8080945: Improve the performance of primitive Arrays.sort for certain patterns of array elements
Co-authored-by: Mohammad Rezaei <mohammad.rezaei@gs.com> Reviewed-by: psandoz
This commit is contained in:
parent
ccbe5d7ec0
commit
36d62dcbb1
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
@ -60,11 +60,6 @@ final class DualPivotQuicksort {
|
||||
*/
|
||||
private static final int MAX_RUN_COUNT = 67;
|
||||
|
||||
/**
|
||||
* The maximum length of run in merge sort.
|
||||
*/
|
||||
private static final int MAX_RUN_LENGTH = 33;
|
||||
|
||||
/**
|
||||
* If the length of an array to be sorted is less than this
|
||||
* constant, Quicksort is used in preference to merge sort.
|
||||
@ -121,20 +116,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
int t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -151,7 +150,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
@ -569,20 +568,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
long t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -599,7 +602,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1053,20 +1056,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
short t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1083,7 +1090,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1537,20 +1544,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
char t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -1567,7 +1578,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
@ -2117,20 +2128,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
float t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2147,7 +2162,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
@ -2656,20 +2671,24 @@ final class DualPivotQuicksort {
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
// Equal items in the beginning of the sequence
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break; // Sequence finishes with equal items
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]);
|
||||
} else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]);
|
||||
// Transform into an ascending sequence
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
double t = a[lo]; a[lo] = a[hi]; a[hi] = t;
|
||||
}
|
||||
} else { // equal
|
||||
for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) {
|
||||
if (--m == 0) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Merge a transformed descending sequence followed by an
|
||||
// ascending sequence
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2686,7 +2705,7 @@ final class DualPivotQuicksort {
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) { // The last run contains one element
|
||||
run[++count] = right;
|
||||
} else if (count == 1) { // The array is already sorted
|
||||
} else if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
|
708
jdk/test/java/util/Arrays/SortingIntBenchmarkTestJMH.java
Normal file
708
jdk/test/java/util/Arrays/SortingIntBenchmarkTestJMH.java
Normal file
@ -0,0 +1,708 @@
|
||||
/*
|
||||
* Copyright 2015 Goldman Sachs.
|
||||
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark;
|
||||
import org.openjdk.jmh.annotations.BenchmarkMode;
|
||||
import org.openjdk.jmh.annotations.Measurement;
|
||||
import org.openjdk.jmh.annotations.Mode;
|
||||
import org.openjdk.jmh.annotations.OutputTimeUnit;
|
||||
import org.openjdk.jmh.annotations.Param;
|
||||
import org.openjdk.jmh.annotations.Scope;
|
||||
import org.openjdk.jmh.annotations.Setup;
|
||||
import org.openjdk.jmh.annotations.State;
|
||||
import org.openjdk.jmh.annotations.Warmup;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
@State(Scope.Thread)
|
||||
@BenchmarkMode(Mode.Throughput)
|
||||
@OutputTimeUnit(TimeUnit.SECONDS)
|
||||
public class SortingIntBenchmarkTestJMH {
|
||||
private static final int QUICKSORT_THRESHOLD = 286;
|
||||
private static final int MAX_RUN_COUNT = 67;
|
||||
private static final int INSERTION_SORT_THRESHOLD = 47;
|
||||
public static final int MAX_VALUE = 1_000_000;
|
||||
|
||||
@Param({"pairFlipZeroPairFlip", "pairFlipOneHundredPairFlip"
|
||||
, "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
|
||||
"randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
|
||||
|
||||
public String listType;
|
||||
|
||||
private int[] array;
|
||||
private static final int LIST_SIZE = 10_000_000;
|
||||
public static final int NUMBER_OF_ITERATIONS = 10;
|
||||
|
||||
@Setup
|
||||
public void setUp() {
|
||||
Random random = new Random(123456789012345L);
|
||||
this.array = new int[LIST_SIZE];
|
||||
int threeQuarters = (int) (LIST_SIZE * 0.75);
|
||||
if ("zeroHi".equals(this.listType)) {
|
||||
for (int i = 0; i < threeQuarters; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
int k = 1;
|
||||
for (int i = threeQuarters; i < LIST_SIZE; i++) {
|
||||
this.array[i] = k;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
else if ("hiFlatLow".equals(this.listType)) {
|
||||
int oneThird = LIST_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
int constant = oneThird - 1;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
this.array[i] = constant;
|
||||
}
|
||||
for (int i = twoThirds; i < LIST_SIZE; i++) {
|
||||
this.array[i] = constant - i + twoThirds;
|
||||
}
|
||||
}
|
||||
else if ("hiZeroLow".equals(this.listType)) {
|
||||
int oneThird = LIST_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
for (int i = twoThirds; i < LIST_SIZE; i++) {
|
||||
this.array[i] = oneThird - i + twoThirds;
|
||||
}
|
||||
}
|
||||
else if ("identical".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
}
|
||||
else if ("randomDups".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = random.nextInt(1000);
|
||||
}
|
||||
}
|
||||
else if ("randomNoDups".equals(this.listType)) {
|
||||
Set<Integer> set = new HashSet();
|
||||
while (set.size() < LIST_SIZE + 1) {
|
||||
set.add(random.nextInt());
|
||||
}
|
||||
List<Integer> list = new ArrayList<>(LIST_SIZE);
|
||||
list.addAll(set);
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = list.get(i);
|
||||
}
|
||||
}
|
||||
else if ("sortedReversedSorted".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE / 2; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int num = 0;
|
||||
for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
|
||||
this.array[i] = LIST_SIZE - num;
|
||||
num++;
|
||||
}
|
||||
}
|
||||
else if ("pairFlip".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = 0; i < LIST_SIZE; i += 2) {
|
||||
int temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
}
|
||||
else if ("endLessThan".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE - 1; i++) {
|
||||
this.array[i] = 3;
|
||||
}
|
||||
this.array[LIST_SIZE - 1] = 1;
|
||||
}
|
||||
else if ("pairFlipZeroPairFlip".equals(this.listType)) {
|
||||
//pairflip
|
||||
for (int i = 0; i < 64; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = 0; i < 64; i += 2) {
|
||||
int temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
//zero
|
||||
for (int i = 64; i < this.array.length - 64; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
//pairflip
|
||||
for (int i = this.array.length - 64; i < this.array.length; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = this.array.length - 64; i < this.array.length; i += 2) {
|
||||
int temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
}
|
||||
else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
|
||||
//10, 5
|
||||
for (int i = 0; i < 64; i++) {
|
||||
if (i % 2 == 0) {
|
||||
this.array[i] = 10;
|
||||
}
|
||||
else {
|
||||
this.array[i] = 5;
|
||||
}
|
||||
}
|
||||
|
||||
//100
|
||||
for (int i = 64; i < this.array.length - 64; i++) {
|
||||
this.array[i] = 100;
|
||||
}
|
||||
|
||||
//10, 5
|
||||
for (int i = this.array.length - 64; i < this.array.length; i++) {
|
||||
if (i % 2 == 0) {
|
||||
this.array[i] = 10;
|
||||
}
|
||||
else {
|
||||
this.array[i] = 5;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Warmup(iterations = 20)
|
||||
@Measurement(iterations = 10)
|
||||
@Benchmark
|
||||
public void sortNewWay() {
|
||||
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
|
||||
SortingIntTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@Warmup(iterations = 20)
|
||||
@Measurement(iterations = 10)
|
||||
@Benchmark
|
||||
public void sortCurrentWay() {
|
||||
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
|
||||
Arrays.sort(this.array);
|
||||
}
|
||||
}
|
||||
|
||||
static void sort(int[] a, int left, int right,
|
||||
int[] work, int workBase, int workLen) {
|
||||
// Use Quicksort on small arrays
|
||||
if (right - left < QUICKSORT_THRESHOLD) {
|
||||
SortingIntTestJMH.sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Index run[i] is the start of i-th run
|
||||
* (ascending or descending sequence).
|
||||
*/
|
||||
int[] run = new int[MAX_RUN_COUNT + 1];
|
||||
int count = 0;
|
||||
run[0] = left;
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break;
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]) ;
|
||||
}
|
||||
else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]) ;
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
int t = a[lo];
|
||||
a[lo] = a[hi];
|
||||
a[hi] = t;
|
||||
}
|
||||
}
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
/*
|
||||
* The array is not highly structured,
|
||||
* use Quicksort instead of merge sort.
|
||||
*/
|
||||
if (++count == MAX_RUN_COUNT) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Check special cases
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) {
|
||||
run[++count] = right;
|
||||
}
|
||||
if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
// Determine alternation base for merge
|
||||
byte odd = 0;
|
||||
for (int n = 1; (n <<= 1) < count; odd ^= 1) {
|
||||
}
|
||||
|
||||
// Use or create temporary array b for merging
|
||||
int[] b; // temp array; alternates with a
|
||||
int ao, bo; // array offsets from 'left'
|
||||
int blen = right - left; // space needed for b
|
||||
if (work == null || workLen < blen || workBase + blen > work.length) {
|
||||
work = new int[blen];
|
||||
workBase = 0;
|
||||
}
|
||||
if (odd == 0) {
|
||||
System.arraycopy(a, left, work, workBase, blen);
|
||||
b = a;
|
||||
bo = 0;
|
||||
a = work;
|
||||
ao = workBase - left;
|
||||
}
|
||||
else {
|
||||
b = work;
|
||||
ao = 0;
|
||||
bo = workBase - left;
|
||||
}
|
||||
|
||||
// Merging
|
||||
for (int last; count > 1; count = last) {
|
||||
for (int k = (last = 0) + 2; k <= count; k += 2) {
|
||||
int hi = run[k], mi = run[k - 1];
|
||||
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
|
||||
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
|
||||
b[i + bo] = a[p++ + ao];
|
||||
}
|
||||
else {
|
||||
b[i + bo] = a[q++ + ao];
|
||||
}
|
||||
}
|
||||
run[++last] = hi;
|
||||
}
|
||||
if ((count & 1) != 0) {
|
||||
for (int i = right, lo = run[count - 1]; --i >= lo;
|
||||
b[i + bo] = a[i + ao]
|
||||
) {
|
||||
}
|
||||
run[++last] = right;
|
||||
}
|
||||
int[] t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
int o = ao;
|
||||
ao = bo;
|
||||
bo = o;
|
||||
}
|
||||
}
|
||||
|
||||
private static void sort(int[] a, int left, int right, boolean leftmost) {
|
||||
int length = right - left + 1;
|
||||
|
||||
// Use insertion sort on tiny arrays
|
||||
if (length < INSERTION_SORT_THRESHOLD) {
|
||||
if (leftmost) {
|
||||
/*
|
||||
* Traditional (without sentinel) insertion sort,
|
||||
* optimized for server VM, is used in case of
|
||||
* the leftmost part.
|
||||
*/
|
||||
for (int i = left, j = i; i < right; j = ++i) {
|
||||
int ai = a[i + 1];
|
||||
while (ai < a[j]) {
|
||||
a[j + 1] = a[j];
|
||||
if (j-- == left) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
a[j + 1] = ai;
|
||||
}
|
||||
}
|
||||
else {
|
||||
/*
|
||||
* Skip the longest ascending sequence.
|
||||
*/
|
||||
do {
|
||||
if (left >= right) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (a[++left] >= a[left - 1]);
|
||||
|
||||
/*
|
||||
* Every element from adjoining part plays the role
|
||||
* of sentinel, therefore this allows us to avoid the
|
||||
* left range check on each iteration. Moreover, we use
|
||||
* the more optimized algorithm, so called pair insertion
|
||||
* sort, which is faster (in the context of Quicksort)
|
||||
* than traditional implementation of insertion sort.
|
||||
*/
|
||||
for (int k = left; ++left <= right; k = ++left) {
|
||||
int a1 = a[k], a2 = a[left];
|
||||
|
||||
if (a1 < a2) {
|
||||
a2 = a1;
|
||||
a1 = a[left];
|
||||
}
|
||||
while (a1 < a[--k]) {
|
||||
a[k + 2] = a[k];
|
||||
}
|
||||
a[++k + 1] = a1;
|
||||
|
||||
while (a2 < a[--k]) {
|
||||
a[k + 1] = a[k];
|
||||
}
|
||||
a[k + 1] = a2;
|
||||
}
|
||||
int last = a[right];
|
||||
|
||||
while (last < a[--right]) {
|
||||
a[right + 1] = a[right];
|
||||
}
|
||||
a[right + 1] = last;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Inexpensive approximation of length / 7
|
||||
int seventh = (length >> 3) + (length >> 6) + 1;
|
||||
|
||||
/*
|
||||
* Sort five evenly spaced elements around (and including) the
|
||||
* center element in the range. These elements will be used for
|
||||
* pivot selection as described below. The choice for spacing
|
||||
* these elements was empirically determined to work well on
|
||||
* a wide variety of inputs.
|
||||
*/
|
||||
int e3 = (left + right) >>> 1; // The midpoint
|
||||
int e2 = e3 - seventh;
|
||||
int e1 = e2 - seventh;
|
||||
int e4 = e3 + seventh;
|
||||
int e5 = e4 + seventh;
|
||||
|
||||
// Sort these elements using insertion sort
|
||||
if (a[e2] < a[e1]) {
|
||||
int t = a[e2];
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
|
||||
if (a[e3] < a[e2]) {
|
||||
int t = a[e3];
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
if (a[e4] < a[e3]) {
|
||||
int t = a[e4];
|
||||
a[e4] = a[e3];
|
||||
a[e3] = t;
|
||||
if (t < a[e2]) {
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (a[e5] < a[e4]) {
|
||||
int t = a[e5];
|
||||
a[e5] = a[e4];
|
||||
a[e4] = t;
|
||||
if (t < a[e3]) {
|
||||
a[e4] = a[e3];
|
||||
a[e3] = t;
|
||||
if (t < a[e2]) {
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Pointers
|
||||
int less = left; // The index of the first element of center part
|
||||
int great = right; // The index before the first element of right part
|
||||
|
||||
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
|
||||
/*
|
||||
* Use the second and fourth of the five sorted elements as pivots.
|
||||
* These values are inexpensive approximations of the first and
|
||||
* second terciles of the array. Note that pivot1 <= pivot2.
|
||||
*/
|
||||
int pivot1 = a[e2];
|
||||
int pivot2 = a[e4];
|
||||
|
||||
/*
|
||||
* The first and the last elements to be sorted are moved to the
|
||||
* locations formerly occupied by the pivots. When partitioning
|
||||
* is complete, the pivots are swapped back into their final
|
||||
* positions, and excluded from subsequent sorting.
|
||||
*/
|
||||
a[e2] = a[left];
|
||||
a[e4] = a[right];
|
||||
|
||||
/*
|
||||
* Skip elements, which are less or greater than pivot values.
|
||||
*/
|
||||
while (a[++less] < pivot1) {
|
||||
}
|
||||
while (a[--great] > pivot2) {
|
||||
}
|
||||
|
||||
/*
|
||||
* Partitioning:
|
||||
*
|
||||
* left part center part right part
|
||||
* +--------------------------------------------------------------+
|
||||
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
|
||||
* +--------------------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (left, less) < pivot1
|
||||
* pivot1 <= all in [less, k) <= pivot2
|
||||
* all in (great, right) > pivot2
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
outer:
|
||||
for (int k = less - 1; ++k <= great; ) {
|
||||
int ak = a[k];
|
||||
if (ak < pivot1) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
/*
|
||||
* Here and below we use "a[i] = b; i++;" instead
|
||||
* of "a[i++] = b;" due to performance issue.
|
||||
*/
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else if (ak > pivot2) { // Move a[k] to right part
|
||||
while (a[great] > pivot2) {
|
||||
if (great-- == k) {
|
||||
break outer;
|
||||
}
|
||||
}
|
||||
if (a[great] < pivot1) { // a[great] <= pivot2
|
||||
a[k] = a[less];
|
||||
a[less] = a[great];
|
||||
++less;
|
||||
}
|
||||
else { // pivot1 <= a[great] <= pivot2
|
||||
a[k] = a[great];
|
||||
}
|
||||
/*
|
||||
* Here and below we use "a[i] = b; i--;" instead
|
||||
* of "a[i--] = b;" due to performance issue.
|
||||
*/
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
|
||||
// Swap pivots into their final positions
|
||||
a[left] = a[less - 1];
|
||||
a[less - 1] = pivot1;
|
||||
a[right] = a[great + 1];
|
||||
a[great + 1] = pivot2;
|
||||
|
||||
// Sort left and right parts recursively, excluding known pivots
|
||||
SortingIntTestJMH.sort(a, left, less - 2, leftmost);
|
||||
SortingIntTestJMH.sort(a, great + 2, right, false);
|
||||
|
||||
/*
|
||||
* If center part is too large (comprises > 4/7 of the array),
|
||||
* swap internal pivot values to ends.
|
||||
*/
|
||||
if (less < e1 && e5 < great) {
|
||||
/*
|
||||
* Skip elements, which are equal to pivot values.
|
||||
*/
|
||||
while (a[less] == pivot1) {
|
||||
++less;
|
||||
}
|
||||
|
||||
while (a[great] == pivot2) {
|
||||
--great;
|
||||
}
|
||||
|
||||
/*
|
||||
* Partitioning:
|
||||
*
|
||||
* left part center part right part
|
||||
* +----------------------------------------------------------+
|
||||
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
|
||||
* +----------------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (*, less) == pivot1
|
||||
* pivot1 < all in [less, k) < pivot2
|
||||
* all in (great, *) == pivot2
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
outer:
|
||||
for (int k = less - 1; ++k <= great; ) {
|
||||
int ak = a[k];
|
||||
if (ak == pivot1) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else if (ak == pivot2) { // Move a[k] to right part
|
||||
while (a[great] == pivot2) {
|
||||
if (great-- == k) {
|
||||
break outer;
|
||||
}
|
||||
}
|
||||
if (a[great] == pivot1) { // a[great] < pivot2
|
||||
a[k] = a[less];
|
||||
/*
|
||||
* Even though a[great] equals to pivot1, the
|
||||
* assignment a[less] = pivot1 may be incorrect,
|
||||
* if a[great] and pivot1 are floating-point zeros
|
||||
* of different signs. Therefore in float and
|
||||
* double sorting methods we have to use more
|
||||
* accurate assignment a[less] = a[great].
|
||||
*/
|
||||
a[less] = pivot1;
|
||||
++less;
|
||||
}
|
||||
else { // pivot1 < a[great] < pivot2
|
||||
a[k] = a[great];
|
||||
}
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sort center part recursively
|
||||
SortingIntTestJMH.sort(a, less, great, false);
|
||||
}
|
||||
else { // Partitioning with one pivot
|
||||
/*
|
||||
* Use the third of the five sorted elements as pivot.
|
||||
* This value is inexpensive approximation of the median.
|
||||
*/
|
||||
int pivot = a[e3];
|
||||
|
||||
/*
|
||||
* Partitioning degenerates to the traditional 3-way
|
||||
* (or "Dutch National Flag") schema:
|
||||
*
|
||||
* left part center part right part
|
||||
* +-------------------------------------------------+
|
||||
* | < pivot | == pivot | ? | > pivot |
|
||||
* +-------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (left, less) < pivot
|
||||
* all in [less, k) == pivot
|
||||
* all in (great, right) > pivot
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
for (int k = less; k <= great; ++k) {
|
||||
if (a[k] == pivot) {
|
||||
continue;
|
||||
}
|
||||
int ak = a[k];
|
||||
if (ak < pivot) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else { // a[k] > pivot - Move a[k] to right part
|
||||
while (a[great] > pivot) {
|
||||
--great;
|
||||
}
|
||||
if (a[great] < pivot) { // a[great] <= pivot
|
||||
a[k] = a[less];
|
||||
a[less] = a[great];
|
||||
++less;
|
||||
}
|
||||
else { // a[great] == pivot
|
||||
/*
|
||||
* Even though a[great] equals to pivot, the
|
||||
* assignment a[k] = pivot may be incorrect,
|
||||
* if a[great] and pivot are floating-point
|
||||
* zeros of different signs. Therefore in float
|
||||
* and double sorting methods we have to use
|
||||
* more accurate assignment a[k] = a[great].
|
||||
*/
|
||||
a[k] = pivot;
|
||||
}
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Sort left and right parts recursively.
|
||||
* All elements from center part are equal
|
||||
* and, therefore, already sorted.
|
||||
*/
|
||||
SortingIntTestJMH.sort(a, left, less - 1, leftmost);
|
||||
SortingIntTestJMH.sort(a, great + 1, right, false);
|
||||
}
|
||||
}
|
||||
|
||||
private static void swap(int[] arr, int i, int j) {
|
||||
int tmp = arr[i];
|
||||
arr[i] = arr[j];
|
||||
arr[j] = tmp;
|
||||
}
|
||||
}
|
725
jdk/test/java/util/Arrays/SortingLongBenchmarkTestJMH.java
Normal file
725
jdk/test/java/util/Arrays/SortingLongBenchmarkTestJMH.java
Normal file
@ -0,0 +1,725 @@
|
||||
/*
|
||||
* Copyright 2015 Goldman Sachs.
|
||||
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
import org.openjdk.jmh.annotations.Benchmark;
|
||||
import org.openjdk.jmh.annotations.BenchmarkMode;
|
||||
import org.openjdk.jmh.annotations.Measurement;
|
||||
import org.openjdk.jmh.annotations.Mode;
|
||||
import org.openjdk.jmh.annotations.OutputTimeUnit;
|
||||
import org.openjdk.jmh.annotations.Param;
|
||||
import org.openjdk.jmh.annotations.Scope;
|
||||
import org.openjdk.jmh.annotations.Setup;
|
||||
import org.openjdk.jmh.annotations.State;
|
||||
import org.openjdk.jmh.annotations.Warmup;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
import java.util.Set;
|
||||
import java.util.concurrent.TimeUnit;
|
||||
|
||||
@State(Scope.Thread)
|
||||
@BenchmarkMode(Mode.Throughput)
|
||||
@OutputTimeUnit(TimeUnit.SECONDS)
|
||||
public class SortingLongBenchmarkTestJMH {
|
||||
private static final int QUICKSORT_THRESHOLD = 286;
|
||||
private static final int MAX_RUN_COUNT = 67;
|
||||
private static final int INSERTION_SORT_THRESHOLD = 47;
|
||||
public static final int MAX_VALUE = 1_000_000;
|
||||
|
||||
@Param({"pairFlipZeroPairFlip", "descendingAscending", "zeroHi", "hiZeroLow", "hiFlatLow", "identical",
|
||||
"randomDups", "randomNoDups", "sortedReversedSorted", "pairFlip", "endLessThan"})
|
||||
public String listType;
|
||||
|
||||
private long[] array;
|
||||
private static final int LIST_SIZE = 10_000_000;
|
||||
public static final int NUMBER_OF_ITERATIONS = 10;
|
||||
|
||||
@Setup
|
||||
public void setUp() {
|
||||
Random random = new Random(123456789012345L);
|
||||
this.array = new long[LIST_SIZE];
|
||||
int threeQuarters = (int) (LIST_SIZE * 0.75);
|
||||
if ("zeroHi".equals(this.listType)) {
|
||||
for (int i = 0; i < threeQuarters; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
int k = 1;
|
||||
for (int i = threeQuarters; i < LIST_SIZE; i++) {
|
||||
this.array[i] = k;
|
||||
k++;
|
||||
}
|
||||
}
|
||||
else if ("hiFlatLow".equals(this.listType)) {
|
||||
int oneThird = LIST_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
int constant = oneThird - 1;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
this.array[i] = constant;
|
||||
}
|
||||
for (int i = twoThirds; i < LIST_SIZE; i++) {
|
||||
this.array[i] = constant - i + twoThirds;
|
||||
}
|
||||
}
|
||||
else if ("hiZeroLow".equals(this.listType)) {
|
||||
int oneThird = LIST_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
for (int i = twoThirds; i < LIST_SIZE; i++) {
|
||||
this.array[i] = oneThird - i + twoThirds;
|
||||
}
|
||||
}
|
||||
else if ("identical".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
}
|
||||
else if ("randomDups".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = random.nextInt(1000);
|
||||
}
|
||||
}
|
||||
else if ("randomNoDups".equals(this.listType)) {
|
||||
Set<Integer> set = new HashSet<>();
|
||||
while (set.size() < LIST_SIZE + 1) {
|
||||
set.add(random.nextInt());
|
||||
}
|
||||
List<Integer> list = new ArrayList<>(LIST_SIZE);
|
||||
list.addAll(set);
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = list.get(i);
|
||||
}
|
||||
}
|
||||
else if ("sortedReversedSorted".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE / 2; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
int num = 0;
|
||||
for (int i = LIST_SIZE / 2; i < LIST_SIZE; i++) {
|
||||
this.array[i] = LIST_SIZE - num;
|
||||
num++;
|
||||
}
|
||||
}
|
||||
else if ("pairFlip".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = 0; i < LIST_SIZE; i += 2) {
|
||||
long temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
}
|
||||
else if ("endLessThan".equals(this.listType)) {
|
||||
for (int i = 0; i < LIST_SIZE - 1; i++) {
|
||||
this.array[i] = 3;
|
||||
}
|
||||
this.array[LIST_SIZE - 1] = 1;
|
||||
}
|
||||
else if ("pairFlipZeroPairFlip".equals(this.listType)) {
|
||||
//pairflip
|
||||
for (int i = 0; i < 64; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = 0; i < 64; i += 2) {
|
||||
long temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
//zero
|
||||
for (int i = 64; i < this.array.length - 64; i++) {
|
||||
this.array[i] = 0;
|
||||
}
|
||||
//pairflip
|
||||
for (int i = this.array.length - 64; i < this.array.length; i++) {
|
||||
this.array[i] = i;
|
||||
}
|
||||
for (int i = this.array.length - 64; i < this.array.length; i += 2) {
|
||||
long temp = this.array[i];
|
||||
this.array[i] = this.array[i + 1];
|
||||
this.array[i + 1] = temp;
|
||||
}
|
||||
}
|
||||
else if ("pairFlipOneHundredPairFlip".equals(this.listType)) {
|
||||
//10, 5
|
||||
for (int i = 0; i < 64; i++) {
|
||||
if (i % 2 == 0) {
|
||||
this.array[i] = 10;
|
||||
}
|
||||
else {
|
||||
this.array[i] = 5;
|
||||
}
|
||||
}
|
||||
|
||||
//100
|
||||
for (int i = 64; i < this.array.length - 64; i++) {
|
||||
this.array[i] = 100;
|
||||
}
|
||||
|
||||
//10, 5
|
||||
for (int i = this.array.length - 64; i < this.array.length; i++) {
|
||||
if (i % 2 == 0) {
|
||||
this.array[i] = 10;
|
||||
}
|
||||
else {
|
||||
this.array[i] = 5;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@Warmup(iterations = 20)
|
||||
@Measurement(iterations = 10)
|
||||
@Benchmark
|
||||
public void sortNewWay() {
|
||||
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
|
||||
SortingLongTestJMH.sort(this.array, 0, this.array.length - 1, null, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@Warmup(iterations = 20)
|
||||
@Measurement(iterations = 10)
|
||||
@Benchmark
|
||||
public void sortOldWay() {
|
||||
for (int i = 0; i < NUMBER_OF_ITERATIONS; i++) {
|
||||
Arrays.sort(this.array);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the array using the given
|
||||
* workspace array slice if possible for merging
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param left the index of the first element, inclusive, to be sorted
|
||||
* @param right the index of the last element, inclusive, to be sorted
|
||||
* @param work a workspace array (slice)
|
||||
* @param workBase origin of usable space in work array
|
||||
* @param workLen usable size of work array
|
||||
*/
|
||||
static void sort(long[] a, int left, int right,
|
||||
long[] work, int workBase, int workLen) {
|
||||
// Use Quicksort on small arrays
|
||||
if (right - left < QUICKSORT_THRESHOLD) {
|
||||
SortingLongTestJMH.sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Index run[i] is the start of i-th run
|
||||
* (ascending or descending sequence).
|
||||
*/
|
||||
int[] run = new int[MAX_RUN_COUNT + 1];
|
||||
int count = 0;
|
||||
run[0] = left;
|
||||
|
||||
// Check if the array is nearly sorted
|
||||
for (int k = left; k < right; run[count] = k) {
|
||||
while (k < right && a[k] == a[k + 1])
|
||||
k++;
|
||||
if (k == right) break;
|
||||
if (a[k] < a[k + 1]) { // ascending
|
||||
while (++k <= right && a[k - 1] <= a[k]) ;
|
||||
}
|
||||
else if (a[k] > a[k + 1]) { // descending
|
||||
while (++k <= right && a[k - 1] >= a[k]) ;
|
||||
for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) {
|
||||
long t = a[lo];
|
||||
a[lo] = a[hi];
|
||||
a[hi] = t;
|
||||
}
|
||||
}
|
||||
if (run[count] > left && a[run[count]] >= a[run[count] - 1]) {
|
||||
count--;
|
||||
}
|
||||
/*
|
||||
* The array is not highly structured,
|
||||
* use Quicksort instead of merge sort.
|
||||
*/
|
||||
if (++count == MAX_RUN_COUNT) {
|
||||
sort(a, left, right, true);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Check special cases
|
||||
// Implementation note: variable "right" is increased by 1.
|
||||
if (run[count] == right++) {
|
||||
run[++count] = right;
|
||||
}
|
||||
if (count <= 1) { // The array is already sorted
|
||||
return;
|
||||
}
|
||||
|
||||
// Determine alternation base for merge
|
||||
byte odd = 0;
|
||||
for (int n = 1; (n <<= 1) < count; odd ^= 1) {
|
||||
}
|
||||
|
||||
// Use or create temporary array b for merging
|
||||
long[] b; // temp array; alternates with a
|
||||
int ao, bo; // array offsets from 'left'
|
||||
int blen = right - left; // space needed for b
|
||||
if (work == null || workLen < blen || workBase + blen > work.length) {
|
||||
work = new long[blen];
|
||||
workBase = 0;
|
||||
}
|
||||
if (odd == 0) {
|
||||
System.arraycopy(a, left, work, workBase, blen);
|
||||
b = a;
|
||||
bo = 0;
|
||||
a = work;
|
||||
ao = workBase - left;
|
||||
}
|
||||
else {
|
||||
b = work;
|
||||
ao = 0;
|
||||
bo = workBase - left;
|
||||
}
|
||||
|
||||
// Merging
|
||||
for (int last; count > 1; count = last) {
|
||||
for (int k = (last = 0) + 2; k <= count; k += 2) {
|
||||
int hi = run[k], mi = run[k - 1];
|
||||
for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) {
|
||||
if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) {
|
||||
b[i + bo] = a[p++ + ao];
|
||||
}
|
||||
else {
|
||||
b[i + bo] = a[q++ + ao];
|
||||
}
|
||||
}
|
||||
run[++last] = hi;
|
||||
}
|
||||
if ((count & 1) != 0) {
|
||||
for (int i = right, lo = run[count - 1]; --i >= lo;
|
||||
b[i + bo] = a[i + ao]
|
||||
) {
|
||||
}
|
||||
run[++last] = right;
|
||||
}
|
||||
long[] t = a;
|
||||
a = b;
|
||||
b = t;
|
||||
int o = ao;
|
||||
ao = bo;
|
||||
bo = o;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Sorts the specified range of the array by Dual-Pivot Quicksort.
|
||||
*
|
||||
* @param a the array to be sorted
|
||||
* @param left the index of the first element, inclusive, to be sorted
|
||||
* @param right the index of the last element, inclusive, to be sorted
|
||||
* @param leftmost indicates if this part is the leftmost in the range
|
||||
*/
|
||||
private static void sort(long[] a, int left, int right, boolean leftmost) {
|
||||
int length = right - left + 1;
|
||||
|
||||
// Use insertion sort on tiny arrays
|
||||
if (length < INSERTION_SORT_THRESHOLD) {
|
||||
if (leftmost) {
|
||||
/*
|
||||
* Traditional (without sentinel) insertion sort,
|
||||
* optimized for server VM, is used in case of
|
||||
* the leftmost part.
|
||||
*/
|
||||
for (int i = left, j = i; i < right; j = ++i) {
|
||||
long ai = a[i + 1];
|
||||
while (ai < a[j]) {
|
||||
a[j + 1] = a[j];
|
||||
if (j-- == left) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
a[j + 1] = ai;
|
||||
}
|
||||
}
|
||||
else {
|
||||
/*
|
||||
* Skip the longest ascending sequence.
|
||||
*/
|
||||
do {
|
||||
if (left >= right) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
while (a[++left] >= a[left - 1]);
|
||||
|
||||
/*
|
||||
* Every element from adjoining part plays the role
|
||||
* of sentinel, therefore this allows us to avoid the
|
||||
* left range check on each iteration. Moreover, we use
|
||||
* the more optimized algorithm, so called pair insertion
|
||||
* sort, which is faster (in the context of Quicksort)
|
||||
* than traditional implementation of insertion sort.
|
||||
*/
|
||||
for (int k = left; ++left <= right; k = ++left) {
|
||||
long a1 = a[k], a2 = a[left];
|
||||
|
||||
if (a1 < a2) {
|
||||
a2 = a1;
|
||||
a1 = a[left];
|
||||
}
|
||||
while (a1 < a[--k]) {
|
||||
a[k + 2] = a[k];
|
||||
}
|
||||
a[++k + 1] = a1;
|
||||
|
||||
while (a2 < a[--k]) {
|
||||
a[k + 1] = a[k];
|
||||
}
|
||||
a[k + 1] = a2;
|
||||
}
|
||||
long last = a[right];
|
||||
|
||||
while (last < a[--right]) {
|
||||
a[right + 1] = a[right];
|
||||
}
|
||||
a[right + 1] = last;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Inexpensive approximation of length / 7
|
||||
int seventh = (length >> 3) + (length >> 6) + 1;
|
||||
|
||||
/*
|
||||
* Sort five evenly spaced elements around (and including) the
|
||||
* center element in the range. These elements will be used for
|
||||
* pivot selection as described below. The choice for spacing
|
||||
* these elements was empirically determined to work well on
|
||||
* a wide variety of inputs.
|
||||
*/
|
||||
int e3 = (left + right) >>> 1; // The midpoint
|
||||
int e2 = e3 - seventh;
|
||||
int e1 = e2 - seventh;
|
||||
int e4 = e3 + seventh;
|
||||
int e5 = e4 + seventh;
|
||||
|
||||
// Sort these elements using insertion sort
|
||||
if (a[e2] < a[e1]) {
|
||||
long t = a[e2];
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
|
||||
if (a[e3] < a[e2]) {
|
||||
long t = a[e3];
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
if (a[e4] < a[e3]) {
|
||||
long t = a[e4];
|
||||
a[e4] = a[e3];
|
||||
a[e3] = t;
|
||||
if (t < a[e2]) {
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (a[e5] < a[e4]) {
|
||||
long t = a[e5];
|
||||
a[e5] = a[e4];
|
||||
a[e4] = t;
|
||||
if (t < a[e3]) {
|
||||
a[e4] = a[e3];
|
||||
a[e3] = t;
|
||||
if (t < a[e2]) {
|
||||
a[e3] = a[e2];
|
||||
a[e2] = t;
|
||||
if (t < a[e1]) {
|
||||
a[e2] = a[e1];
|
||||
a[e1] = t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Pointers
|
||||
int less = left; // The index of the first element of center part
|
||||
int great = right; // The index before the first element of right part
|
||||
|
||||
if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) {
|
||||
/*
|
||||
* Use the second and fourth of the five sorted elements as pivots.
|
||||
* These values are inexpensive approximations of the first and
|
||||
* second terciles of the array. Note that pivot1 <= pivot2.
|
||||
*/
|
||||
long pivot1 = a[e2];
|
||||
long pivot2 = a[e4];
|
||||
|
||||
/*
|
||||
* The first and the last elements to be sorted are moved to the
|
||||
* locations formerly occupied by the pivots. When partitioning
|
||||
* is complete, the pivots are swapped back into their final
|
||||
* positions, and excluded from subsequent sorting.
|
||||
*/
|
||||
a[e2] = a[left];
|
||||
a[e4] = a[right];
|
||||
|
||||
/*
|
||||
* Skip elements, which are less or greater than pivot values.
|
||||
*/
|
||||
while (a[++less] < pivot1) {
|
||||
}
|
||||
while (a[--great] > pivot2) {
|
||||
}
|
||||
|
||||
/*
|
||||
* Partitioning:
|
||||
*
|
||||
* left part center part right part
|
||||
* +--------------------------------------------------------------+
|
||||
* | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 |
|
||||
* +--------------------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (left, less) < pivot1
|
||||
* pivot1 <= all in [less, k) <= pivot2
|
||||
* all in (great, right) > pivot2
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
outer:
|
||||
for (int k = less - 1; ++k <= great; ) {
|
||||
long ak = a[k];
|
||||
if (ak < pivot1) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
/*
|
||||
* Here and below we use "a[i] = b; i++;" instead
|
||||
* of "a[i++] = b;" due to performance issue.
|
||||
*/
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else if (ak > pivot2) { // Move a[k] to right part
|
||||
while (a[great] > pivot2) {
|
||||
if (great-- == k) {
|
||||
break outer;
|
||||
}
|
||||
}
|
||||
if (a[great] < pivot1) { // a[great] <= pivot2
|
||||
a[k] = a[less];
|
||||
a[less] = a[great];
|
||||
++less;
|
||||
}
|
||||
else { // pivot1 <= a[great] <= pivot2
|
||||
a[k] = a[great];
|
||||
}
|
||||
/*
|
||||
* Here and below we use "a[i] = b; i--;" instead
|
||||
* of "a[i--] = b;" due to performance issue.
|
||||
*/
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
|
||||
// Swap pivots into their final positions
|
||||
a[left] = a[less - 1];
|
||||
a[less - 1] = pivot1;
|
||||
a[right] = a[great + 1];
|
||||
a[great + 1] = pivot2;
|
||||
|
||||
// Sort left and right parts recursively, excluding known pivots
|
||||
SortingLongTestJMH.sort(a, left, less - 2, leftmost);
|
||||
SortingLongTestJMH.sort(a, great + 2, right, false);
|
||||
|
||||
/*
|
||||
* If center part is too large (comprises > 4/7 of the array),
|
||||
* swap internal pivot values to ends.
|
||||
*/
|
||||
if (less < e1 && e5 < great) {
|
||||
/*
|
||||
* Skip elements, which are equal to pivot values.
|
||||
*/
|
||||
while (a[less] == pivot1) {
|
||||
++less;
|
||||
}
|
||||
|
||||
while (a[great] == pivot2) {
|
||||
--great;
|
||||
}
|
||||
|
||||
/*
|
||||
* Partitioning:
|
||||
*
|
||||
* left part center part right part
|
||||
* +----------------------------------------------------------+
|
||||
* | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 |
|
||||
* +----------------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (*, less) == pivot1
|
||||
* pivot1 < all in [less, k) < pivot2
|
||||
* all in (great, *) == pivot2
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
outer:
|
||||
for (int k = less - 1; ++k <= great; ) {
|
||||
long ak = a[k];
|
||||
if (ak == pivot1) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else if (ak == pivot2) { // Move a[k] to right part
|
||||
while (a[great] == pivot2) {
|
||||
if (great-- == k) {
|
||||
break outer;
|
||||
}
|
||||
}
|
||||
if (a[great] == pivot1) { // a[great] < pivot2
|
||||
a[k] = a[less];
|
||||
/*
|
||||
* Even though a[great] equals to pivot1, the
|
||||
* assignment a[less] = pivot1 may be incorrect,
|
||||
* if a[great] and pivot1 are floating-point zeros
|
||||
* of different signs. Therefore in float and
|
||||
* double sorting methods we have to use more
|
||||
* accurate assignment a[less] = a[great].
|
||||
*/
|
||||
a[less] = pivot1;
|
||||
++less;
|
||||
}
|
||||
else { // pivot1 < a[great] < pivot2
|
||||
a[k] = a[great];
|
||||
}
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sort center part recursively
|
||||
SortingLongTestJMH.sort(a, less, great, false);
|
||||
}
|
||||
else { // Partitioning with one pivot
|
||||
/*
|
||||
* Use the third of the five sorted elements as pivot.
|
||||
* This value is inexpensive approximation of the median.
|
||||
*/
|
||||
long pivot = a[e3];
|
||||
|
||||
/*
|
||||
* Partitioning degenerates to the traditional 3-way
|
||||
* (or "Dutch National Flag") schema:
|
||||
*
|
||||
* left part center part right part
|
||||
* +-------------------------------------------------+
|
||||
* | < pivot | == pivot | ? | > pivot |
|
||||
* +-------------------------------------------------+
|
||||
* ^ ^ ^
|
||||
* | | |
|
||||
* less k great
|
||||
*
|
||||
* Invariants:
|
||||
*
|
||||
* all in (left, less) < pivot
|
||||
* all in [less, k) == pivot
|
||||
* all in (great, right) > pivot
|
||||
*
|
||||
* Pointer k is the first index of ?-part.
|
||||
*/
|
||||
for (int k = less; k <= great; ++k) {
|
||||
if (a[k] == pivot) {
|
||||
continue;
|
||||
}
|
||||
long ak = a[k];
|
||||
if (ak < pivot) { // Move a[k] to left part
|
||||
a[k] = a[less];
|
||||
a[less] = ak;
|
||||
++less;
|
||||
}
|
||||
else { // a[k] > pivot - Move a[k] to right part
|
||||
while (a[great] > pivot) {
|
||||
--great;
|
||||
}
|
||||
if (a[great] < pivot) { // a[great] <= pivot
|
||||
a[k] = a[less];
|
||||
a[less] = a[great];
|
||||
++less;
|
||||
}
|
||||
else { // a[great] == pivot
|
||||
/*
|
||||
* Even though a[great] equals to pivot, the
|
||||
* assignment a[k] = pivot may be incorrect,
|
||||
* if a[great] and pivot are floating-point
|
||||
* zeros of different signs. Therefore in float
|
||||
* and double sorting methods we have to use
|
||||
* more accurate assignment a[k] = a[great].
|
||||
*/
|
||||
a[k] = pivot;
|
||||
}
|
||||
a[great] = ak;
|
||||
--great;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Sort left and right parts recursively.
|
||||
* All elements from center part are equal
|
||||
* and, therefore, already sorted.
|
||||
*/
|
||||
SortingLongTestJMH.sort(a, left, less - 1, leftmost);
|
||||
SortingLongTestJMH.sort(a, great + 1, right, false);
|
||||
}
|
||||
}
|
||||
|
||||
private static void swap(long[] arr, int i, int j) {
|
||||
long tmp = arr[i];
|
||||
arr[i] = arr[j];
|
||||
arr[j] = tmp;
|
||||
}
|
||||
}
|
274
jdk/test/java/util/Arrays/SortingNearlySortedPrimitive.java
Normal file
274
jdk/test/java/util/Arrays/SortingNearlySortedPrimitive.java
Normal file
@ -0,0 +1,274 @@
|
||||
/*
|
||||
* Copyright 2015 Goldman Sachs.
|
||||
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
/*
|
||||
* @test
|
||||
* @summary Tests the sorting of a large array of sorted primitive values,
|
||||
* predominently for cases where the array is nearly sorted. This tests
|
||||
* code that detects patterns in the array to determine if it is nearly
|
||||
* sorted and if so employs and optimizes merge sort rather than a
|
||||
* Dual-Pivot QuickSort.
|
||||
*
|
||||
* @run testng SortingNearlySortedPrimitive
|
||||
*/
|
||||
|
||||
import org.testng.Assert;
|
||||
import org.testng.annotations.DataProvider;
|
||||
import org.testng.annotations.Test;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.function.Supplier;
|
||||
|
||||
public class SortingNearlySortedPrimitive {
|
||||
private static final int ARRAY_SIZE = 1_000_000;
|
||||
|
||||
@DataProvider(name = "arrays")
|
||||
public Object[][] createData() {
|
||||
return new Object[][]{
|
||||
{"hiZeroLowTest", (Supplier<int[]>) this::hiZeroLowData},
|
||||
{"endLessThanTest", (Supplier<int[]>) this::endLessThanData},
|
||||
{"highFlatLowTest", (Supplier<int[]>) this::highFlatLowData},
|
||||
{"identicalTest", (Supplier<int[]>) this::identicalData},
|
||||
{"sortedReversedSortedTest", (Supplier<int[]>) this::sortedReversedSortedData},
|
||||
{"pairFlipTest", (Supplier<int[]>) this::pairFlipData},
|
||||
{"zeroHiTest", (Supplier<int[]>) this::zeroHiData},
|
||||
};
|
||||
}
|
||||
|
||||
@Test(dataProvider = "arrays")
|
||||
public void runTests(String testName, Supplier<int[]> dataMethod) throws Exception {
|
||||
int[] intSourceArray = dataMethod.get();
|
||||
|
||||
// Clone source array to ensure it is not modified
|
||||
this.sortAndAssert(intSourceArray.clone());
|
||||
this.sortAndAssert(floatCopyFromInt(intSourceArray));
|
||||
this.sortAndAssert(doubleCopyFromInt(intSourceArray));
|
||||
this.sortAndAssert(longCopyFromInt(intSourceArray));
|
||||
this.sortAndAssert(shortCopyFromInt(intSourceArray));
|
||||
this.sortAndAssert(charCopyFromInt(intSourceArray));
|
||||
}
|
||||
|
||||
private float[] floatCopyFromInt(int[] src) {
|
||||
float[] result = new float[src.length];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = src[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private double[] doubleCopyFromInt(int[] src) {
|
||||
double[] result = new double[src.length];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = src[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private long[] longCopyFromInt(int[] src) {
|
||||
long[] result = new long[src.length];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = src[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private short[] shortCopyFromInt(int[] src) {
|
||||
short[] result = new short[src.length];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = (short) src[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private char[] charCopyFromInt(int[] src) {
|
||||
char[] result = new char[src.length];
|
||||
for (int i = 0; i < result.length; i++) {
|
||||
result[i] = (char) src[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private void sortAndAssert(int[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private void sortAndAssert(char[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private void sortAndAssert(short[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private void sortAndAssert(double[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private void sortAndAssert(float[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private void sortAndAssert(long[] array) {
|
||||
Arrays.sort(array);
|
||||
for (int i = 1; i < ARRAY_SIZE; i++) {
|
||||
if (array[i] < array[i - 1]) {
|
||||
throw new AssertionError("not sorted");
|
||||
}
|
||||
}
|
||||
Assert.assertEquals(ARRAY_SIZE, array.length);
|
||||
}
|
||||
|
||||
private int[] zeroHiData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
int threeQuarters = (int) (ARRAY_SIZE * 0.75);
|
||||
for (int i = 0; i < threeQuarters; i++) {
|
||||
array[i] = 0;
|
||||
}
|
||||
int k = 1;
|
||||
for (int i = threeQuarters; i < ARRAY_SIZE; i++) {
|
||||
array[i] = k;
|
||||
k++;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] hiZeroLowData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
int oneThird = ARRAY_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
array[i] = 0;
|
||||
}
|
||||
for (int i = twoThirds; i < ARRAY_SIZE; i++) {
|
||||
array[i] = oneThird - i + twoThirds;
|
||||
}
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] highFlatLowData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
int oneThird = ARRAY_SIZE / 3;
|
||||
for (int i = 0; i < oneThird; i++) {
|
||||
array[i] = i;
|
||||
}
|
||||
int twoThirds = oneThird * 2;
|
||||
int constant = oneThird - 1;
|
||||
for (int i = oneThird; i < twoThirds; i++) {
|
||||
array[i] = constant;
|
||||
}
|
||||
for (int i = twoThirds; i < ARRAY_SIZE; i++) {
|
||||
array[i] = constant - i + twoThirds;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] identicalData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
int listNumber = 24;
|
||||
|
||||
for (int i = 0; i < ARRAY_SIZE; i++) {
|
||||
array[i] = listNumber;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] endLessThanData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
for (int i = 0; i < ARRAY_SIZE - 1; i++) {
|
||||
array[i] = 3;
|
||||
}
|
||||
array[ARRAY_SIZE - 1] = 1;
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] sortedReversedSortedData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
for (int i = 0; i < ARRAY_SIZE / 2; i++) {
|
||||
array[i] = i;
|
||||
}
|
||||
int num = 0;
|
||||
for (int i = ARRAY_SIZE / 2; i < ARRAY_SIZE; i++) {
|
||||
array[i] = ARRAY_SIZE - num;
|
||||
num++;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
|
||||
private int[] pairFlipData() {
|
||||
int[] array = new int[ARRAY_SIZE];
|
||||
|
||||
for (int i = 0; i < ARRAY_SIZE; i++) {
|
||||
array[i] = i;
|
||||
}
|
||||
for (int i = 0; i < ARRAY_SIZE; i += 2) {
|
||||
int temp = array[i];
|
||||
array[i] = array[i + 1];
|
||||
array[i + 1] = temp;
|
||||
}
|
||||
|
||||
return array;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user