8304016: Add BitMap find_last suite of functions

Reviewed-by: stefank, aboldtch
This commit is contained in:
Kim Barrett 2023-03-20 19:23:38 +00:00
parent 42723dcb18
commit 2d0d057d66
3 changed files with 204 additions and 64 deletions

View File

@ -98,10 +98,19 @@ class BitMap {
// - flip designates whether searching for 1s or 0s. Must be one of
// find_{zeros,ones}_flip.
// - aligned_right is true if end is a priori on a bm_word_t boundary.
// - returns end if not found.
template<bm_word_t flip, bool aligned_right>
inline idx_t find_first_bit_impl(idx_t beg, idx_t end) const;
// Values for find_first_bit_impl flip parameter.
// Helper for find_last_{set,clear}_bit variants.
// - flip designates whether searching for 1s or 0s. Must be one of
// find_{zeros,ones}_flip.
// - aligned_left is true if beg is a priori on a bm_word_t boundary.
// - returns end if not found.
template<bm_word_t flip, bool aligned_left>
inline idx_t find_last_bit_impl(idx_t beg, idx_t end) const;
// Values for find_{first,last}_bit_impl flip parameter.
static const bm_word_t find_ones_flip = 0;
static const bm_word_t find_zeros_flip = ~(bm_word_t)0;
@ -287,9 +296,9 @@ class BitMap {
return iterate(cl, 0, size());
}
// Looking for 1's and 0's at indices equal to or greater than "beg",
// stopping if none has been found before "end", and returning
// "end" (which must be at most "size") in that case.
// Return the index of the first set (or clear) bit in the range [beg, end),
// or end if none found.
// precondition: beg and end form a valid range for the bitmap.
idx_t find_first_set_bit(idx_t beg, idx_t end) const;
idx_t find_first_clear_bit(idx_t beg, idx_t end) const;
@ -304,6 +313,23 @@ class BitMap {
// aligned to bitsizeof(bm_word_t).
idx_t find_first_set_bit_aligned_right(idx_t beg, idx_t end) const;
// Return the index of the last set (or clear) bit in the range [beg, end),
// or end if none found.
// precondition: beg and end form a valid range for the bitmap.
idx_t find_last_set_bit(idx_t beg, idx_t end) const;
idx_t find_last_clear_bit(idx_t beg, idx_t end) const;
idx_t find_last_set_bit(idx_t beg) const {
return find_last_set_bit(beg, size());
}
idx_t find_last_clear_bit(idx_t beg) const {
return find_last_clear_bit(beg, size());
}
// Like "find_last_set_bit", except requires that "beg" is
// aligned to bitsizeof(bm_word_t).
idx_t find_last_set_bit_aligned_left(idx_t beg, idx_t end) const;
// Returns the number of bits set in the bitmap.
idx_t count_one_bits() const;

View File

@ -30,6 +30,7 @@
#include "runtime/atomic.hpp"
#include "utilities/align.hpp"
#include "utilities/count_trailing_zeros.hpp"
#include "utilities/powerOfTwo.hpp"
inline void BitMap::set_bit(idx_t bit) {
verify_index(bit);
@ -165,49 +166,51 @@ inline void BitMap::par_clear_range(idx_t beg, idx_t end, RangeSizeHint hint) {
}
}
// General notes regarding find_{first,last}_bit_impl.
//
// The first (last) word often contains an interesting bit, either due to
// density or because of features of the calling algorithm. So it's important
// to examine that word with a minimum of fuss, minimizing setup time for
// additional words that will be wasted if the that word is indeed
// interesting.
//
// The first (last) bit is similarly often interesting. When it matters
// (density or features of the calling algorithm make it likely that bit is
// set), going straight to counting bits compares poorly to examining that bit
// first; the counting operations can be relatively expensive, plus there is
// the additional range check (unless aligned). But when that bit isn't set,
// the cost of having tested for it is relatively small compared to the rest
// of the search.
//
// The benefit from aligned_right being true is relatively small. It saves an
// operation in the setup of the word search loop. It also eliminates the
// range check on the final result. However, callers often have a comparison
// with end, and inlining may allow the two comparisons to be combined. It is
// important when !aligned_right that return paths either return end or a
// value dominated by a comparison with end. aligned_right is still helpful
// when the caller doesn't have a range check because features of the calling
// algorithm guarantee an interesting bit will be present.
//
// The benefit from aligned_left is even smaller, as there is no savings in
// the setup of the word search loop.
template<BitMap::bm_word_t flip, bool aligned_right>
inline BitMap::idx_t BitMap::find_first_bit_impl(idx_t beg, idx_t end) const {
STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
verify_range(beg, end);
assert(!aligned_right || is_aligned(end, BitsPerWord), "end not aligned");
// The first word often contains an interesting bit, either due to
// density or because of features of the calling algorithm. So it's
// important to examine that first word with a minimum of fuss,
// minimizing setup time for later words that will be wasted if the
// first word is indeed interesting.
// The benefit from aligned_right being true is relatively small.
// It saves an operation in the setup for the word search loop.
// It also eliminates the range check on the final result.
// However, callers often have a comparison with end, and
// inlining often allows the two comparisons to be combined; it is
// important when !aligned_right that return paths either return
// end or a value dominated by a comparison with end.
// aligned_right is still helpful when the caller doesn't have a
// range check because features of the calling algorithm guarantee
// an interesting bit will be present.
if (beg < end) {
// Get the word containing beg, and shift out low bits.
idx_t word_index = to_words_align_down(beg);
bm_word_t cword = flipped_word(word_index, flip) >> bit_in_word(beg);
if ((cword & 1) != 0) {
// The first bit is similarly often interesting. When it matters
// (density or features of the calling algorithm make it likely
// the first bit is set), going straight to the next clause compares
// poorly with doing this check first; count_trailing_zeros can be
// relatively expensive, plus there is the additional range check.
// But when the first bit isn't set, the cost of having tested for
// it is relatively small compared to the rest of the search.
if ((cword & 1) != 0) { // Test the beg bit.
return beg;
} else if (cword != 0) {
// Flipped and shifted first word is non-zero.
idx_t result = beg + count_trailing_zeros(cword);
if (aligned_right || (result < end)) return result;
// Result is beyond range bound; return end.
} else {
// Flipped and shifted first word is zero. Word search through
}
// Position of bit0 of cword in the bitmap. Initially for shifted first word.
idx_t cword_pos = beg;
if (cword == 0) { // Test other bits in the first word.
// First word had no interesting bits. Word search through
// aligned up end for a non-zero flipped word.
idx_t word_limit = aligned_right
? to_words_align_down(end) // Minuscule savings when aligned.
@ -215,14 +218,61 @@ inline BitMap::idx_t BitMap::find_first_bit_impl(idx_t beg, idx_t end) const {
while (++word_index < word_limit) {
cword = flipped_word(word_index, flip);
if (cword != 0) {
idx_t result = bit_index(word_index) + count_trailing_zeros(cword);
if (aligned_right || (result < end)) return result;
// Result is beyond range bound; return end.
assert((word_index + 1) == word_limit, "invariant");
// Update for found non-zero word, and join common tail to compute
// result from cword_pos and non-zero cword.
cword_pos = bit_index(word_index);
break;
}
}
// No bits in range; return end.
}
// For all paths reaching here, (cword != 0) is already known, so we
// expect the compiler to not generate any code for it. Either first word
// was non-zero, or found a non-zero word in range, or fully scanned range
// (so cword is zero).
if (cword != 0) {
idx_t result = cword_pos + count_trailing_zeros(cword);
if (aligned_right || (result < end)) return result;
// Result is beyond range bound; return end.
}
}
return end;
}
template<BitMap::bm_word_t flip, bool aligned_left>
inline BitMap::idx_t BitMap::find_last_bit_impl(idx_t beg, idx_t end) const {
STATIC_ASSERT(flip == find_ones_flip || flip == find_zeros_flip);
verify_range(beg, end);
assert(!aligned_left || is_aligned(beg, BitsPerWord), "beg not aligned");
if (beg < end) {
// Get the last partial and flipped word in the range.
idx_t last_bit_index = end - 1;
idx_t word_index = to_words_align_down(last_bit_index);
bm_word_t cword = flipped_word(word_index, flip);
// Mask for extracting and testing bits of last word.
bm_word_t last_bit_mask = bm_word_t(1) << bit_in_word(last_bit_index);
if ((cword & last_bit_mask) != 0) { // Test last bit.
return last_bit_index;
}
// Extract prior bits, clearing those above last_bit_index.
cword &= (last_bit_mask - 1);
if (cword == 0) { // Test other bits in the last word.
// Last word had no interesting bits. Word search through
// aligned down beg for a non-zero flipped word.
idx_t word_limit = to_words_align_down(beg);
while (word_index-- > word_limit) {
cword = flipped_word(word_index, flip);
if (cword != 0) break;
}
}
// For all paths reaching here, (cword != 0) is already known, so we
// expect the compiler to not generate any code for it. Either last word
// was non-zero, or found a non-zero word in range, or fully scanned range
// (so cword is zero).
if (cword != 0) {
idx_t result = bit_index(word_index) + log2i(cword);
if (aligned_left || (result >= beg)) return result;
// Result is below range bound; return end.
}
}
return end;
@ -243,6 +293,21 @@ BitMap::find_first_set_bit_aligned_right(idx_t beg, idx_t end) const {
return find_first_bit_impl<find_ones_flip, true>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_set_bit(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_ones_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_clear_bit(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_zeros_flip, false>(beg, end);
}
inline BitMap::idx_t
BitMap::find_last_set_bit_aligned_left(idx_t beg, idx_t end) const {
return find_last_bit_impl<find_ones_flip, true>(beg, end);
}
// IterateInvoker supports conditionally stopping iteration early. The
// invoker is called with the function to apply to each set index, along with
// the current index. If the function returns void then the invoker always

View File

@ -91,21 +91,34 @@ bool TestIteratorFn::do_bit(size_t offset) {
return true;
}
static idx_t compute_expected(idx_t search_start,
static bool is_bit_in_range(idx_t bit, idx_t beg, idx_t end) {
return (beg <= bit) && (bit < end);
}
static idx_t compute_first_expected(idx_t search_start,
idx_t search_end,
idx_t left_bit,
idx_t right_bit) {
idx_t expected = search_end;
if (search_start <= left_bit) {
if (left_bit < search_end) {
expected = left_bit;
}
} else if (search_start <= right_bit) {
if (right_bit < search_end) {
expected = right_bit;
if (is_bit_in_range(left_bit, search_start, search_end)) {
return left_bit;
} else if (is_bit_in_range(right_bit, search_start, search_end)) {
return right_bit;
} else {
return search_end;
}
}
return expected;
static idx_t compute_last_expected(idx_t search_start,
idx_t search_end,
idx_t left_bit,
idx_t right_bit) {
if (is_bit_in_range(right_bit, search_start, search_end)) {
return right_bit;
} else if (is_bit_in_range(left_bit, search_start, search_end)) {
return left_bit;
} else {
return search_end;
}
}
static void test_search_ranges(BitMap& test_ones,
@ -127,6 +140,21 @@ static void test_search_ranges(BitMap& test_ones,
EXPECT_EQ(right, test_zeros.find_first_clear_bit(left + 1));
EXPECT_EQ(BITMAP_SIZE, test_zeros.find_first_clear_bit(right + 1));
// Test find_last_set_bit with full range of map.
EXPECT_EQ(right, test_ones.find_last_set_bit(0));
EXPECT_EQ(left, test_ones.find_last_set_bit(0, right));
EXPECT_EQ(left, test_ones.find_last_set_bit(0, left));
// Test find_last_set_bit_aligned_left with full range of map.
EXPECT_EQ(right, test_ones.find_last_set_bit_aligned_left(0, BITMAP_SIZE));
EXPECT_EQ(left, test_ones.find_last_set_bit_aligned_left(0, right));
EXPECT_EQ(left, test_ones.find_last_set_bit_aligned_left(0, left));
// Test find_last_clear_bit with full range of map.
EXPECT_EQ(right, test_zeros.find_last_clear_bit(0));
EXPECT_EQ(left, test_zeros.find_last_clear_bit(0, right));
EXPECT_EQ(left, test_zeros.find_last_clear_bit(0, left));
// Check that iterate invokes the closure function on left and right values.
TestIteratorFn test_iteration(0, BITMAP_SIZE, left, right);
test_ones.iterate(&test_iteration, 0, BITMAP_SIZE);
@ -165,29 +193,50 @@ static void test_search_ranges(BitMap& test_ones,
}
bool aligned_right = search_offsets[o_end] == 0;
bool aligned_left = search_offsets[o_start] == 0;
ASSERT_LE(start, end); // test bug if fail
ASSERT_LT(end, BITMAP_SIZE); // test bug if fail
idx_t expected = compute_expected(start, end, left, right);
idx_t first_expected = compute_first_expected(start, end, left, right);
idx_t last_expected = compute_last_expected(start, end, left, right);
EXPECT_EQ(expected, test_ones.find_first_set_bit(start, end));
EXPECT_EQ(expected, test_zeros.find_first_clear_bit(start, end));
EXPECT_EQ(first_expected, test_ones.find_first_set_bit(start, end));
EXPECT_EQ(first_expected, test_zeros.find_first_clear_bit(start, end));
if (aligned_right) {
EXPECT_EQ(
expected,
first_expected,
test_ones.find_first_set_bit_aligned_right(start, end));
}
idx_t start2 = MIN2(expected + 1, end);
idx_t expected2 = compute_expected(start2, end, left, right);
EXPECT_EQ(last_expected, test_ones.find_last_set_bit(start, end));
EXPECT_EQ(last_expected, test_zeros.find_last_clear_bit(start, end));
if (aligned_left) {
EXPECT_EQ(
last_expected,
test_ones.find_last_set_bit_aligned_left(start, end));
}
EXPECT_EQ(expected2, test_ones.find_first_set_bit(start2, end));
EXPECT_EQ(expected2, test_zeros.find_first_clear_bit(start2, end));
idx_t start2 = MIN2(first_expected + 1, end);
idx_t first_expected2 = compute_first_expected(start2, end, left, right);
idx_t end2 = MAX2(start, last_expected);
idx_t last_expected2 = compute_last_expected(start, end2, left, right);
EXPECT_EQ(first_expected2, test_ones.find_first_set_bit(start2, end));
EXPECT_EQ(first_expected2, test_zeros.find_first_clear_bit(start2, end));
if (aligned_right) {
EXPECT_EQ(
expected2,
first_expected2,
test_ones.find_first_set_bit_aligned_right(start2, end));
}
EXPECT_EQ(last_expected2, test_ones.find_last_set_bit(start, end2));
EXPECT_EQ(last_expected2, test_zeros.find_last_clear_bit(start, end2));
if (aligned_left) {
EXPECT_EQ(
last_expected2,
test_ones.find_last_set_bit_aligned_left(start, end2));
}
}
}
}