functions
#define EMIT_CONSTRAINT_CHECK(func) , func
#define EMIT_CONSTRAINT_CHECK(func, type) , func, CommandLineFlagConstraint::type
// the "name" argument must be a string literal
#define INITIAL_CONTRAINTS_SIZE 16
#define INITIAL_CONSTRAINTS_SIZE 16
GrowableArray<CommandLineFlagConstraint*>* CommandLineFlagConstraintList::_constraints = NULL;
CommandLineFlagConstraint::ConstraintType CommandLineFlagConstraintList::_validating_type = CommandLineFlagConstraint::AtParse;
// Check the ranges of all flags that have them or print them out and exit if requested
void CommandLineFlagConstraintList::init(void) {
_constraints = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<CommandLineFlagConstraint*>(INITIAL_CONTRAINTS_SIZE, true);
_constraints = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<CommandLineFlagConstraint*>(INITIAL_CONSTRAINTS_SIZE, true);
emit_constraint_no(NULL RUNTIME_FLAGS(EMIT_CONSTRAINT_DEVELOPER_FLAG,
EMIT_CONSTRAINT_PD_DEVELOPER_FLAG,
@ -273,14 +290,89 @@ void CommandLineFlagConstraintList::init(void) {
#endif // INCLUDE_ALL_GCS
}
CommandLineFlagConstraint* CommandLineFlagConstraintList::find(const char* name) {
// Find constraints by name and return only if found constraint's type is equal or lower than current validating type.
CommandLineFlagConstraint* CommandLineFlagConstraintList::find_if_needs_check(const char* name) {
CommandLineFlagConstraint* found = NULL;
for (int i=0; i<length(); i++) {
CommandLineFlagConstraint* constraint = at(i);
if (strcmp(constraint->name(), name) == 0) {
if ((strcmp(constraint->name(), name) == 0) &&
(constraint->type() <= _validating_type)) {
found = constraint;
break;
}
}
return found;
}
// Check constraints for specific constraint type.
bool CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::ConstraintType type) {
//#define PRINT_CONSTRAINTS_SIZES
#ifdef PRINT_CONSTRAINTS_SIZES
{
size_t size_constraints = sizeof(CommandLineFlagConstraintList);
for (int i=0; i<length(); i++) {
size_constraints += sizeof(CommandLineFlagConstraint);
CommandLineFlagConstraint* constraint = at(i);
const char* name = constraint->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag->is_bool()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_bool);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_intx()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_intx);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_uintx()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_uintx);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_uint64_t()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_uint64_t);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_size_t()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_size_t);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_double()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_double);
size_constraints += sizeof(CommandLineFlagConstraint*);
}
}
fprintf(stderr, "Size of %d constraints: " SIZE_FORMAT " bytes\n",
length(), size_constraints);
}
#endif // PRINT_CONSTRAINTS_SIZES
// Skip if we already checked.
if (type < _validating_type) {
return true;
}
_validating_type = type;
bool status = true;
for (int i=0; i<length(); i++) {
CommandLineFlagConstraint* constraint = at(i);
if (type != constraint->type()) continue;
const char*name = constraint->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag != NULL) {
if (flag->is_bool()) {
bool value = flag->get_bool();
if (constraint->apply_bool(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_intx()) {
intx value = flag->get_intx();
if (constraint->apply_intx(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uintx()) {
uintx value = flag->get_uintx();
if (constraint->apply_uintx(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uint64_t()) {
uint64_t value = flag->get_uint64_t();
if (constraint->apply_uint64_t(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_size_t()) {
size_t value = flag->get_size_t();
if (constraint->apply_size_t(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_double()) {
double value = flag->get_double();
if (constraint->apply_double(&value, true) != Flag::SUCCESS) status = false;
}
}
}
return status;
}

View File

@ -49,13 +49,27 @@ typedef Flag::Error (*CommandLineFlagConstraintFunc_size_t)(bool verbose, size_t
typedef Flag::Error (*CommandLineFlagConstraintFunc_double)(bool verbose, double* value);
class CommandLineFlagConstraint : public CHeapObj<mtInternal> {
public:
// During VM initialization, constraint validation will be done order of ConstraintType.
enum ConstraintType {
// Will be validated during argument processing (Arguments::parse_argument).
AtParse = 0,
// Will be validated by CommandLineFlags::check_constraints_of_after_ergo().
AfterErgo = 1,
// Will be validated by CommandLineFlags::check_constraints_of_after_memory_init().
AfterMemoryInit = 2
};
private:
const char* _name;
ConstraintType _validate_type;
public:
// the "name" argument must be a string literal
CommandLineFlagConstraint(const char* name) { _name=name; };
CommandLineFlagConstraint(const char* name, ConstraintType type) { _name=name; _validate_type=type; };
~CommandLineFlagConstraint() {};
const char* name() { return _name; }
const char* name() const { return _name; }
ConstraintType type() const { return _validate_type; }
virtual Flag::Error apply_bool(bool* value, bool verbose = true) { ShouldNotReachHere(); return Flag::ERR_OTHER; };
virtual Flag::Error apply_int(int* value, bool verbose = true) { ShouldNotReachHere(); return Flag::ERR_OTHER; };
virtual Flag::Error apply_intx(intx* value, bool verbose = true) { ShouldNotReachHere(); return Flag::ERR_OTHER; };
@ -69,12 +83,17 @@ public:
class CommandLineFlagConstraintList : public AllStatic {
private:
static GrowableArray<CommandLineFlagConstraint*>* _constraints;
// Latest constraint validation type.
static CommandLineFlagConstraint::ConstraintType _validating_type;
public:
static void init();
static int length() { return (_constraints != NULL) ? _constraints->length() : 0; }
static CommandLineFlagConstraint* at(int i) { return (_constraints != NULL) ? _constraints->at(i) : NULL; }
static CommandLineFlagConstraint* find(const char* name);
static CommandLineFlagConstraint* find_if_needs_check(const char* name);
static void add(CommandLineFlagConstraint* constraint) { _constraints->append(constraint); }
// True if 'AfterErgo' or later constraint functions are validated.
static bool validated_after_ergo() { return _validating_type >= CommandLineFlagConstraint::AfterErgo; };
static bool check_constraints(CommandLineFlagConstraint::ConstraintType type);
};
#endif /* SHARE_VM_RUNTIME_COMMANDLINEFLAGCONSTRAINTLIST_HPP */

View File

@ -29,16 +29,57 @@
#include "utilities/defaultStream.hpp"
Flag::Error AliasLevelConstraintFunc(bool verbose, intx* value) {
if (CommandLineFlags::finishedInitializing() == true) {
if ((*value <= 1) && (Arguments::mode() == Arguments::_comp)) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"AliasLevel (" INTX_FORMAT ") is not compatible "
"with -Xcomp \n",
*value);
}
return Flag::VIOLATES_CONSTRAINT;
if ((*value <= 1) && (Arguments::mode() == Arguments::_comp)) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"AliasLevel (" INTX_FORMAT ") is not compatible "
"with -Xcomp \n",
*value);
}
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
}
/**
* Validate the minimum number of compiler threads needed to run the
* JVM. The following configurations are possible.
*
* 1) The JVM is build using an interpreter only. As a result, the minimum number of
* compiler threads is 0.
* 2) The JVM is build using the compiler(s) and tiered compilation is disabled. As
* a result, either C1 or C2 is used, so the minimum number of compiler threads is 1.
* 3) The JVM is build using the compiler(s) and tiered compilation is enabled. However,
* the option "TieredStopAtLevel < CompLevel_full_optimization". As a result, only
* C1 can be used, so the minimum number of compiler threads is 1.
* 4) The JVM is build using the compilers and tiered compilation is enabled. The option
* 'TieredStopAtLevel = CompLevel_full_optimization' (the default value). As a result,
* the minimum number of compiler threads is 2.
*/
Flag::Error CICompilerCountConstraintFunc(bool verbose, intx* value) {
int min_number_of_compiler_threads = 0;
#if !defined(COMPILER1) && !defined(COMPILER2) && !defined(SHARK)
// case 1
#else
if (!TieredCompilation || (TieredStopAtLevel < CompLevel_full_optimization)) {
min_number_of_compiler_threads = 1; // case 2 or case 3
} else {
min_number_of_compiler_threads = 2; // case 4 (tiered)
}
#endif
// The default CICompilerCount's value is CI_COMPILER_COUNT.
assert(min_number_of_compiler_threads <= CI_COMPILER_COUNT, "minimum should be less or equal default number");
if (*value < (intx)min_number_of_compiler_threads) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"CICompilerCount=" INTX_FORMAT " must be at least %d \n",
*value, min_number_of_compiler_threads);
}
return Flag::VIOLATES_CONSTRAINT;
} else {
return Flag::SUCCESS;
}
return Flag::SUCCESS;
}

View File

@ -36,4 +36,6 @@
Flag::Error AliasLevelConstraintFunc(bool verbose, intx* value);
Flag::Error CICompilerCountConstraintFunc(bool verbose, intx* value);
#endif /* SHARE_VM_RUNTIME_COMMANDLINEFLAGCONSTRAINTSCOMPILER_HPP */

View File

@ -30,6 +30,9 @@
#if INCLUDE_ALL_GCS
#include "gc/g1/g1_globals.hpp"
#include "gc/g1/heapRegionBounds.inline.hpp"
#include "gc/parallel/parallelScavengeHeap.hpp"
#include "gc/shared/plab.hpp"
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
#include "c1/c1_globals.hpp"
@ -38,8 +41,49 @@
#include "opto/c2_globals.hpp"
#endif // COMPILER2
static Flag::Error MinPLABSizeBounds(const char* name, bool verbose, size_t* value) {
#if INCLUDE_ALL_GCS
if ((UseConcMarkSweepGC || UseG1GC) && (*value < PLAB::min_size())) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"%s (" SIZE_FORMAT ") must be greater than "
"ergonomic PLAB minimum size (" SIZE_FORMAT ")\n",
name, *value, PLAB::min_size());
}
return Flag::VIOLATES_CONSTRAINT;
}
#endif // INCLUDE_ALL_GCS
return Flag::SUCCESS;
}
static Flag::Error MaxPLABSizeBounds(const char* name, bool verbose, size_t* value) {
#if INCLUDE_ALL_GCS
if ((UseConcMarkSweepGC || UseG1GC) && (*value > PLAB::max_size())) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"%s (" SIZE_FORMAT ") must be less than "
"ergonomic PLAB maximum size (" SIZE_FORMAT ")\n",
name, *value, PLAB::max_size());
}
return Flag::VIOLATES_CONSTRAINT;
}
#endif // INCLUDE_ALL_GCS
return Flag::SUCCESS;
}
static Flag::Error MinMaxPLABSizeBounds(const char* name, bool verbose, size_t* value) {
if (MinPLABSizeBounds(name, verbose, value) == Flag::SUCCESS) {
return MaxPLABSizeBounds(name, verbose, value);
}
return Flag::VIOLATES_CONSTRAINT;
}
Flag::Error YoungPLABSizeConstraintFunc(bool verbose, size_t* value) {
return MinMaxPLABSizeBounds("YoungPLABSize", verbose, value);
}
Flag::Error MinHeapFreeRatioConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value > MaxHeapFreeRatio)) {
if (*value > MaxHeapFreeRatio) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"MinHeapFreeRatio (" UINTX_FORMAT ") must be less than or "
@ -53,7 +97,7 @@ Flag::Error MinHeapFreeRatioConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error MaxHeapFreeRatioConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value < MinHeapFreeRatio)) {
if (*value < MinHeapFreeRatio) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"MaxHeapFreeRatio (" UINTX_FORMAT ") must be greater than or "
@ -67,7 +111,7 @@ Flag::Error MaxHeapFreeRatioConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error MinMetaspaceFreeRatioConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value > MaxMetaspaceFreeRatio)) {
if (*value > MaxMetaspaceFreeRatio) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"MinMetaspaceFreeRatio (" UINTX_FORMAT ") must be less than or "
@ -81,7 +125,7 @@ Flag::Error MinMetaspaceFreeRatioConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error MaxMetaspaceFreeRatioConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value < MinMetaspaceFreeRatio)) {
if (*value < MinMetaspaceFreeRatio) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"MaxMetaspaceFreeRatio (" UINTX_FORMAT ") must be greater than or "
@ -106,7 +150,7 @@ Flag::Error MaxMetaspaceFreeRatioConstraintFunc(bool verbose, uintx* value) {
Flag::Error InitialTenuringThresholdConstraintFunc(bool verbose, uintx* value) {
UseConcMarkSweepGCWorkaroundIfNeeded(*value, MaxTenuringThreshold);
if ((CommandLineFlags::finishedInitializing()) && (*value > MaxTenuringThreshold)) {
if (*value > MaxTenuringThreshold) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"InitialTenuringThreshold (" UINTX_FORMAT ") must be less than or "
@ -122,7 +166,7 @@ Flag::Error InitialTenuringThresholdConstraintFunc(bool verbose, uintx* value) {
Flag::Error MaxTenuringThresholdConstraintFunc(bool verbose, uintx* value) {
UseConcMarkSweepGCWorkaroundIfNeeded(InitialTenuringThreshold, *value);
if ((CommandLineFlags::finishedInitializing()) && (*value < InitialTenuringThreshold)) {
if (*value < InitialTenuringThreshold) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"MaxTenuringThreshold (" UINTX_FORMAT ") must be greater than or "
@ -136,9 +180,8 @@ Flag::Error MaxTenuringThresholdConstraintFunc(bool verbose, uintx* value) {
}
#if INCLUDE_ALL_GCS
Flag::Error G1NewSizePercentConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value > G1MaxNewSizePercent)) {
if (*value > G1MaxNewSizePercent) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"G1NewSizePercent (" UINTX_FORMAT ") must be less than or "
@ -152,7 +195,7 @@ Flag::Error G1NewSizePercentConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error G1MaxNewSizePercentConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value < G1NewSizePercent)) {
if (*value < G1NewSizePercent) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"G1MaxNewSizePercent (" UINTX_FORMAT ") must be greater than or "
@ -168,7 +211,7 @@ Flag::Error G1MaxNewSizePercentConstraintFunc(bool verbose, uintx* value) {
#endif // INCLUDE_ALL_GCS
Flag::Error CMSOldPLABMinConstraintFunc(bool verbose, size_t* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value > CMSOldPLABMax)) {
if (*value > CMSOldPLABMax) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"CMSOldPLABMin (" SIZE_FORMAT ") must be less than or "
@ -182,7 +225,7 @@ Flag::Error CMSOldPLABMinConstraintFunc(bool verbose, size_t* value) {
}
Flag::Error CMSPrecleanDenominatorConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value <= CMSPrecleanNumerator)) {
if (*value <= CMSPrecleanNumerator) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"CMSPrecleanDenominator (" UINTX_FORMAT ") must be strickly greater than "
@ -196,7 +239,7 @@ Flag::Error CMSPrecleanDenominatorConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error CMSPrecleanNumeratorConstraintFunc(bool verbose, uintx* value) {
if ((CommandLineFlags::finishedInitializing()) && (*value > (CMSPrecleanDenominator - 1))) {
if (*value > (CMSPrecleanDenominator - 1)) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"CMSPrecleanNumerator (" UINTX_FORMAT ") must be less than or "
@ -210,25 +253,23 @@ Flag::Error CMSPrecleanNumeratorConstraintFunc(bool verbose, uintx* value) {
}
Flag::Error SurvivorAlignmentInBytesConstraintFunc(bool verbose, intx* value) {
if (CommandLineFlags::finishedInitializing()) {
if (*value != 0) {
if (!is_power_of_2(*value)) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be power of 2\n",
*value);
}
return Flag::VIOLATES_CONSTRAINT;
if (*value != 0) {
if (!is_power_of_2(*value)) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be power of 2\n",
*value);
}
if (*value < ObjectAlignmentInBytes) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be greater than or "
"equal to ObjectAlignmentInBytes (" INTX_FORMAT ") \n",
*value, ObjectAlignmentInBytes);
}
return Flag::VIOLATES_CONSTRAINT;
return Flag::VIOLATES_CONSTRAINT;
}
if (*value < ObjectAlignmentInBytes) {
if (verbose == true) {
jio_fprintf(defaultStream::error_stream(),
"SurvivorAlignmentInBytes (" INTX_FORMAT ") must be greater than or "
"equal to ObjectAlignmentInBytes (" INTX_FORMAT ")\n",
*value, ObjectAlignmentInBytes);
}
return Flag::VIOLATES_CONSTRAINT;
}
}
return Flag::SUCCESS;

View File

@ -34,6 +34,8 @@
* an appropriate error value.
*/
Flag::Error YoungPLABSizeConstraintFunc(bool verbose, size_t* value);
Flag::Error MinHeapFreeRatioConstraintFunc(bool verbose, uintx* value);
Flag::Error MaxHeapFreeRatioConstraintFunc(bool verbose, uintx* value);

View File

@ -365,3 +365,63 @@ void CommandLineFlagRangeList::print(const char* name, outputStream* st, bool un
st->print("[ ... ]");
}
}
bool CommandLineFlagRangeList::check_ranges() {
//#define PRINT_RANGES_SIZES
#ifdef PRINT_RANGES_SIZES
{
size_t size_ranges = sizeof(CommandLineFlagRangeList);
for (int i=0; i<length(); i++) {
size_ranges += sizeof(CommandLineFlagRange);
CommandLineFlagRange* range = at(i);
const char* name = range->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag->is_intx()) {
size_ranges += 2*sizeof(intx);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_uintx()) {
size_ranges += 2*sizeof(uintx);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_uint64_t()) {
size_ranges += 2*sizeof(uint64_t);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_size_t()) {
size_ranges += 2*sizeof(size_t);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_double()) {
size_ranges += 2*sizeof(double);
size_ranges += sizeof(CommandLineFlagRange*);
}
}
fprintf(stderr, "Size of %d ranges: " SIZE_FORMAT " bytes\n",
length(), size_ranges);
}
#endif // PRINT_RANGES_SIZES
// Check ranges.
bool status = true;
for (int i=0; i<length(); i++) {
CommandLineFlagRange* range = at(i);
const char* name = range->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag != NULL) {
if (flag->is_intx()) {
intx value = flag->get_intx();
if (range->check_intx(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uintx()) {
uintx value = flag->get_uintx();
if (range->check_uintx(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uint64_t()) {
uint64_t value = flag->get_uint64_t();
if (range->check_uint64_t(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_size_t()) {
size_t value = flag->get_size_t();
if (range->check_size_t(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_double()) {
double value = flag->get_double();
if (range->check_double(value, true) != Flag::SUCCESS) status = false;
}
}
}
return status;
}

View File

@ -66,6 +66,8 @@ public:
static CommandLineFlagRange* find(const char* name);
static void add(CommandLineFlagRange* range) { _ranges->append(range); }
static void print(const char* name, outputStream* st, bool unspecified = false);
// Check the final values of all flags for ranges.
static bool check_ranges();
};
#endif // SHARE_VM_RUNTIME_COMMANDLINEFLAGRANGELIST_HPP

View File

@ -770,7 +770,7 @@ static Flag::Error get_status_error(Flag::Error status_range, Flag::Error status
static Flag::Error apply_constraint_and_check_range_bool(const char* name, bool* new_value, bool verbose = true) {
Flag::Error status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
status = constraint->apply_bool(new_value, verbose);
}
@ -789,7 +789,7 @@ Flag::Error CommandLineFlags::boolAtPut(const char* name, size_t len, bool* valu
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_bool()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_bool(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_bool(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
bool old_value = result->get_bool();
trace_flag_changed<EventBooleanFlagChanged, bool>(name, old_value, *value, origin);
@ -817,7 +817,7 @@ static Flag::Error apply_constraint_and_check_range_int(const char* name, int* n
range_status = range->check_int(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_int(new_value, verbose);
}
@ -836,7 +836,7 @@ Flag::Error CommandLineFlags::intAtPut(const char* name, size_t len, int* value,
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_int()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_int(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_int(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
int old_value = result->get_int();
trace_flag_changed<EventIntFlagChanged, s4>(name, old_value, *value, origin);
@ -862,7 +862,7 @@ static Flag::Error apply_constraint_and_check_range_uint(const char* name, uint*
range_status = range->check_uint(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_uint(new_value, verbose);
}
@ -881,7 +881,7 @@ Flag::Error CommandLineFlags::uintAtPut(const char* name, size_t len, uint* valu
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_uint()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_uint(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_uint(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
uint old_value = result->get_uint();
trace_flag_changed<EventUnsignedIntFlagChanged, u4>(name, old_value, *value, origin);
@ -915,7 +915,7 @@ static Flag::Error apply_constraint_and_check_range_intx(const char* name, intx*
range_status = range->check_intx(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_intx(new_value, verbose);
}
@ -926,7 +926,7 @@ Flag::Error CommandLineFlags::intxAtPut(const char* name, size_t len, intx* valu
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_intx()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_intx(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_intx(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
intx old_value = result->get_intx();
trace_flag_changed<EventLongFlagChanged, intx>(name, old_value, *value, origin);
@ -962,7 +962,7 @@ static Flag::Error apply_constraint_and_check_range_uintx(const char* name, uint
range_status = range->check_uintx(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_uintx(new_value, verbose);
}
@ -973,7 +973,7 @@ Flag::Error CommandLineFlags::uintxAtPut(const char* name, size_t len, uintx* va
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_uintx()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_uintx(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_uintx(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
uintx old_value = result->get_uintx();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
@ -1009,7 +1009,7 @@ static Flag::Error apply_constraint_and_check_range_uint64_t(const char* name, u
range_status = range->check_uint64_t(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_uint64_t(new_value, verbose);
}
@ -1020,7 +1020,7 @@ Flag::Error CommandLineFlags::uint64_tAtPut(const char* name, size_t len, uint64
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_uint64_t()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_uint64_t(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_uint64_t(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
uint64_t old_value = result->get_uint64_t();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
@ -1056,7 +1056,7 @@ static Flag::Error apply_constraint_and_check_range_size_t(const char* name, siz
range_status = range->check_size_t(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_size_t(new_value, verbose);
}
@ -1067,7 +1067,7 @@ Flag::Error CommandLineFlags::size_tAtPut(const char* name, size_t len, size_t*
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_size_t()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_size_t(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_size_t(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
size_t old_value = result->get_size_t();
trace_flag_changed<EventUnsignedLongFlagChanged, u8>(name, old_value, *value, origin);
@ -1103,7 +1103,7 @@ static Flag::Error apply_constraint_and_check_range_double(const char* name, dou
range_status = range->check_double(*new_value, verbose);
}
Flag::Error constraint_status = Flag::SUCCESS;
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find(name);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::find_if_needs_check(name);
if (constraint != NULL) {
constraint_status = constraint->apply_double(new_value, verbose);
}
@ -1114,7 +1114,7 @@ Flag::Error CommandLineFlags::doubleAtPut(const char* name, size_t len, double*
Flag* result = Flag::find_flag(name, len);
if (result == NULL) return Flag::INVALID_FLAG;
if (!result->is_double()) return Flag::WRONG_FORMAT;
Flag::Error check = apply_constraint_and_check_range_double(name, value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_double(name, value, !CommandLineFlagConstraintList::validated_after_ergo());
if (check != Flag::SUCCESS) return check;
double old_value = result->get_double();
trace_flag_changed<EventDoubleFlagChanged, double>(name, old_value, *value, origin);
@ -1127,7 +1127,7 @@ Flag::Error CommandLineFlags::doubleAtPut(const char* name, size_t len, double*
Flag::Error CommandLineFlagsEx::doubleAtPut(CommandLineFlagWithType flag, double value, Flag::Flags origin) {
Flag* faddr = address_of_flag(flag);
guarantee(faddr != NULL && faddr->is_double(), "wrong flag type");
Flag::Error check = apply_constraint_and_check_range_double(faddr->_name, &value, !CommandLineFlags::finishedInitializing());
Flag::Error check = apply_constraint_and_check_range_double(faddr->_name, &value);
if (check != Flag::SUCCESS) return check;
trace_flag_changed<EventDoubleFlagChanged, double>(faddr->_name, faddr->get_double(), value, origin);
faddr->set_double(value);
@ -1210,129 +1210,6 @@ void CommandLineFlags::printSetFlags(outputStream* out) {
FREE_C_HEAP_ARRAY(Flag*, array);
}
bool CommandLineFlags::_finished_initializing = false;
bool CommandLineFlags::check_all_ranges_and_constraints() {
//#define PRINT_RANGES_AND_CONSTRAINTS_SIZES
#ifdef PRINT_RANGES_AND_CONSTRAINTS_SIZES
{
size_t size_ranges = sizeof(CommandLineFlagRangeList);
for (int i=0; i<CommandLineFlagRangeList::length(); i++) {
size_ranges += sizeof(CommandLineFlagRange);
CommandLineFlagRange* range = CommandLineFlagRangeList::at(i);
const char* name = range->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag->is_intx()) {
size_ranges += 2*sizeof(intx);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_uintx()) {
size_ranges += 2*sizeof(uintx);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_uint64_t()) {
size_ranges += 2*sizeof(uint64_t);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_size_t()) {
size_ranges += 2*sizeof(size_t);
size_ranges += sizeof(CommandLineFlagRange*);
} else if (flag->is_double()) {
size_ranges += 2*sizeof(double);
size_ranges += sizeof(CommandLineFlagRange*);
}
}
fprintf(stderr, "Size of %d ranges: " SIZE_FORMAT " bytes\n",
CommandLineFlagRangeList::length(), size_ranges);
}
{
size_t size_constraints = sizeof(CommandLineFlagConstraintList);
for (int i=0; i<CommandLineFlagConstraintList::length(); i++) {
size_constraints += sizeof(CommandLineFlagConstraint);
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::at(i);
const char* name = constraint->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag->is_bool()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_bool);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_intx()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_intx);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_uintx()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_uintx);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_uint64_t()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_uint64_t);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_size_t()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_size_t);
size_constraints += sizeof(CommandLineFlagConstraint*);
} else if (flag->is_double()) {
size_constraints += sizeof(CommandLineFlagConstraintFunc_double);
size_constraints += sizeof(CommandLineFlagConstraint*);
}
}
fprintf(stderr, "Size of %d constraints: " SIZE_FORMAT " bytes\n",
CommandLineFlagConstraintList::length(), size_constraints);
}
#endif // PRINT_RANGES_AND_CONSTRAINTS_SIZES
_finished_initializing = true;
bool status = true;
for (int i=0; i<CommandLineFlagRangeList::length(); i++) {
CommandLineFlagRange* range = CommandLineFlagRangeList::at(i);
const char* name = range->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag != NULL) {
if (flag->is_intx()) {
intx value = flag->get_intx();
if (range->check_intx(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uintx()) {
uintx value = flag->get_uintx();
if (range->check_uintx(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uint64_t()) {
uint64_t value = flag->get_uint64_t();
if (range->check_uint64_t(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_size_t()) {
size_t value = flag->get_size_t();
if (range->check_size_t(value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_double()) {
double value = flag->get_double();
if (range->check_double(value, true) != Flag::SUCCESS) status = false;
}
}
}
for (int i=0; i<CommandLineFlagConstraintList::length(); i++) {
CommandLineFlagConstraint* constraint = CommandLineFlagConstraintList::at(i);
const char*name = constraint->name();
Flag* flag = Flag::find_flag(name, strlen(name), true, true);
if (flag != NULL) {
if (flag->is_bool()) {
bool value = flag->get_bool();
if (constraint->apply_bool(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_intx()) {
intx value = flag->get_intx();
if (constraint->apply_intx(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uintx()) {
uintx value = flag->get_uintx();
if (constraint->apply_uintx(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_uint64_t()) {
uint64_t value = flag->get_uint64_t();
if (constraint->apply_uint64_t(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_size_t()) {
size_t value = flag->get_size_t();
if (constraint->apply_size_t(&value, true) != Flag::SUCCESS) status = false;
} else if (flag->is_double()) {
double value = flag->get_double();
if (constraint->apply_double(&value, true) != Flag::SUCCESS) status = false;
}
}
}
Arguments::post_final_range_and_constraint_check(status);
return status;
}
#ifndef PRODUCT
void CommandLineFlags::verify() {

View File

@ -450,7 +450,6 @@ class SizeTFlagSetting {
class CommandLineFlags {
static bool _finished_initializing;
public:
static Flag::Error boolAt(const char* name, size_t len, bool* value, bool allow_locked = false, bool return_flag = false);
static Flag::Error boolAt(const char* name, bool* value, bool allow_locked = false, bool return_flag = false) { return boolAt(name, strlen(name), value, allow_locked, return_flag); }
@ -506,12 +505,6 @@ public:
// printRanges will print out flags type, name and range values as expected by -XX:+PrintFlagsRanges
static void printFlags(outputStream* out, bool withComments, bool printRanges = false);
// Returns true if all flags have their final values set (ready for ranges and constraint check)
static bool finishedInitializing() { return _finished_initializing; }
// Check the final values of all flags for ranges and constraints
static bool check_all_ranges_and_constraints();
static void verify() PRODUCT_RETURN;
};
@ -640,7 +633,7 @@ public:
lp64_product(intx, ObjectAlignmentInBytes, 8, \
"Default object alignment in bytes, 8 is minimum") \
range(8, 256) \
constraint(ObjectAlignmentInBytesConstraintFunc) \
constraint(ObjectAlignmentInBytesConstraintFunc,AtParse) \
\
product(bool, AssumeMP, false, \
"Instruct the VM to assume multiple processors are available") \
@ -1286,7 +1279,7 @@ public:
\
experimental(intx, SyncVerbose, 0, "(Unstable)") \
\
product(bool, InlineNotify, true, "intrinsify subset of notify" ) \
diagnostic(bool, InlineNotify, true, "intrinsify subset of notify") \
\
experimental(intx, ClearFPUAtPark, 0, "(Unsafe, Unstable)") \
\
@ -1396,7 +1389,7 @@ public:
product(intx, ContendedPaddingWidth, 128, \
"How many bytes to pad the fields/classes marked @Contended with")\
range(0, 8192) \
constraint(ContendedPaddingWidthConstraintFunc) \
constraint(ContendedPaddingWidthConstraintFunc,AtParse) \
\
product(bool, EnableContended, true, \
"Enable @Contended annotation support") \
@ -1597,6 +1590,7 @@ public:
\
product(size_t, YoungPLABSize, 4096, \
"Size of young gen promotion LAB's (in HeapWords)") \
constraint(YoungPLABSizeConstraintFunc,AfterMemoryInit) \
\
product(size_t, OldPLABSize, 1024, \
"Size of old gen promotion LAB's (in HeapWords), or Number \
@ -1735,7 +1729,7 @@ public:
"Minimum size of CMS gen promotion LAB caches per worker " \
"per block size") \
range(1, max_uintx) \
constraint(CMSOldPLABMinConstraintFunc) \
constraint(CMSOldPLABMinConstraintFunc,AfterErgo) \
\
product(uintx, CMSOldPLABNumRefills, 4, \
"Nominal number of refills of CMS gen promotion LAB cache " \
@ -1931,13 +1925,13 @@ public:
"CMSPrecleanNumerator:CMSPrecleanDenominator yields convergence " \
"ratio") \
range(1, max_uintx) \
constraint(CMSPrecleanDenominatorConstraintFunc) \
constraint(CMSPrecleanDenominatorConstraintFunc,AfterErgo) \
\
product(uintx, CMSPrecleanNumerator, 2, \
"CMSPrecleanNumerator:CMSPrecleanDenominator yields convergence " \
"ratio") \
range(0, max_uintx-1) \
constraint(CMSPrecleanNumeratorConstraintFunc) \
constraint(CMSPrecleanNumeratorConstraintFunc,AfterErgo) \
\
product(bool, CMSPrecleanRefLists1, true, \
"Preclean ref lists during (initial) preclean phase") \
@ -2649,8 +2643,8 @@ public:
/* because of overflow issue */ \
product(intx, CICompilerCount, CI_COMPILER_COUNT, \
"Number of compiler threads to run") \
range((intx)Arguments::get_min_number_of_compiler_threads(), \
max_jint) \
range(0, max_jint) \
constraint(CICompilerCountConstraintFunc, AtParse) \
\
product(intx, CompilationPolicyChoice, 0, \
"which compilation policy (0-3)") \
@ -3361,14 +3355,14 @@ public:
" For most GCs this applies to the old generation. In G1 and" \
" ParallelGC it applies to the whole heap.") \
range(0, 100) \
constraint(MinHeapFreeRatioConstraintFunc) \
constraint(MinHeapFreeRatioConstraintFunc,AfterErgo) \
\
manageable(uintx, MaxHeapFreeRatio, 70, \
"The maximum percentage of heap free after GC to avoid shrinking."\
" For most GCs this applies to the old generation. In G1 and" \
" ParallelGC it applies to the whole heap.") \
range(0, 100) \
constraint(MaxHeapFreeRatioConstraintFunc) \
constraint(MaxHeapFreeRatioConstraintFunc,AfterErgo) \
\
product(intx, SoftRefLRUPolicyMSPerMB, 1000, \
"Number of milliseconds per MB of free space in the heap") \
@ -3383,13 +3377,13 @@ public:
"The maximum percentage of Metaspace free after GC to avoid " \
"shrinking") \
range(0, 100) \
constraint(MaxMetaspaceFreeRatioConstraintFunc) \
constraint(MaxMetaspaceFreeRatioConstraintFunc,AfterErgo) \
\
product(uintx, MinMetaspaceFreeRatio, 40, \
"The minimum percentage of Metaspace free after GC to avoid " \
"expansion") \
range(0, 99) \
constraint(MinMetaspaceFreeRatioConstraintFunc) \
constraint(MinMetaspaceFreeRatioConstraintFunc,AfterErgo) \
\
product(size_t, MaxMetaspaceExpansion, ScaleForWordSize(4*M), \
"The maximum expansion of Metaspace without full GC (in bytes)") \
@ -3407,12 +3401,12 @@ public:
product(uintx, MaxTenuringThreshold, 15, \
"Maximum value for tenuring threshold") \
range(0, markOopDesc::max_age + 1) \
constraint(MaxTenuringThresholdConstraintFunc) \
constraint(MaxTenuringThresholdConstraintFunc,AfterErgo) \
\
product(uintx, InitialTenuringThreshold, 7, \
"Initial value for tenuring threshold") \
range(0, markOopDesc::max_age + 1) \
constraint(InitialTenuringThresholdConstraintFunc) \
constraint(InitialTenuringThresholdConstraintFunc,AfterErgo) \
\
product(uintx, TargetSurvivorRatio, 50, \
"Desired percentage of survivor space used after scavenge") \
@ -4090,7 +4084,7 @@ public:
\
experimental(intx, SurvivorAlignmentInBytes, 0, \
"Default survivor space alignment in bytes") \
constraint(SurvivorAlignmentInBytesConstraintFunc) \
constraint(SurvivorAlignmentInBytesConstraintFunc,AfterErgo) \
\
product(bool , AllowNonVirtualCalls, false, \
"Obey the ACC_SUPER flag and allow invokenonvirtual calls") \
@ -4194,7 +4188,7 @@ public:
// Only materialize src code for range checking when required, ignore otherwise
#define IGNORE_RANGE(a, b)
// Only materialize src code for contraint checking when required, ignore otherwise
#define IGNORE_CONSTRAINT(func)
#define IGNORE_CONSTRAINT(func,type)
RUNTIME_FLAGS(DECLARE_DEVELOPER_FLAG, \
DECLARE_PD_DEVELOPER_FLAG, \

View File

@ -83,7 +83,6 @@ Mutex* DirtyCardQ_FL_lock = NULL;
Monitor* DirtyCardQ_CBL_mon = NULL;
Mutex* Shared_DirtyCardQ_lock = NULL;
Mutex* ParGCRareEvent_lock = NULL;
Mutex* EvacFailureStack_lock = NULL;
Mutex* DerivedPointerTableGC_lock = NULL;
Mutex* Compile_lock = NULL;
Monitor* MethodCompileQueue_lock = NULL;
@ -201,7 +200,6 @@ void mutex_init() {
def(OldSets_lock , Mutex , leaf , true, Monitor::_safepoint_check_never);
def(RootRegionScan_lock , Monitor, leaf , true, Monitor::_safepoint_check_never);
def(MMUTracker_lock , Mutex , leaf , true, Monitor::_safepoint_check_never);
def(EvacFailureStack_lock , Mutex , nonleaf , true, Monitor::_safepoint_check_never);
def(StringDedupQueue_lock , Monitor, leaf, true, Monitor::_safepoint_check_never);
def(StringDedupTable_lock , Mutex , leaf, true, Monitor::_safepoint_check_never);

View File

@ -87,7 +87,6 @@ extern Mutex* Shared_DirtyCardQ_lock; // Lock protecting dirty card
// non-Java threads.
// (see option ExplicitGCInvokesConcurrent)
extern Mutex* ParGCRareEvent_lock; // Synchronizes various (rare) parallel GC ops.
extern Mutex* EvacFailureStack_lock; // guards the evac failure scan stack
extern Mutex* Compile_lock; // a lock held when Compilation is updating code (used to block CodeCache traversal, CHA updates, etc)
extern Monitor* MethodCompileQueue_lock; // a lock held when method compilations are enqueued, dequeued
extern Monitor* CompileThread_lock; // a lock held by compile threads during compilation system initialization

View File

@ -843,6 +843,28 @@ void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
pd_print_cpu_info(st, buf, buflen);
}
// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
st->print("Host: ");
#ifndef PRODUCT
if (get_host_name(buf, buflen)) {
st->print("%s, ", buf);
}
#endif // PRODUCT
get_summary_cpu_info(buf, buflen);
st->print("%s, ", buf);
size_t mem = physical_memory()/G;
if (mem == 0) { // for low memory systems
mem = physical_memory()/M;
st->print("%d cores, %dM, ", processor_count(), mem);
} else {
st->print("%d cores, %dG, ", processor_count(), mem);
}
get_summary_os_info(buf, buflen);
st->print_raw(buf);
st->cr();
}
void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
const int secs_per_day = 86400;
const int secs_per_hour = 3600;
@ -850,12 +872,19 @@ void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
time_t tloc;
(void)time(&tloc);
st->print("time: %s", ctime(&tloc)); // ctime adds newline.
char* timestring = ctime(&tloc); // ctime adds newline.
// edit out the newline
char* nl = strchr(timestring, '\n');
if (nl != NULL) {
*nl = '\0';
}
struct tm tz;
if (localtime_pd(&tloc, &tz) != NULL) {
::strftime(buf, buflen, "%Z", &tz);
st->print_cr("timezone: %s", buf);
st->print("Time: %s %s", timestring, buf);
} else {
st->print("Time: %s", timestring);
}
double t = os::elapsedTime();
@ -872,7 +901,7 @@ void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
int minute_secs = elmins * secs_per_min;
int elsecs = (eltime - day_secs - hour_secs - minute_secs);
st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
}
// moved from debug.cpp (used to be find()) but still called from there

View File

@ -150,6 +150,11 @@ class os: AllStatic {
static size_t page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned);
// Get summary strings for system information in buffer provided
static bool get_host_name(char* buf, size_t buflen) PRODUCT_RETURN_(return false;); // true if available
static void get_summary_cpu_info(char* buf, size_t buflen);
static void get_summary_os_info(char* buf, size_t buflen);
public:
static void init(void); // Called before command line parsing
static void init_before_ergo(void); // Called after command line parsing
@ -590,6 +595,7 @@ class os: AllStatic {
static void print_os_info_brief(outputStream* st);
static void print_cpu_info(outputStream* st, char* buf, size_t buflen);
static void pd_print_cpu_info(outputStream* st, char* buf, size_t buflen);
static void print_summary_info(outputStream* st, char* buf, size_t buflen);
static void print_memory_info(outputStream* st);
static void print_dll_info(outputStream* st);
static void print_environment_variables(outputStream* st, const char** env_list);

View File

@ -52,6 +52,8 @@
#include "runtime/arguments.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/commandLineFlagConstraintList.hpp"
#include "runtime/commandLineFlagRangeList.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/frame.inline.hpp"
@ -2739,6 +2741,9 @@ void JavaThread::metadata_do(void f(Metadata*)) {
if (ct->env() != NULL) {
ct->env()->metadata_do(f);
}
if (ct->task() != NULL) {
ct->task()->metadata_do(f);
}
}
}
@ -3319,8 +3324,15 @@ jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
jint ergo_result = Arguments::apply_ergo();
if (ergo_result != JNI_OK) return ergo_result;
// Final check of all arguments after ergonomics which may change values.
if (!CommandLineFlags::check_all_ranges_and_constraints()) {
// Final check of all ranges after ergonomics which may change values.
if (!CommandLineFlagRangeList::check_ranges()) {
return JNI_EINVAL;
}
// Final check of all 'AfterErgo' constraints after ergonomics which may change values.
bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
Arguments::post_after_ergo_constraint_check(constraint_result);
if (!constraint_result) {
return JNI_EINVAL;
}

View File

@ -148,8 +148,7 @@ void javaVFrame::print_locked_object_class_name(outputStream* st, Handle obj, co
if (obj.not_null()) {
st->print("\t- %s <" INTPTR_FORMAT "> ", lock_state, (address)obj());
if (obj->klass() == SystemDictionary::Class_klass()) {
Klass* target_klass = java_lang_Class::as_Klass(obj());
st->print_cr("(a java.lang.Class for %s)", InstanceKlass::cast(target_klass)->external_name());
st->print_cr("(a java.lang.Class for %s)", java_lang_Class::as_external_name(obj()));
} else {
Klass* k = obj->klass();
st->print_cr("(a %s)", k->external_name());

View File

@ -899,6 +899,11 @@ void DumperSupport::dump_class_and_array_classes(DumpWriter* writer, Klass* k) {
assert(klass->oop_is_instance(), "not an InstanceKlass");
InstanceKlass* ik = (InstanceKlass*)klass;
// Ignore the class if it hasn't been initialized yet
if (!ik->is_linked()) {
return;
}
writer->write_u1(HPROF_GC_CLASS_DUMP);
// class ID

View File

@ -25,6 +25,8 @@
#include "precompiled.hpp"
#include "ci/ciMethod.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "memory/resourceArea.hpp"
#include "oops/method.hpp"
#include "runtime/os.hpp"
@ -442,7 +444,7 @@ void SharkBuilder::CreateUpdateBarrierSet(BarrierSet* bs, Value* field) {
Unimplemented();
CreateStore(
LLVMValue::jbyte_constant(CardTableModRefBS::dirty_card),
LLVMValue::jbyte_constant(CardTableModRefBS::dirty_card_val()),
CreateIntToPtr(
CreateAdd(
LLVMValue::intptr_constant(

View File

@ -27,8 +27,6 @@
#define SHARE_VM_SHARK_SHARKBUILDER_HPP
#include "ci/ciType.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/cardTableModRefBS.hpp"
#include "shark/llvmHeaders.hpp"
#include "shark/llvmValue.hpp"
#include "shark/sharkCodeBuffer.hpp"
@ -38,6 +36,8 @@
#include "utilities/debug.hpp"
#include "utilities/sizes.hpp"
class BarrierSet;
class SharkBuilder : public llvm::IRBuilder<> {
friend class SharkCompileInvariants;

View File

@ -306,6 +306,30 @@ void VMError::print_stack_trace(outputStream* st, JavaThread* jt,
#endif // ZERO
}
void VMError::print_oom_reasons(outputStream* st) {
st->print_cr("# Possible reasons:");
st->print_cr("# The system is out of physical RAM or swap space");
st->print_cr("# In 32 bit mode, the process size limit was hit");
st->print_cr("# Possible solutions:");
st->print_cr("# Reduce memory load on the system");
st->print_cr("# Increase physical memory or swap space");
st->print_cr("# Check if swap backing store is full");
st->print_cr("# Use 64 bit Java on a 64 bit OS");
st->print_cr("# Decrease Java heap size (-Xmx/-Xms)");
st->print_cr("# Decrease number of Java threads");
st->print_cr("# Decrease Java thread stack sizes (-Xss)");
st->print_cr("# Set larger code cache with -XX:ReservedCodeCacheSize=");
st->print_cr("# This output file may be truncated or incomplete.");
}
const char* VMError::gc_mode() {
if (UseG1GC) return "g1 gc";
if (UseParallelGC) return "parallel gc";
if (UseConcMarkSweepGC) return "concurrent mark sweep gc";
if (UseSerialGC) return "serial gc";
return "ERROR in GC mode";
}
// This is the main function to report a fatal error. Only one thread can
// call this function, so we don't need to worry about MT-safety. But it's
// possible that the error handler itself may crash or die on an internal
@ -358,21 +382,21 @@ void VMError::report(outputStream* st) {
// test secondary error handling. Test it twice, to test that resetting
// error handler after a secondary crash works.
STEP(11, "(test secondary crash 1)")
STEP(20, "(test secondary crash 1)")
if (_verbose && TestCrashInErrorHandler != 0) {
st->print_cr("Will crash now (TestCrashInErrorHandler=%d)...",
TestCrashInErrorHandler);
controlled_crash(TestCrashInErrorHandler);
}
STEP(12, "(test secondary crash 2)")
STEP(30, "(test secondary crash 2)")
if (_verbose && TestCrashInErrorHandler != 0) {
st->print_cr("Will crash now (TestCrashInErrorHandler=%d)...",
TestCrashInErrorHandler);
controlled_crash(TestCrashInErrorHandler);
}
STEP(13, "(test safefetch in error handler)")
STEP(40, "(test safefetch in error handler)")
// test whether it is safe to use SafeFetch32 in Crash Handler. Test twice
// to test that resetting the signal handler works correctly.
if (_verbose && TestSafeFetchInErrorHandler) {
@ -393,7 +417,7 @@ void VMError::report(outputStream* st) {
}
#endif // PRODUCT
STEP(15, "(printing type of error)")
STEP(50, "(printing type of error)")
switch(_id) {
case OOM_MALLOC_ERROR:
@ -418,19 +442,7 @@ void VMError::report(outputStream* st) {
}
// In error file give some solutions
if (_verbose) {
st->print_cr("# Possible reasons:");
st->print_cr("# The system is out of physical RAM or swap space");
st->print_cr("# In 32 bit mode, the process size limit was hit");
st->print_cr("# Possible solutions:");
st->print_cr("# Reduce memory load on the system");
st->print_cr("# Increase physical memory or swap space");
st->print_cr("# Check if swap backing store is full");
st->print_cr("# Use 64 bit Java on a 64 bit OS");
st->print_cr("# Decrease Java heap size (-Xmx/-Xms)");
st->print_cr("# Decrease number of Java threads");
st->print_cr("# Decrease Java thread stack sizes (-Xss)");
st->print_cr("# Set larger code cache with -XX:ReservedCodeCacheSize=");
st->print_cr("# This output file may be truncated or incomplete.");
print_oom_reasons(st);
} else {
return; // that's enough for the screen
}
@ -440,7 +452,7 @@ void VMError::report(outputStream* st) {
break;
}
STEP(20, "(printing exception/signal name)")
STEP(60, "(printing exception/signal name)")
st->print_cr("#");
st->print("# ");
@ -470,14 +482,14 @@ void VMError::report(outputStream* st) {
}
}
STEP(30, "(printing current thread and pid)")
STEP(70, "(printing current thread and pid)")
// process id, thread id
st->print(", pid=%d", os::current_process_id());
st->print(", tid=" INTPTR_FORMAT, os::current_thread_id());
st->cr();
STEP(40, "(printing error message)")
STEP(80, "(printing error message)")
if (should_report_bug(_id)) { // already printed the message.
// error message
@ -488,7 +500,7 @@ void VMError::report(outputStream* st) {
}
}
STEP(50, "(printing Java version string)")
STEP(90, "(printing Java version string)")
// VM version
st->print_cr("#");
@ -498,15 +510,18 @@ void VMError::report(outputStream* st) {
const char* runtime_version = JDK_Version::runtime_version() != NULL ?
JDK_Version::runtime_version() : "";
st->print_cr("# JRE version: %s (%s) (build %s)", runtime_name, buf, runtime_version);
st->print_cr("# Java VM: %s (%s %s %s %s)",
// This is the long version with some default settings added
st->print_cr("# Java VM: %s (%s, %s%s%s, %s, %s)",
Abstract_VM_Version::vm_name(),
Abstract_VM_Version::vm_release(),
Abstract_VM_Version::vm_info_string(),
Abstract_VM_Version::vm_platform_string(),
UseCompressedOops ? "compressed oops" : ""
TieredCompilation ? ", tiered" : "",
UseCompressedOops ? ", compressed oops" : "",
gc_mode(),
Abstract_VM_Version::vm_platform_string()
);
STEP(60, "(printing problematic frame)")
STEP(100, "(printing problematic frame)")
// Print current frame if we have a context (i.e. it's a crash)
if (_context) {
@ -517,7 +532,8 @@ void VMError::report(outputStream* st) {
st->cr();
st->print_cr("#");
}
STEP(63, "(printing core file information)")
STEP(110, "(printing core file information)")
st->print("# ");
if (CreateCoredumpOnCrash) {
if (coredump_status) {
@ -531,13 +547,42 @@ void VMError::report(outputStream* st) {
st->cr();
st->print_cr("#");
STEP(65, "(printing bug submit message)")
STEP(120, "(printing bug submit message)")
if (should_report_bug(_id) && _verbose) {
print_bug_submit_message(st, _thread);
}
STEP(70, "(printing thread)" )
STEP(130, "(printing summary)" )
if (_verbose) {
st->cr();
st->print_cr("--------------- S U M M A R Y ------------");
st->cr();
}
STEP(140, "(printing VM option summary)" )
if (_verbose) {
// VM options
Arguments::print_summary_on(st);
st->cr();
}
STEP(150, "(printing summary machine and OS info)")
if (_verbose) {
os::print_summary_info(st, buf, sizeof(buf));
}
STEP(160, "(printing date and time)" )
if (_verbose) {
os::print_date_and_time(st, buf, sizeof(buf));
}
STEP(170, "(printing thread)" )
if (_verbose) {
st->cr();
@ -545,7 +590,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(80, "(printing current thread)" )
STEP(180, "(printing current thread)" )
// current thread
if (_verbose) {
@ -559,31 +604,20 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(90, "(printing siginfo)" )
STEP(190, "(printing current compile task)" )
// signal no, signal code, address that caused the fault
if (_verbose && _siginfo) {
os::print_siginfo(st, _siginfo);
st->cr();
if (_verbose && _thread && _thread->is_Compiler_thread()) {
CompilerThread* t = (CompilerThread*)_thread;
if (t->task()) {
st->cr();
st->print_cr("Current CompileTask:");
t->task()->print_line_on_error(st, buf, sizeof(buf));
st->cr();
}
}
STEP(100, "(printing registers, top of stack, instructions near pc)")
// registers, top of stack, instructions near pc
if (_verbose && _context) {
os::print_context(st, _context);
st->cr();
}
STEP(105, "(printing register info)")
// decode register contents if possible
if (_verbose && _context && Universe::is_fully_initialized()) {
os::print_register_info(st, _context);
st->cr();
}
STEP(110, "(printing stack bounds)" )
STEP(200, "(printing stack bounds)" )
if (_verbose) {
st->print("Stack: ");
@ -614,7 +648,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(120, "(printing native stack)" )
STEP(210, "(printing native stack)" )
if (_verbose) {
if (os::platform_print_native_stack(st, _context, buf, sizeof(buf))) {
@ -628,13 +662,13 @@ void VMError::report(outputStream* st) {
}
}
STEP(130, "(printing Java stack)" )
STEP(220, "(printing Java stack)" )
if (_verbose && _thread && _thread->is_Java_thread()) {
print_stack_trace(st, (JavaThread*)_thread, buf, sizeof(buf));
}
STEP(135, "(printing target Java thread stack)" )
STEP(230, "(printing target Java thread stack)" )
// printing Java thread stack trace if it is involved in GC crash
if (_verbose && _thread && (_thread->is_Named_thread())) {
@ -645,7 +679,32 @@ void VMError::report(outputStream* st) {
}
}
STEP(140, "(printing VM operation)" )
STEP(240, "(printing siginfo)" )
// signal no, signal code, address that caused the fault
if (_verbose && _siginfo) {
st->cr();
os::print_siginfo(st, _siginfo);
st->cr();
}
STEP(250, "(printing register info)")
// decode register contents if possible
if (_verbose && _context && Universe::is_fully_initialized()) {
os::print_register_info(st, _context);
st->cr();
}
STEP(260, "(printing registers, top of stack, instructions near pc)")
// registers, top of stack, instructions near pc
if (_verbose && _context) {
os::print_context(st, _context);
st->cr();
}
STEP(270, "(printing VM operation)" )
if (_verbose && _thread && _thread->is_VM_thread()) {
VMThread* t = (VMThread*)_thread;
@ -657,19 +716,7 @@ void VMError::report(outputStream* st) {
}
}
STEP(150, "(printing current compile task)" )
if (_verbose && _thread && _thread->is_Compiler_thread()) {
CompilerThread* t = (CompilerThread*)_thread;
if (t->task()) {
st->cr();
st->print_cr("Current CompileTask:");
t->task()->print_line_on_error(st, buf, sizeof(buf));
st->cr();
}
}
STEP(160, "(printing process)" )
STEP(280, "(printing process)" )
if (_verbose) {
st->cr();
@ -677,7 +724,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(170, "(printing all threads)" )
STEP(290, "(printing all threads)" )
// all threads
if (_verbose && _thread) {
@ -685,7 +732,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(175, "(printing VM state)" )
STEP(300, "(printing VM state)" )
if (_verbose) {
// Safepoint state
@ -707,7 +754,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(180, "(printing owned locks on error)" )
STEP(310, "(printing owned locks on error)" )
// mutexes/monitors that currently have an owner
if (_verbose) {
@ -715,7 +762,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(182, "(printing number of OutOfMemoryError and StackOverflow exceptions)")
STEP(320, "(printing number of OutOfMemoryError and StackOverflow exceptions)")
if (_verbose && Exceptions::has_exception_counts()) {
st->print_cr("OutOfMemory and StackOverflow Exception counts:");
@ -723,7 +770,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(185, "(printing compressed oops mode")
STEP(330, "(printing compressed oops mode")
if (_verbose && UseCompressedOops) {
Universe::print_compressed_oops_mode(st);
@ -733,7 +780,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(190, "(printing heap information)" )
STEP(340, "(printing heap information)" )
if (_verbose && Universe::is_fully_initialized()) {
Universe::heap()->print_on_error(st);
@ -743,7 +790,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(195, "(printing code cache information)" )
STEP(350, "(printing code cache information)" )
if (_verbose && Universe::is_fully_initialized()) {
// print code cache information before vm abort
@ -751,14 +798,14 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(200, "(printing ring buffers)" )
STEP(360, "(printing ring buffers)" )
if (_verbose) {
Events::print_all(st);
st->cr();
}
STEP(205, "(printing dynamic libraries)" )
STEP(370, "(printing dynamic libraries)" )
if (_verbose) {
// dynamic libraries, or memory map
@ -766,7 +813,7 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(210, "(printing VM options)" )
STEP(380, "(printing VM options)" )
if (_verbose) {
// VM options
@ -774,33 +821,33 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(215, "(printing warning if internal testing API used)" )
STEP(390, "(printing warning if internal testing API used)" )
if (WhiteBox::used()) {
st->print_cr("Unsupported internal testing APIs have been used.");
st->cr();
}
STEP(220, "(printing environment variables)" )
STEP(400, "(printing all environment variables)" )
if (_verbose) {
os::print_environment_variables(st, env_list);
st->cr();
}
STEP(225, "(printing signal handlers)" )
STEP(410, "(printing signal handlers)" )
if (_verbose) {
os::print_signal_handlers(st, buf, sizeof(buf));
st->cr();
}
STEP(228, "(Native Memory Tracking)" )
STEP(420, "(Native Memory Tracking)" )
if (_verbose) {
MemTracker::error_report(st);
}
STEP(230, "" )
STEP(430, "(printing system)" )
if (_verbose) {
st->cr();
@ -808,48 +855,39 @@ void VMError::report(outputStream* st) {
st->cr();
}
STEP(240, "(printing OS information)" )
STEP(440, "(printing OS information)" )
if (_verbose) {
os::print_os_info(st);
st->cr();
}
STEP(250, "(printing CPU info)" )
STEP(450, "(printing CPU info)" )
if (_verbose) {
os::print_cpu_info(st, buf, sizeof(buf));
st->cr();
}
STEP(260, "(printing memory info)" )
STEP(460, "(printing memory info)" )
if (_verbose) {
os::print_memory_info(st);
st->cr();
}
STEP(270, "(printing internal vm info)" )
STEP(470, "(printing internal vm info)" )
if (_verbose) {
st->print_cr("vm_info: %s", Abstract_VM_Version::internal_vm_info_string());
st->cr();
}
STEP(280, "(printing date and time)" )
if (_verbose) {
os::print_date_and_time(st, buf, sizeof(buf));
st->cr();
}
#ifndef PRODUCT
// print a defined marker to show that error handling finished correctly.
STEP(290, "(printing end marker)" )
STEP(480, "(printing end marker)" )
if (_verbose) {
st->print_cr("END.");
}
#endif
END

View File

@ -89,6 +89,9 @@ class VMError : public StackObj {
static void print_stack_trace(outputStream* st, JavaThread* jt,
char* buf, int buflen, bool verbose = false);
static const char* gc_mode();
static void print_oom_reasons(outputStream* st);
// accessor
const char* message() const { return _message; }
const char* detail_msg() const { return _detail_msg; }

View File

@ -0,0 +1,135 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import jdk.test.lib.*;
/*
* @test CheckCheckCICompilerCount
* @bug 8130858
* @summary Check that correct range of values for CICompilerCount are allowed depending on whether tiered is enabled or not
* @library /testlibrary
* @modules java.base/sun.misc
* java.management
* @run main CheckCICompilerCount
*/
public class CheckCICompilerCount {
private static final String[][] NON_TIERED_ARGUMENTS = {
{
"-XX:-TieredCompilation",
"-XX:+PrintFlagsFinal",
"-XX:CICompilerCount=0",
"-version"
},
{
"-XX:-TieredCompilation",
"-XX:+PrintFlagsFinal",
"-XX:CICompilerCount=1",
"-version"
}
};
private static final String[][] NON_TIERED_EXPECTED_OUTPUTS = {
{
"CICompilerCount=0 must be at least 1",
"Improperly specified VM option 'CICompilerCount=0'"
},
{
"intx CICompilerCount := 1 {product}"
}
};
private static final int[] NON_TIERED_EXIT = {
1,
0
};
private static final String[][] TIERED_ARGUMENTS = {
{
"-XX:+TieredCompilation",
"-XX:+PrintFlagsFinal",
"-XX:CICompilerCount=1",
"-version"
},
{
"-XX:+TieredCompilation",
"-XX:+PrintFlagsFinal",
"-XX:CICompilerCount=2",
"-version"
}
};
private static final String[][] TIERED_EXPECTED_OUTPUTS = {
{
"CICompilerCount=1 must be at least 2",
"Improperly specified VM option 'CICompilerCount=1'"
},
{
"intx CICompilerCount := 2 {product}"
}
};
private static final int[] TIERED_EXIT = {
1,
0
};
private static void verifyValidOption(String[] arguments, String[] expected_outputs, int exit, boolean tiered) throws Exception {
ProcessBuilder pb;
OutputAnalyzer out;
pb = ProcessTools.createJavaProcessBuilder(arguments);
out = new OutputAnalyzer(pb.start());
try {
out.shouldHaveExitValue(exit);
for (String expected_output : expected_outputs) {
out.shouldContain(expected_output);
}
} catch (RuntimeException e) {
// Check if tiered compilation is available in this JVM
// Version. Throw exception only if it is available.
if (!(tiered && out.getOutput().contains("TieredCompilation is disabled in this release."))) {
throw new RuntimeException(e);
}
}
}
public static void main(String[] args) throws Exception {
if (NON_TIERED_ARGUMENTS.length != NON_TIERED_EXPECTED_OUTPUTS.length || NON_TIERED_ARGUMENTS.length != NON_TIERED_EXIT.length) {
throw new RuntimeException("Test is set up incorrectly: length of arguments, expected outputs and exit codes in non-tiered mode of operation do not match.");
}
if (TIERED_ARGUMENTS.length != TIERED_EXPECTED_OUTPUTS.length || TIERED_ARGUMENTS.length != TIERED_EXIT.length) {
throw new RuntimeException("Test is set up incorrectly: length of arguments, expected outputs and exit codes in tiered mode of operation do not match.");
}
for (int i = 0; i < NON_TIERED_ARGUMENTS.length; i++) {
verifyValidOption(NON_TIERED_ARGUMENTS[i], NON_TIERED_EXPECTED_OUTPUTS[i], NON_TIERED_EXIT[i], false);
}
for (int i = 0; i < TIERED_ARGUMENTS.length; i++) {
verifyValidOption(TIERED_ARGUMENTS[i], TIERED_EXPECTED_OUTPUTS[i], TIERED_EXIT[i], true);
}
}
}

View File

@ -0,0 +1,126 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.lang.reflect.Executable;
import java.util.concurrent.Callable;
import java.util.Objects;
/*
* @test
* @bug 8130832
* @library /testlibrary /../../test/lib /compiler/whitebox /compiler/testlibrary
* @build IntrinsicAvailableTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox
* sun.hotspot.WhiteBox$WhiteBoxPermission
* @run main/othervm -Xbootclasspath/a:.
* -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI
* -XX:+UseCRC32Intrinsics
* IntrinsicAvailableTest
* @run main/othervm -Xbootclasspath/a:.
* -XX:+UnlockDiagnosticVMOptions
* -XX:+WhiteBoxAPI
* -XX:-UseCRC32Intrinsics
* IntrinsicAvailableTest
*/
public class IntrinsicAvailableTest extends CompilerWhiteBoxTest {
protected String VMName;
public IntrinsicAvailableTest(IntrinsicAvailableTestTestCase testCase) {
super(testCase);
VMName = System.getProperty("java.vm.name");
}
public static class IntrinsicAvailableTestTestCase implements TestCase {
public String name() {
return "IntrinsicAvailableTestTestCase";
}
public Executable getExecutable() {
// Using a single method to test the
// WhiteBox.isIntrinsicAvailable(Executable method, int compLevel)
// call for the compilation level corresponding to both the C1 and C2
// compiler keeps the current test simple.
//
// The tested method is java.util.zip.CRC32.update(int, int) because
// both C1 and C2 define an intrinsic for the method and
// the UseCRC32Intrinsics flag can be used to enable/disable
// intrinsification of the method in both product and fastdebug
// builds.
try {
return Class.forName("java.util.zip.CRC32").getDeclaredMethod("update", int.class, int.class);
} catch (NoSuchMethodException e) {
throw new RuntimeException("Test bug, method unavailable. " + e);
} catch (ClassNotFoundException e) {
throw new RuntimeException("Test bug, class unavailable. " + e);
}
}
public Callable<Integer> getCallable() {
return null;
}
public boolean isOsr() {
return false;
}
}
protected void checkIntrinsicForCompilationLevel(Executable method, int compLevel) throws Exception {
boolean intrinsicEnabled = Boolean.valueOf(getVMOption("UseCRC32Intrinsics"));
boolean intrinsicAvailable = WHITE_BOX.isIntrinsicAvailable(method,
compLevel);
String intrinsicEnabledMessage = intrinsicEnabled ? "enabled" : "disabled";
String intrinsicAvailableMessage = intrinsicAvailable ? "available" : "not available";
if (intrinsicEnabled == intrinsicAvailable) {
System.out.println("Expected result: intrinsic for java.util.zip.CRC32.update() is " +
intrinsicEnabledMessage + " and intrinsic is " + intrinsicAvailableMessage +
" at compilation level " + compLevel);
} else {
throw new RuntimeException("Unexpected result: intrinsic for java.util.zip.CRC32.update() is " +
intrinsicEnabledMessage + " but intrinsic is " + intrinsicAvailableMessage +
" at compilation level " + compLevel);
}
}
protected boolean isServerVM() {
return VMName.toLowerCase().contains("server");
}
public void test() throws Exception {
Executable intrinsicMethod = testCase.getExecutable();
if (isServerVM()) {
if (TIERED_COMPILATION) {
checkIntrinsicForCompilationLevel(intrinsicMethod, COMP_LEVEL_SIMPLE);
}
checkIntrinsicForCompilationLevel(intrinsicMethod, COMP_LEVEL_FULL_OPTIMIZATION);
} else {
checkIntrinsicForCompilationLevel(intrinsicMethod, COMP_LEVEL_SIMPLE);
}
}
public static void main(String args[]) throws Exception {
new IntrinsicAvailableTest(new IntrinsicAvailableTestTestCase()).test();
}
}

View File

@ -67,7 +67,7 @@ public abstract class IntrinsicBase extends CompilerWhiteBoxTest {
compileAtLevel(CompilerWhiteBoxTest.COMP_LEVEL_SIMPLE);
}
if (!isIntrinsicSupported()) {
if (!isIntrinsicAvailable()) {
expectedIntrinsicCount = 0;
}
break;
@ -114,7 +114,11 @@ public abstract class IntrinsicBase extends CompilerWhiteBoxTest {
}
}
protected abstract boolean isIntrinsicSupported();
// An intrinsic is available if:
// - the intrinsic is enabled (by using the appropriate command-line flag) and
// - the intrinsic is supported by the VM (i.e., the platform on which the VM is
// running provides the instructions necessary for the VM to generate the intrinsic).
protected abstract boolean isIntrinsicAvailable();
protected abstract String getIntrinsicId();
@ -123,14 +127,20 @@ public abstract class IntrinsicBase extends CompilerWhiteBoxTest {
}
static class IntTest extends IntrinsicBase {
protected boolean isIntrinsicAvailable; // The tested intrinsic is available on the current platform.
protected IntTest(MathIntrinsic.IntIntrinsic testCase) {
super(testCase);
// Only the C2 compiler intrinsifies exact math methods
// so check if the intrinsics are available with C2.
isIntrinsicAvailable = WHITE_BOX.isIntrinsicAvailable(testCase.getTestMethod(),
COMP_LEVEL_FULL_OPTIMIZATION);
}
@Override
protected boolean isIntrinsicSupported() {
return isServerVM() && Boolean.valueOf(useMathExactIntrinsics)
&& (Platform.isX86() || Platform.isX64() || Platform.isAArch64());
protected boolean isIntrinsicAvailable() {
return isIntrinsicAvailable;
}
@Override
@ -140,14 +150,20 @@ public abstract class IntrinsicBase extends CompilerWhiteBoxTest {
}
static class LongTest extends IntrinsicBase {
protected boolean isIntrinsicAvailable; // The tested intrinsic is available on the current platform.
protected LongTest(MathIntrinsic.LongIntrinsic testCase) {
super(testCase);
// Only the C2 compiler intrinsifies exact math methods
// so check if the intrinsics are available with C2.
isIntrinsicAvailable = WHITE_BOX.isIntrinsicAvailable(testCase.getTestMethod(),
COMP_LEVEL_FULL_OPTIMIZATION);
}
@Override
protected boolean isIntrinsicSupported() {
return isServerVM() && Boolean.valueOf(useMathExactIntrinsics) &&
(Platform.isX64() || Platform.isPPC() || Platform.isAArch64());
protected boolean isIntrinsicAvailable() {
return isIntrinsicAvailable;
}
@Override

View File

@ -28,47 +28,89 @@ public class MathIntrinsic {
enum IntIntrinsic implements CompilerWhiteBoxTest.TestCase {
Add {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("addExact", int.class, int.class);
}
@Override
Object execMathMethod() {
return intR = Math.addExact(int1, int2);
}
},
Subtract {
Subtract {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("subtractExact", int.class, int.class);
}
@Override
Object execMathMethod() {
return intR = Math.subtractExact(int1, int2);
}
},
Multiply {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("multiplyExact", int.class, int.class);
}
@Override
Object execMathMethod() {
return intR = Math.multiplyExact(int1, int2);
}
},
Increment {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("incrementExact", int.class);
}
@Override
Object execMathMethod() {
return intR = Math.incrementExact(int1);
}
},
Decrement {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("decrementExact", int.class);
}
@Override
Object execMathMethod() {
return intR = Math.decrementExact(int1);
}
},
Negate {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("negateExact", int.class);
}
@Override
Object execMathMethod() {
return intR = Math.negateExact(int1);
}
};
protected int int1;
protected int int2;
protected int intR;
abstract Executable testMethod() throws NoSuchMethodException, ClassNotFoundException;
abstract Object execMathMethod();
public Executable getTestMethod() {
try {
return testMethod();
} catch (NoSuchMethodException e) {
throw new RuntimeException("Test bug, no such method: " + e);
} catch (ClassNotFoundException e) {
throw new RuntimeException("Test bug, no such class: " + e);
}
}
@Override
public Executable getExecutable() {
try {
@ -92,36 +134,66 @@ public class MathIntrinsic {
enum LongIntrinsic implements CompilerWhiteBoxTest.TestCase {
Add {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("addExact", long.class, long.class);
}
@Override
Object execMathMethod() {
return longR = Math.addExact(long1, long2);
}
},
Subtract {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("subtractExact", long.class, long.class);
}
@Override
Object execMathMethod() {
return longR = Math.subtractExact(long1, long2);
}
},
Multiply {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("multiplyExact", long.class, long.class);
}
@Override
Object execMathMethod() {
return longR = Math.multiplyExact(long1, long2);
}
},
Increment {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("incrementExact", long.class);
}
@Override
Object execMathMethod() {
return longR = Math.incrementExact(long1);
}
},
Decrement {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("decrementExact", long.class);
}
@Override
Object execMathMethod() {
return longR = Math.decrementExact(long1);
}
},
Negate {
@Override
Executable testMethod() throws NoSuchMethodException, ClassNotFoundException {
return Class.forName("java.lang.Math").getDeclaredMethod("negateExact", long.class);
}
@Override
Object execMathMethod() {
return longR = Math.negateExact(long1);
@ -131,8 +203,19 @@ public class MathIntrinsic {
protected long long2;
protected long longR;
abstract Executable testMethod() throws NoSuchMethodException, ClassNotFoundException;
abstract Object execMathMethod();
public Executable getTestMethod() {
try {
return testMethod();
} catch (NoSuchMethodException e) {
throw new RuntimeException("Test bug, no such method: " + e);
} catch (ClassNotFoundException e) {
throw new RuntimeException("Test bug, no such class: " + e);
}
}
@Override
public Executable getExecutable() {
try {

View File

@ -94,29 +94,47 @@ public class TestLargePageUseForAuxMemory {
output.shouldHaveExitValue(0);
}
private static long gcd(long x, long y) {
while (x > 0) {
long t = x;
x = y % x;
y = t;
}
return y;
}
private static long lcm(long x, long y) {
return x * (y / gcd(x, y));
}
public static void main(String[] args) throws Exception {
if (!Platform.isDebugBuild()) {
System.out.println("Skip tests on non-debug builds because the required option TracePageSizes is a debug-only option.");
return;
}
// Size that a single card covers.
final int cardSize = 512;
WhiteBox wb = WhiteBox.getWhiteBox();
smallPageSize = wb.getVMPageSize();
largePageSize = wb.getVMLargePageSize();
allocGranularity = wb.getVMAllocationGranularity();
final long heapAlignment = lcm(cardSize * smallPageSize, largePageSize);
if (largePageSize == 0) {
System.out.println("Skip tests because large page support does not seem to be available on this platform.");
return;
}
if (largePageSize == smallPageSize) {
System.out.println("Skip tests because large page support does not seem to be available on this platform." +
"Small and large page size are the same.");
return;
}
// To get large pages for the card table etc. we need at least a 1G heap (with 4k page size).
// 32 bit systems will have problems reserving such an amount of contiguous space, so skip the
// test there.
if (!Platform.is32bit()) {
// Size that a single card covers.
final int cardSize = 512;
final long heapSizeForCardTableUsingLargePages = largePageSize * cardSize;
final long heapSizeDiffForCardTable = Math.max(Math.max(allocGranularity * cardSize, HEAP_REGION_SIZE), largePageSize);
@ -131,7 +149,8 @@ public class TestLargePageUseForAuxMemory {
// everywhere.
final int bitmapTranslationFactor = 8 * 8; // ObjectAlignmentInBytes * BitsPerByte
final long heapSizeForBitmapUsingLargePages = largePageSize * bitmapTranslationFactor;
final long heapSizeDiffForBitmap = Math.max(Math.max(allocGranularity * bitmapTranslationFactor, HEAP_REGION_SIZE), largePageSize);
final long heapSizeDiffForBitmap = Math.max(Math.max(allocGranularity * bitmapTranslationFactor, HEAP_REGION_SIZE),
Math.max(largePageSize, heapAlignment));
Asserts.assertGT(heapSizeForBitmapUsingLargePages, heapSizeDiffForBitmap,
"To test we would require to use an invalid heap size");

View File

@ -48,7 +48,6 @@ public class ObjectAlignment {
.shouldHaveExitValue(1);
testObjectAlignment(-1)
.shouldContain("must be power of 2")
.shouldContain("outside the allowed range")
.shouldHaveExitValue(1);
@ -75,4 +74,4 @@ public class ObjectAlignment {
"-version");
return new OutputAnalyzer(pb.start());
}
}
}

View File

@ -38,7 +38,7 @@ import sun.misc.Unsafe;
public class CreateCoredumpOnCrash {
private static class Crasher {
public static void main(String[] args) {
Utils.getUnsafe().getInt(0);
Utils.getUnsafe().putInt(0L, 0);
}
}

View File

@ -0,0 +1,193 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 8087315
* @summary Get old method's stack trace elements after GC
* @library /testlibrary
* @modules java.compiler
* java.instrument
* jdk.jartool/sun.tools.jar
* @build RedefineClassHelper
* @run main RedefineClassHelper
* @run main/othervm -javaagent:redefineagent.jar RedefineRunningMethodsWithBacktrace
*/
import static jdk.test.lib.Asserts.*;
public class RedefineRunningMethodsWithBacktrace {
public static String newB =
"class RedefineRunningMethodsWithBacktrace$B {" +
" static int count1 = 0;" +
" static int count2 = 0;" +
" public static volatile boolean stop = false;" +
" static void localSleep() { " +
" try{ " +
" Thread.currentThread().sleep(10);" +
" } catch(InterruptedException ie) { " +
" } " +
" } " +
" public static void infinite() { " +
" System.out.println(\"infinite called\");" +
" }" +
" public static void throwable() { " +
" throw new RuntimeException(\"throwable called\");" +
" }" +
"}";
public static String evenNewerB =
"class RedefineRunningMethodsWithBacktrace$B {" +
" static int count1 = 0;" +
" static int count2 = 0;" +
" public static volatile boolean stop = false;" +
" static void localSleep() { " +
" try{ " +
" Thread.currentThread().sleep(1);" +
" } catch(InterruptedException ie) { " +
" } " +
" } " +
" public static void infinite() { }" +
" public static void throwable() { " +
" throw new RuntimeException(\"throwable called\");" +
" }" +
"}";
static class B {
static int count1 = 0;
static int count2 = 0;
public static volatile boolean stop = false;
static void localSleep() {
try {
Thread.currentThread().sleep(10);//sleep for 10 ms
} catch(InterruptedException ie) {
}
}
public static void infinite() {
while (!stop) { count1++; localSleep(); }
}
public static void throwable() {
// add some stuff to the original constant pool
String s1 = new String ("string1");
String s2 = new String ("string2");
String s3 = new String ("string3");
String s4 = new String ("string4");
String s5 = new String ("string5");
String s6 = new String ("string6");
String s7 = new String ("string7");
String s8 = new String ("string8");
String s9 = new String ("string9");
String s10 = new String ("string10");
String s11 = new String ("string11");
String s12 = new String ("string12");
String s13 = new String ("string13");
String s14 = new String ("string14");
String s15 = new String ("string15");
String s16 = new String ("string16");
String s17 = new String ("string17");
String s18 = new String ("string18");
String s19 = new String ("string19");
throw new RuntimeException("throwable called");
}
}
private static void touchRedefinedMethodInBacktrace(Throwable throwable) {
System.out.println("touchRedefinedMethodInBacktrace: ");
throwable.printStackTrace(); // this actually crashes with the bug in
// java_lang_StackTraceElement::create()
// Make sure that we can convert the backtrace, which is referring to
// the redefined method, to a StrackTraceElement[] without crashing.
StackTraceElement[] stackTrace = throwable.getStackTrace();
for (int i = 0; i < stackTrace.length; i++) {
StackTraceElement frame = stackTrace[i];
assertNotNull(frame.getClassName(),
"\nTest failed: trace[" + i + "].getClassName() returned null");
assertNotNull(frame.getMethodName(),
"\nTest failed: trace[" + i + "].getMethodName() returned null");
}
}
private static Throwable getThrowableInB() {
Throwable t = null;
try {
B.throwable();
} catch (Exception e) {
t = e;
// Don't print here because Throwable will cache the constructed stacktrace
// e.printStackTrace();
}
return t;
}
public static void main(String[] args) throws Exception {
new Thread() {
public void run() {
B.infinite();
}
}.start();
Throwable t1 = getThrowableInB();
RedefineClassHelper.redefineClass(B.class, newB);
System.gc();
Throwable t2 = getThrowableInB();
B.infinite();
for (int i = 0; i < 20 ; i++) {
String s = new String("some garbage");
System.gc();
}
RedefineClassHelper.redefineClass(B.class, evenNewerB);
System.gc();
Throwable t3 = getThrowableInB();
for (int i = 0; i < 20 ; i++) {
B.infinite();
String s = new String("some garbage");
System.gc();
}
touchRedefinedMethodInBacktrace(t1);
touchRedefinedMethodInBacktrace(t2);
touchRedefinedMethodInBacktrace(t3);
// purge should clean everything up.
B.stop = true;
for (int i = 0; i < 20 ; i++) {
B.infinite();
String s = new String("some garbage");
System.gc();
}
}
}

View File

@ -55,7 +55,6 @@ public class Options {
output = new OutputAnalyzer(pb.start());
output.shouldContain("ContendedPaddingWidth");
output.shouldContain("outside the allowed range");
output.shouldContain("must be a multiple of 8");
output.shouldHaveExitValue(1);
pb = ProcessTools.createJavaProcessBuilder("-XX:ContendedPaddingWidth=0", "-version");
@ -90,7 +89,6 @@ public class Options {
output = new OutputAnalyzer(pb.start());
output.shouldContain("ContendedPaddingWidth");
output.shouldContain("outside the allowed range");
output.shouldContain("must be a multiple of 8");
output.shouldHaveExitValue(1);
pb = ProcessTools.createJavaProcessBuilder("-XX:ContendedPaddingWidth=8200", "-version"); // 8192+8 = 8200

View File

@ -0,0 +1,55 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @bug 8129895
* @summary Throw VerifyError when checking assignability of primitive arrays
* that are not identical. For example, [I is not assignable to [B.
* @compile primArray.jasm
* @compile primArray49.jasm
* @run main/othervm -Xverify:all PrimIntArray
*/
// Test that an int[] is not assignable to byte[].
public class PrimIntArray {
public static void main(String args[]) throws Throwable {
System.out.println("Regression test for bug 8129895");
try {
Class newClass = Class.forName("primArray");
throw new RuntimeException("Expected VerifyError exception not thrown with new verifier");
} catch (java.lang.VerifyError e) {
System.out.println("Test PrimIntArray passed with new verifier");
}
try {
Class newClass = Class.forName("primArray49");
throw new RuntimeException("Expected VerifyError exception not thrown by old verifier");
} catch (java.lang.VerifyError e) {
System.out.println("Test PrimIntArray passed with old verifier");
}
}
}

View File

@ -0,0 +1,46 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// Method castToByteArray() tries to return an array of ints when an array
// of bytes is expected.
super class primArray
version 52:0
{
public Method "<init>":"()V"
stack 1 locals 1
{
aload_0;
invokespecial Method java/lang/Object."<init>":"()V";
return;
}
public static Method castToByteArray:"([I)[B"
stack 1 locals 1
{
aload_0;
areturn;
}
} // end Class primArray

Some files were not shown because too many files have changed in this diff Show More