8334755: Asymptotically faster implementation of square root algorithm
Reviewed-by: rgiulietti
This commit is contained in:
parent
34edc7358f
commit
367e0a6556
@ -2723,7 +2723,7 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
||||
throw new ArithmeticException("Negative BigInteger");
|
||||
}
|
||||
|
||||
return new MutableBigInteger(this.mag).sqrt().toBigInteger();
|
||||
return new MutableBigInteger(this.mag).sqrtRem(false)[0].toBigInteger();
|
||||
}
|
||||
|
||||
/**
|
||||
@ -2742,10 +2742,12 @@ public class BigInteger extends Number implements Comparable<BigInteger> {
|
||||
* @since 9
|
||||
*/
|
||||
public BigInteger[] sqrtAndRemainder() {
|
||||
BigInteger s = sqrt();
|
||||
BigInteger r = this.subtract(s.square());
|
||||
assert r.compareTo(BigInteger.ZERO) >= 0;
|
||||
return new BigInteger[] {s, r};
|
||||
if (this.signum < 0) {
|
||||
throw new ArithmeticException("Negative BigInteger");
|
||||
}
|
||||
|
||||
MutableBigInteger[] sqrtRem = new MutableBigInteger(this.mag).sqrtRem(true);
|
||||
return new BigInteger[] { sqrtRem[0].toBigInteger(), sqrtRem[1].toBigInteger() };
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -109,9 +109,26 @@ class MutableBigInteger {
|
||||
* the int val.
|
||||
*/
|
||||
MutableBigInteger(int val) {
|
||||
value = new int[1];
|
||||
intLen = 1;
|
||||
value[0] = val;
|
||||
init(val);
|
||||
}
|
||||
|
||||
/**
|
||||
* Construct a new MutableBigInteger with a magnitude specified by
|
||||
* the long val.
|
||||
*/
|
||||
MutableBigInteger(long val) {
|
||||
int hi = (int) (val >>> 32);
|
||||
if (hi == 0) {
|
||||
init((int) val);
|
||||
} else {
|
||||
value = new int[] { hi, (int) val };
|
||||
intLen = 2;
|
||||
}
|
||||
}
|
||||
|
||||
private void init(int val) {
|
||||
value = new int[] { val };
|
||||
intLen = val != 0 ? 1 : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -260,6 +277,7 @@ class MutableBigInteger {
|
||||
* Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
|
||||
* as this MutableBigInteger is numerically less than, equal to, or
|
||||
* greater than {@code b}.
|
||||
* Assumes no leading unnecessary zeros.
|
||||
*/
|
||||
final int compare(MutableBigInteger b) {
|
||||
int blen = b.intLen;
|
||||
@ -285,6 +303,7 @@ class MutableBigInteger {
|
||||
/**
|
||||
* Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
|
||||
* would return, but doesn't change the value of {@code b}.
|
||||
* Assumes no leading unnecessary zeros.
|
||||
*/
|
||||
private int compareShifted(MutableBigInteger b, int ints) {
|
||||
int blen = b.intLen;
|
||||
@ -538,6 +557,7 @@ class MutableBigInteger {
|
||||
/**
|
||||
* Right shift this MutableBigInteger n bits. The MutableBigInteger is left
|
||||
* in normal form.
|
||||
* Assumes {@code Math.ceilDiv(n, 32) <= intLen || intLen == 0}
|
||||
*/
|
||||
void rightShift(int n) {
|
||||
if (intLen == 0)
|
||||
@ -911,6 +931,58 @@ class MutableBigInteger {
|
||||
add(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Shifts {@code this} of {@code n} ints to the left and adds {@code addend}.
|
||||
* Assumes {@code n > 0} for speed.
|
||||
*/
|
||||
void shiftAdd(MutableBigInteger addend, int n) {
|
||||
// Fast cases
|
||||
if (addend.intLen <= n) {
|
||||
shiftAddDisjoint(addend, n);
|
||||
} else if (intLen == 0) {
|
||||
copyValue(addend);
|
||||
} else {
|
||||
leftShift(n << 5);
|
||||
add(addend);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Shifts {@code this} of {@code n} ints to the left and adds {@code addend}.
|
||||
* Assumes {@code addend.intLen <= n}.
|
||||
*/
|
||||
void shiftAddDisjoint(MutableBigInteger addend, int n) {
|
||||
if (intLen == 0) { // Avoid unnormal values
|
||||
copyValue(addend);
|
||||
return;
|
||||
}
|
||||
|
||||
int[] res;
|
||||
final int resLen = intLen + n, resOffset;
|
||||
if (resLen > value.length) {
|
||||
res = new int[resLen];
|
||||
System.arraycopy(value, offset, res, 0, intLen);
|
||||
resOffset = 0;
|
||||
} else {
|
||||
res = value;
|
||||
if (offset + resLen > value.length) {
|
||||
System.arraycopy(value, offset, res, 0, intLen);
|
||||
resOffset = 0;
|
||||
} else {
|
||||
resOffset = offset;
|
||||
}
|
||||
// Clear words where necessary
|
||||
if (addend.intLen < n)
|
||||
Arrays.fill(res, resOffset + intLen, resOffset + resLen - addend.intLen, 0);
|
||||
}
|
||||
|
||||
System.arraycopy(addend.value, addend.offset, res, resOffset + resLen - addend.intLen, addend.intLen);
|
||||
|
||||
value = res;
|
||||
offset = resOffset;
|
||||
intLen = resLen;
|
||||
}
|
||||
|
||||
/**
|
||||
* Subtracts the smaller of this and b from the larger and places the
|
||||
* result into this MutableBigInteger.
|
||||
@ -1003,6 +1075,7 @@ class MutableBigInteger {
|
||||
/**
|
||||
* Multiply the contents of two MutableBigInteger objects. The result is
|
||||
* placed into MutableBigInteger z. The contents of y are not changed.
|
||||
* Assume {@code intLen > 0}
|
||||
*/
|
||||
void multiply(MutableBigInteger y, MutableBigInteger z) {
|
||||
int xLen = intLen;
|
||||
@ -1793,93 +1866,169 @@ class MutableBigInteger {
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the integer square root {@code floor(sqrt(this))} where
|
||||
* {@code sqrt(.)} denotes the mathematical square root. The contents of
|
||||
* {@code this} are <b>not</b> changed. The value of {@code this} is assumed
|
||||
* to be non-negative.
|
||||
* Calculate the integer square root {@code floor(sqrt(this))} and the remainder
|
||||
* if needed, where {@code sqrt(.)} denotes the mathematical square root.
|
||||
* The contents of {@code this} are <em>not</em> changed.
|
||||
* The value of {@code this} is assumed to be non-negative.
|
||||
*
|
||||
* @implNote The implementation is based on the material in Henry S. Warren,
|
||||
* Jr., <i>Hacker's Delight (2nd ed.)</i> (Addison Wesley, 2013), 279-282.
|
||||
*
|
||||
* @throws ArithmeticException if the value returned by {@code bitLength()}
|
||||
* overflows the range of {@code int}.
|
||||
* @return the integer square root of {@code this}
|
||||
* @since 9
|
||||
* @return the integer square root of {@code this} and the remainder if needed
|
||||
*/
|
||||
MutableBigInteger sqrt() {
|
||||
MutableBigInteger[] sqrtRem(boolean needRemainder) {
|
||||
// Special cases.
|
||||
if (this.isZero()) {
|
||||
return new MutableBigInteger(0);
|
||||
} else if (this.value.length == 1
|
||||
&& (this.value[0] & LONG_MASK) < 4) { // result is unity
|
||||
return ONE;
|
||||
if (this.intLen <= 2) {
|
||||
final long x = this.toLong(); // unsigned
|
||||
long s = unsignedLongSqrt(x);
|
||||
|
||||
return new MutableBigInteger[] {
|
||||
new MutableBigInteger((int) s),
|
||||
needRemainder ? new MutableBigInteger(x - s * s) : null
|
||||
};
|
||||
}
|
||||
|
||||
if (bitLength() <= 63) {
|
||||
// Initial estimate is the square root of the positive long value.
|
||||
long v = new BigInteger(this.value, 1).longValueExact();
|
||||
long xk = (long)Math.floor(Math.sqrt(v));
|
||||
// Normalize
|
||||
MutableBigInteger x = this;
|
||||
final int shift = (Integer.numberOfLeadingZeros(x.value[x.offset]) & ~1) // shift must be even
|
||||
+ ((x.intLen & 1) << 5); // x.intLen must be even
|
||||
|
||||
// Refine the estimate.
|
||||
do {
|
||||
long xk1 = (xk + v/xk)/2;
|
||||
|
||||
// Terminate when non-decreasing.
|
||||
if (xk1 >= xk) {
|
||||
return new MutableBigInteger(new int[] {
|
||||
(int)(xk >>> 32), (int)(xk & LONG_MASK)
|
||||
});
|
||||
if (shift != 0) {
|
||||
x = new MutableBigInteger(x);
|
||||
x.leftShift(shift);
|
||||
}
|
||||
|
||||
xk = xk1;
|
||||
} while (true);
|
||||
// Compute sqrt and remainder
|
||||
MutableBigInteger[] sqrtRem = x.sqrtRemKaratsuba(x.intLen, needRemainder);
|
||||
|
||||
// Unnormalize
|
||||
if (shift != 0) {
|
||||
final int halfShift = shift >> 1;
|
||||
if (needRemainder) {
|
||||
// shift <= 62, so s0 is at most 31 bit long
|
||||
final long s0 = sqrtRem[0].value[sqrtRem[0].offset + sqrtRem[0].intLen - 1]
|
||||
& (-1 >>> -halfShift); // Remove excess bits
|
||||
if (s0 != 0L) { // An optimization
|
||||
MutableBigInteger doubleProd = new MutableBigInteger();
|
||||
sqrtRem[0].mul((int) (s0 << 1), doubleProd);
|
||||
|
||||
sqrtRem[1].add(doubleProd);
|
||||
sqrtRem[1].subtract(new MutableBigInteger(s0 * s0));
|
||||
}
|
||||
sqrtRem[1].rightShift(shift);
|
||||
}
|
||||
sqrtRem[0].primitiveRightShift(halfShift);
|
||||
}
|
||||
return sqrtRem;
|
||||
}
|
||||
|
||||
private static long unsignedLongSqrt(long x) {
|
||||
/* For every long value s in [0, 2^32) such that x == s * s,
|
||||
* it is true that s - 1 <= (long) Math.sqrt(x >= 0 ? x : x + 0x1p64) <= s,
|
||||
* and if x == 2^64 - 1, then (long) Math.sqrt(x >= 0 ? x : x + 0x1p64) == 2^32.
|
||||
* Since both cast to long and `Math.sqrt()` are (weakly) increasing,
|
||||
* this means that the value returned by Math.sqrt()
|
||||
* for a long value in the range [0, 2^64) is either correct,
|
||||
* or rounded up/down by one if the value is too high
|
||||
* and too close to a perfect square.
|
||||
*/
|
||||
long s = (long) Math.sqrt(x >= 0 ? x : x + 0x1p64);
|
||||
long s2 = s * s; // overflows iff s == 2^32
|
||||
return Long.compareUnsigned(x, s2) < 0 || s > LONG_MASK
|
||||
? s - 1
|
||||
: (Long.compareUnsigned(x, s2 + (s << 1)) <= 0 // x <= (s + 1)^2 - 1, does not overflow
|
||||
? s
|
||||
: s + 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Assumes {@code 2 <= len <= intLen && len % 2 == 0
|
||||
* && Integer.numberOfLeadingZeros(value[offset]) <= 1}
|
||||
* @implNote The implementation is based on Zimmermann's works available
|
||||
* <a href="https://inria.hal.science/inria-00072854v1/document"> here</a> and
|
||||
* <a href="https://inria.hal.science/inria-00072113/document"> here</a>
|
||||
*/
|
||||
private MutableBigInteger[] sqrtRemKaratsuba(int len, boolean needRemainder) {
|
||||
if (len == 2) { // Base case
|
||||
long x = ((value[offset] & LONG_MASK) << 32) | (value[offset + 1] & LONG_MASK);
|
||||
long s = unsignedLongSqrt(x);
|
||||
|
||||
// Allocate sufficient space to hold the final square root, assuming intLen % 2 == 0
|
||||
MutableBigInteger sqrt = new MutableBigInteger(new int[intLen >> 1]);
|
||||
|
||||
// Place the partial square root
|
||||
sqrt.intLen = 1;
|
||||
sqrt.value[0] = (int) s;
|
||||
|
||||
return new MutableBigInteger[] { sqrt, new MutableBigInteger(x - s * s) };
|
||||
}
|
||||
|
||||
// Recursive step (len >= 4)
|
||||
|
||||
final int halfLen = len >> 1;
|
||||
// Recursive invocation
|
||||
MutableBigInteger[] sr = sqrtRemKaratsuba(halfLen + (halfLen & 1), true);
|
||||
|
||||
final int blockLen = halfLen >> 1;
|
||||
MutableBigInteger dividend = sr[1];
|
||||
dividend.shiftAddDisjoint(getBlockForSqrt(1, len, blockLen), blockLen);
|
||||
|
||||
// Compute dividend / (2*sqrt)
|
||||
MutableBigInteger sqrt = sr[0];
|
||||
MutableBigInteger q = new MutableBigInteger();
|
||||
MutableBigInteger u = dividend.divide(sqrt, q);
|
||||
if (q.isOdd())
|
||||
u.add(sqrt);
|
||||
q.rightShift(1);
|
||||
|
||||
sqrt.shiftAdd(q, blockLen);
|
||||
// Corresponds to ub + a_0 in the paper
|
||||
u.shiftAddDisjoint(getBlockForSqrt(0, len, blockLen), blockLen);
|
||||
BigInteger qBig = q.toBigInteger(); // Cast to BigInteger to use fast multiplication
|
||||
MutableBigInteger qSqr = new MutableBigInteger(qBig.multiply(qBig).mag);
|
||||
|
||||
MutableBigInteger rem;
|
||||
if (needRemainder) {
|
||||
rem = u;
|
||||
if (rem.subtract(qSqr) < 0) {
|
||||
MutableBigInteger twiceSqrt = new MutableBigInteger(sqrt);
|
||||
twiceSqrt.leftShift(1);
|
||||
|
||||
// Since subtract() performs an absolute difference, to get the correct algebraic sum
|
||||
// we must first add the sum of absolute values of addends concordant with the sign of rem
|
||||
// and then subtract the sum of absolute values of addends that are discordant
|
||||
rem.add(ONE);
|
||||
rem.subtract(twiceSqrt);
|
||||
sqrt.subtract(ONE);
|
||||
}
|
||||
} else {
|
||||
// Set up the initial estimate of the iteration.
|
||||
|
||||
// Obtain the bitLength > 63.
|
||||
int bitLength = (int) this.bitLength();
|
||||
if (bitLength != this.bitLength()) {
|
||||
throw new ArithmeticException("bitLength() integer overflow");
|
||||
rem = null;
|
||||
if (u.compare(qSqr) < 0)
|
||||
sqrt.subtract(ONE);
|
||||
}
|
||||
|
||||
// Determine an even valued right shift into positive long range.
|
||||
int shift = bitLength - 63;
|
||||
if (shift % 2 == 1) {
|
||||
shift++;
|
||||
sr[1] = rem;
|
||||
return sr;
|
||||
}
|
||||
|
||||
// Shift the value into positive long range.
|
||||
MutableBigInteger xk = new MutableBigInteger(this);
|
||||
xk.rightShift(shift);
|
||||
xk.normalize();
|
||||
/**
|
||||
* Returns a {@code MutableBigInteger} obtained by taking {@code blockLen} ints from
|
||||
* {@code this} number, ending at {@code blockIndex*blockLen} (exclusive).<br/>
|
||||
* Used in Karatsuba square root.
|
||||
* @param blockIndex the block index, starting from the lowest
|
||||
* @param len the logical length of the input value in units of 32 bits
|
||||
* @param blockLen the length of the block in units of 32 bits
|
||||
*
|
||||
* @return a {@code MutableBigInteger} obtained by taking {@code blockLen} ints from
|
||||
* {@code this} number, ending at {@code blockIndex*blockLen} (exclusive).
|
||||
*/
|
||||
private MutableBigInteger getBlockForSqrt(int blockIndex, int len, int blockLen) {
|
||||
final int to = offset + len - blockIndex * blockLen;
|
||||
|
||||
// Use the square root of the shifted value as an approximation.
|
||||
double d = new BigInteger(xk.value, 1).doubleValue();
|
||||
BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d)));
|
||||
xk = new MutableBigInteger(bi.mag);
|
||||
// Skip leading zeros
|
||||
int from;
|
||||
for (from = to - blockLen; from < to && value[from] == 0; from++);
|
||||
|
||||
// Shift the approximate square root back into the original range.
|
||||
xk.leftShift(shift / 2);
|
||||
|
||||
// Refine the estimate.
|
||||
MutableBigInteger xk1 = new MutableBigInteger();
|
||||
do {
|
||||
// xk1 = (xk + n/xk)/2
|
||||
this.divide(xk, xk1, false);
|
||||
xk1.add(xk);
|
||||
xk1.rightShift(1);
|
||||
|
||||
// Terminate when non-decreasing.
|
||||
if (xk1.compare(xk) >= 0) {
|
||||
return xk;
|
||||
}
|
||||
|
||||
// xk = xk1
|
||||
xk.copyValue(xk1);
|
||||
|
||||
xk1.reset();
|
||||
} while (true);
|
||||
}
|
||||
return from == to
|
||||
? new MutableBigInteger()
|
||||
: new MutableBigInteger(Arrays.copyOfRange(value, from, to));
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -293,8 +293,30 @@ public class BigIntegerTest {
|
||||
report("squareRootSmall", failCount);
|
||||
}
|
||||
|
||||
private static void perfectSquaresLong() {
|
||||
/* For every long value n in [0, 2^32) such that x == n * n,
|
||||
* n - 1 <= (long) Math.sqrt(x >= 0 ? x : x + 0x1p64) <= n
|
||||
* must be true.
|
||||
* This property is used to implement MutableBigInteger.unsignedLongSqrt().
|
||||
*/
|
||||
int failCount = 0;
|
||||
|
||||
long limit = 1L << 32;
|
||||
for (long n = 0; n < limit; n++) {
|
||||
long x = n * n;
|
||||
long s = (long) Math.sqrt(x >= 0 ? x : x + 0x1p64);
|
||||
if (!(s == n || s == n - 1)) {
|
||||
failCount++;
|
||||
System.err.println(s + "^2 != " + x + " && (" + s + "+1)^2 != " + x);
|
||||
}
|
||||
}
|
||||
|
||||
report("perfectSquaresLong", failCount);
|
||||
}
|
||||
|
||||
public static void squareRoot() {
|
||||
squareRootSmall();
|
||||
perfectSquaresLong();
|
||||
|
||||
ToIntFunction<BigInteger> f = (n) -> {
|
||||
int failCount = 0;
|
||||
|
132
test/micro/org/openjdk/bench/java/math/BigIntegerSquareRoot.java
Normal file
132
test/micro/org/openjdk/bench/java/math/BigIntegerSquareRoot.java
Normal file
@ -0,0 +1,132 @@
|
||||
/*
|
||||
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
package org.openjdk.bench.java.math;
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark;
|
||||
import org.openjdk.jmh.annotations.BenchmarkMode;
|
||||
import org.openjdk.jmh.annotations.Fork;
|
||||
import org.openjdk.jmh.annotations.Measurement;
|
||||
import org.openjdk.jmh.annotations.Mode;
|
||||
import org.openjdk.jmh.annotations.OperationsPerInvocation;
|
||||
import org.openjdk.jmh.annotations.OutputTimeUnit;
|
||||
import org.openjdk.jmh.annotations.Scope;
|
||||
import org.openjdk.jmh.annotations.Setup;
|
||||
import org.openjdk.jmh.annotations.State;
|
||||
import org.openjdk.jmh.annotations.Param;
|
||||
import org.openjdk.jmh.annotations.Warmup;
|
||||
import org.openjdk.jmh.infra.Blackhole;
|
||||
|
||||
import java.math.BigInteger;
|
||||
import java.util.Random;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
@BenchmarkMode(Mode.AverageTime)
|
||||
@OutputTimeUnit(TimeUnit.NANOSECONDS)
|
||||
@State(Scope.Thread)
|
||||
@Warmup(iterations = 5, time = 1)
|
||||
@Measurement(iterations = 5, time = 1)
|
||||
@Fork(value = 3)
|
||||
public class BigIntegerSquareRoot {
|
||||
|
||||
private BigInteger[] xsArray, sArray, mArray, lArray, xlArray;
|
||||
private static final int TESTSIZE = 1000;
|
||||
|
||||
@Setup
|
||||
public void setup() {
|
||||
Random r = new Random(1123);
|
||||
|
||||
xsArray = new BigInteger[TESTSIZE]; /*
|
||||
* Each array entry is atmost 64 bits
|
||||
* in size
|
||||
*/
|
||||
sArray = new BigInteger[TESTSIZE]; /*
|
||||
* Each array entry is atmost 256 bits
|
||||
* in size
|
||||
*/
|
||||
mArray = new BigInteger[TESTSIZE]; /*
|
||||
* Each array entry is atmost 1024 bits
|
||||
* in size
|
||||
*/
|
||||
lArray = new BigInteger[TESTSIZE]; /*
|
||||
* Each array entry is atmost 4096 bits
|
||||
* in size
|
||||
*/
|
||||
xlArray = new BigInteger[TESTSIZE]; /*
|
||||
* Each array entry is atmost 16384 bits
|
||||
* in size
|
||||
*/
|
||||
|
||||
for (int i = 0; i < TESTSIZE; i++) {
|
||||
xsArray[i] = new BigInteger(r.nextInt(64), r);
|
||||
sArray[i] = new BigInteger(r.nextInt(256), r);
|
||||
mArray[i] = new BigInteger(r.nextInt(1024), r);
|
||||
lArray[i] = new BigInteger(r.nextInt(4096), r);
|
||||
xlArray[i] = new BigInteger(r.nextInt(16384), r);
|
||||
}
|
||||
}
|
||||
|
||||
/** Test BigInteger.sqrt() with numbers long at most 64 bits */
|
||||
@Benchmark
|
||||
@OperationsPerInvocation(TESTSIZE)
|
||||
public void testSqrtXS(Blackhole bh) {
|
||||
for (BigInteger s : xsArray) {
|
||||
bh.consume(s.sqrt());
|
||||
}
|
||||
}
|
||||
|
||||
/** Test BigInteger.sqrt() with numbers long at most 256 bits */
|
||||
@Benchmark
|
||||
@OperationsPerInvocation(TESTSIZE)
|
||||
public void testSqrtS(Blackhole bh) {
|
||||
for (BigInteger s : sArray) {
|
||||
bh.consume(s.sqrt());
|
||||
}
|
||||
}
|
||||
|
||||
/** Test BigInteger.sqrt() with numbers long at most 1024 bits */
|
||||
@Benchmark
|
||||
@OperationsPerInvocation(TESTSIZE)
|
||||
public void testSqrtM(Blackhole bh) {
|
||||
for (BigInteger s : mArray) {
|
||||
bh.consume(s.sqrt());
|
||||
}
|
||||
}
|
||||
|
||||
/** Test BigInteger.sqrt() with numbers long at most 4096 bits */
|
||||
@Benchmark
|
||||
@OperationsPerInvocation(TESTSIZE)
|
||||
public void testSqrtL(Blackhole bh) {
|
||||
for (BigInteger s : lArray) {
|
||||
bh.consume(s.sqrt());
|
||||
}
|
||||
}
|
||||
|
||||
/** Test BigInteger.sqrt() with numbers long at most 16384 bits */
|
||||
@Benchmark
|
||||
@OperationsPerInvocation(TESTSIZE)
|
||||
public void testSqrtXL(Blackhole bh) {
|
||||
for (BigInteger s : xlArray) {
|
||||
bh.consume(s.sqrt());
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user