This commit is contained in:
Erik Trimble 2009-02-25 22:55:54 -08:00
commit 44091d390c
12 changed files with 219 additions and 948 deletions

View File

@ -1,5 +1,5 @@
/* /*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -23,7 +23,7 @@
*/ */
# include "incls/_precompiled.incl" # include "incls/_precompiled.incl"
# include "incls/_vm_version_x86_32.cpp.incl" # include "incls/_vm_version_x86.cpp.incl"
int VM_Version::_cpu; int VM_Version::_cpu;
@ -67,8 +67,14 @@ class VM_Version_StubGenerator: public StubCodeGenerator {
// //
// void getPsrInfo(VM_Version::CpuidInfo* cpuid_info); // void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
// //
// LP64: rcx and rdx are first and second argument registers on windows
__ push(rbp); __ push(rbp);
#ifdef _LP64
__ mov(rbp, c_rarg0); // cpuid_info address
#else
__ movptr(rbp, Address(rsp, 8)); // cpuid_info address __ movptr(rbp, Address(rsp, 8)); // cpuid_info address
#endif
__ push(rbx); __ push(rbx);
__ push(rsi); __ push(rsi);
__ pushf(); // preserve rbx, and flags __ pushf(); // preserve rbx, and flags
@ -110,12 +116,12 @@ class VM_Version_StubGenerator: public StubCodeGenerator {
__ jmp(done); __ jmp(done);
// //
// at this point, we have a chip which supports the "cpuid" instruction // At this point, we have a chip which supports the "cpuid" instruction
// //
__ bind(detect_586); __ bind(detect_586);
__ xorptr(rax, rax); __ xorl(rax, rax);
__ cpuid(); __ cpuid();
__ orptr(rax, rax); __ orl(rax, rax);
__ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input __ jcc(Assembler::equal, cpu486); // if cpuid doesn't support an input
// value of at least 1, we give up and // value of at least 1, we give up and
// assume a 486 // assume a 486
@ -131,12 +137,12 @@ class VM_Version_StubGenerator: public StubCodeGenerator {
// //
// cpuid(0x4) Deterministic cache params // cpuid(0x4) Deterministic cache params
// //
__ movl(rax, 4); // and rcx already set to 0x0 __ movl(rax, 4);
__ xorl(rcx, rcx); __ xorl(rcx, rcx); // L1 cache
__ cpuid(); __ cpuid();
__ push(rax); __ push(rax);
__ andl(rax, 0x1f); // Determine if valid cache parameters used __ andl(rax, 0x1f); // Determine if valid cache parameters used
__ orl(rax, rax); // rax,[4:0] == 0 indicates invalid cache __ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
__ pop(rax); __ pop(rax);
__ jccb(Assembler::equal, std_cpuid1); __ jccb(Assembler::equal, std_cpuid1);
@ -225,6 +231,7 @@ void VM_Version::get_processor_features() {
_stepping = 0; _stepping = 0;
_cpuFeatures = 0; _cpuFeatures = 0;
_logical_processors_per_package = 1; _logical_processors_per_package = 1;
if (!Use486InstrsOnly) { if (!Use486InstrsOnly) {
// Get raw processor info // Get raw processor info
getPsrInfo_stub(&_cpuid_info); getPsrInfo_stub(&_cpuid_info);
@ -232,6 +239,7 @@ void VM_Version::get_processor_features() {
_cpu = extended_cpu_family(); _cpu = extended_cpu_family();
_model = extended_cpu_model(); _model = extended_cpu_model();
_stepping = cpu_stepping(); _stepping = cpu_stepping();
if (cpu_family() > 4) { // it supports CPUID if (cpu_family() > 4) { // it supports CPUID
_cpuFeatures = feature_flags(); _cpuFeatures = feature_flags();
// Logical processors are only available on P4s and above, // Logical processors are only available on P4s and above,
@ -239,21 +247,34 @@ void VM_Version::get_processor_features() {
_logical_processors_per_package = logical_processor_count(); _logical_processors_per_package = logical_processor_count();
} }
} }
_supports_cx8 = supports_cmpxchg8(); _supports_cx8 = supports_cmpxchg8();
// if the OS doesn't support SSE, we can't use this feature even if the HW does
if( !os::supports_sse()) #ifdef _LP64
// OS should support SSE for x64 and hardware should support at least SSE2.
if (!VM_Version::supports_sse2()) {
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
}
#endif
// If the OS doesn't support SSE, we can't use this feature even if the HW does
if (!os::supports_sse())
_cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2); _cpuFeatures &= ~(CPU_SSE|CPU_SSE2|CPU_SSE3|CPU_SSSE3|CPU_SSE4A|CPU_SSE4_1|CPU_SSE4_2);
if (UseSSE < 4) { if (UseSSE < 4) {
_cpuFeatures &= ~CPU_SSE4_1; _cpuFeatures &= ~CPU_SSE4_1;
_cpuFeatures &= ~CPU_SSE4_2; _cpuFeatures &= ~CPU_SSE4_2;
} }
if (UseSSE < 3) { if (UseSSE < 3) {
_cpuFeatures &= ~CPU_SSE3; _cpuFeatures &= ~CPU_SSE3;
_cpuFeatures &= ~CPU_SSSE3; _cpuFeatures &= ~CPU_SSSE3;
_cpuFeatures &= ~CPU_SSE4A; _cpuFeatures &= ~CPU_SSE4A;
} }
if (UseSSE < 2) if (UseSSE < 2)
_cpuFeatures &= ~CPU_SSE2; _cpuFeatures &= ~CPU_SSE2;
if (UseSSE < 1) if (UseSSE < 1)
_cpuFeatures &= ~CPU_SSE; _cpuFeatures &= ~CPU_SSE;
@ -418,10 +439,21 @@ void VM_Version::get_processor_features() {
if( AllocatePrefetchStyle == 2 && is_intel() && if( AllocatePrefetchStyle == 2 && is_intel() &&
cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
#ifdef _LP64
AllocatePrefetchDistance = 384;
#else
AllocatePrefetchDistance = 320; AllocatePrefetchDistance = 320;
#endif
} }
assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value"); assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
#ifdef _LP64
// Prefetch settings
PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
PrefetchFieldsAhead = prefetch_fields_ahead();
#endif
#ifndef PRODUCT #ifndef PRODUCT
if (PrintMiscellaneous && Verbose) { if (PrintMiscellaneous && Verbose) {
tty->print_cr("Logical CPUs per core: %u", tty->print_cr("Logical CPUs per core: %u",
@ -450,6 +482,16 @@ void VM_Version::get_processor_features() {
tty->print_cr(" %d, one line", AllocatePrefetchDistance); tty->print_cr(" %d, one line", AllocatePrefetchDistance);
} }
} }
if (PrefetchCopyIntervalInBytes > 0) {
tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
}
if (PrefetchScanIntervalInBytes > 0) {
tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
}
if (PrefetchFieldsAhead > 0) {
tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
}
} }
#endif // !PRODUCT #endif // !PRODUCT
} }

View File

@ -1,5 +1,5 @@
/* /*
* Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved. * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -112,20 +112,6 @@ public:
} bits; } bits;
}; };
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid1Ecx { union ExtCpuid1Ecx {
uint32_t value; uint32_t value;
struct { struct {
@ -140,6 +126,20 @@ public:
} bits; } bits;
}; };
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex { union ExtCpuid5Ex {
uint32_t value; uint32_t value;
struct { struct {
@ -167,17 +167,17 @@ protected:
static const char* _features_str; static const char* _features_str;
enum { enum {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX) CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1), CPU_CMOV = (1 << 1),
CPU_FXSR = (1 << 2), CPU_FXSR = (1 << 2),
CPU_HT = (1 << 3), CPU_HT = (1 << 3),
CPU_MMX = (1 << 4), CPU_MMX = (1 << 4),
CPU_3DNOW= (1 << 5), CPU_3DNOW = (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
CPU_SSE = (1 << 6), CPU_SSE = (1 << 6),
CPU_SSE2 = (1 << 7), CPU_SSE2 = (1 << 7),
CPU_SSE3 = (1 << 8), CPU_SSE3 = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
CPU_SSSE3= (1 << 9), CPU_SSSE3 = (1 << 9),
CPU_SSE4A= (1 <<10), CPU_SSE4A = (1 << 10),
CPU_SSE4_1 = (1 << 11), CPU_SSE4_1 = (1 << 11),
CPU_SSE4_2 = (1 << 12) CPU_SSE4_2 = (1 << 12)
} cpuFeatureFlags; } cpuFeatureFlags;
@ -360,7 +360,7 @@ public:
result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size; result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
} }
if (result < 32) // not defined ? if (result < 32) // not defined ?
result = 32; // 32 bytes by default for other x64 result = 32; // 32 bytes by default on x86 and other x64
return result; return result;
} }
@ -395,26 +395,36 @@ public:
// This method should be called before allocate_prefetch_style(). // This method should be called before allocate_prefetch_style().
// //
// Hardware prefetching (distance/size in bytes): // Hardware prefetching (distance/size in bytes):
// Pentium 3 - 64 / 32
// Pentium 4 - 256 / 128 // Pentium 4 - 256 / 128
// Athlon - 64 / 32 ????
// Opteron - 128 / 64 only when 2 sequential cache lines accessed // Opteron - 128 / 64 only when 2 sequential cache lines accessed
// Core - 128 / 64 // Core - 128 / 64
// //
// Software prefetching (distance in bytes / instruction with best score): // Software prefetching (distance in bytes / instruction with best score):
// Pentium 3 - 128 / prefetchnta
// Pentium 4 - 512 / prefetchnta // Pentium 4 - 512 / prefetchnta
// Athlon - 128 / prefetchnta
// Opteron - 256 / prefetchnta // Opteron - 256 / prefetchnta
// Core - 256 / prefetchnta // Core - 256 / prefetchnta
// It will be used only when AllocatePrefetchStyle > 0 // It will be used only when AllocatePrefetchStyle > 0
intx count = AllocatePrefetchDistance; intx count = AllocatePrefetchDistance;
if (count < 0) { // default ? if (count < 0) { // default ?
if (is_amd()) { // AMD if (is_amd()) { // AMD
count = 256; // Opteron if (supports_sse2())
} else { // Intel count = 256; // Opteron
if (cpu_family() == 6) { else
count = 256;// Pentium M, Core, Core2 count = 128; // Athlon
} else { } else { // Intel
count = 512;// Pentium 4 if (supports_sse2())
} if (cpu_family() == 6) {
count = 256; // Pentium M, Core, Core2
} else {
count = 512; // Pentium 4
}
else
count = 128; // Pentium 3 (and all other old CPUs)
} }
} }
return count; return count;

View File

@ -1,439 +0,0 @@
/*
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class VM_Version: public Abstract_VM_Version {
public:
// cpuid result register layouts. These are all unions of a uint32_t
// (in case anyone wants access to the register as a whole) and a bitfield.
union StdCpuid1Eax {
uint32_t value;
struct {
uint32_t stepping : 4,
model : 4,
family : 4,
proc_type : 2,
: 2,
ext_model : 4,
ext_family : 8,
: 4;
} bits;
};
union StdCpuid1Ebx { // example, unused
uint32_t value;
struct {
uint32_t brand_id : 8,
clflush_size : 8,
threads_per_cpu : 8,
apic_id : 8;
} bits;
};
union StdCpuid1Ecx {
uint32_t value;
struct {
uint32_t sse3 : 1,
: 2,
monitor : 1,
: 1,
vmx : 1,
: 1,
est : 1,
: 1,
ssse3 : 1,
cid : 1,
: 2,
cmpxchg16: 1,
: 4,
dca : 1,
sse4_1 : 1,
sse4_2 : 1,
: 11;
} bits;
};
union StdCpuid1Edx {
uint32_t value;
struct {
uint32_t : 4,
tsc : 1,
: 3,
cmpxchg8 : 1,
: 6,
cmov : 1,
: 7,
mmx : 1,
fxsr : 1,
sse : 1,
sse2 : 1,
: 1,
ht : 1,
: 3;
} bits;
};
union DcpCpuid4Eax {
uint32_t value;
struct {
uint32_t cache_type : 5,
: 21,
cores_per_cpu : 6;
} bits;
};
union DcpCpuid4Ebx {
uint32_t value;
struct {
uint32_t L1_line_size : 12,
partitions : 10,
associativity : 10;
} bits;
};
union ExtCpuid1Ecx {
uint32_t value;
struct {
uint32_t LahfSahf : 1,
CmpLegacy : 1,
: 4,
abm : 1,
sse4a : 1,
misalignsse : 1,
prefetchw : 1,
: 22;
} bits;
};
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex {
uint32_t value;
struct {
uint32_t L1_line_size : 8,
L1_tag_lines : 8,
L1_assoc : 8,
L1_size : 8;
} bits;
};
union ExtCpuid8Ecx {
uint32_t value;
struct {
uint32_t cores_per_cpu : 8,
: 24;
} bits;
};
protected:
static int _cpu;
static int _model;
static int _stepping;
static int _cpuFeatures; // features returned by the "cpuid" instruction
// 0 if this instruction is not available
static const char* _features_str;
enum {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1),
CPU_FXSR = (1 << 2),
CPU_HT = (1 << 3),
CPU_MMX = (1 << 4),
CPU_3DNOW= (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
CPU_SSE = (1 << 6),
CPU_SSE2 = (1 << 7),
CPU_SSE3 = (1 << 8), // sse3 comes from cpuid 1 (ECX)
CPU_SSSE3= (1 << 9),
CPU_SSE4A= (1 <<10),
CPU_SSE4_1 = (1 << 11),
CPU_SSE4_2 = (1 << 12)
} cpuFeatureFlags;
// cpuid information block. All info derived from executing cpuid with
// various function numbers is stored here. Intel and AMD info is
// merged in this block: accessor methods disentangle it.
//
// The info block is laid out in subblocks of 4 dwords corresponding to
// rax, rbx, rcx and rdx, whether or not they contain anything useful.
struct CpuidInfo {
// cpuid function 0
uint32_t std_max_function;
uint32_t std_vendor_name_0;
uint32_t std_vendor_name_1;
uint32_t std_vendor_name_2;
// cpuid function 1
StdCpuid1Eax std_cpuid1_rax;
StdCpuid1Ebx std_cpuid1_rbx;
StdCpuid1Ecx std_cpuid1_rcx;
StdCpuid1Edx std_cpuid1_rdx;
// cpuid function 4 (deterministic cache parameters)
DcpCpuid4Eax dcp_cpuid4_rax;
DcpCpuid4Ebx dcp_cpuid4_rbx;
uint32_t dcp_cpuid4_rcx; // unused currently
uint32_t dcp_cpuid4_rdx; // unused currently
// cpuid function 0x80000000 // example, unused
uint32_t ext_max_function;
uint32_t ext_vendor_name_0;
uint32_t ext_vendor_name_1;
uint32_t ext_vendor_name_2;
// cpuid function 0x80000001
uint32_t ext_cpuid1_rax; // reserved
uint32_t ext_cpuid1_rbx; // reserved
ExtCpuid1Ecx ext_cpuid1_rcx;
ExtCpuid1Edx ext_cpuid1_rdx;
// cpuid functions 0x80000002 thru 0x80000004: example, unused
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
// cpuid function 0x80000005 //AMD L1, Intel reserved
uint32_t ext_cpuid5_rax; // unused currently
uint32_t ext_cpuid5_rbx; // reserved
ExtCpuid5Ex ext_cpuid5_rcx; // L1 data cache info (AMD)
ExtCpuid5Ex ext_cpuid5_rdx; // L1 instruction cache info (AMD)
// cpuid function 0x80000008
uint32_t ext_cpuid8_rax; // unused currently
uint32_t ext_cpuid8_rbx; // reserved
ExtCpuid8Ecx ext_cpuid8_rcx;
uint32_t ext_cpuid8_rdx; // reserved
};
// The actual cpuid info block
static CpuidInfo _cpuid_info;
// Extractors and predicates
static uint32_t extended_cpu_family() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
return result;
}
static uint32_t extended_cpu_model() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
return result;
}
static uint32_t cpu_stepping() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.stepping;
return result;
}
static uint logical_processor_count() {
uint result = threads_per_core();
return result;
}
static uint32_t feature_flags() {
uint32_t result = 0;
if (_cpuid_info.std_cpuid1_rdx.bits.cmpxchg8 != 0)
result |= CPU_CX8;
if (_cpuid_info.std_cpuid1_rdx.bits.cmov != 0)
result |= CPU_CMOV;
if (_cpuid_info.std_cpuid1_rdx.bits.fxsr != 0 || is_amd() &&
_cpuid_info.ext_cpuid1_rdx.bits.fxsr != 0)
result |= CPU_FXSR;
// HT flag is set for multi-core processors also.
if (threads_per_core() > 1)
result |= CPU_HT;
if (_cpuid_info.std_cpuid1_rdx.bits.mmx != 0 || is_amd() &&
_cpuid_info.ext_cpuid1_rdx.bits.mmx != 0)
result |= CPU_MMX;
if (is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow != 0)
result |= CPU_3DNOW;
if (_cpuid_info.std_cpuid1_rdx.bits.sse != 0)
result |= CPU_SSE;
if (_cpuid_info.std_cpuid1_rdx.bits.sse2 != 0)
result |= CPU_SSE2;
if (_cpuid_info.std_cpuid1_rcx.bits.sse3 != 0)
result |= CPU_SSE3;
if (_cpuid_info.std_cpuid1_rcx.bits.ssse3 != 0)
result |= CPU_SSSE3;
if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
result |= CPU_SSE4A;
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_1 != 0)
result |= CPU_SSE4_1;
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_2 != 0)
result |= CPU_SSE4_2;
return result;
}
static void get_processor_features();
public:
// Offsets for cpuid asm stub
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_rax); }
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_rax); }
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_rax); }
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_rax); }
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_rax); }
// Initialization
static void initialize();
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_rax.bits.family != 0, "VM_Version not initialized");
}
//
// Processor family:
// 3 - 386
// 4 - 486
// 5 - Pentium
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
// Pentium M, Core Solo, Core Duo, Core2 Duo
// family 6 model: 9, 13, 14, 15
// 0x0f - Pentium 4, Opteron
//
// Note: The cpu family should be used to select between
// instruction sequences which are valid on all Intel
// processors. Use the feature test functions below to
// determine whether a particular instruction is supported.
//
static int cpu_family() { return _cpu;}
static bool is_P6() { return cpu_family() >= 6; }
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
static uint cores_per_cpu() {
uint result = 1;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_rax.bits.cores_per_cpu + 1);
} else if (is_amd()) {
result = (_cpuid_info.ext_cpuid8_rcx.bits.cores_per_cpu + 1);
}
return result;
}
static uint threads_per_core() {
uint result = 1;
if (_cpuid_info.std_cpuid1_rdx.bits.ht != 0) {
result = _cpuid_info.std_cpuid1_rbx.bits.threads_per_cpu /
cores_per_cpu();
}
return result;
}
static intx L1_data_cache_line_size() {
intx result = 0;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_rbx.bits.L1_line_size + 1);
} else if (is_amd()) {
result = _cpuid_info.ext_cpuid5_rcx.bits.L1_line_size;
}
if (result < 32) // not defined ?
result = 32; // 32 bytes by default on x86
return result;
}
//
// Feature identification
//
static bool supports_cpuid() { return _cpuFeatures != 0; }
static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
//
// AMD features
//
static bool supports_3dnow() { return (_cpuFeatures & CPU_3DNOW) != 0; }
static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.mmx_amd != 0; }
static bool supports_3dnow2() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow2 != 0; }
static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
static bool supports_compare_and_exchange() { return true; }
static const char* cpu_features() { return _features_str; }
static intx allocate_prefetch_distance() {
// This method should be called before allocate_prefetch_style().
//
// Hardware prefetching (distance/size in bytes):
// Pentium 3 - 64 / 32
// Pentium 4 - 256 / 128
// Athlon - 64 / 32 ????
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
// Core - 128 / 64
//
// Software prefetching (distance in bytes / instruction with best score):
// Pentium 3 - 128 / prefetchnta
// Pentium 4 - 512 / prefetchnta
// Athlon - 128 / prefetchnta
// Opteron - 256 / prefetchnta
// Core - 256 / prefetchnta
// It will be used only when AllocatePrefetchStyle > 0
intx count = AllocatePrefetchDistance;
if (count < 0) { // default ?
if (is_amd()) { // AMD
if (supports_sse2())
count = 256; // Opteron
else
count = 128; // Athlon
} else { // Intel
if (supports_sse2())
if (cpu_family() == 6) {
count = 256; // Pentium M, Core, Core2
} else {
count = 512; // Pentium 4
}
else
count = 128; // Pentium 3 (and all other old CPUs)
}
}
return count;
}
static intx allocate_prefetch_style() {
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
// Return 0 if AllocatePrefetchDistance was not defined or
// prefetch instruction is not supported.
return (AllocatePrefetchDistance > 0 &&
(supports_3dnow() || supports_sse())) ? AllocatePrefetchStyle : 0;
}
};

View File

@ -1,419 +0,0 @@
/*
* Copyright 2003-2008 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_vm_version_x86_64.cpp.incl"
int VM_Version::_cpu;
int VM_Version::_model;
int VM_Version::_stepping;
int VM_Version::_cpuFeatures;
const char* VM_Version::_features_str = "";
VM_Version::CpuidInfo VM_Version::_cpuid_info = { 0, };
static BufferBlob* stub_blob;
static const int stub_size = 300;
extern "C" {
typedef void (*getPsrInfo_stub_t)(void*);
}
static getPsrInfo_stub_t getPsrInfo_stub = NULL;
class VM_Version_StubGenerator: public StubCodeGenerator {
public:
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
address generate_getPsrInfo() {
Label std_cpuid1, ext_cpuid1, ext_cpuid5, done;
StubCodeMark mark(this, "VM_Version", "getPsrInfo_stub");
# define __ _masm->
address start = __ pc();
//
// void getPsrInfo(VM_Version::CpuidInfo* cpuid_info);
//
// rcx and rdx are first and second argument registers on windows
__ push(rbp);
__ mov(rbp, c_rarg0); // cpuid_info address
__ push(rbx);
__ push(rsi);
//
// we have a chip which supports the "cpuid" instruction
//
__ xorl(rax, rax);
__ cpuid();
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid0_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
__ cmpl(rax, 3); // Is cpuid(0x4) supported?
__ jccb(Assembler::belowEqual, std_cpuid1);
//
// cpuid(0x4) Deterministic cache params
//
__ movl(rax, 4);
__ xorl(rcx, rcx); // L1 cache
__ cpuid();
__ push(rax);
__ andl(rax, 0x1f); // Determine if valid cache parameters used
__ orl(rax, rax); // eax[4:0] == 0 indicates invalid cache
__ pop(rax);
__ jccb(Assembler::equal, std_cpuid1);
__ lea(rsi, Address(rbp, in_bytes(VM_Version::dcp_cpuid4_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
//
// Standard cpuid(0x1)
//
__ bind(std_cpuid1);
__ movl(rax, 1);
__ cpuid();
__ lea(rsi, Address(rbp, in_bytes(VM_Version::std_cpuid1_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
__ movl(rax, 0x80000000);
__ cpuid();
__ cmpl(rax, 0x80000000); // Is cpuid(0x80000001) supported?
__ jcc(Assembler::belowEqual, done);
__ cmpl(rax, 0x80000004); // Is cpuid(0x80000005) supported?
__ jccb(Assembler::belowEqual, ext_cpuid1);
__ cmpl(rax, 0x80000007); // Is cpuid(0x80000008) supported?
__ jccb(Assembler::belowEqual, ext_cpuid5);
//
// Extended cpuid(0x80000008)
//
__ movl(rax, 0x80000008);
__ cpuid();
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid8_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
//
// Extended cpuid(0x80000005)
//
__ bind(ext_cpuid5);
__ movl(rax, 0x80000005);
__ cpuid();
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid5_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
//
// Extended cpuid(0x80000001)
//
__ bind(ext_cpuid1);
__ movl(rax, 0x80000001);
__ cpuid();
__ lea(rsi, Address(rbp, in_bytes(VM_Version::ext_cpuid1_offset())));
__ movl(Address(rsi, 0), rax);
__ movl(Address(rsi, 4), rbx);
__ movl(Address(rsi, 8), rcx);
__ movl(Address(rsi,12), rdx);
//
// return
//
__ bind(done);
__ pop(rsi);
__ pop(rbx);
__ pop(rbp);
__ ret(0);
# undef __
return start;
};
};
void VM_Version::get_processor_features() {
_logical_processors_per_package = 1;
// Get raw processor info
getPsrInfo_stub(&_cpuid_info);
assert_is_initialized();
_cpu = extended_cpu_family();
_model = extended_cpu_model();
_stepping = cpu_stepping();
_cpuFeatures = feature_flags();
// Logical processors are only available on P4s and above,
// and only if hyperthreading is available.
_logical_processors_per_package = logical_processor_count();
_supports_cx8 = supports_cmpxchg8();
// OS should support SSE for x64 and hardware should support at least SSE2.
if (!VM_Version::supports_sse2()) {
vm_exit_during_initialization("Unknown x64 processor: SSE2 not supported");
}
if (UseSSE < 4) {
_cpuFeatures &= ~CPU_SSE4_1;
_cpuFeatures &= ~CPU_SSE4_2;
}
if (UseSSE < 3) {
_cpuFeatures &= ~CPU_SSE3;
_cpuFeatures &= ~CPU_SSSE3;
_cpuFeatures &= ~CPU_SSE4A;
}
if (UseSSE < 2)
_cpuFeatures &= ~CPU_SSE2;
if (UseSSE < 1)
_cpuFeatures &= ~CPU_SSE;
if (logical_processors_per_package() == 1) {
// HT processor could be installed on a system which doesn't support HT.
_cpuFeatures &= ~CPU_HT;
}
char buf[256];
jio_snprintf(buf, sizeof(buf), "(%u cores per cpu, %u threads per core) family %d model %d stepping %d%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
cores_per_cpu(), threads_per_core(),
cpu_family(), _model, _stepping,
(supports_cmov() ? ", cmov" : ""),
(supports_cmpxchg8() ? ", cx8" : ""),
(supports_fxsr() ? ", fxsr" : ""),
(supports_mmx() ? ", mmx" : ""),
(supports_sse() ? ", sse" : ""),
(supports_sse2() ? ", sse2" : ""),
(supports_sse3() ? ", sse3" : ""),
(supports_ssse3()? ", ssse3": ""),
(supports_sse4_1() ? ", sse4.1" : ""),
(supports_sse4_2() ? ", sse4.2" : ""),
(supports_mmx_ext() ? ", mmxext" : ""),
(supports_3dnow() ? ", 3dnow" : ""),
(supports_3dnow2() ? ", 3dnowext" : ""),
(supports_sse4a() ? ", sse4a": ""),
(supports_ht() ? ", ht": ""));
_features_str = strdup(buf);
// UseSSE is set to the smaller of what hardware supports and what
// the command line requires. I.e., you cannot set UseSSE to 2 on
// older Pentiums which do not support it.
if( UseSSE > 4 ) UseSSE=4;
if( UseSSE < 0 ) UseSSE=0;
if( !supports_sse4_1() ) // Drop to 3 if no SSE4 support
UseSSE = MIN2((intx)3,UseSSE);
if( !supports_sse3() ) // Drop to 2 if no SSE3 support
UseSSE = MIN2((intx)2,UseSSE);
if( !supports_sse2() ) // Drop to 1 if no SSE2 support
UseSSE = MIN2((intx)1,UseSSE);
if( !supports_sse () ) // Drop to 0 if no SSE support
UseSSE = 0;
// On new cpus instructions which update whole XMM register should be used
// to prevent partial register stall due to dependencies on high half.
//
// UseXmmLoadAndClearUpper == true --> movsd(xmm, mem)
// UseXmmLoadAndClearUpper == false --> movlpd(xmm, mem)
// UseXmmRegToRegMoveAll == true --> movaps(xmm, xmm), movapd(xmm, xmm).
// UseXmmRegToRegMoveAll == false --> movss(xmm, xmm), movsd(xmm, xmm).
if( is_amd() ) { // AMD cpus specific settings
if( FLAG_IS_DEFAULT(UseAddressNop) ) {
// Use it on all AMD cpus starting from Opteron (don't need
// a cpu check since only Opteron and new cpus support 64-bits mode).
UseAddressNop = true;
}
if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
if( supports_sse4a() ) {
UseXmmLoadAndClearUpper = true; // use movsd only on '10h' Opteron
} else {
UseXmmLoadAndClearUpper = false;
}
}
if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
if( supports_sse4a() ) {
UseXmmRegToRegMoveAll = true; // use movaps, movapd only on '10h'
} else {
UseXmmRegToRegMoveAll = false;
}
}
if( FLAG_IS_DEFAULT(UseXmmI2F) ) {
if( supports_sse4a() ) {
UseXmmI2F = true;
} else {
UseXmmI2F = false;
}
}
if( FLAG_IS_DEFAULT(UseXmmI2D) ) {
if( supports_sse4a() ) {
UseXmmI2D = true;
} else {
UseXmmI2D = false;
}
}
}
if( is_intel() ) { // Intel cpus specific settings
if( FLAG_IS_DEFAULT(UseStoreImmI16) ) {
UseStoreImmI16 = false; // don't use it on Intel cpus
}
if( FLAG_IS_DEFAULT(UseAddressNop) ) {
// Use it on all Intel cpus starting from PentiumPro
// (don't need a cpu check since only new cpus support 64-bits mode).
UseAddressNop = true;
}
if( FLAG_IS_DEFAULT(UseXmmLoadAndClearUpper) ) {
UseXmmLoadAndClearUpper = true; // use movsd on all Intel cpus
}
if( FLAG_IS_DEFAULT(UseXmmRegToRegMoveAll) ) {
if( supports_sse3() ) {
UseXmmRegToRegMoveAll = true; // use movaps, movapd on new Intel cpus
} else {
UseXmmRegToRegMoveAll = false;
}
}
if( cpu_family() == 6 && supports_sse3() ) { // New Intel cpus
#ifdef COMPILER2
if( FLAG_IS_DEFAULT(MaxLoopPad) ) {
// For new Intel cpus do the next optimization:
// don't align the beginning of a loop if there are enough instructions
// left (NumberOfLoopInstrToAlign defined in c2_globals.hpp)
// in current fetch line (OptoLoopAlignment) or the padding
// is big (> MaxLoopPad).
// Set MaxLoopPad to 11 for new Intel cpus to reduce number of
// generated NOP instructions. 11 is the largest size of one
// address NOP instruction '0F 1F' (see Assembler::nop(i)).
MaxLoopPad = 11;
}
#endif // COMPILER2
if( FLAG_IS_DEFAULT(UseXMMForArrayCopy) ) {
UseXMMForArrayCopy = true; // use SSE2 movq on new Intel cpus
}
if( supports_sse4_2() && supports_ht() ) { // Newest Intel cpus
if( FLAG_IS_DEFAULT(UseUnalignedLoadStores) && UseXMMForArrayCopy ) {
UseUnalignedLoadStores = true; // use movdqu on newest Intel cpus
}
}
}
}
assert(0 <= ReadPrefetchInstr && ReadPrefetchInstr <= 3, "invalid value");
assert(0 <= AllocatePrefetchInstr && AllocatePrefetchInstr <= 3, "invalid value");
// set valid Prefetch instruction
if( ReadPrefetchInstr < 0 ) ReadPrefetchInstr = 0;
if( ReadPrefetchInstr > 3 ) ReadPrefetchInstr = 3;
if( ReadPrefetchInstr == 3 && !supports_3dnow() ) ReadPrefetchInstr = 0;
if( AllocatePrefetchInstr < 0 ) AllocatePrefetchInstr = 0;
if( AllocatePrefetchInstr > 3 ) AllocatePrefetchInstr = 3;
if( AllocatePrefetchInstr == 3 && !supports_3dnow() ) AllocatePrefetchInstr=0;
// Allocation prefetch settings
intx cache_line_size = L1_data_cache_line_size();
if( cache_line_size > AllocatePrefetchStepSize )
AllocatePrefetchStepSize = cache_line_size;
if( FLAG_IS_DEFAULT(AllocatePrefetchLines) )
AllocatePrefetchLines = 3; // Optimistic value
assert(AllocatePrefetchLines > 0, "invalid value");
if( AllocatePrefetchLines < 1 ) // set valid value in product VM
AllocatePrefetchLines = 1; // Conservative value
AllocatePrefetchDistance = allocate_prefetch_distance();
AllocatePrefetchStyle = allocate_prefetch_style();
if( AllocatePrefetchStyle == 2 && is_intel() &&
cpu_family() == 6 && supports_sse3() ) { // watermark prefetching on Core
AllocatePrefetchDistance = 384;
}
assert(AllocatePrefetchDistance % AllocatePrefetchStepSize == 0, "invalid value");
// Prefetch settings
PrefetchCopyIntervalInBytes = prefetch_copy_interval_in_bytes();
PrefetchScanIntervalInBytes = prefetch_scan_interval_in_bytes();
PrefetchFieldsAhead = prefetch_fields_ahead();
#ifndef PRODUCT
if (PrintMiscellaneous && Verbose) {
tty->print_cr("Logical CPUs per core: %u",
logical_processors_per_package());
tty->print_cr("UseSSE=%d",UseSSE);
tty->print("Allocation: ");
if (AllocatePrefetchStyle <= 0) {
tty->print_cr("no prefetching");
} else {
if (AllocatePrefetchInstr == 0) {
tty->print("PREFETCHNTA");
} else if (AllocatePrefetchInstr == 1) {
tty->print("PREFETCHT0");
} else if (AllocatePrefetchInstr == 2) {
tty->print("PREFETCHT2");
} else if (AllocatePrefetchInstr == 3) {
tty->print("PREFETCHW");
}
if (AllocatePrefetchLines > 1) {
tty->print_cr(" %d, %d lines with step %d bytes", AllocatePrefetchDistance, AllocatePrefetchLines, AllocatePrefetchStepSize);
} else {
tty->print_cr(" %d, one line", AllocatePrefetchDistance);
}
}
if (PrefetchCopyIntervalInBytes > 0) {
tty->print_cr("PrefetchCopyIntervalInBytes %d", PrefetchCopyIntervalInBytes);
}
if (PrefetchScanIntervalInBytes > 0) {
tty->print_cr("PrefetchScanIntervalInBytes %d", PrefetchScanIntervalInBytes);
}
if (PrefetchFieldsAhead > 0) {
tty->print_cr("PrefetchFieldsAhead %d", PrefetchFieldsAhead);
}
}
#endif // !PRODUCT
}
void VM_Version::initialize() {
ResourceMark rm;
// Making this stub must be FIRST use of assembler
stub_blob = BufferBlob::create("getPsrInfo_stub", stub_size);
if (stub_blob == NULL) {
vm_exit_during_initialization("Unable to allocate getPsrInfo_stub");
}
CodeBuffer c(stub_blob->instructions_begin(),
stub_blob->instructions_size());
VM_Version_StubGenerator g(&c);
getPsrInfo_stub = CAST_TO_FN_PTR(getPsrInfo_stub_t,
g.generate_getPsrInfo());
get_processor_features();
}

View File

@ -1,5 +1,5 @@
/* /*
* Copyright 1999-2008 Sun Microsystems, Inc. All Rights Reserved. * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -299,13 +299,17 @@ static void check_for_sse_support() {
} }
#endif // AMD64
bool os::supports_sse() { bool os::supports_sse() {
#ifdef AMD64
return true;
#else
if (sse_status == SSE_UNKNOWN) if (sse_status == SSE_UNKNOWN)
check_for_sse_support(); check_for_sse_support();
return sse_status == SSE_SUPPORTED; return sse_status == SSE_SUPPORTED;
}
#endif // AMD64 #endif // AMD64
}
bool os::is_allocatable(size_t bytes) { bool os::is_allocatable(size_t bytes) {
#ifdef AMD64 #ifdef AMD64

View File

@ -1,5 +1,5 @@
/* /*
* Copyright 1999-2004 Sun Microsystems, Inc. All Rights Reserved. * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -41,9 +41,10 @@
static void fence_bootstrap (); static void fence_bootstrap ();
static void setup_fpu(); static void setup_fpu();
static bool supports_sse();
#endif // AMD64 #endif // AMD64
static bool supports_sse();
static bool is_allocatable(size_t bytes); static bool is_allocatable(size_t bytes);
// Used to register dynamic code cache area with the OS // Used to register dynamic code cache area with the OS

View File

@ -1,5 +1,5 @@
// //
// Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. // Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
// //
// This code is free software; you can redistribute it and/or modify it // This code is free software; you can redistribute it and/or modify it
@ -176,7 +176,7 @@ arguments.cpp management.hpp
arguments.cpp oop.inline.hpp arguments.cpp oop.inline.hpp
arguments.cpp os_<os_family>.inline.hpp arguments.cpp os_<os_family>.inline.hpp
arguments.cpp universe.inline.hpp arguments.cpp universe.inline.hpp
arguments.cpp vm_version_<arch_model>.hpp arguments.cpp vm_version_<arch>.hpp
arguments.hpp java.hpp arguments.hpp java.hpp
arguments.hpp perfData.hpp arguments.hpp perfData.hpp
@ -241,7 +241,7 @@ assembler.hpp oopRecorder.hpp
assembler.hpp register_<arch>.hpp assembler.hpp register_<arch>.hpp
assembler.hpp relocInfo.hpp assembler.hpp relocInfo.hpp
assembler.hpp top.hpp assembler.hpp top.hpp
assembler.hpp vm_version_<arch_model>.hpp assembler.hpp vm_version_<arch>.hpp
assembler.inline.hpp assembler.hpp assembler.inline.hpp assembler.hpp
assembler.inline.hpp codeBuffer.hpp assembler.inline.hpp codeBuffer.hpp
@ -280,7 +280,7 @@ atomic.hpp allocation.hpp
atomic_<os_arch>.inline.hpp atomic.hpp atomic_<os_arch>.inline.hpp atomic.hpp
atomic_<os_arch>.inline.hpp os.hpp atomic_<os_arch>.inline.hpp os.hpp
atomic_<os_arch>.inline.hpp vm_version_<arch_model>.hpp atomic_<os_arch>.inline.hpp vm_version_<arch>.hpp
// attachListener is jck optional, put cpp deps in includeDB_features // attachListener is jck optional, put cpp deps in includeDB_features
@ -2176,7 +2176,7 @@ interpreterRuntime.cpp templateTable.hpp
interpreterRuntime.cpp threadCritical.hpp interpreterRuntime.cpp threadCritical.hpp
interpreterRuntime.cpp universe.inline.hpp interpreterRuntime.cpp universe.inline.hpp
interpreterRuntime.cpp vmSymbols.hpp interpreterRuntime.cpp vmSymbols.hpp
interpreterRuntime.cpp vm_version_<arch_model>.hpp interpreterRuntime.cpp vm_version_<arch>.hpp
interpreterRuntime.hpp bytecode.hpp interpreterRuntime.hpp bytecode.hpp
interpreterRuntime.hpp frame.inline.hpp interpreterRuntime.hpp frame.inline.hpp
@ -2279,7 +2279,7 @@ java.cpp timer.hpp
java.cpp universe.hpp java.cpp universe.hpp
java.cpp vmError.hpp java.cpp vmError.hpp
java.cpp vm_operations.hpp java.cpp vm_operations.hpp
java.cpp vm_version_<arch_model>.hpp java.cpp vm_version_<arch>.hpp
java.cpp vtune.hpp java.cpp vtune.hpp
java.hpp os.hpp java.hpp os.hpp
@ -3485,7 +3485,7 @@ register.hpp top.hpp
register_<arch>.cpp register_<arch>.hpp register_<arch>.cpp register_<arch>.hpp
register_<arch>.hpp register.hpp register_<arch>.hpp register.hpp
register_<arch>.hpp vm_version_<arch_model>.hpp register_<arch>.hpp vm_version_<arch>.hpp
registerMap.hpp globalDefinitions.hpp registerMap.hpp globalDefinitions.hpp
registerMap.hpp register_<arch>.hpp registerMap.hpp register_<arch>.hpp
@ -3835,7 +3835,7 @@ statSampler.cpp resourceArea.hpp
statSampler.cpp statSampler.hpp statSampler.cpp statSampler.hpp
statSampler.cpp systemDictionary.hpp statSampler.cpp systemDictionary.hpp
statSampler.cpp vmSymbols.hpp statSampler.cpp vmSymbols.hpp
statSampler.cpp vm_version_<arch_model>.hpp statSampler.cpp vm_version_<arch>.hpp
statSampler.hpp perfData.hpp statSampler.hpp perfData.hpp
statSampler.hpp task.hpp statSampler.hpp task.hpp
@ -4579,22 +4579,22 @@ vm_operations.hpp top.hpp
vm_version.cpp arguments.hpp vm_version.cpp arguments.hpp
vm_version.cpp oop.inline.hpp vm_version.cpp oop.inline.hpp
vm_version.cpp universe.hpp vm_version.cpp universe.hpp
vm_version.cpp vm_version_<arch_model>.hpp vm_version.cpp vm_version_<arch>.hpp
vm_version.hpp allocation.hpp vm_version.hpp allocation.hpp
vm_version.hpp ostream.hpp vm_version.hpp ostream.hpp
vm_version_<arch_model>.cpp assembler_<arch>.inline.hpp vm_version_<arch>.cpp assembler_<arch>.inline.hpp
vm_version_<arch_model>.cpp java.hpp vm_version_<arch>.cpp java.hpp
vm_version_<arch_model>.cpp os_<os_family>.inline.hpp vm_version_<arch>.cpp os_<os_family>.inline.hpp
vm_version_<arch_model>.cpp resourceArea.hpp vm_version_<arch>.cpp resourceArea.hpp
vm_version_<arch_model>.cpp stubCodeGenerator.hpp vm_version_<arch>.cpp stubCodeGenerator.hpp
vm_version_<arch_model>.cpp vm_version_<arch_model>.hpp vm_version_<arch>.cpp vm_version_<arch>.hpp
vm_version_<arch_model>.hpp globals_extension.hpp vm_version_<arch>.hpp globals_extension.hpp
vm_version_<arch_model>.hpp vm_version.hpp vm_version_<arch>.hpp vm_version.hpp
vm_version_<os_arch>.cpp vm_version_<arch_model>.hpp vm_version_<os_arch>.cpp vm_version_<arch>.hpp
vmreg.cpp assembler.hpp vmreg.cpp assembler.hpp
vmreg.cpp vmreg.hpp vmreg.cpp vmreg.hpp

View File

@ -217,15 +217,28 @@ void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
(HeapWord*) align_size_up((uintptr_t)new_end, _page_size); (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
assert(new_end_aligned >= (HeapWord*) new_end, assert(new_end_aligned >= (HeapWord*) new_end,
"align up, but less"); "align up, but less");
// Check the other regions (excludes "ind") to ensure that
// the new_end_aligned does not intrude onto the committed
// space of another region.
int ri = 0; int ri = 0;
for (ri = 0; ri < _cur_covered_regions; ri++) { for (ri = 0; ri < _cur_covered_regions; ri++) {
if (ri != ind) { if (ri != ind) {
if (_committed[ri].contains(new_end_aligned)) { if (_committed[ri].contains(new_end_aligned)) {
assert((new_end_aligned >= _committed[ri].start()) && // The prior check included in the assert
(_committed[ri].start() > _committed[ind].start()), // (new_end_aligned >= _committed[ri].start())
// is redundant with the "contains" test.
// Any region containing the new end
// should start at or beyond the region found (ind)
// for the new end (committed regions are not expected to
// be proper subsets of other committed regions).
assert(_committed[ri].start() >= _committed[ind].start(),
"New end of committed region is inconsistent"); "New end of committed region is inconsistent");
new_end_aligned = _committed[ri].start(); new_end_aligned = _committed[ri].start();
assert(new_end_aligned > _committed[ind].start(), // new_end_aligned can be equal to the start of its
// committed region (i.e., of "ind") if a second
// region following "ind" also start at the same location
// as "ind".
assert(new_end_aligned >= _committed[ind].start(),
"New end of committed region is before start"); "New end of committed region is before start");
debug_only(collided = true;) debug_only(collided = true;)
// Should only collide with 1 region // Should only collide with 1 region

View File

@ -756,6 +756,16 @@ Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArra
} else { } else {
break; break;
} }
} else if (result->Opcode() == Op_SCMemProj) {
assert(result->in(0)->is_LoadStore(), "sanity");
const Type *at = phase->type(result->in(0)->in(MemNode::Address));
if (at != Type::TOP) {
assert (at->isa_ptr() != NULL, "pointer type required.");
int idx = C->get_alias_index(at->is_ptr());
assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
break;
}
result = result->in(0)->in(MemNode::Memory);
} }
} }
if (result->is_Phi()) { if (result->is_Phi()) {

View File

@ -250,6 +250,15 @@ static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_me
assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
} }
mem = mem->in(MemNode::Memory); mem = mem->in(MemNode::Memory);
} else if (mem->Opcode() == Op_SCMemProj) {
assert(mem->in(0)->is_LoadStore(), "sanity");
const TypePtr* atype = mem->in(0)->in(MemNode::Address)->bottom_type()->is_ptr();
int adr_idx = Compile::current()->get_alias_index(atype);
if (adr_idx == alias_idx) {
assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
return NULL;
}
mem = mem->in(0)->in(MemNode::Memory);
} else { } else {
return mem; return mem;
} }
@ -329,8 +338,15 @@ Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *
return NULL; return NULL;
} }
values.at_put(j, val); values.at_put(j, val);
} else if (val->Opcode() == Op_SCMemProj) {
assert(val->in(0)->is_LoadStore(), "sanity");
assert(false, "Object is not scalar replaceable if a LoadStore node access its field");
return NULL;
} else { } else {
#ifdef ASSERT
val->dump();
assert(false, "unknown node on this path"); assert(false, "unknown node on this path");
#endif
return NULL; // unknown node on this path return NULL; // unknown node on this path
} }
} }

View File

@ -1707,11 +1707,18 @@ OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
void Matcher::find_shared( Node *n ) { void Matcher::find_shared( Node *n ) {
// Allocate stack of size C->unique() * 2 to avoid frequent realloc // Allocate stack of size C->unique() * 2 to avoid frequent realloc
MStack mstack(C->unique() * 2); MStack mstack(C->unique() * 2);
// Mark nodes as address_visited if they are inputs to an address expression
VectorSet address_visited(Thread::current()->resource_area());
mstack.push(n, Visit); // Don't need to pre-visit root node mstack.push(n, Visit); // Don't need to pre-visit root node
while (mstack.is_nonempty()) { while (mstack.is_nonempty()) {
n = mstack.node(); // Leave node on stack n = mstack.node(); // Leave node on stack
Node_State nstate = mstack.state(); Node_State nstate = mstack.state();
uint nop = n->Opcode();
if (nstate == Pre_Visit) { if (nstate == Pre_Visit) {
if (address_visited.test(n->_idx)) { // Visited in address already?
// Flag as visited and shared now.
set_visited(n);
}
if (is_visited(n)) { // Visited already? if (is_visited(n)) { // Visited already?
// Node is shared and has no reason to clone. Flag it as shared. // Node is shared and has no reason to clone. Flag it as shared.
// This causes it to match into a register for the sharing. // This causes it to match into a register for the sharing.
@ -1726,7 +1733,7 @@ void Matcher::find_shared( Node *n ) {
set_visited(n); // Flag as visited now set_visited(n); // Flag as visited now
bool mem_op = false; bool mem_op = false;
switch( n->Opcode() ) { // Handle some opcodes special switch( nop ) { // Handle some opcodes special
case Op_Phi: // Treat Phis as shared roots case Op_Phi: // Treat Phis as shared roots
case Op_Parm: case Op_Parm:
case Op_Proj: // All handled specially during matching case Op_Proj: // All handled specially during matching
@ -1887,34 +1894,51 @@ void Matcher::find_shared( Node *n ) {
// to have a single use so force sharing here. // to have a single use so force sharing here.
set_shared(m->in(AddPNode::Base)->in(1)); set_shared(m->in(AddPNode::Base)->in(1));
} }
// Some inputs for address expression are not put on stack
// to avoid marking them as shared and forcing them into register
// if they are used only in address expressions.
// But they should be marked as shared if there are other uses
// besides address expressions.
Node *off = m->in(AddPNode::Offset); Node *off = m->in(AddPNode::Offset);
if( off->is_Con() ) { if( off->is_Con() &&
set_visited(m); // Flag as visited now // When there are other uses besides address expressions
// put it on stack and mark as shared.
!is_visited(m) ) {
address_visited.test_set(m->_idx); // Flag as address_visited
Node *adr = m->in(AddPNode::Address); Node *adr = m->in(AddPNode::Address);
// Intel, ARM and friends can handle 2 adds in addressing mode // Intel, ARM and friends can handle 2 adds in addressing mode
if( clone_shift_expressions && adr->is_AddP() && if( clone_shift_expressions && adr->is_AddP() &&
// AtomicAdd is not an addressing expression. // AtomicAdd is not an addressing expression.
// Cheap to find it by looking for screwy base. // Cheap to find it by looking for screwy base.
!adr->in(AddPNode::Base)->is_top() ) { !adr->in(AddPNode::Base)->is_top() &&
set_visited(adr); // Flag as visited now // Are there other uses besides address expressions?
!is_visited(adr) ) {
address_visited.set(adr->_idx); // Flag as address_visited
Node *shift = adr->in(AddPNode::Offset); Node *shift = adr->in(AddPNode::Offset);
// Check for shift by small constant as well // Check for shift by small constant as well
if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
shift->in(2)->get_int() <= 3 ) { shift->in(2)->get_int() <= 3 &&
set_visited(shift); // Flag as visited now // Are there other uses besides address expressions?
!is_visited(shift) ) {
address_visited.set(shift->_idx); // Flag as address_visited
mstack.push(shift->in(2), Visit); mstack.push(shift->in(2), Visit);
Node *conv = shift->in(1);
#ifdef _LP64 #ifdef _LP64
// Allow Matcher to match the rule which bypass // Allow Matcher to match the rule which bypass
// ConvI2L operation for an array index on LP64 // ConvI2L operation for an array index on LP64
// if the index value is positive. // if the index value is positive.
if( shift->in(1)->Opcode() == Op_ConvI2L && if( conv->Opcode() == Op_ConvI2L &&
shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) { conv->as_Type()->type()->is_long()->_lo >= 0 &&
set_visited(shift->in(1)); // Flag as visited now // Are there other uses besides address expressions?
mstack.push(shift->in(1)->in(1), Pre_Visit); !is_visited(conv) ) {
address_visited.set(conv->_idx); // Flag as address_visited
mstack.push(conv->in(1), Pre_Visit);
} else } else
#endif #endif
mstack.push(shift->in(1), Pre_Visit); mstack.push(conv, Pre_Visit);
} else { } else {
mstack.push(shift, Pre_Visit); mstack.push(shift, Pre_Visit);
} }

View File

@ -1066,11 +1066,11 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
break; break;
} }
} }
LoadNode* load = NULL; bool has_load = ( allocation != NULL &&
if (allocation != NULL && base->in(load_index)->is_Load()) { (base->in(load_index)->is_Load() ||
load = base->in(load_index)->as_Load(); base->in(load_index)->is_DecodeN() &&
} base->in(load_index)->in(1)->is_Load()) );
if (load != NULL && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) { if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
// Push the loads from the phi that comes from valueOf up // Push the loads from the phi that comes from valueOf up
// through it to allow elimination of the loads and the recovery // through it to allow elimination of the loads and the recovery
// of the original value. // of the original value.
@ -1106,11 +1106,20 @@ Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
result->set_req(load_index, in2); result->set_req(load_index, in2);
return result; return result;
} }
} else if (base->is_Load()) { } else if (base->is_Load() ||
base->is_DecodeN() && base->in(1)->is_Load()) {
if (base->is_DecodeN()) {
// Get LoadN node which loads cached Integer object
base = base->in(1);
}
// Eliminate the load of Integer.value for integers from the cache // Eliminate the load of Integer.value for integers from the cache
// array by deriving the value from the index into the array. // array by deriving the value from the index into the array.
// Capture the offset of the load and then reverse the computation. // Capture the offset of the load and then reverse the computation.
Node* load_base = base->in(Address)->in(AddPNode::Base); Node* load_base = base->in(Address)->in(AddPNode::Base);
if (load_base->is_DecodeN()) {
// Get LoadN node which loads IntegerCache.cache field
load_base = load_base->in(1);
}
if (load_base != NULL) { if (load_base != NULL) {
Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type()); Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
intptr_t cache_offset; intptr_t cache_offset;