8006572: DoubleStream.sum() & DoubleSummaryStats implementations that reduce numerical errors

Reviewed-by: psandoz, mduigou
This commit is contained in:
Joe Darcy 2013-12-01 23:35:28 -08:00
parent 2469f9573a
commit 3eafe5802b
4 changed files with 219 additions and 22 deletions

View File

@ -63,6 +63,7 @@ import java.util.stream.Collector;
public class DoubleSummaryStatistics implements DoubleConsumer {
private long count;
private double sum;
private double sumCompensation; // Low order bits of sum
private double min = Double.POSITIVE_INFINITY;
private double max = Double.NEGATIVE_INFINITY;
@ -81,7 +82,7 @@ public class DoubleSummaryStatistics implements DoubleConsumer {
@Override
public void accept(double value) {
++count;
sum += value;
sumWithCompensation(value);
min = Math.min(min, value);
max = Math.max(max, value);
}
@ -95,11 +96,23 @@ public class DoubleSummaryStatistics implements DoubleConsumer {
*/
public void combine(DoubleSummaryStatistics other) {
count += other.count;
sum += other.sum;
sumWithCompensation(other.sum);
sumWithCompensation(other.sumCompensation);
min = Math.min(min, other.min);
max = Math.max(max, other.max);
}
/**
* Incorporate a new double value using Kahan summation /
* compensated summation.
*/
private void sumWithCompensation(double value) {
double tmp = value - sumCompensation;
double velvel = sum + tmp; // Little wolf of rounding error
sumCompensation = (velvel - sum) - tmp;
sum = velvel;
}
/**
* Return the count of values recorded.
*
@ -133,7 +146,8 @@ public class DoubleSummaryStatistics implements DoubleConsumer {
* @return the sum of values, or zero if none
*/
public final double getSum() {
return sum;
// Better error bounds to add both terms as the final sum
return sum + sumCompensation;
}
/**

View File

@ -505,13 +505,42 @@ public final class Collectors {
*/
public static <T> Collector<T, ?, Double>
summingDouble(ToDoubleFunction<? super T> mapper) {
/*
* In the arrays allocated for the collect operation, index 0
* holds the high-order bits of the running sum and index 1
* holds the low-order bits of the sum computed via
* compensated summation.
*/
return new CollectorImpl<>(
() -> new double[1],
(a, t) -> { a[0] += mapper.applyAsDouble(t); },
(a, b) -> { a[0] += b[0]; return a; },
a -> a[0], CH_NOID);
() -> new double[2],
(a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); },
(a, b) -> { sumWithCompensation(a, b[0]); return sumWithCompensation(a, b[1]); },
// Better error bounds to add both terms as the final sum
a -> a[0] + a[1],
CH_NOID);
}
/**
* Incorporate a new double value using Kahan summation /
* compensation summation.
*
* High-order bits of the sum are in intermediateSum[0], low-order
* bits of the sum are in intermediateSum[1], any additional
* elements are application-specific.
*
* @param intermediateSum the high-order and low-order words of the intermediate sum
* @param value the name value to be included in the running sum
*/
static double[] sumWithCompensation(double[] intermediateSum, double value) {
double tmp = value - intermediateSum[1];
double sum = intermediateSum[0];
double velvel = sum + tmp; // Little wolf of rounding error
intermediateSum[1] = (velvel - sum) - tmp;
intermediateSum[0] = velvel;
return intermediateSum;
}
/**
* Returns a {@code Collector} that produces the arithmetic mean of an integer-valued
* function applied to the input elements. If no elements are present,
@ -560,17 +589,31 @@ public final class Collectors {
* value is a {@code NaN} or the sum is at any point a {@code NaN} then the
* average will be {@code NaN}.
*
* @implNote The {@code double} format can represent all
* consecutive integers in the range -2<sup>53</sup> to
* 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
* values, the divisor in the average computation will saturate at
* 2<sup>53</sup>, leading to additional numerical errors.
*
* @param <T> the type of the input elements
* @param mapper a function extracting the property to be summed
* @return a {@code Collector} that produces the sum of a derived property
*/
public static <T> Collector<T, ?, Double>
averagingDouble(ToDoubleFunction<? super T> mapper) {
/*
* In the arrays allocated for the collect operation, index 0
* holds the high-order bits of the running sum, index 1 holds
* the low-order bits of the sum computed via compensated
* summation, and index 2 holds the number of values seen.
*/
return new CollectorImpl<>(
() -> new double[2],
(a, t) -> { a[0] += mapper.applyAsDouble(t); a[1]++; },
(a, b) -> { a[0] += b[0]; a[1] += b[1]; return a; },
a -> (a[1] == 0) ? 0.0d : a[0] / a[1], CH_NOID);
() -> new double[3],
(a, t) -> { sumWithCompensation(a, mapper.applyAsDouble(t)); a[2]++; },
(a, b) -> { sumWithCompensation(a, b[0]); sumWithCompensation(a, b[1]); a[2] += b[2]; return a; },
// Better error bounds to add both terms as the final sum to compute average
a -> (a[2] == 0) ? 0.0d : ((a[0] + a[1]) / a[2]),
CH_NOID);
}
/**

View File

@ -377,8 +377,23 @@ abstract class DoublePipeline<E_IN>
@Override
public final double sum() {
// TODO: better algorithm to compensate for errors
return reduce(0.0, Double::sum);
/*
* In the arrays allocated for the collect operation, index 0
* holds the high-order bits of the running sum and index 1
* holds the low-order bits of the sum computed via
* compensated summation.
*/
double[] summation = collect(() -> new double[2],
(ll, d) -> {
Collectors.sumWithCompensation(ll, d);
},
(ll, rr) -> {
Collectors.sumWithCompensation(ll, rr[0]);
Collectors.sumWithCompensation(ll, rr[1]);
});
// Better error bounds to add both terms as the final sum
return summation[0] + summation[1];
}
@Override
@ -391,20 +406,37 @@ abstract class DoublePipeline<E_IN>
return reduce(Math::max);
}
/**
* {@inheritDoc}
*
* @implNote The {@code double} format can represent all
* consecutive integers in the range -2<sup>53</sup> to
* 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
* values, the divisor in the average computation will saturate at
* 2<sup>53</sup>, leading to additional numerical errors.
*/
@Override
public final OptionalDouble average() {
double[] avg = collect(() -> new double[2],
(ll, i) -> {
ll[0]++;
ll[1] += i;
/*
* In the arrays allocated for the collect operation, index 0
* holds the high-order bits of the running sum, index 1 holds
* the low-order bits of the sum computed via compensated
* summation, and index 2 holds the number of values seen.
*/
double[] avg = collect(() -> new double[3],
(ll, d) -> {
ll[2]++;
Collectors.sumWithCompensation(ll, d);
},
(ll, rr) -> {
ll[0] += rr[0];
ll[1] += rr[1];
Collectors.sumWithCompensation(ll, rr[0]);
Collectors.sumWithCompensation(ll, rr[1]);
ll[2] += rr[2];
});
return avg[0] > 0
? OptionalDouble.of(avg[1] / avg[0])
: OptionalDouble.empty();
return avg[2] > 0
// Better error bounds to add both terms as the final sum to compute average
? OptionalDouble.of((avg[0] + avg[1]) / avg[2])
: OptionalDouble.empty();
}
@Override

View File

@ -0,0 +1,108 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
import java.util.*;
import java.util.function.*;
import java.util.stream.*;
/*
* @test
* @bug 8006572
* @summary Test for use of non-naive summation in stream-related sum and average operations.
*/
public class TestDoubleSumAverage {
public static void main(String... args) {
int failures = 0;
failures += testForCompenstation();
failures += testZeroAverageOfNonEmptyStream();
if (failures > 0) {
throw new RuntimeException("Found " + failures + " numerical failure(s).");
}
}
/**
* Compute the sum and average of a sequence of double values in
* various ways and report an error if naive summation is used.
*/
private static int testForCompenstation() {
int failures = 0;
/*
* The exact sum of the test stream is 1 + 1e6*ulp(1.0) but a
* naive summation algorithm will return 1.0 since (1.0 +
* ulp(1.0)/2) will round to 1.0 again.
*/
double base = 1.0;
double increment = Math.ulp(base)/2.0;
int count = 1_000_001;
double expectedSum = base + (increment * (count - 1));
double expectedAvg = expectedSum / count;
// Factory for double a stream of [base, increment, ..., increment] limited to a size of count
Supplier<DoubleStream> ds = () -> DoubleStream.iterate(base, e -> increment).limit(count);
DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new,
DoubleSummaryStatistics::accept,
DoubleSummaryStatistics::combine);
failures += compareUlpDifference(expectedSum, stats.getSum(), 3);
failures += compareUlpDifference(expectedAvg, stats.getAverage(), 3);
failures += compareUlpDifference(expectedSum,
ds.get().sum(), 3);
failures += compareUlpDifference(expectedAvg,
ds.get().average().getAsDouble(), 3);
failures += compareUlpDifference(expectedSum,
ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 3);
failures += compareUlpDifference(expectedAvg,
ds.get().boxed().collect(Collectors.averagingDouble(d -> d)),3);
return failures;
}
/**
* Test to verify that a non-empty stream with a zero average is non-empty.
*/
private static int testZeroAverageOfNonEmptyStream() {
Supplier<DoubleStream> ds = () -> DoubleStream.iterate(0.0, e -> 0.0).limit(10);
return compareUlpDifference(0.0, ds.get().average().getAsDouble(), 0);
}
/**
* Compute the ulp difference of two double values and compare against an error threshold.
*/
private static int compareUlpDifference(double expected, double computed, double threshold) {
double ulpDifference = Math.abs(expected - computed) / Math.ulp(expected);
if (ulpDifference > threshold) {
System.err.printf("Numerical summation error too large, %g ulps rather than %g.%n",
ulpDifference, threshold);
return 1;
} else
return 0;
}
}