This commit is contained in:
Rickard Bäckman 2013-09-02 13:13:45 +02:00
commit 44a46005b8
60 changed files with 1112 additions and 553 deletions

View File

@ -307,7 +307,7 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
assert(a_byte == *start++, "should be the same code");
}
#endif
} else if (_id == load_mirror_id) {
} else if (_id == load_mirror_id || _id == load_appendix_id) {
// produce a copy of the load mirror instruction for use by the being initialized case
#ifdef ASSERT
address start = __ pc();
@ -384,6 +384,7 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
case load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
case load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
default: ShouldNotReachHere();
}
__ bind(call_patch);
@ -397,7 +398,7 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
ce->add_call_info_here(_info);
__ br(Assembler::always, false, Assembler::pt, _patch_site_entry);
__ delayed()->nop();
if (_id == load_klass_id || _id == load_mirror_id) {
if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
CodeSection* cs = __ code_section();
address pc = (address)_pc_start;
RelocIterator iter(cs, pc, pc + 1);

View File

@ -520,7 +520,7 @@ void LIR_Assembler::jobject2reg(jobject o, Register reg) {
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
// Allocate a new index in table to hold the object once it's been patched
int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");

View File

@ -804,6 +804,12 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
}
break;
case load_appendix_patching_id:
{ __ set_info("load_appendix_patching", dont_gc_arguments);
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case dtrace_object_alloc_id:
{ // O0: object
__ set_info("dtrace_object_alloc", dont_gc_arguments);

View File

@ -402,6 +402,7 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
case access_field_id: target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
case load_klass_id: target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
case load_mirror_id: target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
case load_appendix_id: target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
default: ShouldNotReachHere();
}
__ bind(call_patch);
@ -419,7 +420,7 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
__ nop();
}
if (_id == load_klass_id || _id == load_mirror_id) {
if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
CodeSection* cs = __ code_section();
RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);

View File

@ -362,7 +362,7 @@ int LIR_Assembler::check_icache() {
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
jobject o = NULL;
PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id);
PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
__ movoop(reg, o);
patching_epilog(patch, lir_patch_normal, reg, info);
}

View File

@ -1499,6 +1499,13 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
}
break;
case load_appendix_patching_id:
{ StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
// we should set up register map
oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
}
break;
case dtrace_object_alloc_id:
{ // rax,: object
StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);

View File

@ -106,10 +106,12 @@ public class CallSite {
" (" + getMethod().getBytes() + " bytes) " + getReason());
}
}
stream.printf(" (end time: %6.4f", getTimeStamp());
if (getEndNodes() > 0) {
stream.printf(" (end time: %6.4f nodes: %d live: %d)", getTimeStamp(), getEndNodes(), getEndLiveNodes());
stream.printf(" nodes: %d live: %d", getEndNodes(), getEndLiveNodes());
}
stream.println("");
stream.println(")");
if (getReceiver() != null) {
emit(stream, indent + 4);
// stream.println("type profile " + method.holder + " -> " + receiver + " (" +

View File

@ -207,7 +207,12 @@ public class LogParser extends DefaultHandler implements ErrorHandler, Constants
}
String search(Attributes attr, String name) {
return search(attr, name, null);
String result = attr.getValue(name);
if (result != null) {
return result;
} else {
throw new InternalError("can't find " + name);
}
}
String search(Attributes attr, String name, String defaultValue) {
@ -215,13 +220,7 @@ public class LogParser extends DefaultHandler implements ErrorHandler, Constants
if (result != null) {
return result;
}
if (defaultValue != null) {
return defaultValue;
}
for (int i = 0; i < attr.getLength(); i++) {
System.out.println(attr.getQName(i) + " " + attr.getValue(attr.getQName(i)));
}
throw new InternalError("can't find " + name);
return defaultValue;
}
int indent = 0;
@ -268,17 +267,18 @@ public class LogParser extends DefaultHandler implements ErrorHandler, Constants
Phase p = new Phase(search(atts, "name"),
Double.parseDouble(search(atts, "stamp")),
Integer.parseInt(search(atts, "nodes", "0")),
Integer.parseInt(search(atts, "live")));
Integer.parseInt(search(atts, "live", "0")));
phaseStack.push(p);
} else if (qname.equals("phase_done")) {
Phase p = phaseStack.pop();
if (! p.getId().equals(search(atts, "name"))) {
String phaseName = search(atts, "name", null);
if (phaseName != null && !p.getId().equals(phaseName)) {
System.out.println("phase: " + p.getId());
throw new InternalError("phase name mismatch");
}
p.setEnd(Double.parseDouble(search(atts, "stamp")));
p.setEndNodes(Integer.parseInt(search(atts, "nodes", "0")));
p.setEndLiveNodes(Integer.parseInt(search(atts, "live")));
p.setEndLiveNodes(Integer.parseInt(search(atts, "live", "0")));
compile.getPhases().add(p);
} else if (qname.equals("task")) {
compile = new Compilation(Integer.parseInt(search(atts, "compile_id", "-1")));
@ -413,8 +413,8 @@ public class LogParser extends DefaultHandler implements ErrorHandler, Constants
}
} else if (qname.equals("parse_done")) {
CallSite call = scopes.pop();
call.setEndNodes(Integer.parseInt(search(atts, "nodes", "1")));
call.setEndLiveNodes(Integer.parseInt(search(atts, "live", "1")));
call.setEndNodes(Integer.parseInt(search(atts, "nodes", "0")));
call.setEndLiveNodes(Integer.parseInt(search(atts, "live", "0")));
call.setTimeStamp(Double.parseDouble(search(atts, "stamp")));
scopes.push(call);
}

View File

@ -1095,7 +1095,7 @@ static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, Pe
fprintf(fp, " // Identify previous instruction if inside this block\n");
fprintf(fp, " if( ");
print_block_index(fp, inst_position);
fprintf(fp, " > 0 ) {\n Node *n = block->_nodes.at(");
fprintf(fp, " > 0 ) {\n Node *n = block->get_node(");
print_block_index(fp, inst_position);
fprintf(fp, ");\n inst%d = (n->is_Mach()) ? ", inst_position);
fprintf(fp, "n->as_Mach() : NULL;\n }\n");

View File

@ -364,7 +364,8 @@ class PatchingStub: public CodeStub {
enum PatchID {
access_field_id,
load_klass_id,
load_mirror_id
load_mirror_id,
load_appendix_id
};
enum constants {
patch_info_size = 3
@ -417,7 +418,7 @@ class PatchingStub: public CodeStub {
}
NativeMovRegMem* n_move = nativeMovRegMem_at(pc_start());
n_move->set_offset(field_offset);
} else if (_id == load_klass_id || _id == load_mirror_id) {
} else if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
assert(_obj != noreg, "must have register object for load_klass/load_mirror");
#ifdef ASSERT
// verify that we're pointing at a NativeMovConstReg

View File

@ -74,16 +74,19 @@ class PhaseTraceTime: public TraceTime {
private:
JavaThread* _thread;
CompileLog* _log;
TimerName _timer;
public:
PhaseTraceTime(TimerName timer)
: TraceTime("", &timers[timer], CITime || CITimeEach, Verbose), _log(NULL) {
: TraceTime("", &timers[timer], CITime || CITimeEach, Verbose),
_log(NULL), _timer(timer)
{
if (Compilation::current() != NULL) {
_log = Compilation::current()->log();
}
if (_log != NULL) {
_log->begin_head("phase name='%s'", timer_name[timer]);
_log->begin_head("phase name='%s'", timer_name[_timer]);
_log->stamp();
_log->end_head();
}
@ -91,7 +94,7 @@ class PhaseTraceTime: public TraceTime {
~PhaseTraceTime() {
if (_log != NULL)
_log->done("phase");
_log->done("phase name='%s'", timer_name[_timer]);
}
};

View File

@ -1583,7 +1583,7 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
ObjectType* obj_type = obj->type()->as_ObjectType();
if (obj_type->is_constant() && !PatchALot) {
ciObject* const_oop = obj_type->constant_value();
if (!const_oop->is_null_object()) {
if (!const_oop->is_null_object() && const_oop->is_loaded()) {
if (field->is_constant()) {
ciConstant field_val = field->constant_value_of(const_oop);
BasicType field_type = field_val.basic_type();
@ -1667,9 +1667,8 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
assert(declared_signature != NULL, "cannot be null");
// FIXME bail out for now
if (Bytecodes::has_optional_appendix(bc_raw) && !will_link) {
BAILOUT("unlinked call site (FIXME needs patching or recompile support)");
if (!C1PatchInvokeDynamic && Bytecodes::has_optional_appendix(bc_raw) && !will_link) {
BAILOUT("unlinked call site (C1PatchInvokeDynamic is off)");
}
// we have to make sure the argument size (incl. the receiver)
@ -1713,10 +1712,23 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
break;
}
} else {
if (bc_raw == Bytecodes::_invokehandle) {
assert(!will_link, "should come here only for unlinked call");
code = Bytecodes::_invokespecial;
}
}
// Push appendix argument (MethodType, CallSite, etc.), if one.
if (stream()->has_appendix()) {
bool patch_for_appendix = false;
int patching_appendix_arg = 0;
if (C1PatchInvokeDynamic &&
(Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot))) {
Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
apush(arg);
patch_for_appendix = true;
patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
} else if (stream()->has_appendix()) {
ciObject* appendix = stream()->get_appendix();
Value arg = append(new Constant(new ObjectConstant(appendix)));
apush(arg);
@ -1732,7 +1744,8 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded() &&
!(// %%% FIXME: Are both of these relevant?
target->is_method_handle_intrinsic() ||
target->is_compiled_lambda_form())) {
target->is_compiled_lambda_form()) &&
!patch_for_appendix) {
Value receiver = NULL;
ciInstanceKlass* receiver_klass = NULL;
bool type_is_exact = false;
@ -1850,7 +1863,8 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
// check if we could do inlining
if (!PatchALot && Inline && klass->is_loaded() &&
(klass->is_initialized() || klass->is_interface() && target->holder()->is_initialized())
&& target->is_loaded()) {
&& target->is_loaded()
&& !patch_for_appendix) {
// callee is known => check if we have static binding
assert(target->is_loaded(), "callee must be known");
if (code == Bytecodes::_invokestatic ||
@ -1901,7 +1915,7 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
code == Bytecodes::_invokespecial ||
code == Bytecodes::_invokevirtual ||
code == Bytecodes::_invokeinterface;
Values* args = state()->pop_arguments(target->arg_size_no_receiver());
Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
Value recv = has_receiver ? apop() : NULL;
int vtable_index = Method::invalid_vtable_index;

View File

@ -1211,8 +1211,6 @@ class LIR_OpJavaCall: public LIR_OpCall {
bool is_invokedynamic() const { return code() == lir_dynamic_call; }
bool is_method_handle_invoke() const {
return
is_invokedynamic() // An invokedynamic is always a MethodHandle call site.
||
method()->is_compiled_lambda_form() // Java-generated adapter
||
method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic

View File

@ -93,12 +93,23 @@ void LIR_Assembler::patching_epilog(PatchingStub* patch, LIR_PatchCode patch_cod
default:
ShouldNotReachHere();
}
} else if (patch->id() == PatchingStub::load_appendix_id) {
Bytecodes::Code bc_raw = info->scope()->method()->raw_code_at_bci(info->stack()->bci());
assert(Bytecodes::has_optional_appendix(bc_raw), "unexpected appendix resolution");
} else {
ShouldNotReachHere();
}
#endif
}
PatchingStub::PatchID LIR_Assembler::patching_id(CodeEmitInfo* info) {
IRScope* scope = info->scope();
Bytecodes::Code bc_raw = scope->method()->raw_code_at_bci(info->stack()->bci());
if (Bytecodes::has_optional_appendix(bc_raw)) {
return PatchingStub::load_appendix_id;
}
return PatchingStub::load_mirror_id;
}
//---------------------------------------------------------------

View File

@ -119,6 +119,8 @@ class LIR_Assembler: public CompilationResourceObj {
void comp_op(LIR_Condition condition, LIR_Opr src, LIR_Opr result, LIR_Op2* op);
PatchingStub::PatchID patching_id(CodeEmitInfo* info);
public:
LIR_Assembler(Compilation* c);
~LIR_Assembler();

View File

@ -819,6 +819,7 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code
Handle appendix(THREAD, NULL); // oop needed by appendix_patching code
bool load_klass_or_mirror_patch_id =
(stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
@ -888,10 +889,32 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
mirror = Handle(THREAD, m);
}
break;
default: Unimplemented();
default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
}
// convert to handle
load_klass = KlassHandle(THREAD, k);
} else if (stub_id == load_appendix_patching_id) {
Bytecode_invoke bytecode(caller_method, bci);
Bytecodes::Code bc = bytecode.invoke_code();
CallInfo info;
constantPoolHandle pool(thread, caller_method->constants());
int index = bytecode.index();
LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
appendix = info.resolved_appendix();
switch (bc) {
case Bytecodes::_invokehandle: {
int cache_index = ConstantPool::decode_cpcache_index(index, true);
assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
break;
}
case Bytecodes::_invokedynamic: {
pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
break;
}
default: fatal("unexpected bytecode for load_appendix_patching_id");
}
} else {
ShouldNotReachHere();
}
@ -992,8 +1015,8 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
n_copy->data() == (intptr_t)Universe::non_oop_word(),
"illegal init value");
if (stub_id == Runtime1::load_klass_patching_id) {
assert(load_klass() != NULL, "klass not set");
n_copy->set_data((intx) (load_klass()));
assert(load_klass() != NULL, "klass not set");
n_copy->set_data((intx) (load_klass()));
} else {
assert(mirror() != NULL, "klass not set");
n_copy->set_data((intx) (mirror()));
@ -1002,43 +1025,55 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
if (TracePatching) {
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
}
}
} else if (stub_id == Runtime1::load_appendix_patching_id) {
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
assert(n_copy->data() == 0 ||
n_copy->data() == (intptr_t)Universe::non_oop_word(),
"illegal init value");
n_copy->set_data((intx) (appendix()));
#if defined(SPARC) || defined(PPC)
// Update the location in the nmethod with the proper
// metadata. When the code was generated, a NULL was stuffed
// in the metadata table and that table needs to be update to
// have the right value. On intel the value is kept
// directly in the instruction instead of in the metadata
// table, so set_data above effectively updated the value.
nmethod* nm = CodeCache::find_nmethod(instr_pc);
assert(nm != NULL, "invalid nmethod_pc");
RelocIterator mds(nm, copy_buff, copy_buff + 1);
bool found = false;
while (mds.next() && !found) {
if (mds.type() == relocInfo::oop_type) {
assert(stub_id == Runtime1::load_mirror_patching_id, "wrong stub id");
oop_Relocation* r = mds.oop_reloc();
oop* oop_adr = r->oop_addr();
*oop_adr = mirror();
r->fix_oop_relocation();
found = true;
} else if (mds.type() == relocInfo::metadata_type) {
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
metadata_Relocation* r = mds.metadata_reloc();
Metadata** metadata_adr = r->metadata_addr();
*metadata_adr = load_klass();
r->fix_metadata_relocation();
found = true;
}
}
assert(found, "the metadata must exist!");
#endif
if (TracePatching) {
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
}
} else {
ShouldNotReachHere();
}
#if defined(SPARC) || defined(PPC)
if (load_klass_or_mirror_patch_id ||
stub_id == Runtime1::load_appendix_patching_id) {
// Update the location in the nmethod with the proper
// metadata. When the code was generated, a NULL was stuffed
// in the metadata table and that table needs to be update to
// have the right value. On intel the value is kept
// directly in the instruction instead of in the metadata
// table, so set_data above effectively updated the value.
nmethod* nm = CodeCache::find_nmethod(instr_pc);
assert(nm != NULL, "invalid nmethod_pc");
RelocIterator mds(nm, copy_buff, copy_buff + 1);
bool found = false;
while (mds.next() && !found) {
if (mds.type() == relocInfo::oop_type) {
assert(stub_id == Runtime1::load_mirror_patching_id ||
stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
oop_Relocation* r = mds.oop_reloc();
oop* oop_adr = r->oop_addr();
*oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
r->fix_oop_relocation();
found = true;
} else if (mds.type() == relocInfo::metadata_type) {
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
metadata_Relocation* r = mds.metadata_reloc();
Metadata** metadata_adr = r->metadata_addr();
*metadata_adr = load_klass();
r->fix_metadata_relocation();
found = true;
}
}
assert(found, "the metadata must exist!");
}
#endif
if (do_patch) {
// replace instructions
// first replace the tail, then the call
@ -1077,7 +1112,8 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
ICache::invalidate_range(instr_pc, *byte_count);
NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
if (load_klass_or_mirror_patch_id) {
if (load_klass_or_mirror_patch_id ||
stub_id == Runtime1::load_appendix_patching_id) {
relocInfo::relocType rtype =
(stub_id == Runtime1::load_klass_patching_id) ?
relocInfo::metadata_type :
@ -1118,7 +1154,8 @@ JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_i
// If we are patching in a non-perm oop, make sure the nmethod
// is on the right list.
if (ScavengeRootsInCode && mirror.not_null() && mirror()->is_scavengable()) {
if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
(appendix.not_null() && appendix->is_scavengable()))) {
MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
guarantee(nm != NULL, "only nmethods can contain non-perm oops");
@ -1179,6 +1216,24 @@ int Runtime1::move_mirror_patching(JavaThread* thread) {
return caller_is_deopted();
}
int Runtime1::move_appendix_patching(JavaThread* thread) {
//
// NOTE: we are still in Java
//
Thread* THREAD = thread;
debug_only(NoHandleMark nhm;)
{
// Enter VM mode
ResetNoHandleMark rnhm;
patch_code(thread, load_appendix_patching_id);
}
// Back in JAVA, use no oops DON'T safepoint
// Return true if calling code is deoptimized
return caller_is_deopted();
}
//
// Entry point for compiled code. We want to patch a nmethod.
// We don't do a normal VM transition here because we want to

View File

@ -67,6 +67,7 @@ class StubAssembler;
stub(access_field_patching) \
stub(load_klass_patching) \
stub(load_mirror_patching) \
stub(load_appendix_patching) \
stub(g1_pre_barrier_slow) \
stub(g1_post_barrier_slow) \
stub(fpu2long_stub) \
@ -160,6 +161,7 @@ class Runtime1: public AllStatic {
static int access_field_patching(JavaThread* thread);
static int move_klass_patching(JavaThread* thread);
static int move_mirror_patching(JavaThread* thread);
static int move_appendix_patching(JavaThread* thread);
static void patch_code(JavaThread* thread, StubID stub_id);

View File

@ -25,4 +25,4 @@
#include "precompiled.hpp"
#include "c1/c1_globals.hpp"
C1_FLAGS(MATERIALIZE_DEVELOPER_FLAG, MATERIALIZE_PD_DEVELOPER_FLAG, MATERIALIZE_PRODUCT_FLAG, MATERIALIZE_PD_PRODUCT_FLAG, MATERIALIZE_NOTPRODUCT_FLAG)
C1_FLAGS(MATERIALIZE_DEVELOPER_FLAG, MATERIALIZE_PD_DEVELOPER_FLAG, MATERIALIZE_PRODUCT_FLAG, MATERIALIZE_PD_PRODUCT_FLAG, MATERIALIZE_DIAGNOSTIC_FLAG, MATERIALIZE_NOTPRODUCT_FLAG)

View File

@ -54,7 +54,7 @@
//
// Defines all global flags used by the client compiler.
//
#define C1_FLAGS(develop, develop_pd, product, product_pd, notproduct) \
#define C1_FLAGS(develop, develop_pd, product, product_pd, diagnostic, notproduct) \
\
/* Printing */ \
notproduct(bool, PrintC1Statistics, false, \
@ -333,15 +333,19 @@
"Use CHA and exact type results at call sites when updating MDOs")\
\
product(bool, C1UpdateMethodData, trueInTiered, \
"Update MethodData*s in Tier1-generated code") \
"Update MethodData*s in Tier1-generated code") \
\
develop(bool, PrintCFGToFile, false, \
"print control flow graph to a separate file during compilation") \
\
diagnostic(bool, C1PatchInvokeDynamic, true, \
"Patch invokedynamic appendix not known at compile time") \
\
\
// Read default values for c1 globals
C1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_NOTPRODUCT_FLAG)
C1_FLAGS(DECLARE_DEVELOPER_FLAG, DECLARE_PD_DEVELOPER_FLAG, DECLARE_PRODUCT_FLAG, DECLARE_PD_PRODUCT_FLAG, DECLARE_DIAGNOSTIC_FLAG, DECLARE_NOTPRODUCT_FLAG)
#endif // SHARE_VM_C1_C1_GLOBALS_HPP

View File

@ -1150,6 +1150,10 @@ void ciEnv::record_out_of_memory_failure() {
record_method_not_compilable("out of memory");
}
ciInstance* ciEnv::unloaded_ciinstance() {
GUARDED_VM_ENTRY(return _factory->get_unloaded_object_constant();)
}
void ciEnv::dump_replay_data(outputStream* out) {
VM_ENTRY_MARK;
MutexLocker ml(Compile_lock);

View File

@ -400,6 +400,7 @@ public:
static ciInstanceKlass* unloaded_ciinstance_klass() {
return _unloaded_ciinstance_klass;
}
ciInstance* unloaded_ciinstance();
ciKlass* find_system_klass(ciSymbol* klass_name);
// Note: To find a class from its name string, use ciSymbol::make,

View File

@ -60,10 +60,10 @@ ciType* ciInstance::java_mirror_type() {
//
// Constant value of a field.
ciConstant ciInstance::field_value(ciField* field) {
assert(is_loaded() &&
field->holder()->is_loaded() &&
klass()->is_subclass_of(field->holder()),
"invalid access");
assert(is_loaded(), "invalid access - must be loaded");
assert(field->holder()->is_loaded(), "invalid access - holder must be loaded");
assert(klass()->is_subclass_of(field->holder()), "invalid access - must be subclass");
VM_ENTRY_MARK;
ciConstant result;
Handle obj = get_oop();

View File

@ -177,6 +177,10 @@ class ciMethod : public ciMetadata {
address bcp = code() + bci;
return Bytecodes::java_code_at(NULL, bcp);
}
Bytecodes::Code raw_code_at_bci(int bci) {
address bcp = code() + bci;
return Bytecodes::code_at(NULL, bcp);
}
BCEscapeAnalyzer *get_bcea();
ciMethodBlocks *get_method_blocks();

View File

@ -563,7 +563,10 @@ ciInstance* ciObjectFactory::get_unloaded_method_type_constant(ciSymbol* signatu
return get_unloaded_instance(ciEnv::_MethodType_klass->as_instance_klass());
}
ciInstance* ciObjectFactory::get_unloaded_object_constant() {
if (ciEnv::_Object_klass == NULL) return NULL;
return get_unloaded_instance(ciEnv::_Object_klass->as_instance_klass());
}
//------------------------------------------------------------------
// ciObjectFactory::get_empty_methodData

View File

@ -131,6 +131,8 @@ public:
ciInstance* get_unloaded_method_type_constant(ciSymbol* signature);
ciInstance* get_unloaded_object_constant();
// Get the ciMethodData representing the methodData for a method
// with none.
ciMethodData* get_empty_methodData();

View File

@ -93,18 +93,21 @@ HS_DTRACE_PROBE_DECL6(hotspot, compiled__method__unload,
#endif
bool nmethod::is_compiled_by_c1() const {
if (compiler() == NULL || method() == NULL) return false; // can happen during debug printing
if (is_native_method()) return false;
if (compiler() == NULL) {
return false;
}
return compiler()->is_c1();
}
bool nmethod::is_compiled_by_c2() const {
if (compiler() == NULL || method() == NULL) return false; // can happen during debug printing
if (is_native_method()) return false;
if (compiler() == NULL) {
return false;
}
return compiler()->is_c2();
}
bool nmethod::is_compiled_by_shark() const {
if (is_native_method()) return false;
assert(compiler() != NULL, "must be");
if (compiler() == NULL) {
return false;
}
return compiler()->is_shark();
}
@ -1401,6 +1404,9 @@ bool nmethod::make_not_entrant_or_zombie(unsigned int state) {
// nmethods aren't scanned for GC.
_oops_are_stale = true;
#endif
// the Method may be reclaimed by class unloading now that the
// nmethod is in zombie state
set_method(NULL);
} else {
assert(state == not_entrant, "other cases may need to be handled differently");
}

View File

@ -1718,7 +1718,7 @@ static void codecache_print(bool detailed)
CodeCache::print_summary(&s, detailed);
}
ttyLocker ttyl;
tty->print_cr(s.as_string());
tty->print(s.as_string());
}
// ------------------------------------------------------------------

View File

@ -720,11 +720,22 @@ void Method::print_made_not_compilable(int comp_level, bool is_osr, bool report,
}
}
bool Method::is_always_compilable() const {
// Generated adapters must be compiled
if (is_method_handle_intrinsic() && is_synthetic()) {
assert(!is_not_c1_compilable(), "sanity check");
assert(!is_not_c2_compilable(), "sanity check");
return true;
}
return false;
}
bool Method::is_not_compilable(int comp_level) const {
if (number_of_breakpoints() > 0)
return true;
if (is_method_handle_intrinsic())
return !is_synthetic(); // the generated adapters must be compiled
if (is_always_compilable())
return false;
if (comp_level == CompLevel_any)
return is_not_c1_compilable() || is_not_c2_compilable();
if (is_c1_compile(comp_level))
@ -736,6 +747,10 @@ bool Method::is_not_compilable(int comp_level) const {
// call this when compiler finds that this method is not compilable
void Method::set_not_compilable(int comp_level, bool report, const char* reason) {
if (is_always_compilable()) {
// Don't mark a method which should be always compilable
return;
}
print_made_not_compilable(comp_level, /*is_osr*/ false, report, reason);
if (comp_level == CompLevel_all) {
set_not_c1_compilable();

View File

@ -796,6 +796,7 @@ class Method : public Metadata {
void set_not_osr_compilable_quietly(int comp_level = CompLevel_all) {
set_not_osr_compilable(comp_level, false);
}
bool is_always_compilable() const;
private:
void print_made_not_compilable(int comp_level, bool is_osr, bool report, const char* reason);

View File

@ -112,9 +112,9 @@ uint Block::compute_loop_alignment() {
// exceeds OptoLoopAlignment.
uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
PhaseRegAlloc* ra) {
uint last_inst = _nodes.size();
uint last_inst = number_of_nodes();
for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
uint inst_size = _nodes[j]->size(ra);
uint inst_size = get_node(j)->size(ra);
if( inst_size > 0 ) {
inst_cnt--;
uint sz = sum_size + inst_size;
@ -131,8 +131,8 @@ uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
}
uint Block::find_node( const Node *n ) const {
for( uint i = 0; i < _nodes.size(); i++ ) {
if( _nodes[i] == n )
for( uint i = 0; i < number_of_nodes(); i++ ) {
if( get_node(i) == n )
return i;
}
ShouldNotReachHere();
@ -141,7 +141,7 @@ uint Block::find_node( const Node *n ) const {
// Find and remove n from block list
void Block::find_remove( const Node *n ) {
_nodes.remove(find_node(n));
remove_node(find_node(n));
}
// Return empty status of a block. Empty blocks contain only the head, other
@ -154,10 +154,10 @@ int Block::is_Empty() const {
}
int success_result = completely_empty;
int end_idx = _nodes.size()-1;
int end_idx = number_of_nodes() - 1;
// Check for ending goto
if ((end_idx > 0) && (_nodes[end_idx]->is_MachGoto())) {
if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
success_result = empty_with_goto;
end_idx--;
}
@ -170,7 +170,7 @@ int Block::is_Empty() const {
// Ideal nodes are allowable in empty blocks: skip them Only MachNodes
// turn directly into code, because only MachNodes have non-trivial
// emit() functions.
while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
end_idx--;
}
@ -209,15 +209,15 @@ bool Block::has_uncommon_code() const {
// True if block is low enough frequency or guarded by a test which
// mostly does not go here.
bool Block::is_uncommon(PhaseCFG* cfg) const {
bool PhaseCFG::is_uncommon(const Block* block) {
// Initial blocks must never be moved, so are never uncommon.
if (head()->is_Root() || head()->is_Start()) return false;
if (block->head()->is_Root() || block->head()->is_Start()) return false;
// Check for way-low freq
if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
// Look for code shape indicating uncommon_trap or slow path
if (has_uncommon_code()) return true;
if (block->has_uncommon_code()) return true;
const float epsilon = 0.05f;
const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
@ -225,8 +225,8 @@ bool Block::is_uncommon(PhaseCFG* cfg) const {
uint freq_preds = 0;
uint uncommon_for_freq_preds = 0;
for( uint i=1; i<num_preds(); i++ ) {
Block* guard = cfg->get_block_for_node(pred(i));
for( uint i=1; i< block->num_preds(); i++ ) {
Block* guard = get_block_for_node(block->pred(i));
// Check to see if this block follows its guard 1 time out of 10000
// or less.
//
@ -244,14 +244,14 @@ bool Block::is_uncommon(PhaseCFG* cfg) const {
uncommon_preds++;
} else {
freq_preds++;
if( _freq < guard->_freq * guard_factor ) {
if(block->_freq < guard->_freq * guard_factor ) {
uncommon_for_freq_preds++;
}
}
}
if( num_preds() > 1 &&
if( block->num_preds() > 1 &&
// The block is uncommon if all preds are uncommon or
(uncommon_preds == (num_preds()-1) ||
(uncommon_preds == (block->num_preds()-1) ||
// it is uncommon for all frequent preds.
uncommon_for_freq_preds == freq_preds) ) {
return true;
@ -344,8 +344,8 @@ void Block::dump() const {
void Block::dump(const PhaseCFG* cfg) const {
dump_head(cfg);
for (uint i=0; i< _nodes.size(); i++) {
_nodes[i]->dump();
for (uint i=0; i< number_of_nodes(); i++) {
get_node(i)->dump();
}
tty->print("\n");
}
@ -434,7 +434,7 @@ uint PhaseCFG::build_cfg() {
map_node_to_block(p, bb);
map_node_to_block(x, bb);
if( x != p ) { // Only for root is x == p
bb->_nodes.push((Node*)x);
bb->push_node((Node*)x);
}
// Now handle predecessors
++sum; // Count 1 for self block
@ -469,11 +469,11 @@ uint PhaseCFG::build_cfg() {
assert( x != proj, "" );
// Map basic block of projection
map_node_to_block(proj, pb);
pb->_nodes.push(proj);
pb->push_node(proj);
}
// Insert self as a child of my predecessor block
pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
"too many control users, not a CFG?" );
}
}
@ -495,7 +495,7 @@ void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
// surrounding blocks.
float freq = in->_freq * in->succ_prob(succ_no);
// get ProjNode corresponding to the succ_no'th successor of the in block
ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
// create region for basic block
RegionNode* region = new (C) RegionNode(2);
region->init_req(1, proj);
@ -507,7 +507,7 @@ void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
Node* gto = _goto->clone(); // get a new goto node
gto->set_req(0, region);
// add it to the basic block
block->_nodes.push(gto);
block->push_node(gto);
map_node_to_block(gto, block);
C->regalloc()->set_bad(gto->_idx);
// hook up successor block
@ -527,9 +527,9 @@ void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
// Does this block end in a multiway branch that cannot have the default case
// flipped for another case?
static bool no_flip_branch( Block *b ) {
int branch_idx = b->_nodes.size() - b->_num_succs-1;
int branch_idx = b->number_of_nodes() - b->_num_succs-1;
if( branch_idx < 1 ) return false;
Node *bra = b->_nodes[branch_idx];
Node *bra = b->get_node(branch_idx);
if( bra->is_Catch() )
return true;
if( bra->is_Mach() ) {
@ -550,16 +550,16 @@ static bool no_flip_branch( Block *b ) {
void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
// Find true target
int end_idx = b->end_idx();
int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
int idx = b->get_node(end_idx+1)->as_Proj()->_con;
Block *succ = b->_succs[idx];
Node* gto = _goto->clone(); // get a new goto node
gto->set_req(0, b->head());
Node *bp = b->_nodes[end_idx];
b->_nodes.map(end_idx,gto); // Slam over NeverBranch
Node *bp = b->get_node(end_idx);
b->map_node(gto, end_idx); // Slam over NeverBranch
map_node_to_block(gto, b);
C->regalloc()->set_bad(gto->_idx);
b->_nodes.pop(); // Yank projections
b->_nodes.pop(); // Yank projections
b->pop_node(); // Yank projections
b->pop_node(); // Yank projections
b->_succs.map(0,succ); // Map only successor
b->_num_succs = 1;
// remap successor's predecessors if necessary
@ -575,8 +575,8 @@ void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
// Scan through block, yanking dead path from
// all regions and phis.
dead->head()->del_req(j);
for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
dead->_nodes[k]->del_req(j);
for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
dead->get_node(k)->del_req(j);
}
// Helper function to move block bx to the slot following b_index. Return
@ -620,7 +620,7 @@ void PhaseCFG::move_to_end(Block *b, uint i) {
if (e != Block::not_empty) {
if (e == Block::empty_with_goto) {
// Remove the goto, but leave the block.
b->_nodes.pop();
b->pop_node();
}
// Mark this block as a connector block, which will cause it to be
// ignored in certain functions such as non_connector_successor().
@ -663,13 +663,13 @@ void PhaseCFG::remove_empty_blocks() {
// to give a fake exit path to infinite loops. At this late stage they
// need to turn into Goto's so that when you enter the infinite loop you
// indeed hang.
if (block->_nodes[block->end_idx()]->Opcode() == Op_NeverBranch) {
if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
convert_NeverBranch_to_Goto(block);
}
// Look for uncommon blocks and move to end.
if (!C->do_freq_based_layout()) {
if (block->is_uncommon(this)) {
if (is_uncommon(block)) {
move_to_end(block, i);
last--; // No longer check for being uncommon!
if (no_flip_branch(block)) { // Fall-thru case must follow?
@ -720,9 +720,9 @@ void PhaseCFG::fixup_flow() {
// exchange the true and false targets.
if (no_flip_branch(block)) {
// Find fall through case - if must fall into its target
int branch_idx = block->_nodes.size() - block->_num_succs;
int branch_idx = block->number_of_nodes() - block->_num_succs;
for (uint j2 = 0; j2 < block->_num_succs; j2++) {
const ProjNode* p = block->_nodes[branch_idx + j2]->as_Proj();
const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
if (p->_con == 0) {
// successor j2 is fall through case
if (block->non_connector_successor(j2) != bnext) {
@ -743,14 +743,14 @@ void PhaseCFG::fixup_flow() {
// Remove all CatchProjs
for (uint j = 0; j < block->_num_succs; j++) {
block->_nodes.pop();
block->pop_node();
}
} else if (block->_num_succs == 1) {
// Block ends in a Goto?
if (bnext == bs0) {
// We fall into next block; remove the Goto
block->_nodes.pop();
block->pop_node();
}
} else if(block->_num_succs == 2) { // Block ends in a If?
@ -759,9 +759,9 @@ void PhaseCFG::fixup_flow() {
// be projections (in any order), the 3rd last node must be
// the IfNode (we have excluded other 2-way exits such as
// CatchNodes already).
MachNode* iff = block->_nodes[block->_nodes.size() - 3]->as_Mach();
ProjNode* proj0 = block->_nodes[block->_nodes.size() - 2]->as_Proj();
ProjNode* proj1 = block->_nodes[block->_nodes.size() - 1]->as_Proj();
MachNode* iff = block->get_node(block->number_of_nodes() - 3)->as_Mach();
ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
@ -833,8 +833,8 @@ void PhaseCFG::fixup_flow() {
iff->as_MachIf()->negate();
}
block->_nodes.pop(); // Remove IfFalse & IfTrue projections
block->_nodes.pop();
block->pop_node(); // Remove IfFalse & IfTrue projections
block->pop_node();
} else {
// Multi-exit block, e.g. a switch statement
@ -895,13 +895,13 @@ void PhaseCFG::verify() const {
// Verify sane CFG
for (uint i = 0; i < number_of_blocks(); i++) {
Block* block = get_block(i);
uint cnt = block->_nodes.size();
uint cnt = block->number_of_nodes();
uint j;
for (j = 0; j < cnt; j++) {
Node *n = block->_nodes[j];
Node *n = block->get_node(j);
assert(get_block_for_node(n) == block, "");
if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
assert(j == 1 || block->_nodes[j-1]->is_Phi(), "CreateEx must be first instruction in block");
assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
}
for (uint k = 0; k < n->req(); k++) {
Node *def = n->in(k);
@ -930,14 +930,14 @@ void PhaseCFG::verify() const {
}
j = block->end_idx();
Node* bp = (Node*)block->_nodes[block->_nodes.size() - 1]->is_block_proj();
Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
assert(bp, "last instruction must be a block proj");
assert(bp == block->_nodes[j], "wrong number of successors for this block");
assert(bp == block->get_node(j), "wrong number of successors for this block");
if (bp->is_Catch()) {
while (block->_nodes[--j]->is_MachProj()) {
while (block->get_node(--j)->is_MachProj()) {
;
}
assert(block->_nodes[j]->is_MachCall(), "CatchProj must follow call");
assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
} else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
assert(block->_num_succs == 2, "Conditional branch must have two targets");
}
@ -1440,9 +1440,9 @@ void Trace::fixup_blocks(PhaseCFG &cfg) {
Block *bnext = next(b);
Block *bs0 = b->non_connector_successor(0);
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach();
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
if (bnext == bs0) {
// Fall-thru case in succs[0], should be in succs[1]
@ -1454,8 +1454,8 @@ void Trace::fixup_blocks(PhaseCFG &cfg) {
b->_succs.map( 1, tbs0 );
// Flip projections to match targets
b->_nodes.map(b->_nodes.size()-2, proj1);
b->_nodes.map(b->_nodes.size()-1, proj0);
b->map_node(proj1, b->number_of_nodes() - 2);
b->map_node(proj0, b->number_of_nodes() - 1);
}
}
}

View File

@ -105,15 +105,53 @@ class CFGElement : public ResourceObj {
// any optimization pass. They are created late in the game.
class Block : public CFGElement {
friend class VMStructs;
public:
private:
// Nodes in this block, in order
Node_List _nodes;
public:
// Get the node at index 'at_index', if 'at_index' is out of bounds return NULL
Node* get_node(uint at_index) const {
return _nodes[at_index];
}
// Get the number of nodes in this block
uint number_of_nodes() const {
return _nodes.size();
}
// Map a node 'node' to index 'to_index' in the block, if the index is out of bounds the size of the node list is increased
void map_node(Node* node, uint to_index) {
_nodes.map(to_index, node);
}
// Insert a node 'node' at index 'at_index', moving all nodes that are on a higher index one step, if 'at_index' is out of bounds we crash
void insert_node(Node* node, uint at_index) {
_nodes.insert(at_index, node);
}
// Remove a node at index 'at_index'
void remove_node(uint at_index) {
_nodes.remove(at_index);
}
// Push a node 'node' onto the node list
void push_node(Node* node) {
_nodes.push(node);
}
// Pop the last node off the node list
Node* pop_node() {
return _nodes.pop();
}
// Basic blocks have a Node which defines Control for all Nodes pinned in
// this block. This Node is a RegionNode. Exception-causing Nodes
// (division, subroutines) and Phi functions are always pinned. Later,
// every Node will get pinned to some block.
Node *head() const { return _nodes[0]; }
Node *head() const { return get_node(0); }
// CAUTION: num_preds() is ONE based, so that predecessor numbers match
// input edges to Regions and Phis.
@ -274,29 +312,12 @@ class Block : public CFGElement {
// Add an instruction to an existing block. It must go after the head
// instruction and before the end instruction.
void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
void add_inst( Node *n ) { insert_node(n, end_idx()); }
// Find node in block
uint find_node( const Node *n ) const;
// Find and remove n from block list
void find_remove( const Node *n );
// helper function that adds caller save registers to MachProjNode
void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
// Schedule a call next in the block
uint sched_call(Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
// Perform basic-block local scheduling
Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
void set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg);
void needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg);
bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
// Cleanup if any code lands between a Call and his Catch
void call_catch_cleanup(PhaseCFG* cfg, Compile *C);
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
// Return the empty status of a block
enum { not_empty, empty_with_goto, completely_empty };
int is_Empty() const;
@ -328,10 +349,6 @@ class Block : public CFGElement {
// Examine block's code shape to predict if it is not commonly executed.
bool has_uncommon_code() const;
// Use frequency calculations and code shape to predict if the block
// is uncommon.
bool is_uncommon(PhaseCFG* cfg) const;
#ifndef PRODUCT
// Debugging print of basic block
void dump_bidx(const Block* orig, outputStream* st = tty) const;
@ -414,6 +431,27 @@ class PhaseCFG : public Phase {
// to late. Helper for schedule_late.
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
bool schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call);
void set_next_call(Block* block, Node* n, VectorSet& next_call);
void needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call);
// Perform basic-block local scheduling
Node* select(Block* block, Node_List& worklist, GrowableArray<int>& ready_cnt, VectorSet& next_call, uint sched_slot);
// Schedule a call next in the block
uint sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call);
// Cleanup if any code lands between a Call and his Catch
void call_catch_cleanup(Block* block);
Node* catch_cleanup_find_cloned_def(Block* use_blk, Node* def, Block* def_blk, int n_clone_idx);
void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx);
// Detect implicit-null-check opportunities. Basically, find NULL checks
// with suitable memory ops nearby. Use the memory op to do the NULL check.
// I can generate a memory op if there is not one nearby.
void implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons);
// Perform a Depth First Search (DFS).
// Setup 'vertex' as DFS to vertex mapping.
// Setup 'semi' as vertex to DFS mapping.
@ -530,6 +568,10 @@ class PhaseCFG : public Phase {
return (_node_to_block_mapping.lookup(node->_idx) != NULL);
}
// Use frequency calculations and code shape to predict if the block
// is uncommon.
bool is_uncommon(const Block* block);
#ifdef ASSERT
Unique_Node_List _raw_oops;
#endif
@ -550,7 +592,7 @@ class PhaseCFG : public Phase {
// Insert a node into a block at index and map the node to the block
void insert(Block *b, uint idx, Node *n) {
b->_nodes.insert( idx, n );
b->insert_node(n , idx);
map_node_to_block(n, b);
}

View File

@ -121,8 +121,8 @@ struct OopFlow : public ResourceObj {
// Given reaching-defs for this block start, compute it for this block end
void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
for( uint i=0; i<_b->_nodes.size(); i++ ) {
Node *n = _b->_nodes[i];
for( uint i=0; i<_b->number_of_nodes(); i++ ) {
Node *n = _b->get_node(i);
if( n->jvms() ) { // Build an OopMap here?
JVMState *jvms = n->jvms();
@ -447,8 +447,8 @@ static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* work
}
// Now walk tmp_live up the block backwards, computing live
for( int k=b->_nodes.size()-1; k>=0; k-- ) {
Node *n = b->_nodes[k];
for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
Node *n = b->get_node(k);
// KILL def'd bits
int first = regalloc->get_reg_first(n);
int second = regalloc->get_reg_second(n);
@ -544,12 +544,12 @@ static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* work
for (i = 1; i < cfg->number_of_blocks(); i++) {
Block* block = cfg->get_block(i);
uint j;
for (j = 1; j < block->_nodes.size(); j++) {
if (block->_nodes[j]->jvms() && (*safehash)[block->_nodes[j]] == NULL) {
for (j = 1; j < block->number_of_nodes(); j++) {
if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
break;
}
}
if (j < block->_nodes.size()) {
if (j < block->number_of_nodes()) {
break;
}
}

View File

@ -458,7 +458,7 @@ void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st)
st->print("={");
uint nf = spobj->n_fields();
if (nf > 0) {
uint first_ind = spobj->first_index();
uint first_ind = spobj->first_index(mcall->jvms());
Node* fld_node = mcall->in(first_ind);
ciField* cifield;
if (iklass != NULL) {
@ -1063,7 +1063,6 @@ void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
int scloff = jvms->scloff();
int endoff = jvms->endoff();
assert(endoff == (int)req(), "no other states or debug info after me");
assert(jvms->scl_size() == 0, "parsed code should not have scalar objects");
Node* top = Compile::current()->top();
for (uint i = 0; i < grow_by; i++) {
ins_req(monoff, top);
@ -1079,32 +1078,31 @@ void SafePointNode::push_monitor(const FastLockNode *lock) {
const int MonitorEdges = 2;
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
assert(req() == jvms()->endoff(), "correct sizing");
assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
int nextmon = jvms()->scloff();
if (GenerateSynchronizationCode) {
add_req(lock->box_node());
add_req(lock->obj_node());
ins_req(nextmon, lock->box_node());
ins_req(nextmon+1, lock->obj_node());
} else {
Node* top = Compile::current()->top();
add_req(top);
add_req(top);
ins_req(nextmon, top);
ins_req(nextmon, top);
}
jvms()->set_scloff(nextmon+MonitorEdges);
jvms()->set_scloff(nextmon + MonitorEdges);
jvms()->set_endoff(req());
}
void SafePointNode::pop_monitor() {
// Delete last monitor from debug info
assert((jvms()->scl_size() == 0), "parsed code should not have scalar objects");
debug_only(int num_before_pop = jvms()->nof_monitors());
const int MonitorEdges = (1<<JVMState::logMonitorEdges);
const int MonitorEdges = 2;
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
int scloff = jvms()->scloff();
int endoff = jvms()->endoff();
int new_scloff = scloff - MonitorEdges;
int new_endoff = endoff - MonitorEdges;
jvms()->set_scloff(new_scloff);
jvms()->set_endoff(new_endoff);
while (scloff > new_scloff) del_req(--scloff);
while (scloff > new_scloff) del_req_ordered(--scloff);
assert(jvms()->nof_monitors() == num_before_pop-1, "");
}
@ -1169,13 +1167,12 @@ uint SafePointScalarObjectNode::match_edge(uint idx) const {
}
SafePointScalarObjectNode*
SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
SafePointScalarObjectNode::clone(Dict* sosn_map) const {
void* cached = (*sosn_map)[(void*)this];
if (cached != NULL) {
return (SafePointScalarObjectNode*)cached;
}
SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
res->_first_index += jvms_adj;
sosn_map->Insert((void*)this, (void*)res);
return res;
}

View File

@ -449,14 +449,17 @@ public:
// at a safepoint.
class SafePointScalarObjectNode: public TypeNode {
uint _first_index; // First input edge index of a SafePoint node where
uint _first_index; // First input edge relative index of a SafePoint node where
// states of the scalarized object fields are collected.
// It is relative to the last (youngest) jvms->_scloff.
uint _n_fields; // Number of non-static fields of the scalarized object.
DEBUG_ONLY(AllocateNode* _alloc;)
virtual uint hash() const ; // { return NO_HASH; }
virtual uint cmp( const Node &n ) const;
uint first_index() const { return _first_index; }
public:
SafePointScalarObjectNode(const TypeOopPtr* tp,
#ifdef ASSERT
@ -469,7 +472,10 @@ public:
virtual const RegMask &out_RegMask() const;
virtual uint match_edge(uint idx) const;
uint first_index() const { return _first_index; }
uint first_index(JVMState* jvms) const {
assert(jvms != NULL, "missed JVMS");
return jvms->scloff() + _first_index;
}
uint n_fields() const { return _n_fields; }
#ifdef ASSERT
@ -485,7 +491,7 @@ public:
// corresponds appropriately to "this" in "new_call". Assumes that
// "sosn_map" is a map, specific to the translation of "s" to "new_call",
// mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
SafePointScalarObjectNode* clone(Dict* sosn_map) const;
#ifndef PRODUCT
virtual void dump_spec(outputStream *st) const;

View File

@ -301,7 +301,7 @@ int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint&
// Copy kill projections after the cloned node
Node* kills = proj->clone();
kills->set_req(0, copy);
b->_nodes.insert(idx++, kills);
b->insert_node(kills, idx++);
_cfg.map_node_to_block(kills, b);
new_lrg(kills, max_lrg_id++);
}
@ -682,11 +682,11 @@ void PhaseChaitin::de_ssa() {
uint lr_counter = 1;
for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
Block* block = _cfg.get_block(i);
uint cnt = block->_nodes.size();
uint cnt = block->number_of_nodes();
// Handle all the normal Nodes in the block
for( uint j = 0; j < cnt; j++ ) {
Node *n = block->_nodes[j];
Node *n = block->get_node(j);
// Pre-color to the zero live range, or pick virtual register
const RegMask &rm = n->out_RegMask();
_lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
@ -710,8 +710,8 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
Block* block = _cfg.get_block(i);
// For all instructions
for (uint j = 1; j < block->_nodes.size(); j++) {
Node* n = block->_nodes[j];
for (uint j = 1; j < block->number_of_nodes(); j++) {
Node* n = block->get_node(j);
uint input_edge_start =1; // Skip control most nodes
if (n->is_Mach()) {
input_edge_start = n->as_Mach()->oper_input_base();
@ -1604,7 +1604,7 @@ void PhaseChaitin::fixup_spills() {
// For all instructions in block
uint last_inst = block->end_idx();
for (uint j = 1; j <= last_inst; j++) {
Node* n = block->_nodes[j];
Node* n = block->get_node(j);
// Dead instruction???
assert( n->outcnt() != 0 ||// Nothing dead after post alloc
@ -1641,7 +1641,7 @@ void PhaseChaitin::fixup_spills() {
assert( cisc->oper_input_base() == 2, "Only adding one edge");
cisc->ins_req(1,src); // Requires a memory edge
}
block->_nodes.map(j,cisc); // Insert into basic block
block->map_node(cisc, j); // Insert into basic block
n->subsume_by(cisc, C); // Correct graph
//
++_used_cisc_instructions;
@ -1698,7 +1698,7 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
// (where top() node is placed).
base->init_req(0, _cfg.get_root_node());
Block *startb = _cfg.get_block_for_node(C->top());
startb->_nodes.insert(startb->find_node(C->top()), base );
startb->insert_node(base, startb->find_node(C->top()));
_cfg.map_node_to_block(base, startb);
assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet");
}
@ -1743,9 +1743,9 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
// Search the current block for an existing base-Phi
Block *b = _cfg.get_block_for_node(derived);
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
Node *phi = b->_nodes[i];
Node *phi = b->get_node(i);
if( !phi->is_Phi() ) { // Found end of Phis with no match?
b->_nodes.insert( i, base ); // Must insert created Phi here as base
b->insert_node(base, i); // Must insert created Phi here as base
_cfg.map_node_to_block(base, b);
new_lrg(base,maxlrg++);
break;
@ -1786,7 +1786,7 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
IndexSet liveout(_live->live(block));
for (uint j = block->end_idx() + 1; j > 1; j--) {
Node* n = block->_nodes[j - 1];
Node* n = block->get_node(j - 1);
// Pre-split compares of loop-phis. Loop-phis form a cycle we would
// like to see in the same register. Compare uses the loop-phi and so
@ -1979,8 +1979,8 @@ void PhaseChaitin::dump(const Block *b) const {
b->dump_head(&_cfg);
// For all instructions
for( uint j = 0; j < b->_nodes.size(); j++ )
dump(b->_nodes[j]);
for( uint j = 0; j < b->number_of_nodes(); j++ )
dump(b->get_node(j));
// Print live-out info at end of block
if( _live ) {
tty->print("Liveout: ");
@ -2271,8 +2271,8 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
int dump_once = 0;
// For all instructions
for( uint j = 0; j < block->_nodes.size(); j++ ) {
Node *n = block->_nodes[j];
for( uint j = 0; j < block->number_of_nodes(); j++ ) {
Node *n = block->get_node(j);
if (_lrg_map.find_const(n) == lidx) {
if (!dump_once++) {
tty->cr();

View File

@ -54,9 +54,9 @@ void PhaseCoalesce::dump() const {
for( j=0; j<b->_num_succs; j++ )
tty->print("B%d ",b->_succs[j]->_pre_order);
tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
uint cnt = b->_nodes.size();
uint cnt = b->number_of_nodes();
for( j=0; j<cnt; j++ ) {
Node *n = b->_nodes[j];
Node *n = b->get_node(j);
dump( n );
tty->print("\t%s\t",n->Name());
@ -152,7 +152,7 @@ void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, ui
// after the last use. Last use is really first-use on a backwards scan.
uint i = b->end_idx()-1;
while(1) {
Node *n = b->_nodes[i];
Node *n = b->get_node(i);
// Check for end of virtual copies; this is also the end of the
// parallel renaming effort.
if (n->_idx < _unique) {
@ -174,7 +174,7 @@ void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, ui
// the last kill. Thus it is the first kill on a backwards scan.
i = b->end_idx()-1;
while (1) {
Node *n = b->_nodes[i];
Node *n = b->get_node(i);
// Check for end of virtual copies; this is also the end of the
// parallel renaming effort.
if (n->_idx < _unique) {
@ -200,13 +200,13 @@ void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, ui
tmp ->set_req(idx,copy->in(idx));
copy->set_req(idx,tmp);
// Save source in temp early, before source is killed
b->_nodes.insert(kill_src_idx,tmp);
b->insert_node(tmp, kill_src_idx);
_phc._cfg.map_node_to_block(tmp, b);
last_use_idx++;
}
// Insert just after last use
b->_nodes.insert(last_use_idx+1,copy);
b->insert_node(copy, last_use_idx + 1);
}
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
@ -237,8 +237,8 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
Block *b = _phc._cfg.get_block(i);
uint cnt = b->num_preds(); // Number of inputs to the Phi
for( uint l = 1; l<b->_nodes.size(); l++ ) {
Node *n = b->_nodes[l];
for( uint l = 1; l<b->number_of_nodes(); l++ ) {
Node *n = b->get_node(l);
// Do not use removed-copies, use copied value instead
uint ncnt = n->req();
@ -260,7 +260,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
n->replace_by(def);
n->set_req(cidx,NULL);
b->_nodes.remove(l);
b->remove_node(l);
l--;
continue;
}
@ -321,13 +321,13 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
m->as_Mach()->rematerialize()) {
copy = m->clone();
// Insert the copy in the basic block, just before us
b->_nodes.insert(l++, copy);
b->insert_node(copy, l++);
l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
} else {
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
copy = new (C) MachSpillCopyNode(m, *rm, *rm);
// Insert the copy in the basic block, just before us
b->_nodes.insert(l++, copy);
b->insert_node(copy, l++);
}
// Insert the copy in the use-def chain
n->set_req(idx, copy);
@ -339,7 +339,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
} // End of is two-adr
// Insert a copy at a debug use for a lrg which has high frequency
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(&_phc._cfg)) {
if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
// Walk the debug inputs to the node and check for lrg freq
JVMState* jvms = n->jvms();
uint debug_start = jvms ? jvms->debug_start() : 999999;
@ -376,7 +376,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
// Insert the copy in the use-def chain
n->set_req(inpidx, copy );
// Insert the copy in the basic block, just before us
b->_nodes.insert( l++, copy );
b->insert_node(copy, l++);
// Extend ("register allocate") the names array for the copy.
uint max_lrg_id = _phc._lrg_map.max_lrg_id();
_phc.new_lrg(copy, max_lrg_id);
@ -431,8 +431,8 @@ void PhaseAggressiveCoalesce::coalesce( Block *b ) {
}
// Visit all the Phis in successor block
for( uint k = 1; k<bs->_nodes.size(); k++ ) {
Node *n = bs->_nodes[k];
for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
Node *n = bs->get_node(k);
if( !n->is_Phi() ) break;
combine_these_two( n, n->in(j) );
}
@ -442,7 +442,7 @@ void PhaseAggressiveCoalesce::coalesce( Block *b ) {
// Check _this_ block for 2-address instructions and copies.
uint cnt = b->end_idx();
for( i = 1; i<cnt; i++ ) {
Node *n = b->_nodes[i];
Node *n = b->get_node(i);
uint idx;
// 2-address instructions have a virtual Copy matching their input
// to their output
@ -490,10 +490,10 @@ void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, ui
dst_copy->set_req( didx, src_def );
// Add copy to free list
// _phc.free_spillcopy(b->_nodes[bindex]);
assert( b->_nodes[bindex] == dst_copy, "" );
assert( b->get_node(bindex) == dst_copy, "" );
dst_copy->replace_by( dst_copy->in(didx) );
dst_copy->set_req( didx, NULL);
b->_nodes.remove(bindex);
b->remove_node(bindex);
if( bindex < b->_ihrp_index ) b->_ihrp_index--;
if( bindex < b->_fhrp_index ) b->_fhrp_index--;
@ -523,8 +523,8 @@ uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy,
bindex2 = b2->end_idx()-1;
}
// Get prior instruction
assert(bindex2 < b2->_nodes.size(), "index out of bounds");
Node *x = b2->_nodes[bindex2];
assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
Node *x = b2->get_node(bindex2);
if( x == prev_copy ) { // Previous copy in copy chain?
if( prev_copy == src_copy)// Found end of chain and all interferences
break; // So break out of loop
@ -769,14 +769,14 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
// Conservative (but pessimistic) copy coalescing of a single block
void PhaseConservativeCoalesce::coalesce( Block *b ) {
// Bail out on infrequent blocks
if (b->is_uncommon(&_phc._cfg)) {
if (_phc._cfg.is_uncommon(b)) {
return;
}
// Check this block for copies.
for( uint i = 1; i<b->end_idx(); i++ ) {
// Check for actual copies on inputs. Coalesce a copy into its
// input if use and copy's input are compatible.
Node *copy1 = b->_nodes[i];
Node *copy1 = b->get_node(i);
uint idx1 = copy1->is_Copy();
if( !idx1 ) continue; // Not a copy

View File

@ -2258,7 +2258,7 @@ void Compile::dump_asm(int *pcs, uint pc_limit) {
if (block->is_connector() && !Verbose) {
continue;
}
n = block->_nodes[0];
n = block->head();
if (pcs && n->_idx < pc_limit) {
tty->print("%3.3x ", pcs[n->_idx]);
} else {
@ -2273,12 +2273,12 @@ void Compile::dump_asm(int *pcs, uint pc_limit) {
// For all instructions
Node *delay = NULL;
for (uint j = 0; j < block->_nodes.size(); j++) {
for (uint j = 0; j < block->number_of_nodes(); j++) {
if (VMThread::should_terminate()) {
cut_short = true;
break;
}
n = block->_nodes[j];
n = block->get_node(j);
if (valid_bundle_info(n)) {
Bundle* bundle = node_bundling(n);
if (bundle->used_in_unconditional_delay()) {

View File

@ -211,21 +211,21 @@ class Block_Stack {
uint Block_Stack::most_frequent_successor( Block *b ) {
uint freq_idx = 0;
int eidx = b->end_idx();
Node *n = b->_nodes[eidx];
Node *n = b->get_node(eidx);
int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
switch( op ) {
case Op_CountedLoopEnd:
case Op_If: { // Split frequency amongst children
float prob = n->as_MachIf()->_prob;
// Is succ[0] the TRUE branch or the FALSE branch?
if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
if( b->get_node(eidx+1)->Opcode() == Op_IfFalse )
prob = 1.0f - prob;
freq_idx = prob < PROB_FAIR; // freq=1 for succ[0] < 0.5 prob
break;
}
case Op_Catch: // Split frequency amongst children
for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
if( b->get_node(eidx+1+freq_idx)->as_CatchProj()->_con == CatchProjNode::fall_through_index )
break;
// Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
if( freq_idx == b->_num_succs ) freq_idx = 0;

View File

@ -102,12 +102,12 @@ void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
uint j = 0;
if (pb->_num_succs != 1) { // More then 1 successor?
// Search for successor
uint max = pb->_nodes.size();
uint max = pb->number_of_nodes();
assert( max > 1, "" );
uint start = max - pb->_num_succs;
// Find which output path belongs to projection
for (j = start; j < max; j++) {
if( pb->_nodes[j] == in0 )
if( pb->get_node(j) == in0 )
break;
}
assert( j < max, "must find" );
@ -1027,8 +1027,8 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
Block* least = LCA;
double least_freq = least->_freq;
uint target = get_latency_for_node(self);
uint start_latency = get_latency_for_node(LCA->_nodes[0]);
uint end_latency = get_latency_for_node(LCA->_nodes[LCA->end_idx()]);
uint start_latency = get_latency_for_node(LCA->head());
uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx()));
bool in_latency = (target <= start_latency);
const Block* root_block = get_block_for_node(_root);
@ -1049,9 +1049,9 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
self->dump();
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
LCA->_pre_order,
LCA->_nodes[0]->_idx,
LCA->head()->_idx,
start_latency,
LCA->_nodes[LCA->end_idx()]->_idx,
LCA->get_node(LCA->end_idx())->_idx,
end_latency,
least_freq);
}
@ -1074,14 +1074,14 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
if (mach && LCA == root_block)
break;
uint start_lat = get_latency_for_node(LCA->_nodes[0]);
uint start_lat = get_latency_for_node(LCA->head());
uint end_idx = LCA->end_idx();
uint end_lat = get_latency_for_node(LCA->_nodes[end_idx]);
uint end_lat = get_latency_for_node(LCA->get_node(end_idx));
double LCA_freq = LCA->_freq;
#ifndef PRODUCT
if (trace_opto_pipelining()) {
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
LCA->_pre_order, LCA->_nodes[0]->_idx, start_lat, end_idx, end_lat, LCA_freq);
LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
}
#endif
cand_cnt++;
@ -1342,7 +1342,7 @@ void PhaseCFG::global_code_motion() {
Node* proj = _matcher._null_check_tests[i];
Node* val = _matcher._null_check_tests[i + 1];
Block* block = get_block_for_node(proj);
block->implicit_null_check(this, proj, val, allowed_reasons);
implicit_null_check(block, proj, val, allowed_reasons);
// The implicit_null_check will only perform the transformation
// if the null branch is truly uncommon, *and* it leads to an
// uncommon trap. Combined with the too_many_traps guards
@ -1363,7 +1363,7 @@ void PhaseCFG::global_code_motion() {
visited.Clear();
for (uint i = 0; i < number_of_blocks(); i++) {
Block* block = get_block(i);
if (!block->schedule_local(this, _matcher, ready_cnt, visited)) {
if (!schedule_local(block, ready_cnt, visited)) {
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
C->record_method_not_compilable("local schedule failed");
}
@ -1375,7 +1375,7 @@ void PhaseCFG::global_code_motion() {
// clone the instructions on all paths below the Catch.
for (uint i = 0; i < number_of_blocks(); i++) {
Block* block = get_block(i);
block->call_catch_cleanup(this, C);
call_catch_cleanup(block);
}
#ifndef PRODUCT
@ -1726,7 +1726,7 @@ void CFGLoop::compute_freq() {
// Determine the probability of reaching successor 'i' from the receiver block.
float Block::succ_prob(uint i) {
int eidx = end_idx();
Node *n = _nodes[eidx]; // Get ending Node
Node *n = get_node(eidx); // Get ending Node
int op = n->Opcode();
if (n->is_Mach()) {
@ -1761,7 +1761,7 @@ float Block::succ_prob(uint i) {
float prob = n->as_MachIf()->_prob;
assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
// If succ[i] is the FALSE branch, invert path info
if( _nodes[i + eidx + 1]->Opcode() == Op_IfFalse ) {
if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
return 1.0f - prob; // not taken
} else {
return prob; // taken
@ -1773,7 +1773,7 @@ float Block::succ_prob(uint i) {
return 1.0f/_num_succs;
case Op_Catch: {
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
if (ci->_con == CatchProjNode::fall_through_index) {
// Fall-thru path gets the lion's share.
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
@ -1810,7 +1810,7 @@ float Block::succ_prob(uint i) {
// Return the number of fall-through candidates for a block
int Block::num_fall_throughs() {
int eidx = end_idx();
Node *n = _nodes[eidx]; // Get ending Node
Node *n = get_node(eidx); // Get ending Node
int op = n->Opcode();
if (n->is_Mach()) {
@ -1834,7 +1834,7 @@ int Block::num_fall_throughs() {
case Op_Catch: {
for (uint i = 0; i < _num_succs; i++) {
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
if (ci->_con == CatchProjNode::fall_through_index) {
return 1;
}
@ -1862,14 +1862,14 @@ int Block::num_fall_throughs() {
// Return true if a specific successor could be fall-through target.
bool Block::succ_fall_through(uint i) {
int eidx = end_idx();
Node *n = _nodes[eidx]; // Get ending Node
Node *n = get_node(eidx); // Get ending Node
int op = n->Opcode();
if (n->is_Mach()) {
if (n->is_MachNullCheck()) {
// In theory, either side can fall-thru, for simplicity sake,
// let's say only the false branch can now.
return _nodes[i + eidx + 1]->Opcode() == Op_IfFalse;
return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
}
op = n->as_Mach()->ideal_Opcode();
}
@ -1883,7 +1883,7 @@ bool Block::succ_fall_through(uint i) {
return true;
case Op_Catch: {
const CatchProjNode *ci = _nodes[i + eidx + 1]->as_CatchProj();
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
return ci->_con == CatchProjNode::fall_through_index;
}
@ -1907,7 +1907,7 @@ bool Block::succ_fall_through(uint i) {
// Update the probability of a two-branch to be uncommon
void Block::update_uncommon_branch(Block* ub) {
int eidx = end_idx();
Node *n = _nodes[eidx]; // Get ending Node
Node *n = get_node(eidx); // Get ending Node
int op = n->as_Mach()->ideal_Opcode();
@ -1923,7 +1923,7 @@ void Block::update_uncommon_branch(Block* ub) {
// If ub is the true path, make the proability small, else
// ub is the false path, and make the probability large
bool invert = (_nodes[s + eidx + 1]->Opcode() == Op_IfFalse);
bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
// Get existing probability
float p = n->as_MachIf()->_prob;

View File

@ -61,6 +61,7 @@ void GraphKit::gen_stub(address C_function,
JVMState* jvms = new (C) JVMState(0);
jvms->set_bci(InvocationEntryBci);
jvms->set_monoff(max_map);
jvms->set_scloff(max_map);
jvms->set_endoff(max_map);
{
SafePointNode *map = new (C) SafePointNode( max_map, jvms );

View File

@ -1501,6 +1501,25 @@ void GraphKit::pre_barrier(bool do_load,
}
}
bool GraphKit::can_move_pre_barrier() const {
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
return true; // Can move it if no safepoint
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
return true; // There is no pre-barrier
case BarrierSet::Other:
default :
ShouldNotReachHere();
}
return false;
}
void GraphKit::post_barrier(Node* ctl,
Node* store,
Node* obj,
@ -3551,6 +3570,8 @@ void GraphKit::g1_write_barrier_pre(bool do_load,
} else {
// In this case both val_type and alias_idx are unused.
assert(pre_val != NULL, "must be loaded already");
// Nothing to be done if pre_val is null.
if (pre_val->bottom_type() == TypePtr::NULL_PTR) return;
assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
}
assert(bt == T_OBJECT, "or we shouldn't be here");
@ -3595,7 +3616,7 @@ void GraphKit::g1_write_barrier_pre(bool do_load,
if (do_load) {
// load original value
// alias_idx correct??
pre_val = __ load(no_ctrl, adr, val_type, bt, alias_idx);
pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
}
// if (pre_val != NULL)

View File

@ -695,6 +695,10 @@ class GraphKit : public Phase {
void write_barrier_post(Node *store, Node* obj,
Node* adr, uint adr_idx, Node* val, bool use_precise);
// Allow reordering of pre-barrier with oop store and/or post-barrier.
// Used for load_store operations which loads old value.
bool can_move_pre_barrier() const;
// G1 pre/post barriers
void g1_write_barrier_pre(bool do_load,
Node* obj,

View File

@ -639,8 +639,8 @@ void IdealGraphPrinter::walk_nodes(Node *start, bool edges, VectorSet* temp_set)
// reachable but are in the CFG so add them here.
for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
Block* block = C->cfg()->get_block(i);
for (uint s = 0; s < block->_nodes.size(); s++) {
nodeStack.push(block->_nodes[s]);
for (uint s = 0; s < block->number_of_nodes(); s++) {
nodeStack.push(block->get_node(s));
}
}
}
@ -713,9 +713,9 @@ void IdealGraphPrinter::print(Compile* compile, const char *name, Node *node, in
tail(SUCCESSORS_ELEMENT);
head(NODES_ELEMENT);
for (uint s = 0; s < block->_nodes.size(); s++) {
for (uint s = 0; s < block->number_of_nodes(); s++) {
begin_elem(NODE_ELEMENT);
print_attr(NODE_ID_PROPERTY, get_node_id(block->_nodes[s]));
print_attr(NODE_ID_PROPERTY, get_node_id(block->get_node(s)));
end_elem();
}
tail(NODES_ELEMENT);

View File

@ -319,7 +319,7 @@ void PhaseChaitin::build_ifg_virtual( ) {
// value is then removed from the live-ness set and it's inputs are
// added to the live-ness set.
for (uint j = block->end_idx() + 1; j > 1; j--) {
Node* n = block->_nodes[j - 1];
Node* n = block->get_node(j - 1);
// Get value being defined
uint r = _lrg_map.live_range_id(n);
@ -456,7 +456,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// Compute first nonphi node index
uint first_inst;
for (first_inst = 1; first_inst < last_inst; first_inst++) {
if (!block->_nodes[first_inst]->is_Phi()) {
if (!block->get_node(first_inst)->is_Phi()) {
break;
}
}
@ -464,15 +464,15 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// Spills could be inserted before CreateEx node which should be
// first instruction in block after Phis. Move CreateEx up.
for (uint insidx = first_inst; insidx < last_inst; insidx++) {
Node *ex = block->_nodes[insidx];
Node *ex = block->get_node(insidx);
if (ex->is_SpillCopy()) {
continue;
}
if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
// If the CreateEx isn't above all the MachSpillCopies
// then move it to the top.
block->_nodes.remove(insidx);
block->_nodes.insert(first_inst, ex);
block->remove_node(insidx);
block->insert_node(ex, first_inst);
}
// Stop once a CreateEx or any other node is found
break;
@ -523,7 +523,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// to the live-ness set.
uint j;
for (j = last_inst + 1; j > 1; j--) {
Node* n = block->_nodes[j - 1];
Node* n = block->get_node(j - 1);
// Get value being defined
uint r = _lrg_map.live_range_id(n);
@ -541,7 +541,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if( !n->is_Proj() ||
// Could also be a flags-projection of a dead ADD or such.
(_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
block->_nodes.remove(j - 1);
block->remove_node(j - 1);
if (lrgs(r)._def == n) {
lrgs(r)._def = 0;
}
@ -605,7 +605,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// (j - 1) is index for current instruction 'n'
Node *m = n;
for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
m = block->_nodes[i];
m = block->get_node(i);
}
if (m == single_use) {
lrgs(r)._area = 0.0;
@ -772,20 +772,20 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// Compute high pressure indice; avoid landing in the middle of projnodes
j = hrp_index[0];
if (j < block->_nodes.size() && j < block->end_idx() + 1) {
Node* cur = block->_nodes[j];
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
Node* cur = block->get_node(j);
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--;
cur = block->_nodes[j];
cur = block->get_node(j);
}
}
block->_ihrp_index = j;
j = hrp_index[1];
if (j < block->_nodes.size() && j < block->end_idx() + 1) {
Node* cur = block->_nodes[j];
if (j < block->number_of_nodes() && j < block->end_idx() + 1) {
Node* cur = block->get_node(j);
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--;
cur = block->_nodes[j];
cur = block->get_node(j);
}
}
block->_fhrp_index = j;

View File

@ -58,14 +58,14 @@
// The proj is the control projection for the not-null case.
// The val is the pointer being checked for nullness or
// decodeHeapOop_not_null node if it did not fold into address.
void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
// Assume if null check need for 0 offset then always needed
// Intel solaris doesn't support any null checks yet and no
// mechanism exists (yet) to set the switches at an os_cpu level
if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
// Make sure the ptr-is-null path appears to be uncommon!
float f = end()->as_MachIf()->_prob;
float f = block->end()->as_MachIf()->_prob;
if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
if( f > PROB_UNLIKELY_MAG(4) ) return;
@ -75,13 +75,13 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// Get the successor block for if the test ptr is non-null
Block* not_null_block; // this one goes with the proj
Block* null_block;
if (_nodes[_nodes.size()-1] == proj) {
null_block = _succs[0];
not_null_block = _succs[1];
if (block->get_node(block->number_of_nodes()-1) == proj) {
null_block = block->_succs[0];
not_null_block = block->_succs[1];
} else {
assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
not_null_block = _succs[0];
null_block = _succs[1];
assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
not_null_block = block->_succs[0];
null_block = block->_succs[1];
}
while (null_block->is_Empty() == Block::empty_with_goto) {
null_block = null_block->_succs[0];
@ -93,8 +93,8 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// detect failure of this optimization, as in 6366351.)
{
bool found_trap = false;
for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
Node* nn = null_block->_nodes[i1];
for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
Node* nn = null_block->get_node(i1);
if (nn->is_MachCall() &&
nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
@ -237,20 +237,20 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
}
// Check ctrl input to see if the null-check dominates the memory op
Block *cb = cfg->get_block_for_node(mach);
Block *cb = get_block_for_node(mach);
cb = cb->_idom; // Always hoist at least 1 block
if( !was_store ) { // Stores can be hoisted only one block
while( cb->_dom_depth > (_dom_depth + 1))
while( cb->_dom_depth > (block->_dom_depth + 1))
cb = cb->_idom; // Hoist loads as far as we want
// The non-null-block should dominate the memory op, too. Live
// range spilling will insert a spill in the non-null-block if it is
// needs to spill the memory op for an implicit null check.
if (cb->_dom_depth == (_dom_depth + 1)) {
if (cb->_dom_depth == (block->_dom_depth + 1)) {
if (cb != not_null_block) continue;
cb = cb->_idom;
}
}
if( cb != this ) continue;
if( cb != block ) continue;
// Found a memory user; see if it can be hoisted to check-block
uint vidx = 0; // Capture index of value into memop
@ -262,8 +262,8 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
if( is_decoden ) continue;
}
// Block of memory-op input
Block *inb = cfg->get_block_for_node(mach->in(j));
Block *b = this; // Start from nul check
Block *inb = get_block_for_node(mach->in(j));
Block *b = block; // Start from nul check
while( b != inb && b->_dom_depth > inb->_dom_depth )
b = b->_idom; // search upwards for input
// See if input dominates null check
@ -272,28 +272,28 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
}
if( j > 0 )
continue;
Block *mb = cfg->get_block_for_node(mach);
Block *mb = get_block_for_node(mach);
// Hoisting stores requires more checks for the anti-dependence case.
// Give up hoisting if we have to move the store past any load.
if( was_store ) {
Block *b = mb; // Start searching here for a local load
// mach use (faulting) trying to hoist
// n might be blocker to hoisting
while( b != this ) {
while( b != block ) {
uint k;
for( k = 1; k < b->_nodes.size(); k++ ) {
Node *n = b->_nodes[k];
for( k = 1; k < b->number_of_nodes(); k++ ) {
Node *n = b->get_node(k);
if( n->needs_anti_dependence_check() &&
n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
break; // Found anti-dependent load
}
if( k < b->_nodes.size() )
if( k < b->number_of_nodes() )
break; // Found anti-dependent load
// Make sure control does not do a merge (would have to check allpaths)
if( b->num_preds() != 2 ) break;
b = cfg->get_block_for_node(b->pred(1)); // Move up to predecessor block
b = get_block_for_node(b->pred(1)); // Move up to predecessor block
}
if( b != this ) continue;
if( b != block ) continue;
}
// Make sure this memory op is not already being used for a NullCheck
@ -303,7 +303,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// Found a candidate! Pick one with least dom depth - the highest
// in the dom tree should be closest to the null check.
if (best == NULL || cfg->get_block_for_node(mach)->_dom_depth < cfg->get_block_for_node(best)->_dom_depth) {
if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
best = mach;
bidx = vidx;
}
@ -319,46 +319,45 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
if( is_decoden ) {
// Check if we need to hoist decodeHeapOop_not_null first.
Block *valb = cfg->get_block_for_node(val);
if( this != valb && this->_dom_depth < valb->_dom_depth ) {
Block *valb = get_block_for_node(val);
if( block != valb && block->_dom_depth < valb->_dom_depth ) {
// Hoist it up to the end of the test block.
valb->find_remove(val);
this->add_inst(val);
cfg->map_node_to_block(val, this);
block->add_inst(val);
map_node_to_block(val, block);
// DecodeN on x86 may kill flags. Check for flag-killing projections
// that also need to be hoisted.
for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
Node* n = val->fast_out(j);
if( n->is_MachProj() ) {
cfg->get_block_for_node(n)->find_remove(n);
this->add_inst(n);
cfg->map_node_to_block(n, this);
get_block_for_node(n)->find_remove(n);
block->add_inst(n);
map_node_to_block(n, block);
}
}
}
}
// Hoist the memory candidate up to the end of the test block.
Block *old_block = cfg->get_block_for_node(best);
Block *old_block = get_block_for_node(best);
old_block->find_remove(best);
add_inst(best);
cfg->map_node_to_block(best, this);
block->add_inst(best);
map_node_to_block(best, block);
// Move the control dependence
if (best->in(0) && best->in(0) == old_block->_nodes[0])
best->set_req(0, _nodes[0]);
if (best->in(0) && best->in(0) == old_block->head())
best->set_req(0, block->head());
// Check for flag-killing projections that also need to be hoisted
// Should be DU safe because no edge updates.
for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
Node* n = best->fast_out(j);
if( n->is_MachProj() ) {
cfg->get_block_for_node(n)->find_remove(n);
add_inst(n);
cfg->map_node_to_block(n, this);
get_block_for_node(n)->find_remove(n);
block->add_inst(n);
map_node_to_block(n, block);
}
}
Compile *C = cfg->C;
// proj==Op_True --> ne test; proj==Op_False --> eq test.
// One of two graph shapes got matched:
// (IfTrue (If (Bool NE (CmpP ptr NULL))))
@ -368,10 +367,10 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// We need to flip the projections to keep the same semantics.
if( proj->Opcode() == Op_IfTrue ) {
// Swap order of projections in basic block to swap branch targets
Node *tmp1 = _nodes[end_idx()+1];
Node *tmp2 = _nodes[end_idx()+2];
_nodes.map(end_idx()+1, tmp2);
_nodes.map(end_idx()+2, tmp1);
Node *tmp1 = block->get_node(block->end_idx()+1);
Node *tmp2 = block->get_node(block->end_idx()+2);
block->map_node(tmp2, block->end_idx()+1);
block->map_node(tmp1, block->end_idx()+2);
Node *tmp = new (C) Node(C->top()); // Use not NULL input
tmp1->replace_by(tmp);
tmp2->replace_by(tmp1);
@ -384,8 +383,8 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// it as well.
Node *old_tst = proj->in(0);
MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
_nodes.map(end_idx(),nul_chk);
cfg->map_node_to_block(nul_chk, this);
block->map_node(nul_chk, block->end_idx());
map_node_to_block(nul_chk, block);
// Redirect users of old_test to nul_chk
for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
old_tst->last_out(i2)->set_req(0, nul_chk);
@ -393,8 +392,8 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
for (uint i3 = 0; i3 < old_tst->req(); i3++)
old_tst->set_req(i3, NULL);
cfg->latency_from_uses(nul_chk);
cfg->latency_from_uses(best);
latency_from_uses(nul_chk);
latency_from_uses(best);
}
@ -408,7 +407,7 @@ void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowe
// remaining cases (most), choose the instruction with the greatest latency
// (that is, the most number of pseudo-cycles required to the end of the
// routine). If there is a tie, choose the instruction with the most inputs.
Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
Node* PhaseCFG::select(Block* block, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
// If only a single entry on the stack, use it
uint cnt = worklist.size();
@ -442,7 +441,7 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
}
// Final call in a block must be adjacent to 'catch'
Node *e = end();
Node *e = block->end();
if( e->is_Catch() && e->in(0)->in(0) == n )
continue;
@ -468,7 +467,7 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
Node* use = n->fast_out(j);
// The use is a conditional branch, make them adjacent
if (use->is_MachIf() && cfg->get_block_for_node(use) == this) {
if (use->is_MachIf() && get_block_for_node(use) == block) {
found_machif = true;
break;
}
@ -501,7 +500,7 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
n_choice = 1;
}
uint n_latency = cfg->get_latency_for_node(n);
uint n_latency = get_latency_for_node(n);
uint n_score = n->req(); // Many inputs get high score to break ties
// Keep best latency found
@ -529,13 +528,13 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
//------------------------------set_next_call----------------------------------
void Block::set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg) {
void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
if( next_call.test_set(n->_idx) ) return;
for( uint i=0; i<n->len(); i++ ) {
Node *m = n->in(i);
if( !m ) continue; // must see all nodes in block that precede call
if (cfg->get_block_for_node(m) == this) {
set_next_call(m, next_call, cfg);
if (get_block_for_node(m) == block) {
set_next_call(block, m, next_call);
}
}
}
@ -546,12 +545,12 @@ void Block::set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg) {
// next subroutine call get priority - basically it moves things NOT needed
// for the next call till after the call. This prevents me from trying to
// carry lots of stuff live across a call.
void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg) {
void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
// Find the next control-defining Node in this block
Node* call = NULL;
for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
Node* m = this_call->fast_out(i);
if(cfg->get_block_for_node(m) == this && // Local-block user
if(get_block_for_node(m) == block && // Local-block user
m != this_call && // Not self-start node
m->is_MachCall() )
call = m;
@ -559,11 +558,12 @@ void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG
}
if (call == NULL) return; // No next call (e.g., block end is near)
// Set next-call for all inputs to this call
set_next_call(call, next_call, cfg);
set_next_call(block, call, next_call);
}
//------------------------------add_call_kills-------------------------------------
void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
// helper function that adds caller save registers to MachProjNode
static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
// Fill in the kill mask for the call
for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
if( !regs.Member(r) ) { // Not already defined by the call
@ -579,7 +579,7 @@ void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_p
//------------------------------sched_call-------------------------------------
uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
RegMask regs;
// Schedule all the users of the call right now. All the users are
@ -592,18 +592,18 @@ uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_Lis
ready_cnt.at_put(n->_idx, n_cnt);
assert( n_cnt == 0, "" );
// Schedule next to call
_nodes.map(node_cnt++, n);
block->map_node(n, node_cnt++);
// Collect defined registers
regs.OR(n->out_RegMask());
// Check for scheduling the next control-definer
if( n->bottom_type() == Type::CONTROL )
// Warm up next pile of heuristic bits
needed_for_next_call(n, next_call, cfg);
needed_for_next_call(block, n, next_call);
// Children of projections are now all ready
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j); // Get user
if(cfg->get_block_for_node(m) != this) {
if(get_block_for_node(m) != block) {
continue;
}
if( m->is_Phi() ) continue;
@ -617,14 +617,14 @@ uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_Lis
// Act as if the call defines the Frame Pointer.
// Certainly the FP is alive and well after the call.
regs.Insert(matcher.c_frame_pointer());
regs.Insert(_matcher.c_frame_pointer());
// Set all registers killed and not already defined by the call.
uint r_cnt = mcall->tf()->range()->cnt();
int op = mcall->ideal_Opcode();
MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
cfg->map_node_to_block(proj, this);
_nodes.insert(node_cnt++, proj);
MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
map_node_to_block(proj, block);
block->insert_node(proj, node_cnt++);
// Select the right register save policy.
const char * save_policy;
@ -633,13 +633,13 @@ uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_Lis
case Op_CallLeaf:
case Op_CallLeafNoFP:
// Calling C code so use C calling convention
save_policy = matcher._c_reg_save_policy;
save_policy = _matcher._c_reg_save_policy;
break;
case Op_CallStaticJava:
case Op_CallDynamicJava:
// Calling Java code so use Java calling convention
save_policy = matcher._register_save_policy;
save_policy = _matcher._register_save_policy;
break;
default:
@ -674,44 +674,46 @@ uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_Lis
//------------------------------schedule_local---------------------------------
// Topological sort within a block. Someday become a real scheduler.
bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
// Already "sorted" are the block start Node (as the first entry), and
// the block-ending Node and any trailing control projections. We leave
// these alone. PhiNodes and ParmNodes are made to follow the block start
// Node. Everything else gets topo-sorted.
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
for (uint i = 0;i < _nodes.size();i++) {
if (trace_opto_pipelining()) {
tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
for (uint i = 0;i < block->number_of_nodes(); i++) {
tty->print("# ");
_nodes[i]->fast_dump();
block->get_node(i)->fast_dump();
}
tty->print_cr("#");
}
#endif
// RootNode is already sorted
if( _nodes.size() == 1 ) return true;
if (block->number_of_nodes() == 1) {
return true;
}
// Move PhiNodes and ParmNodes from 1 to cnt up to the start
uint node_cnt = end_idx();
uint node_cnt = block->end_idx();
uint phi_cnt = 1;
uint i;
for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
Node *n = _nodes[i];
Node *n = block->get_node(i);
if( n->is_Phi() || // Found a PhiNode or ParmNode
(n->is_Proj() && n->in(0) == head()) ) {
(n->is_Proj() && n->in(0) == block->head()) ) {
// Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
_nodes.map(i,_nodes[phi_cnt]);
_nodes.map(phi_cnt++,n); // swap Phi/Parm up front
block->map_node(block->get_node(phi_cnt), i);
block->map_node(n, phi_cnt++); // swap Phi/Parm up front
} else { // All others
// Count block-local inputs to 'n'
uint cnt = n->len(); // Input count
uint local = 0;
for( uint j=0; j<cnt; j++ ) {
Node *m = n->in(j);
if( m && cfg->get_block_for_node(m) == this && !m->is_top() )
if( m && get_block_for_node(m) == block && !m->is_top() )
local++; // One more block-local input
}
ready_cnt.at_put(n->_idx, local); // Count em up
@ -723,7 +725,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
for (uint prec = n->req(); prec < n->len(); prec++) {
Node* oop_store = n->in(prec);
if (oop_store != NULL) {
assert(cfg->get_block_for_node(oop_store)->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
}
}
}
@ -747,16 +749,16 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
}
}
}
for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
ready_cnt.at_put(_nodes[i2]->_idx, 0);
for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
ready_cnt.at_put(block->get_node(i2)->_idx, 0);
// All the prescheduled guys do not hold back internal nodes
uint i3;
for(i3 = 0; i3<phi_cnt; i3++ ) { // For all pre-scheduled
Node *n = _nodes[i3]; // Get pre-scheduled
Node *n = block->get_node(i3); // Get pre-scheduled
for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
Node* m = n->fast_out(j);
if (cfg->get_block_for_node(m) == this) { // Local-block user
if (get_block_for_node(m) == block) { // Local-block user
int m_cnt = ready_cnt.at(m->_idx)-1;
ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
}
@ -767,7 +769,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
// Make a worklist
Node_List worklist;
for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
Node *m = _nodes[i4];
Node *m = block->get_node(i4);
if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
if (m->is_iteratively_computed()) {
// Push induction variable increments last to allow other uses
@ -789,15 +791,15 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
}
// Warm up the 'next_call' heuristic bits
needed_for_next_call(_nodes[0], next_call, cfg);
needed_for_next_call(block, block->head(), next_call);
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
for (uint j=0; j<_nodes.size(); j++) {
Node *n = _nodes[j];
if (trace_opto_pipelining()) {
for (uint j=0; j< block->number_of_nodes(); j++) {
Node *n = block->get_node(j);
int idx = n->_idx;
tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
tty->print("latency:%3d ", cfg->get_latency_for_node(n));
tty->print("latency:%3d ", get_latency_for_node(n));
tty->print("%4d: %s\n", idx, n->Name());
}
}
@ -808,7 +810,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
while( worklist.size() ) { // Worklist is not ready
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
if (trace_opto_pipelining()) {
tty->print("# ready list:");
for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
Node *n = worklist[i]; // Get Node on worklist
@ -819,13 +821,13 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
#endif
// Select and pop a ready guy from worklist
Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
_nodes.map(phi_cnt++,n); // Schedule him next
Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
block->map_node(n, phi_cnt++); // Schedule him next
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
if (trace_opto_pipelining()) {
tty->print("# select %d: %s", n->_idx, n->Name());
tty->print(", latency:%d", cfg->get_latency_for_node(n));
tty->print(", latency:%d", get_latency_for_node(n));
n->dump();
if (Verbose) {
tty->print("# ready list:");
@ -840,26 +842,26 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
#endif
if( n->is_MachCall() ) {
MachCallNode *mcall = n->as_MachCall();
phi_cnt = sched_call(matcher, cfg, phi_cnt, worklist, ready_cnt, mcall, next_call);
phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
continue;
}
if (n->is_Mach() && n->as_Mach()->has_call()) {
RegMask regs;
regs.Insert(matcher.c_frame_pointer());
regs.Insert(_matcher.c_frame_pointer());
regs.OR(n->out_RegMask());
MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
cfg->map_node_to_block(proj, this);
_nodes.insert(phi_cnt++, proj);
MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
map_node_to_block(proj, block);
block->insert_node(proj, phi_cnt++);
add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
}
// Children are now all ready
for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
Node* m = n->fast_out(i5); // Get user
if (cfg->get_block_for_node(m) != this) {
if (get_block_for_node(m) != block) {
continue;
}
if( m->is_Phi() ) continue;
@ -874,9 +876,8 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
}
}
if( phi_cnt != end_idx() ) {
if( phi_cnt != block->end_idx() ) {
// did not schedule all. Retry, Bailout, or Die
Compile* C = matcher.C;
if (C->subsume_loads() == true && !C->failing()) {
// Retry with subsume_loads == false
// If this is the first failure, the sentinel string will "stick"
@ -888,12 +889,12 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
}
#ifndef PRODUCT
if (cfg->trace_opto_pipelining()) {
if (trace_opto_pipelining()) {
tty->print_cr("#");
tty->print_cr("# after schedule_local");
for (uint i = 0;i < _nodes.size();i++) {
for (uint i = 0;i < block->number_of_nodes();i++) {
tty->print("# ");
_nodes[i]->fast_dump();
block->get_node(i)->fast_dump();
}
tty->cr();
}
@ -919,7 +920,7 @@ static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def
}
//------------------------------catch_cleanup_find_cloned_def------------------
static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
assert( use_blk != def_blk, "Inter-block cleanup only");
// The use is some block below the Catch. Find and return the clone of the def
@ -945,14 +946,14 @@ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def
// PhiNode, the PhiNode uses from the def and IT's uses need fixup.
Node_Array inputs = new Node_List(Thread::current()->resource_area());
for(uint k = 1; k < use_blk->num_preds(); k++) {
Block* block = cfg->get_block_for_node(use_blk->pred(k));
inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, cfg, n_clone_idx));
Block* block = get_block_for_node(use_blk->pred(k));
inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
}
// Check to see if the use_blk already has an identical phi inserted.
// If it exists, it will be at the first position since all uses of a
// def are processed together.
Node *phi = use_blk->_nodes[1];
Node *phi = use_blk->get_node(1);
if( phi->is_Phi() ) {
fixup = phi;
for (uint k = 1; k < use_blk->num_preds(); k++) {
@ -967,8 +968,8 @@ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def
// If an existing PhiNode was not found, make a new one.
if (fixup == NULL) {
Node *new_phi = PhiNode::make(use_blk->head(), def);
use_blk->_nodes.insert(1, new_phi);
cfg->map_node_to_block(new_phi, use_blk);
use_blk->insert_node(new_phi, 1);
map_node_to_block(new_phi, use_blk);
for (uint k = 1; k < use_blk->num_preds(); k++) {
new_phi->set_req(k, inputs[k]);
}
@ -977,7 +978,7 @@ static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def
} else {
// Found the use just below the Catch. Make it use the clone.
fixup = use_blk->_nodes[n_clone_idx];
fixup = use_blk->get_node(n_clone_idx);
}
return fixup;
@ -997,36 +998,36 @@ static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg,
for( uint k = 0; k < blk->_num_succs; k++ ) {
// Get clone in each successor block
Block *sb = blk->_succs[k];
Node *clone = sb->_nodes[offset_idx+1];
Node *clone = sb->get_node(offset_idx+1);
assert( clone->Opcode() == use->Opcode(), "" );
// Make use-clone reference the def-clone
catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
}
}
//------------------------------catch_cleanup_inter_block---------------------
// Fix all input edges in use that reference "def". The use is in a different
// block than the def.
static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
if( !use_blk ) return; // Can happen if the use is a precedence edge
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, cfg, n_clone_idx);
Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
catch_cleanup_fix_all_inputs(use, def, new_def);
}
//------------------------------call_catch_cleanup-----------------------------
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
void PhaseCFG::call_catch_cleanup(Block* block) {
// End of region to clone
uint end = end_idx();
if( !_nodes[end]->is_Catch() ) return;
uint end = block->end_idx();
if( !block->get_node(end)->is_Catch() ) return;
// Start of region to clone
uint beg = end;
while(!_nodes[beg-1]->is_MachProj() ||
!_nodes[beg-1]->in(0)->is_MachCall() ) {
while(!block->get_node(beg-1)->is_MachProj() ||
!block->get_node(beg-1)->in(0)->is_MachCall() ) {
beg--;
assert(beg > 0,"Catch cleanup walking beyond block boundary");
}
@ -1035,15 +1036,15 @@ void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
// Clone along all Catch output paths. Clone area between the 'beg' and
// 'end' indices.
for( uint i = 0; i < _num_succs; i++ ) {
Block *sb = _succs[i];
for( uint i = 0; i < block->_num_succs; i++ ) {
Block *sb = block->_succs[i];
// Clone the entire area; ignoring the edge fixup for now.
for( uint j = end; j > beg; j-- ) {
// It is safe here to clone a node with anti_dependence
// since clones dominate on each path.
Node *clone = _nodes[j-1]->clone();
sb->_nodes.insert( 1, clone );
cfg->map_node_to_block(clone, sb);
Node *clone = block->get_node(j-1)->clone();
sb->insert_node(clone, 1);
map_node_to_block(clone, sb);
}
}
@ -1051,7 +1052,7 @@ void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
// Fixup edges. Check the def-use info per cloned Node
for(uint i2 = beg; i2 < end; i2++ ) {
uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
Node *n = _nodes[i2]; // Node that got cloned
Node *n = block->get_node(i2); // Node that got cloned
// Need DU safe iterator because of edge manipulation in calls.
Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
@ -1060,19 +1061,19 @@ void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
uint max = out->size();
for (uint j = 0; j < max; j++) {// For all users
Node *use = out->pop();
Block *buse = cfg->get_block_for_node(use);
Block *buse = get_block_for_node(use);
if( use->is_Phi() ) {
for( uint k = 1; k < use->req(); k++ )
if( use->in(k) == n ) {
Block* block = cfg->get_block_for_node(buse->pred(k));
Node *fixup = catch_cleanup_find_cloned_def(block, n, this, cfg, n_clone_idx);
Block* b = get_block_for_node(buse->pred(k));
Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
use->set_req(k, fixup);
}
} else {
if (this == buse) {
catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
if (block == buse) {
catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
} else {
catch_cleanup_inter_block(use, buse, n, this, cfg, n_clone_idx);
catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
}
}
} // End for all users
@ -1081,30 +1082,30 @@ void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
// Remove the now-dead cloned ops
for(uint i3 = beg; i3 < end; i3++ ) {
_nodes[beg]->disconnect_inputs(NULL, C);
_nodes.remove(beg);
block->get_node(beg)->disconnect_inputs(NULL, C);
block->remove_node(beg);
}
// If the successor blocks have a CreateEx node, move it back to the top
for(uint i4 = 0; i4 < _num_succs; i4++ ) {
Block *sb = _succs[i4];
for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
Block *sb = block->_succs[i4];
uint new_cnt = end - beg;
// Remove any newly created, but dead, nodes.
for( uint j = new_cnt; j > 0; j-- ) {
Node *n = sb->_nodes[j];
Node *n = sb->get_node(j);
if (n->outcnt() == 0 &&
(!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
n->disconnect_inputs(NULL, C);
sb->_nodes.remove(j);
sb->remove_node(j);
new_cnt--;
}
}
// If any newly created nodes remain, move the CreateEx node to the top
if (new_cnt > 0) {
Node *cex = sb->_nodes[1+new_cnt];
Node *cex = sb->get_node(1+new_cnt);
if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
sb->_nodes.remove(1+new_cnt);
sb->_nodes.insert(1,cex);
sb->remove_node(1+new_cnt);
sb->insert_node(cex, 1);
}
}
}

View File

@ -2756,10 +2756,28 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
newval = _gvn.makecon(TypePtr::NULL_PTR);
// Reference stores need a store barrier.
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
if (kind == LS_xchg) {
// If pre-barrier must execute before the oop store, old value will require do_load here.
if (!can_move_pre_barrier()) {
pre_barrier(true /* do_load*/,
control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
NULL /* pre_val*/,
T_OBJECT);
} // Else move pre_barrier to use load_store value, see below.
} else if (kind == LS_cmpxchg) {
// Same as for newval above:
if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
oldval = _gvn.makecon(TypePtr::NULL_PTR);
}
// The only known value which might get overwritten is oldval.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
oldval /* pre_val */,
T_OBJECT);
} else {
ShouldNotReachHere();
}
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
@ -2795,16 +2813,27 @@ bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind
Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
set_memory(proj, alias_idx);
if (type == T_OBJECT && kind == LS_xchg) {
#ifdef _LP64
if (adr->bottom_type()->is_ptr_to_narrowoop()) {
load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
if (can_move_pre_barrier()) {
// Don't need to load pre_val. The old value is returned by load_store.
// The pre_barrier can execute after the xchg as long as no safepoint
// gets inserted between them.
pre_barrier(false /* do_load */,
control(), NULL, NULL, max_juint, NULL, NULL,
load_store /* pre_val */,
T_OBJECT);
}
}
// Add the trailing membar surrounding the access
insert_mem_bar(Op_MemBarCPUOrder);
insert_mem_bar(Op_MemBarAcquire);
#ifdef _LP64
if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
}
#endif
assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
set_result(load_store);
return true;

View File

@ -85,8 +85,8 @@ void PhaseLive::compute(uint maxlrg) {
IndexSet* def = &_defs[block->_pre_order-1];
DEBUG_ONLY(IndexSet *def_outside = getfreeset();)
uint i;
for (i = block->_nodes.size(); i > 1; i--) {
Node* n = block->_nodes[i-1];
for (i = block->number_of_nodes(); i > 1; i--) {
Node* n = block->get_node(i-1);
if (n->is_Phi()) {
break;
}
@ -112,7 +112,7 @@ void PhaseLive::compute(uint maxlrg) {
#endif
// Remove anything defined by Phis and the block start instruction
for (uint k = i; k > 0; k--) {
uint r = _names[block->_nodes[k - 1]->_idx];
uint r = _names[block->get_node(k - 1)->_idx];
def->insert(r);
use->remove(r);
}
@ -124,7 +124,7 @@ void PhaseLive::compute(uint maxlrg) {
// PhiNode uses go in the live-out set of prior blocks.
for (uint k = i; k > 0; k--) {
add_liveout(p, _names[block->_nodes[k-1]->in(l)->_idx], first_pass);
add_liveout(p, _names[block->get_node(k-1)->in(l)->_idx], first_pass);
}
}
freeset(block);
@ -254,10 +254,10 @@ void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) {
void PhaseLive::dump( const Block *b ) const {
tty->print("Block %d: ",b->_pre_order);
tty->print("LiveOut: "); _live[b->_pre_order-1].dump();
uint cnt = b->_nodes.size();
uint cnt = b->number_of_nodes();
for( uint i=0; i<cnt; i++ ) {
tty->print("L%d/", _names[b->_nodes[i]->_idx] );
b->_nodes[i]->dump();
tty->print("L%d/", _names[b->get_node(i)->_idx] );
b->get_node(i)->dump();
}
tty->print("\n");
}
@ -269,7 +269,7 @@ void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block* block = _cfg.get_block(i);
for (uint j = block->end_idx() + 1; j > 1; j--) {
Node* n = block->_nodes[j-1];
Node* n = block->get_node(j-1);
if (n->is_Phi()) {
break;
}

View File

@ -72,6 +72,8 @@ void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcal
int jvms_adj = new_dbg_start - old_dbg_start;
assert (new_dbg_start == newcall->req(), "argument count mismatch");
// SafePointScalarObject node could be referenced several times in debug info.
// Use Dict to record cloned nodes.
Dict* sosn_map = new Dict(cmpkey,hashkey);
for (uint i = old_dbg_start; i < oldcall->req(); i++) {
Node* old_in = oldcall->in(i);
@ -79,8 +81,8 @@ void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcal
if (old_in != NULL && old_in->is_SafePointScalarObject()) {
SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
uint old_unique = C->unique();
Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
if (old_unique != C->unique()) {
Node* new_in = old_sosn->clone(sosn_map);
if (old_unique != C->unique()) { // New node?
new_in->set_req(0, C->root()); // reset control edge
new_in = transform_later(new_in); // Register new node.
}
@ -725,7 +727,11 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
while (safepoints.length() > 0) {
SafePointNode* sfpt = safepoints.pop();
Node* mem = sfpt->memory();
uint first_ind = sfpt->req();
assert(sfpt->jvms() != NULL, "missed JVMS");
// Fields of scalar objs are referenced only at the end
// of regular debuginfo at the last (youngest) JVMS.
// Record relative start index.
uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
SafePointScalarObjectNode* sobj = new (C) SafePointScalarObjectNode(res_type,
#ifdef ASSERT
alloc,
@ -799,7 +805,7 @@ bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <Sa
for (int i = start; i < end; i++) {
if (sfpt_done->in(i)->is_SafePointScalarObject()) {
SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
if (scobj->first_index() == sfpt_done->req() &&
if (scobj->first_index(jvms) == sfpt_done->req() &&
scobj->n_fields() == (uint)nfields) {
assert(scobj->alloc() == alloc, "sanity");
sfpt_done->set_req(i, res);

View File

@ -773,6 +773,21 @@ void Node::del_req( uint idx ) {
_in[_cnt] = NULL; // NULL out emptied slot
}
//------------------------------del_req_ordered--------------------------------
// Delete the required edge and compact the edge array with preserved order
void Node::del_req_ordered( uint idx ) {
assert( idx < _cnt, "oob");
assert( !VerifyHashTableKeys || _hash_lock == 0,
"remove node from hash table before modifying it");
// First remove corresponding def-use edge
Node *n = in(idx);
if (n != NULL) n->del_out((Node *)this);
if (idx < _cnt - 1) { // Not last edge ?
Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx-1)*sizeof(Node*)));
}
_in[--_cnt] = NULL; // NULL out emptied slot
}
//------------------------------ins_req----------------------------------------
// Insert a new required input at the end
void Node::ins_req( uint idx, Node *n ) {

View File

@ -384,6 +384,7 @@ protected:
void add_req( Node *n ); // Append a NEW required input
void add_req_batch( Node* n, uint m ); // Append m NEW required inputs (all n).
void del_req( uint idx ); // Delete required edge & compact
void del_req_ordered( uint idx ); // Delete required edge & compact with preserved order
void ins_req( uint i, Node *n ); // Insert a NEW required input
void set_req( uint i, Node *n ) {
assert( is_not_dead(n), "can not use dead node");

View File

@ -57,7 +57,7 @@ extern int emit_deopt_handler(CodeBuffer &cbuf);
// Convert Nodes to instruction bits and pass off to the VM
void Compile::Output() {
// RootNode goes
assert( _cfg->get_root_block()->_nodes.size() == 0, "" );
assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
// The number of new nodes (mostly MachNop) is proportional to
// the number of java calls and inner loops which are aligned.
@ -70,11 +70,11 @@ void Compile::Output() {
Block *entry = _cfg->get_block(1);
Block *broot = _cfg->get_root_block();
const StartNode *start = entry->_nodes[0]->as_Start();
const StartNode *start = entry->head()->as_Start();
// Replace StartNode with prolog
MachPrologNode *prolog = new (this) MachPrologNode();
entry->_nodes.map( 0, prolog );
entry->map_node(prolog, 0);
_cfg->map_node_to_block(prolog, entry);
_cfg->unmap_node_from_block(start); // start is no longer in any block
@ -144,8 +144,8 @@ void Compile::Output() {
for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
tty->print("\nBB#%03d:\n", i);
Block* block = _cfg->get_block(i);
for (uint j = 0; j < block->_nodes.size(); j++) {
Node* n = block->_nodes[j];
for (uint j = 0; j < block->number_of_nodes(); j++) {
Node* n = block->get_node(j);
OptoReg::Name reg = _regalloc->get_reg_first(n);
tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
n->dump();
@ -226,8 +226,8 @@ void Compile::Insert_zap_nodes() {
// Insert call to zap runtime stub before every node with an oop map
for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
Block *b = _cfg->get_block(i);
for ( uint j = 0; j < b->_nodes.size(); ++j ) {
Node *n = b->_nodes[j];
for ( uint j = 0; j < b->number_of_nodes(); ++j ) {
Node *n = b->get_node(j);
// Determining if we should insert a zap-a-lot node in output.
// We do that for all nodes that has oopmap info, except for calls
@ -256,7 +256,7 @@ void Compile::Insert_zap_nodes() {
}
if (insert) {
Node *zap = call_zap_node(n->as_MachSafePoint(), i);
b->_nodes.insert( j, zap );
b->insert_node(zap, j);
_cfg->map_node_to_block(zap, b);
++j;
}
@ -379,10 +379,10 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
DEBUG_ONLY( jmp_rule[i] = 0; )
// Sum all instruction sizes to compute block size
uint last_inst = block->_nodes.size();
uint last_inst = block->number_of_nodes();
uint blk_size = 0;
for (uint j = 0; j < last_inst; j++) {
Node* nj = block->_nodes[j];
Node* nj = block->get_node(j);
// Handle machine instruction nodes
if (nj->is_Mach()) {
MachNode *mach = nj->as_Mach();
@ -477,18 +477,18 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
for (uint i = 0; i < nblocks; i++) {
Block* block = _cfg->get_block(i);
int idx = jmp_nidx[i];
MachNode* mach = (idx == -1) ? NULL: block->_nodes[idx]->as_Mach();
MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
if (mach != NULL && mach->may_be_short_branch()) {
#ifdef ASSERT
assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
int j;
// Find the branch; ignore trailing NOPs.
for (j = block->_nodes.size()-1; j>=0; j--) {
Node* n = block->_nodes[j];
for (j = block->number_of_nodes()-1; j>=0; j--) {
Node* n = block->get_node(j);
if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
break;
}
assert(j >= 0 && j == idx && block->_nodes[j] == (Node*)mach, "sanity");
assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
#endif
int br_size = jmp_size[i];
int br_offs = blk_starts[i] + jmp_offset[i];
@ -522,7 +522,7 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
diff -= nop_size;
}
adjust_block_start += diff;
block->_nodes.map(idx, replacement);
block->map_node(replacement, idx);
mach->subsume_by(replacement, C);
mach = replacement;
progress = true;
@ -639,7 +639,7 @@ void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
Compile::set_sv_for_object_node(objs, sv);
uint first_ind = spobj->first_index();
uint first_ind = spobj->first_index(sfpt->jvms());
for (uint i = 0; i < spobj->n_fields(); i++) {
Node* fld_node = sfpt->in(first_ind+i);
(void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
@ -894,7 +894,7 @@ void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
// Loop over monitors and insert into array
for(idx = 0; idx < num_mon; idx++) {
for (idx = 0; idx < num_mon; idx++) {
// Grab the node that defines this monitor
Node* box_node = sfn->monitor_box(jvms, idx);
Node* obj_node = sfn->monitor_obj(jvms, idx);
@ -902,11 +902,11 @@ void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
// Create ScopeValue for object
ScopeValue *scval = NULL;
if( obj_node->is_SafePointScalarObject() ) {
if (obj_node->is_SafePointScalarObject()) {
SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
scval = Compile::sv_for_node_id(objs, spobj->_idx);
if (scval == NULL) {
const Type *t = obj_node->bottom_type();
const Type *t = spobj->bottom_type();
ciKlass* cik = t->is_oopptr()->klass();
assert(cik->is_instance_klass() ||
cik->is_array_klass(), "Not supported allocation.");
@ -914,14 +914,14 @@ void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
Compile::set_sv_for_object_node(objs, sv);
uint first_ind = spobj->first_index();
uint first_ind = spobj->first_index(youngest_jvms);
for (uint i = 0; i < spobj->n_fields(); i++) {
Node* fld_node = sfn->in(first_ind+i);
(void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
}
scval = sv;
}
} else if( !obj_node->is_Con() ) {
} else if (!obj_node->is_Con()) {
OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
@ -1088,8 +1088,8 @@ CodeBuffer* Compile::init_buffer(uint* blk_starts) {
for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
Block* b = _cfg->get_block(i);
for (uint j = 0; j < b->_nodes.size(); j++) {
Node* n = b->_nodes[j];
for (uint j = 0; j < b->number_of_nodes(); j++) {
Node* n = b->get_node(j);
// If the node is a MachConstantNode evaluate the constant
// value section.
@ -1247,14 +1247,14 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// Define the label at the beginning of the basic block
MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
uint last_inst = block->_nodes.size();
uint last_inst = block->number_of_nodes();
// Emit block normally, except for last instruction.
// Emit means "dump code bits into code buffer".
for (uint j = 0; j<last_inst; j++) {
// Get the node
Node* n = block->_nodes[j];
Node* n = block->get_node(j);
// See if delay slots are supported
if (valid_bundle_info(n) &&
@ -1308,7 +1308,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
int nops_cnt = padding / nop_size;
MachNode *nop = new (this) MachNopNode(nops_cnt);
block->_nodes.insert(j++, nop);
block->insert_node(nop, j++);
last_inst++;
_cfg->map_node_to_block(nop, block);
nop->emit(*cb, _regalloc);
@ -1394,7 +1394,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// Insert padding between avoid_back_to_back branches.
if (needs_padding && replacement->avoid_back_to_back()) {
MachNode *nop = new (this) MachNopNode();
block->_nodes.insert(j++, nop);
block->insert_node(nop, j++);
_cfg->map_node_to_block(nop, block);
last_inst++;
nop->emit(*cb, _regalloc);
@ -1407,7 +1407,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
jmp_size[i] = new_size;
jmp_rule[i] = mach->rule();
#endif
block->_nodes.map(j, replacement);
block->map_node(replacement, j);
mach->subsume_by(replacement, C);
n = replacement;
mach = replacement;
@ -1438,7 +1438,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
count++;
uint i4;
for (i4 = 0; i4 < last_inst; ++i4) {
if (block->_nodes[i4] == oop_store) {
if (block->get_node(i4) == oop_store) {
break;
}
}
@ -1548,7 +1548,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
int padding = nb->alignment_padding(current_offset);
if( padding > 0 ) {
MachNode *nop = new (this) MachNopNode(padding / nop_size);
block->_nodes.insert(block->_nodes.size(), nop);
block->insert_node(nop, block->number_of_nodes());
_cfg->map_node_to_block(nop, block);
nop->emit(*cb, _regalloc);
current_offset = cb->insts_size();
@ -1655,8 +1655,8 @@ void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_start
int j;
// Find the branch; ignore trailing NOPs.
for (j = block->_nodes.size() - 1; j >= 0; j--) {
n = block->_nodes[j];
for (j = block->number_of_nodes() - 1; j >= 0; j--) {
n = block->get_node(j);
if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
break;
}
@ -1675,8 +1675,8 @@ void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_start
uint call_return = call_returns[block->_pre_order];
#ifdef ASSERT
assert( call_return > 0, "no call seen for this basic block" );
while (block->_nodes[--j]->is_MachProj()) ;
assert(block->_nodes[j]->is_MachCall(), "CatchProj must follow call");
while (block->get_node(--j)->is_MachProj()) ;
assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
#endif
// last instruction is a CatchNode, find it's CatchProjNodes
int nof_succs = block->_num_succs;
@ -1782,7 +1782,7 @@ Scheduling::Scheduling(Arena *arena, Compile &compile)
// Get the last node
Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
_next_node = block->_nodes[block->_nodes.size() - 1];
_next_node = block->get_node(block->number_of_nodes() - 1);
}
#ifndef PRODUCT
@ -1875,7 +1875,7 @@ void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
// Used to allow latency 0 to force an instruction to the beginning
// of the bb
uint latency = 1;
Node *use = bb->_nodes[j];
Node *use = bb->get_node(j);
uint nlen = use->len();
// Walk over all the inputs
@ -2286,7 +2286,7 @@ void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
(OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
// Push any trailing projections
if( bb->_nodes[bb->_nodes.size()-1] != n ) {
if( bb->get_node(bb->number_of_nodes()-1) != n ) {
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *foi = n->fast_out(i);
if( foi->is_Proj() )
@ -2329,21 +2329,21 @@ void Scheduling::ComputeUseCount(const Block *bb) {
_unconditional_delay_slot = NULL;
#ifdef ASSERT
for( uint i=0; i < bb->_nodes.size(); i++ )
assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
for( uint i=0; i < bb->number_of_nodes(); i++ )
assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
#endif
// Force the _uses count to never go to zero for unscheduable pieces
// of the block
for( uint k = 0; k < _bb_start; k++ )
_uses[bb->_nodes[k]->_idx] = 1;
for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
_uses[bb->_nodes[l]->_idx] = 1;
_uses[bb->get_node(k)->_idx] = 1;
for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
_uses[bb->get_node(l)->_idx] = 1;
// Iterate backwards over the instructions in the block. Don't count the
// branch projections at end or the block header instructions.
for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
Node *n = bb->_nodes[j];
Node *n = bb->get_node(j);
if( n->is_Proj() ) continue; // Projections handled another way
// Account for all uses
@ -2398,8 +2398,8 @@ void Scheduling::DoScheduling() {
#ifndef PRODUCT
if (_cfg->C->trace_opto_output()) {
tty->print("# Schedule BB#%03d (initial)\n", i);
for (uint j = 0; j < bb->_nodes.size(); j++) {
bb->_nodes[j]->dump();
for (uint j = 0; j < bb->number_of_nodes(); j++) {
bb->get_node(j)->dump();
}
}
#endif
@ -2426,10 +2426,10 @@ void Scheduling::DoScheduling() {
}
// Leave untouched the starting instruction, any Phis, a CreateEx node
// or Top. bb->_nodes[_bb_start] is the first schedulable instruction.
_bb_end = bb->_nodes.size()-1;
// or Top. bb->get_node(_bb_start) is the first schedulable instruction.
_bb_end = bb->number_of_nodes()-1;
for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
Node *n = bb->_nodes[_bb_start];
Node *n = bb->get_node(_bb_start);
// Things not matched, like Phinodes and ProjNodes don't get scheduled.
// Also, MachIdealNodes do not get scheduled
if( !n->is_Mach() ) continue; // Skip non-machine nodes
@ -2449,19 +2449,19 @@ void Scheduling::DoScheduling() {
// in the block), because they have delay slots we can fill. Calls all
// have their delay slots filled in the template expansions, so we don't
// bother scheduling them.
Node *last = bb->_nodes[_bb_end];
Node *last = bb->get_node(_bb_end);
// Ignore trailing NOPs.
while (_bb_end > 0 && last->is_Mach() &&
last->as_Mach()->ideal_Opcode() == Op_Con) {
last = bb->_nodes[--_bb_end];
last = bb->get_node(--_bb_end);
}
assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
if( last->is_Catch() ||
// Exclude unreachable path case when Halt node is in a separate block.
(_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
// There must be a prior call. Skip it.
while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
while( !bb->get_node(--_bb_end)->is_MachCall() ) {
assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
}
} else if( last->is_MachNullCheck() ) {
// Backup so the last null-checked memory instruction is
@ -2470,7 +2470,7 @@ void Scheduling::DoScheduling() {
Node *mem = last->in(1);
do {
_bb_end--;
} while (mem != bb->_nodes[_bb_end]);
} while (mem != bb->get_node(_bb_end));
} else {
// Set _bb_end to point after last schedulable inst.
_bb_end++;
@ -2499,7 +2499,7 @@ void Scheduling::DoScheduling() {
assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
#ifdef ASSERT
for( uint l = _bb_start; l < _bb_end; l++ ) {
Node *n = bb->_nodes[l];
Node *n = bb->get_node(l);
uint m;
for( m = 0; m < _bb_end-_bb_start; m++ )
if( _scheduled[m] == n )
@ -2510,14 +2510,14 @@ void Scheduling::DoScheduling() {
// Now copy the instructions (in reverse order) back to the block
for ( uint k = _bb_start; k < _bb_end; k++ )
bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
bb->map_node(_scheduled[_bb_end-k-1], k);
#ifndef PRODUCT
if (_cfg->C->trace_opto_output()) {
tty->print("# Schedule BB#%03d (final)\n", i);
uint current = 0;
for (uint j = 0; j < bb->_nodes.size(); j++) {
Node *n = bb->_nodes[j];
for (uint j = 0; j < bb->number_of_nodes(); j++) {
Node *n = bb->get_node(j);
if( valid_bundle_info(n) ) {
Bundle *bundle = node_bundling(n);
if (bundle->instr_count() > 0 || bundle->flags() > 0) {
@ -2579,8 +2579,8 @@ void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
// Walk over the block backwards. Check to make sure each DEF doesn't
// kill a live value (other than the one it's supposed to). Add each
// USE to the live set.
for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
Node *n = b->_nodes[i];
for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
Node *n = b->get_node(i);
int n_op = n->Opcode();
if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
// Fat-proj kills a slew of registers
@ -2711,7 +2711,7 @@ void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
pinch->req() == 1 ) { // pinch not yet in block?
pinch->del_req(0); // yank pointer to later-def, also set flag
// Insert the pinch-point in the block just after the last use
b->_nodes.insert(b->find_node(use)+1,pinch);
b->insert_node(pinch, b->find_node(use) + 1);
_bb_end++; // Increase size scheduled region in block
}
@ -2763,10 +2763,10 @@ void Scheduling::ComputeRegisterAntidependencies(Block *b) {
// it being in the current block.
bool fat_proj_seen = false;
uint last_safept = _bb_end-1;
Node* end_node = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
Node* last_safept_node = end_node;
for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
Node *n = b->_nodes[i];
Node *n = b->get_node(i);
int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
// Fat-proj kills a slew of registers
@ -2815,7 +2815,7 @@ void Scheduling::ComputeRegisterAntidependencies(Block *b) {
// Do not allow defs of new derived values to float above GC
// points unless the base is definitely available at the GC point.
Node *m = b->_nodes[i];
Node *m = b->get_node(i);
// Add precedence edge from following safepoint to use of derived pointer
if( last_safept_node != end_node &&
@ -2832,11 +2832,11 @@ void Scheduling::ComputeRegisterAntidependencies(Block *b) {
if( n->jvms() ) { // Precedence edge from derived to safept
// Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
if( b->_nodes[last_safept] != last_safept_node ) {
if( b->get_node(last_safept) != last_safept_node ) {
last_safept = b->find_node(last_safept_node);
}
for( uint j=last_safept; j > i; j-- ) {
Node *mach = b->_nodes[j];
Node *mach = b->get_node(j);
if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
mach->add_prec( n );
}

View File

@ -1648,10 +1648,10 @@ void PhasePeephole::do_transform() {
bool block_not_printed = true;
// and each instruction within a block
uint end_index = block->_nodes.size();
uint end_index = block->number_of_nodes();
// block->end_idx() not valid after PhaseRegAlloc
for( uint instruction_index = 1; instruction_index < end_index; ++instruction_index ) {
Node *n = block->_nodes.at(instruction_index);
Node *n = block->get_node(instruction_index);
if( n->is_Mach() ) {
MachNode *m = n->as_Mach();
int deleted_count = 0;
@ -1673,7 +1673,7 @@ void PhasePeephole::do_transform() {
}
// Print instructions being deleted
for( int i = (deleted_count - 1); i >= 0; --i ) {
block->_nodes.at(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
block->get_node(instruction_index-i)->as_Mach()->format(_regalloc); tty->cr();
}
tty->print_cr("replaced with");
// Print new instruction
@ -1687,11 +1687,11 @@ void PhasePeephole::do_transform() {
// the node index to live range mappings.)
uint safe_instruction_index = (instruction_index - deleted_count);
for( ; (instruction_index > safe_instruction_index); --instruction_index ) {
block->_nodes.remove( instruction_index );
block->remove_node( instruction_index );
}
// install new node after safe_instruction_index
block->_nodes.insert( safe_instruction_index + 1, m2 );
end_index = block->_nodes.size() - 1; // Recompute new block size
block->insert_node(m2, safe_instruction_index + 1);
end_index = block->number_of_nodes() - 1; // Recompute new block size
NOT_PRODUCT( inc_peepholes(); )
}
}

View File

@ -423,8 +423,8 @@ void PhaseChaitin::post_allocate_copy_removal() {
// Count of Phis in block
uint phi_dex;
for (phi_dex = 1; phi_dex < block->_nodes.size(); phi_dex++) {
Node* phi = block->_nodes[phi_dex];
for (phi_dex = 1; phi_dex < block->number_of_nodes(); phi_dex++) {
Node* phi = block->get_node(phi_dex);
if (!phi->is_Phi()) {
break;
}
@ -439,7 +439,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
Block* pb = _cfg.get_block_for_node(block->pred(j));
// Remove copies along phi edges
for (uint k = 1; k < phi_dex; k++) {
elide_copy(block->_nodes[k], j, block, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false);
elide_copy(block->get_node(k), j, block, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false);
}
if (blk2value[pb->_pre_order]) { // Have a mapping on this edge?
// See if this predecessor's mappings have been used by everybody
@ -510,7 +510,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
// For all Phi's
for (j = 1; j < phi_dex; j++) {
uint k;
Node *phi = block->_nodes[j];
Node *phi = block->get_node(j);
uint pidx = _lrg_map.live_range_id(phi);
OptoReg::Name preg = lrgs(_lrg_map.live_range_id(phi)).reg();
@ -522,7 +522,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
}
if (u != NodeSentinel) { // Junk Phi. Remove
block->_nodes.remove(j--);
block->remove_node(j--);
phi_dex--;
_cfg.unmap_node_from_block(phi);
phi->replace_by(u);
@ -552,8 +552,8 @@ void PhaseChaitin::post_allocate_copy_removal() {
}
// For all remaining instructions
for (j = phi_dex; j < block->_nodes.size(); j++) {
Node* n = block->_nodes[j];
for (j = phi_dex; j < block->number_of_nodes(); j++) {
Node* n = block->get_node(j);
if(n->outcnt() == 0 && // Dead?
n != C->top() && // (ignore TOP, it has no du info)

View File

@ -112,17 +112,17 @@ Node *PhaseChaitin::get_spillcopy_wide( Node *def, Node *use, uint uidx ) {
void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) {
// Skip intervening ProjNodes. Do not insert between a ProjNode and
// its definer.
while( i < b->_nodes.size() &&
(b->_nodes[i]->is_Proj() ||
b->_nodes[i]->is_Phi() ) )
while( i < b->number_of_nodes() &&
(b->get_node(i)->is_Proj() ||
b->get_node(i)->is_Phi() ) )
i++;
// Do not insert between a call and his Catch
if( b->_nodes[i]->is_Catch() ) {
if( b->get_node(i)->is_Catch() ) {
// Put the instruction at the top of the fall-thru block.
// Find the fall-thru projection
while( 1 ) {
const CatchProjNode *cp = b->_nodes[++i]->as_CatchProj();
const CatchProjNode *cp = b->get_node(++i)->as_CatchProj();
if( cp->_con == CatchProjNode::fall_through_index )
break;
}
@ -131,7 +131,7 @@ void PhaseChaitin::insert_proj( Block *b, uint i, Node *spill, uint maxlrg ) {
i = 1; // Right at start of block
}
b->_nodes.insert(i,spill); // Insert node in block
b->insert_node(spill, i); // Insert node in block
_cfg.map_node_to_block(spill, b); // Update node->block mapping to reflect
// Adjust the point where we go hi-pressure
if( i <= b->_ihrp_index ) b->_ihrp_index++;
@ -160,9 +160,9 @@ uint PhaseChaitin::split_DEF( Node *def, Block *b, int loc, uint maxlrg, Node **
// (The implicit_null_check function ensures the use is also dominated
// by the branch-not-taken block.)
Node *be = b->end();
if( be->is_MachNullCheck() && be->in(1) == def && def == b->_nodes[loc] ) {
if( be->is_MachNullCheck() && be->in(1) == def && def == b->get_node(loc)) {
// Spill goes in the branch-not-taken block
b = b->_succs[b->_nodes[b->end_idx()+1]->Opcode() == Op_IfTrue];
b = b->_succs[b->get_node(b->end_idx()+1)->Opcode() == Op_IfTrue];
loc = 0; // Just past the Region
}
assert( loc >= 0, "must insert past block head" );
@ -450,7 +450,7 @@ bool PhaseChaitin::prompt_use( Block *b, uint lidx ) {
// Scan block for 1st use.
for( uint i = 1; i <= b->end_idx(); i++ ) {
Node *n = b->_nodes[i];
Node *n = b->get_node(i);
// Ignore PHI use, these can be up or down
if (n->is_Phi()) {
continue;
@ -647,7 +647,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// check block for appropriate phinode & update edges
for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
n1 = b->_nodes[insidx];
n1 = b->get_node(insidx);
// bail if this is not a phi
phi = n1->is_Phi() ? n1->as_Phi() : NULL;
if( phi == NULL ) {
@ -747,7 +747,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
//----------Walk Instructions in the Block and Split----------
// For all non-phi instructions in the block
for( insidx = 1; insidx <= b->end_idx(); insidx++ ) {
Node *n = b->_nodes[insidx];
Node *n = b->get_node(insidx);
// Find the defining Node's live range index
uint defidx = _lrg_map.find_id(n);
uint cnt = n->req();
@ -776,7 +776,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
assert(_lrg_map.find_id(n) == _lrg_map.find_id(u), "should be the same lrg");
n->replace_by(u); // Then replace with unique input
n->disconnect_inputs(NULL, C);
b->_nodes.remove(insidx);
b->remove_node(insidx);
insidx--;
b->_ihrp_index--;
b->_fhrp_index--;
@ -789,12 +789,12 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
(b->_reg_pressure < (uint)INTPRESSURE) ||
b->_ihrp_index > 4000000 ||
b->_ihrp_index >= b->end_idx() ||
!b->_nodes[b->_ihrp_index]->is_Proj(), "" );
!b->get_node(b->_ihrp_index)->is_Proj(), "" );
assert( insidx > b->_fhrp_index ||
(b->_freg_pressure < (uint)FLOATPRESSURE) ||
b->_fhrp_index > 4000000 ||
b->_fhrp_index >= b->end_idx() ||
!b->_nodes[b->_fhrp_index]->is_Proj(), "" );
!b->get_node(b->_fhrp_index)->is_Proj(), "" );
// ********** Handle Crossing HRP Boundry **********
if( (insidx == b->_ihrp_index) || (insidx == b->_fhrp_index) ) {
@ -819,7 +819,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// Insert point is just past last use or def in the block
int insert_point = insidx-1;
while( insert_point > 0 ) {
Node *n = b->_nodes[insert_point];
Node *n = b->get_node(insert_point);
// Hit top of block? Quit going backwards
if (n->is_Phi()) {
break;
@ -865,7 +865,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
}
} // end if LRG is UP
} // end for all spilling live ranges
assert( b->_nodes[insidx] == n, "got insidx set incorrectly" );
assert( b->get_node(insidx) == n, "got insidx set incorrectly" );
} // end if crossing HRP Boundry
// If the LRG index is oob, then this is a new spillcopy, skip it.
@ -878,7 +878,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
if (copyidx && defidx == _lrg_map.live_range_id(n->in(copyidx))) {
n->replace_by( n->in(copyidx) );
n->set_req( copyidx, NULL );
b->_nodes.remove(insidx--);
b->remove_node(insidx--);
b->_ihrp_index--; // Adjust the point where we go hi-pressure
b->_fhrp_index--;
continue;
@ -932,10 +932,10 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// Rematerializable? Then clone def at use site instead
// of store/load
if( def->rematerialize() ) {
int old_size = b->_nodes.size();
int old_size = b->number_of_nodes();
def = split_Rematerialize( def, b, insidx, maxlrg, splits, slidx, lrg2reach, Reachblock, true );
if( !def ) return 0; // Bail out
insidx += b->_nodes.size()-old_size;
insidx += b->number_of_nodes()-old_size;
}
MachNode *mach = n->is_Mach() ? n->as_Mach() : NULL;
@ -1332,8 +1332,8 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// so look at the node before it.
int insert = pred->end_idx();
while (insert >= 1 &&
pred->_nodes[insert - 1]->is_SpillCopy() &&
_lrg_map.find(pred->_nodes[insert - 1]) >= lrgs_before_phi_split) {
pred->get_node(insert - 1)->is_SpillCopy() &&
_lrg_map.find(pred->get_node(insert - 1)) >= lrgs_before_phi_split) {
insert--;
}
def = split_Rematerialize(def, pred, insert, maxlrg, splits, slidx, lrg2reach, Reachblock, false);
@ -1402,7 +1402,7 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
for (bidx = 0; bidx < _cfg.number_of_blocks(); bidx++) {
b = _cfg.get_block(bidx);
for (insidx = 0; insidx <= b->end_idx(); insidx++) {
Node *n = b->_nodes[insidx];
Node *n = b->get_node(insidx);
uint defidx = _lrg_map.find(n);
assert(defidx < _lrg_map.max_lrg_id(), "Bad live range index in Split");
assert(defidx < maxlrg,"Bad live range index in Split");

View File

@ -205,6 +205,7 @@ void Flag::print_as_flag(outputStream* st) {
#define C1_PRODUCT_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) "{C1 product}", DEFAULT },
#define C1_PD_PRODUCT_FLAG_STRUCT(type, name, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) "{C1 pd product}", DEFAULT },
#define C1_DIAGNOSTIC_FLAG_STRUCT(type, name, value, doc) { #type, XSTR(name), &name, NOT_PRODUCT_ARG(doc) "{C1 diagnostic}", DEFAULT },
#ifdef PRODUCT
#define C1_DEVELOP_FLAG_STRUCT(type, name, value, doc) /* flag is constant */
#define C1_PD_DEVELOP_FLAG_STRUCT(type, name, doc) /* flag is constant */
@ -260,7 +261,7 @@ static Flag flagTable[] = {
G1_FLAGS(RUNTIME_DEVELOP_FLAG_STRUCT, RUNTIME_PD_DEVELOP_FLAG_STRUCT, RUNTIME_PRODUCT_FLAG_STRUCT, RUNTIME_PD_PRODUCT_FLAG_STRUCT, RUNTIME_DIAGNOSTIC_FLAG_STRUCT, RUNTIME_EXPERIMENTAL_FLAG_STRUCT, RUNTIME_NOTPRODUCT_FLAG_STRUCT, RUNTIME_MANAGEABLE_FLAG_STRUCT, RUNTIME_PRODUCT_RW_FLAG_STRUCT)
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
C1_FLAGS(C1_DEVELOP_FLAG_STRUCT, C1_PD_DEVELOP_FLAG_STRUCT, C1_PRODUCT_FLAG_STRUCT, C1_PD_PRODUCT_FLAG_STRUCT, C1_NOTPRODUCT_FLAG_STRUCT)
C1_FLAGS(C1_DEVELOP_FLAG_STRUCT, C1_PD_DEVELOP_FLAG_STRUCT, C1_PRODUCT_FLAG_STRUCT, C1_PD_PRODUCT_FLAG_STRUCT, C1_DIAGNOSTIC_FLAG_STRUCT, C1_NOTPRODUCT_FLAG_STRUCT)
#endif
#ifdef COMPILER2
C2_FLAGS(C2_DEVELOP_FLAG_STRUCT, C2_PD_DEVELOP_FLAG_STRUCT, C2_PRODUCT_FLAG_STRUCT, C2_PD_PRODUCT_FLAG_STRUCT, C2_DIAGNOSTIC_FLAG_STRUCT, C2_EXPERIMENTAL_FLAG_STRUCT, C2_NOTPRODUCT_FLAG_STRUCT)

View File

@ -57,6 +57,7 @@
#define C1_PRODUCT_FLAG_MEMBER(type, name, value, doc) FLAG_MEMBER(name),
#define C1_PD_PRODUCT_FLAG_MEMBER(type, name, doc) FLAG_MEMBER(name),
#define C1_DIAGNOSTIC_FLAG_MEMBER(type, name, value, doc) FLAG_MEMBER(name),
#ifdef PRODUCT
#define C1_DEVELOP_FLAG_MEMBER(type, name, value, doc) /* flag is constant */
#define C1_PD_DEVELOP_FLAG_MEMBER(type, name, doc) /* flag is constant */
@ -99,7 +100,7 @@ typedef enum {
G1_FLAGS(RUNTIME_DEVELOP_FLAG_MEMBER, RUNTIME_PD_DEVELOP_FLAG_MEMBER, RUNTIME_PRODUCT_FLAG_MEMBER, RUNTIME_PD_PRODUCT_FLAG_MEMBER, RUNTIME_DIAGNOSTIC_FLAG_MEMBER, RUNTIME_EXPERIMENTAL_FLAG_MEMBER, RUNTIME_NOTPRODUCT_FLAG_MEMBER, RUNTIME_MANAGEABLE_FLAG_MEMBER, RUNTIME_PRODUCT_RW_FLAG_MEMBER)
#endif // INCLUDE_ALL_GCS
#ifdef COMPILER1
C1_FLAGS(C1_DEVELOP_FLAG_MEMBER, C1_PD_DEVELOP_FLAG_MEMBER, C1_PRODUCT_FLAG_MEMBER, C1_PD_PRODUCT_FLAG_MEMBER, C1_NOTPRODUCT_FLAG_MEMBER)
C1_FLAGS(C1_DEVELOP_FLAG_MEMBER, C1_PD_DEVELOP_FLAG_MEMBER, C1_PRODUCT_FLAG_MEMBER, C1_PD_PRODUCT_FLAG_MEMBER, C1_DIAGNOSTIC_FLAG_MEMBER, C1_NOTPRODUCT_FLAG_MEMBER)
#endif
#ifdef COMPILER2
C2_FLAGS(C2_DEVELOP_FLAG_MEMBER, C2_PD_DEVELOP_FLAG_MEMBER, C2_PRODUCT_FLAG_MEMBER, C2_PD_PRODUCT_FLAG_MEMBER, C2_DIAGNOSTIC_FLAG_MEMBER, C2_EXPERIMENTAL_FLAG_MEMBER, C2_NOTPRODUCT_FLAG_MEMBER)
@ -131,6 +132,7 @@ typedef enum {
#define C1_PRODUCT_FLAG_MEMBER_WITH_TYPE(type, name, value, doc) FLAG_MEMBER_WITH_TYPE(name,type),
#define C1_PD_PRODUCT_FLAG_MEMBER_WITH_TYPE(type, name, doc) FLAG_MEMBER_WITH_TYPE(name,type),
#define C1_DIAGNOSTIC_FLAG_MEMBER_WITH_TYPE(type, name, value, doc) FLAG_MEMBER_WITH_TYPE(name,type),
#ifdef PRODUCT
#define C1_DEVELOP_FLAG_MEMBER_WITH_TYPE(type, name, value, doc) /* flag is constant */
#define C1_PD_DEVELOP_FLAG_MEMBER_WITH_TYPE(type, name, doc) /* flag is constant */
@ -204,6 +206,7 @@ typedef enum {
C1_PD_DEVELOP_FLAG_MEMBER_WITH_TYPE,
C1_PRODUCT_FLAG_MEMBER_WITH_TYPE,
C1_PD_PRODUCT_FLAG_MEMBER_WITH_TYPE,
C1_DIAGNOSTIC_FLAG_MEMBER_WITH_TYPE,
C1_NOTPRODUCT_FLAG_MEMBER_WITH_TYPE)
#endif
#ifdef COMPILER2

View File

@ -1051,7 +1051,8 @@ Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
// Find receiver for non-static call
if (bc != Bytecodes::_invokestatic &&
bc != Bytecodes::_invokedynamic) {
bc != Bytecodes::_invokedynamic &&
bc != Bytecodes::_invokehandle) {
// This register map must be update since we need to find the receiver for
// compiled frames. The receiver might be in a register.
RegisterMap reg_map2(thread);
@ -1078,7 +1079,7 @@ Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
#ifdef ASSERT
// Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
assert(receiver.not_null(), "should have thrown exception");
KlassHandle receiver_klass(THREAD, receiver->klass());
Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
@ -1240,9 +1241,9 @@ methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
#endif
if (is_virtual) {
assert(receiver.not_null(), "sanity check");
assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
bool static_bound = call_info.resolved_method()->can_be_statically_bound();
KlassHandle h_klass(THREAD, receiver->klass());
KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
is_optimized, static_bound, virtual_call_info,
CHECK_(methodHandle()));

View File

@ -3636,6 +3636,16 @@ jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
CompileBroker::compilation_init();
#endif
if (EnableInvokeDynamic) {
// Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
// It is done after compilers are initialized, because otherwise compilations of
// signature polymorphic MH intrinsics can be missed
// (see SystemDictionary::find_method_handle_intrinsic).
initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
}
#if INCLUDE_MANAGEMENT
Management::initialize(THREAD);
#endif // INCLUDE_MANAGEMENT

View File

@ -0,0 +1,84 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/**
* @test
* @bug 8023472
* @summary C2 optimization breaks with G1
*
* @run main/othervm -Xbatch -XX:+IgnoreUnrecognizedVMOptions -XX:-TieredCompilation -Dcount=100000 G1CrashTest
*
* @author pbiswal@palantir.com
*/
public class G1CrashTest {
static Object[] set = new Object[11];
public static void main(String[] args) throws InterruptedException {
for (int j = 0; j < Integer.getInteger("count"); j++) {
Object key = new Object();
insertKey(key);
if (j > set.length / 2) {
Object[] oldKeys = set;
set = new Object[2 * set.length - 1];
for (Object o : oldKeys) {
if (o != null)
insertKey(o);
}
}
}
}
static void insertKey(Object key) {
int hash = key.hashCode() & 0x7fffffff;
int index = hash % set.length;
Object cur = set[index];
if (cur == null)
set[index] = key;
else
insertKeyRehash(key, index, hash, cur);
}
static void insertKeyRehash(Object key, int index, int hash, Object cur) {
int loopIndex = index;
int firstRemoved = -1;
do {
if (cur == "dead")
firstRemoved = 1;
index--;
if (index < 0)
index += set.length;
cur = set[index];
if (cur == null) {
if (firstRemoved != -1)
set[firstRemoved] = "dead";
else
set[index] = key;
return;
}
} while (index != loopIndex);
if (firstRemoved != -1)
set[firstRemoved] = null;
}
}

View File

@ -0,0 +1,194 @@
/*
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8022595
* @summary JSR292: deadlock during class loading of MethodHandles, MethodHandleImpl & MethodHandleNatives
*
* @run main/othervm ConcurrentClassLoadingTest
*/
import java.util.*;
import java.util.concurrent.BrokenBarrierException;
import java.util.concurrent.CyclicBarrier;
public class ConcurrentClassLoadingTest {
int numThreads = 0;
long seed = 0;
CyclicBarrier l;
Random rand;
public static void main(String[] args) throws Throwable {
ConcurrentClassLoadingTest test = new ConcurrentClassLoadingTest();
test.parseArgs(args);
test.run();
}
void parseArgs(String[] args) {
int i = 0;
while (i < args.length) {
String flag = args[i];
switch(flag) {
case "-seed":
seed = Long.parseLong(args[++i]);
break;
case "-numThreads":
numThreads = Integer.parseInt(args[++i]);
break;
default:
throw new Error("Unknown flag: " + flag);
}
++i;
}
}
void init() {
if (numThreads == 0) {
numThreads = Runtime.getRuntime().availableProcessors();
}
if (seed == 0) {
seed = (new Random()).nextLong();
}
rand = new Random(seed);
l = new CyclicBarrier(numThreads + 1);
System.out.printf("Threads: %d\n", numThreads);
System.out.printf("Seed: %d\n", seed);
}
final List<Loader> loaders = new ArrayList<>();
void prepare() {
List<String> c = new ArrayList<>(Arrays.asList(classNames));
// Split classes between loading threads
int count = (classNames.length / numThreads) + 1;
for (int t = 0; t < numThreads; t++) {
List<String> sel = new ArrayList<>();
System.out.printf("Thread #%d:\n", t);
for (int i = 0; i < count; i++) {
if (c.size() == 0) break;
int k = rand.nextInt(c.size());
String elem = c.remove(k);
sel.add(elem);
System.out.printf("\t%s\n", elem);
}
loaders.add(new Loader(sel));
}
// Print diagnostic info when the test hangs
Runtime.getRuntime().addShutdownHook(new Thread() {
public void run() {
boolean alive = false;
for (Loader l : loaders) {
if (!l.isAlive()) continue;
if (!alive) {
System.out.println("Some threads are still alive:");
alive = true;
}
System.out.println(l.getName());
for (StackTraceElement elem : l.getStackTrace()) {
System.out.println("\t"+elem.toString());
}
}
}
});
}
public void run() throws Throwable {
init();
prepare();
for (Loader loader : loaders) {
loader.start();
}
l.await();
for (Loader loader : loaders) {
loader.join();
}
}
class Loader extends Thread {
List<String> classes;
public Loader(List<String> classes) {
this.classes = classes;
setDaemon(true);
}
@Override
public void run() {
try {
l.await();
for (String name : classes) {
Class.forName(name).getName();
}
} catch (ClassNotFoundException | BrokenBarrierException | InterruptedException e) {
throw new Error(e);
}
}
}
final static String[] classNames = {
"java.lang.invoke.AbstractValidatingLambdaMetafactory",
"java.lang.invoke.BoundMethodHandle",
"java.lang.invoke.CallSite",
"java.lang.invoke.ConstantCallSite",
"java.lang.invoke.DirectMethodHandle",
"java.lang.invoke.InnerClassLambdaMetafactory",
"java.lang.invoke.InvokeDynamic",
"java.lang.invoke.InvokeGeneric",
"java.lang.invoke.InvokerBytecodeGenerator",
"java.lang.invoke.Invokers",
"java.lang.invoke.LambdaConversionException",
"java.lang.invoke.LambdaForm",
"java.lang.invoke.LambdaMetafactory",
"java.lang.invoke.MagicLambdaImpl",
"java.lang.invoke.MemberName",
"java.lang.invoke.MethodHandle",
"java.lang.invoke.MethodHandleImpl",
"java.lang.invoke.MethodHandleInfo",
"java.lang.invoke.MethodHandleNatives",
"java.lang.invoke.MethodHandleProxies",
"java.lang.invoke.MethodHandles",
"java.lang.invoke.MethodHandleStatics",
"java.lang.invoke.MethodType",
"java.lang.invoke.MethodTypeForm",
"java.lang.invoke.MutableCallSite",
"java.lang.invoke.SerializedLambda",
"java.lang.invoke.SimpleMethodHandle",
"java.lang.invoke.SwitchPoint",
"java.lang.invoke.TypeConvertingMethodAdapter",
"java.lang.invoke.VolatileCallSite",
"java.lang.invoke.WrongMethodTypeException"
};
}