This commit is contained in:
Lana Steuck 2012-08-27 10:58:40 -07:00
commit 47b747e08c
316 changed files with 14965 additions and 18670 deletions

View File

@ -172,3 +172,5 @@ b820143a6f1ce993c6e6f31db4d64de990f42654 jdk8-b47
086271e35b0a419b38e8bda9bebd70693811df0a jdk8-b48 086271e35b0a419b38e8bda9bebd70693811df0a jdk8-b48
cecd7026f30cbd83b0601925a7a5e059aec98138 jdk8-b49 cecd7026f30cbd83b0601925a7a5e059aec98138 jdk8-b49
38fe5ab028908cf64dd73a43336ba3211577bfc3 jdk8-b50 38fe5ab028908cf64dd73a43336ba3211577bfc3 jdk8-b50
382651d28f2502d371eca751962232c0e535e57a jdk8-b51
b67041a6cb508da18d2f5c7687e6a31e08bea4fc jdk8-b52

View File

@ -172,3 +172,5 @@ e4f81a817447c3a4f6868f083c81c2fb1b15d44c jdk8-b44
3f6c72d1c2a6e5c9e7d81c3dc984886678a128ad jdk8-b48 3f6c72d1c2a6e5c9e7d81c3dc984886678a128ad jdk8-b48
c97b99424815c43818e3cc3ffcdd1a60f3198b52 jdk8-b49 c97b99424815c43818e3cc3ffcdd1a60f3198b52 jdk8-b49
2fd67618b9a3c847780ed7b9d228e862b6e2824c jdk8-b50 2fd67618b9a3c847780ed7b9d228e862b6e2824c jdk8-b50
57c0aee7309050b9d6cfcbd202dc704e9260b377 jdk8-b51
8d24def5ceb3b8f2e857f2e18b2804fc59eecf8d jdk8-b52

View File

@ -172,3 +172,5 @@ cd879aff5d3cc1f58829aab3116880aa19525b78 jdk8-b43
7e2b179a5b4dbd3f097e28daa00abfcc72ba3e0b jdk8-b48 7e2b179a5b4dbd3f097e28daa00abfcc72ba3e0b jdk8-b48
fe44e58a6bdbeae350ce96aafb49770a5dca5d8a jdk8-b49 fe44e58a6bdbeae350ce96aafb49770a5dca5d8a jdk8-b49
d20d9eb9f093adbf392918c703960ad24c93a331 jdk8-b50 d20d9eb9f093adbf392918c703960ad24c93a331 jdk8-b50
9b0f841ca9f7ee9bacf16a5ab41c4f829276bc6b jdk8-b51
80689ff9cb499837513f18a1136dac7f0686cd55 jdk8-b52

View File

@ -267,3 +267,6 @@ e3619706a7253540a2d94e9e841acaab8ace7038 jdk8-b49
72e0362c3f0cfacbbac8af8a5b9d2e182f21c17b hs24-b18 72e0362c3f0cfacbbac8af8a5b9d2e182f21c17b hs24-b18
58f237a9e83af6ded0d2e2c81d252cd47c0f4c45 jdk8-b50 58f237a9e83af6ded0d2e2c81d252cd47c0f4c45 jdk8-b50
3b3ad16429701b2eb6712851c2f7c5a726eb2cbe hs24-b19 3b3ad16429701b2eb6712851c2f7c5a726eb2cbe hs24-b19
663fc23da8d51c4c0552cbcb17ffc85f5869d4fd jdk8-b51
4c8f2a12e757e7a808aa85827573e09f75d7459f hs24-b20
6d0436885201db3f581523344a734793bb989549 jdk8-b52

View File

@ -93,7 +93,6 @@ public class CodeBlob extends VMObject {
public boolean isUncommonTrapStub() { return false; } public boolean isUncommonTrapStub() { return false; }
public boolean isExceptionStub() { return false; } public boolean isExceptionStub() { return false; }
public boolean isSafepointStub() { return false; } public boolean isSafepointStub() { return false; }
public boolean isRicochetBlob() { return false; }
public boolean isAdapterBlob() { return false; } public boolean isAdapterBlob() { return false; }
// Fine grain nmethod support: isNmethod() == isJavaMethod() || isNativeMethod() || isOSRMethod() // Fine grain nmethod support: isNmethod() == isJavaMethod() || isNativeMethod() || isOSRMethod()

View File

@ -57,7 +57,6 @@ public class CodeCache {
virtualConstructor.addMapping("BufferBlob", BufferBlob.class); virtualConstructor.addMapping("BufferBlob", BufferBlob.class);
virtualConstructor.addMapping("nmethod", NMethod.class); virtualConstructor.addMapping("nmethod", NMethod.class);
virtualConstructor.addMapping("RuntimeStub", RuntimeStub.class); virtualConstructor.addMapping("RuntimeStub", RuntimeStub.class);
virtualConstructor.addMapping("RicochetBlob", RicochetBlob.class);
virtualConstructor.addMapping("AdapterBlob", AdapterBlob.class); virtualConstructor.addMapping("AdapterBlob", AdapterBlob.class);
virtualConstructor.addMapping("MethodHandlesAdapterBlob", MethodHandlesAdapterBlob.class); virtualConstructor.addMapping("MethodHandlesAdapterBlob", MethodHandlesAdapterBlob.class);
virtualConstructor.addMapping("SafepointBlob", SafepointBlob.class); virtualConstructor.addMapping("SafepointBlob", SafepointBlob.class);
@ -127,10 +126,6 @@ public class CodeCache {
Assert.that(result.blobContains(start) || result.blobContains(start.addOffsetTo(8)), Assert.that(result.blobContains(start) || result.blobContains(start.addOffsetTo(8)),
"found wrong CodeBlob"); "found wrong CodeBlob");
} }
if (result.isRicochetBlob()) {
// This should probably be done for other SingletonBlobs
return VM.getVM().ricochetBlob();
}
return result; return result;
} }

View File

@ -1,70 +0,0 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.code;
import java.util.*;
import sun.jvm.hotspot.debugger.*;
import sun.jvm.hotspot.runtime.*;
import sun.jvm.hotspot.types.*;
/** RicochetBlob (currently only used by Compiler 2) */
public class RicochetBlob extends SingletonBlob {
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
private static void initialize(TypeDataBase db) {
Type type = db.lookupType("RicochetBlob");
bounceOffsetField = type.getCIntegerField("_bounce_offset");
exceptionOffsetField = type.getCIntegerField("_exception_offset");
}
private static CIntegerField bounceOffsetField;
private static CIntegerField exceptionOffsetField;
public RicochetBlob(Address addr) {
super(addr);
}
public boolean isRicochetBlob() {
return true;
}
public Address bounceAddr() {
return codeBegin().addOffsetTo(bounceOffsetField.getValue(addr));
}
public boolean returnsToBounceAddr(Address pc) {
Address bouncePc = bounceAddr();
return (pc.equals(bouncePc) || pc.addOffsetTo(Frame.pcReturnOffset()).equals(bouncePc));
}
}

View File

@ -147,12 +147,6 @@ public abstract class Frame implements Cloneable {
} }
} }
public boolean isRicochetFrame() {
CodeBlob cb = VM.getVM().getCodeCache().findBlob(getPC());
RicochetBlob rcb = VM.getVM().ricochetBlob();
return (cb == rcb && rcb != null && rcb.returnsToBounceAddr(getPC()));
}
public boolean isCompiledFrame() { public boolean isCompiledFrame() {
if (Assert.ASSERTS_ENABLED) { if (Assert.ASSERTS_ENABLED) {
Assert.that(!VM.getVM().isCore(), "noncore builds only"); Assert.that(!VM.getVM().isCore(), "noncore builds only");
@ -216,8 +210,7 @@ public abstract class Frame implements Cloneable {
public Frame realSender(RegisterMap map) { public Frame realSender(RegisterMap map) {
if (!VM.getVM().isCore()) { if (!VM.getVM().isCore()) {
Frame result = sender(map); Frame result = sender(map);
while (result.isRuntimeFrame() || while (result.isRuntimeFrame()) {
result.isRicochetFrame()) {
result = result.sender(map); result = result.sender(map);
} }
return result; return result;
@ -631,9 +624,6 @@ public abstract class Frame implements Cloneable {
if (Assert.ASSERTS_ENABLED) { if (Assert.ASSERTS_ENABLED) {
Assert.that(cb != null, "sanity check"); Assert.that(cb != null, "sanity check");
} }
if (cb == VM.getVM().ricochetBlob()) {
oopsRicochetDo(oopVisitor, regMap);
}
if (cb.getOopMaps() != null) { if (cb.getOopMaps() != null) {
OopMapSet.oopsDo(this, cb, regMap, oopVisitor, VM.getVM().isDebugging()); OopMapSet.oopsDo(this, cb, regMap, oopVisitor, VM.getVM().isDebugging());
@ -650,10 +640,6 @@ public abstract class Frame implements Cloneable {
// } // }
} }
private void oopsRicochetDo (AddressVisitor oopVisitor, RegisterMap regMap) {
// XXX Empty for now
}
// FIXME: implement the above routines, plus add // FIXME: implement the above routines, plus add
// oops_interpreted_arguments_do and oops_compiled_arguments_do // oops_interpreted_arguments_do and oops_compiled_arguments_do
} }

View File

@ -87,8 +87,6 @@ public class VM {
private StubRoutines stubRoutines; private StubRoutines stubRoutines;
private Bytes bytes; private Bytes bytes;
private RicochetBlob ricochetBlob;
/** Flags indicating whether we are attached to a core, C1, or C2 build */ /** Flags indicating whether we are attached to a core, C1, or C2 build */
private boolean usingClientCompiler; private boolean usingClientCompiler;
private boolean usingServerCompiler; private boolean usingServerCompiler;
@ -628,18 +626,6 @@ public class VM {
return stubRoutines; return stubRoutines;
} }
public RicochetBlob ricochetBlob() {
if (ricochetBlob == null) {
Type ricochetType = db.lookupType("SharedRuntime");
AddressField ricochetBlobAddress = ricochetType.getAddressField("_ricochet_blob");
Address addr = ricochetBlobAddress.getValue();
if (addr != null) {
ricochetBlob = new RicochetBlob(addr);
}
}
return ricochetBlob;
}
public VMRegImpl getVMRegImplInfo() { public VMRegImpl getVMRegImplInfo() {
if (vmregImpl == null) { if (vmregImpl == null) {
vmregImpl = new VMRegImpl(); vmregImpl = new VMRegImpl();

View File

@ -571,8 +571,6 @@ public class SPARCFrame extends Frame {
// registers callee-saved, then we will have to copy over // registers callee-saved, then we will have to copy over
// the RegisterMap update logic from the Intel code. // the RegisterMap update logic from the Intel code.
if (isRicochetFrame()) return senderForRicochetFrame(map);
// The constructor of the sender must know whether this frame is interpreted so it can set the // The constructor of the sender must know whether this frame is interpreted so it can set the
// sender's _interpreter_sp_adjustment field. // sender's _interpreter_sp_adjustment field.
if (VM.getVM().getInterpreter().contains(pc)) { if (VM.getVM().getInterpreter().contains(pc)) {
@ -945,20 +943,6 @@ public class SPARCFrame extends Frame {
} }
private Frame senderForRicochetFrame(SPARCRegisterMap map) {
if (DEBUG) {
System.out.println("senderForRicochetFrame");
}
//RicochetFrame* f = RicochetFrame::from_frame(fr);
// Cf. is_interpreted_frame path of frame::sender
Address youngerSP = getSP();
Address sp = getSenderSP();
map.makeIntegerRegsUnsaved();
map.shiftWindow(sp, youngerSP);
boolean thisFrameAdjustedStack = true; // I5_savedSP is live in this RF
return new SPARCFrame(biasSP(sp), biasSP(youngerSP), thisFrameAdjustedStack);
}
private Frame senderForEntryFrame(RegisterMap regMap) { private Frame senderForEntryFrame(RegisterMap regMap) {
SPARCRegisterMap map = (SPARCRegisterMap) regMap; SPARCRegisterMap map = (SPARCRegisterMap) regMap;

View File

@ -1,77 +0,0 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.runtime.sparc;
import java.util.*;
import sun.jvm.hotspot.asm.sparc.SPARCRegister;
import sun.jvm.hotspot.asm.sparc.SPARCRegisters;
import sun.jvm.hotspot.debugger.*;
import sun.jvm.hotspot.runtime.*;
import sun.jvm.hotspot.types.*;
public class SPARCRicochetFrame {
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
private SPARCFrame frame;
private static void initialize(TypeDataBase db) {
// Type type = db.lookupType("MethodHandles::RicochetFrame");
}
static SPARCRicochetFrame fromFrame(SPARCFrame f) {
return new SPARCRicochetFrame(f);
}
private SPARCRicochetFrame(SPARCFrame f) {
frame = f;
}
private Address registerValue(SPARCRegister reg) {
return frame.getSP().addOffsetTo(reg.spOffsetInSavedWindow()).getAddressAt(0);
}
public Address savedArgsBase() {
return registerValue(SPARCRegisters.L4);
}
public Address exactSenderSP() {
return registerValue(SPARCRegisters.I5);
}
public Address senderLink() {
return frame.getSenderSP();
}
public Address senderPC() {
return frame.getSenderPC();
}
public Address extendedSenderSP() {
return savedArgsBase();
}
}

View File

@ -269,7 +269,6 @@ public class X86Frame extends Frame {
if (isEntryFrame()) return senderForEntryFrame(map); if (isEntryFrame()) return senderForEntryFrame(map);
if (isInterpretedFrame()) return senderForInterpreterFrame(map); if (isInterpretedFrame()) return senderForInterpreterFrame(map);
if (isRicochetFrame()) return senderForRicochetFrame(map);
if(cb == null) { if(cb == null) {
cb = VM.getVM().getCodeCache().findBlob(getPC()); cb = VM.getVM().getCodeCache().findBlob(getPC());
@ -288,16 +287,6 @@ public class X86Frame extends Frame {
return new X86Frame(getSenderSP(), getLink(), getSenderPC()); return new X86Frame(getSenderSP(), getLink(), getSenderPC());
} }
private Frame senderForRicochetFrame(X86RegisterMap map) {
if (DEBUG) {
System.out.println("senderForRicochetFrame");
}
X86RicochetFrame f = X86RicochetFrame.fromFrame(this);
if (map.getUpdateMap())
updateMapWithSavedLink(map, f.senderLinkAddress());
return new X86Frame(f.extendedSenderSP(), f.exactSenderSP(), f.senderLink(), f.senderPC());
}
private Frame senderForEntryFrame(X86RegisterMap map) { private Frame senderForEntryFrame(X86RegisterMap map) {
if (DEBUG) { if (DEBUG) {
System.out.println("senderForEntryFrame"); System.out.println("senderForEntryFrame");

View File

@ -1,81 +0,0 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
package sun.jvm.hotspot.runtime.x86;
import java.util.*;
import sun.jvm.hotspot.debugger.*;
import sun.jvm.hotspot.runtime.*;
import sun.jvm.hotspot.types.*;
public class X86RicochetFrame extends VMObject {
static {
VM.registerVMInitializedObserver(new Observer() {
public void update(Observable o, Object data) {
initialize(VM.getVM().getTypeDataBase());
}
});
}
private static void initialize(TypeDataBase db) {
Type type = db.lookupType("MethodHandles::RicochetFrame");
senderLinkField = type.getAddressField("_sender_link");
savedArgsBaseField = type.getAddressField("_saved_args_base");
exactSenderSPField = type.getAddressField("_exact_sender_sp");
senderPCField = type.getAddressField("_sender_pc");
}
private static AddressField senderLinkField;
private static AddressField savedArgsBaseField;
private static AddressField exactSenderSPField;
private static AddressField senderPCField;
static X86RicochetFrame fromFrame(X86Frame f) {
return new X86RicochetFrame(f.getFP().addOffsetTo(- senderLinkField.getOffset()));
}
private X86RicochetFrame(Address addr) {
super(addr);
}
public Address senderLink() {
return senderLinkField.getValue(addr);
}
public Address senderLinkAddress() {
return addr.addOffsetTo(senderLinkField.getOffset());
}
public Address savedArgsBase() {
return savedArgsBaseField.getValue(addr);
}
public Address extendedSenderSP() {
return savedArgsBase();
}
public Address exactSenderSP() {
return exactSenderSPField.getValue(addr);
}
public Address senderPC() {
return senderPCField.getValue(addr);
}
}

View File

@ -35,7 +35,7 @@ HOTSPOT_VM_COPYRIGHT=Copyright 2012
HS_MAJOR_VER=24 HS_MAJOR_VER=24
HS_MINOR_VER=0 HS_MINOR_VER=0
HS_BUILD_NUMBER=19 HS_BUILD_NUMBER=20
JDK_MAJOR_VER=1 JDK_MAJOR_VER=1
JDK_MINOR_VER=8 JDK_MINOR_VER=8

View File

@ -44,8 +44,10 @@
#ifdef PRODUCT #ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */ #define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else #else
#define BLOCK_COMMENT(str) block_comment(str) #define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif #endif
// Convert the raw encoding form into the form expected by the // Convert the raw encoding form into the form expected by the
@ -992,7 +994,7 @@ void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Ja
save_frame(0); // to avoid clobbering O0 save_frame(0); // to avoid clobbering O0
ld_ptr(pc_addr, L0); ld_ptr(pc_addr, L0);
br_null_short(L0, Assembler::pt, PcOk); br_null_short(L0, Assembler::pt, PcOk);
stop("last_Java_pc not zeroed before leaving Java"); STOP("last_Java_pc not zeroed before leaving Java");
bind(PcOk); bind(PcOk);
// Verify that flags was zeroed on return to Java // Verify that flags was zeroed on return to Java
@ -1001,7 +1003,7 @@ void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Ja
tst(L0); tst(L0);
br(Assembler::zero, false, Assembler::pt, FlagsOk); br(Assembler::zero, false, Assembler::pt, FlagsOk);
delayed() -> restore(); delayed() -> restore();
stop("flags not zeroed before leaving Java"); STOP("flags not zeroed before leaving Java");
bind(FlagsOk); bind(FlagsOk);
#endif /* ASSERT */ #endif /* ASSERT */
// //
@ -1021,7 +1023,7 @@ void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Ja
andcc(last_java_sp, 0x01, G0); andcc(last_java_sp, 0x01, G0);
br(Assembler::notZero, false, Assembler::pt, StackOk); br(Assembler::notZero, false, Assembler::pt, StackOk);
delayed()->nop(); delayed()->nop();
stop("Stack Not Biased in set_last_Java_frame"); STOP("Stack Not Biased in set_last_Java_frame");
bind(StackOk); bind(StackOk);
#endif // ASSERT #endif // ASSERT
assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame"); assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
@ -1650,23 +1652,28 @@ void MacroAssembler::safepoint() {
void RegistersForDebugging::print(outputStream* s) { void RegistersForDebugging::print(outputStream* s) {
FlagSetting fs(Debugging, true);
int j; int j;
for ( j = 0; j < 8; ++j ) for (j = 0; j < 8; ++j) {
if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]); if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
else s->print_cr( "fp = 0x%.16lx", i[j]); else { s->print( "fp = " ); os::print_location(s, i[j]); }
}
s->cr(); s->cr();
for ( j = 0; j < 8; ++j ) for (j = 0; j < 8; ++j) {
s->print_cr("l%d = 0x%.16lx", j, l[j]); s->print("l%d = ", j); os::print_location(s, l[j]);
}
s->cr(); s->cr();
for ( j = 0; j < 8; ++j ) for (j = 0; j < 8; ++j) {
if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]); if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
else s->print_cr( "sp = 0x%.16lx", o[j]); else { s->print( "sp = " ); os::print_location(s, o[j]); }
}
s->cr(); s->cr();
for ( j = 0; j < 8; ++j ) for (j = 0; j < 8; ++j) {
s->print_cr("g%d = 0x%.16lx", j, g[j]); s->print("g%d = ", j); os::print_location(s, g[j]);
}
s->cr(); s->cr();
// print out floats with compression // print out floats with compression
@ -2020,8 +2027,8 @@ void MacroAssembler::untested(const char* what) {
char* b = new char[1024]; char* b = new char[1024];
sprintf(b, "untested: %s", what); sprintf(b, "untested: %s", what);
if ( ShowMessageBoxOnError ) stop(b); if (ShowMessageBoxOnError) { STOP(b); }
else warn(b); else { warn(b); }
} }
@ -2998,26 +3005,60 @@ void MacroAssembler::lookup_interface_method(Register recv_klass,
} }
// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result) {
assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
Register sethi_temp = method_result;
const int base = (instanceKlass::vtable_start_offset() * wordSize +
// method pointer offset within the vtable entry:
vtableEntry::method_offset_in_bytes());
RegisterOrConstant vtable_offset = vtable_index;
// Each of the following three lines potentially generates an instruction.
// But the total number of address formation instructions will always be
// at most two, and will often be zero. In any case, it will be optimal.
// If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
// If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
ld_ptr(vtable_entry_addr, method_result);
}
void MacroAssembler::check_klass_subtype(Register sub_klass, void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass, Register super_klass,
Register temp_reg, Register temp_reg,
Register temp2_reg, Register temp2_reg,
Label& L_success) { Label& L_success) {
Label L_failure, L_pop_to_failure;
check_klass_subtype_fast_path(sub_klass, super_klass,
temp_reg, temp2_reg,
&L_success, &L_failure, NULL);
Register sub_2 = sub_klass; Register sub_2 = sub_klass;
Register sup_2 = super_klass; Register sup_2 = super_klass;
if (!sub_2->is_global()) sub_2 = L0; if (!sub_2->is_global()) sub_2 = L0;
if (!sup_2->is_global()) sup_2 = L1; if (!sup_2->is_global()) sup_2 = L1;
bool did_save = false;
if (temp_reg == noreg || temp2_reg == noreg) {
temp_reg = L2;
temp2_reg = L3;
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
sub_klass = sub_2;
super_klass = sup_2;
did_save = true;
}
Label L_failure, L_pop_to_failure, L_pop_to_success;
check_klass_subtype_fast_path(sub_klass, super_klass,
temp_reg, temp2_reg,
(did_save ? &L_pop_to_success : &L_success),
(did_save ? &L_pop_to_failure : &L_failure), NULL);
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2); if (!did_save)
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
check_klass_subtype_slow_path(sub_2, sup_2, check_klass_subtype_slow_path(sub_2, sup_2,
L2, L3, L4, L5, L2, L3, L4, L5,
NULL, &L_pop_to_failure); NULL, &L_pop_to_failure);
// on success: // on success:
bind(L_pop_to_success);
restore(); restore();
ba_short(L_success); ba_short(L_success);
@ -3234,54 +3275,6 @@ void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
} }
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type) {
assert_different_registers(mtype_reg, mh_reg, temp_reg);
// compare method type against that of the receiver
RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
load_heap_oop(mh_reg, mhtype_offset, temp_reg);
cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
}
// A method handle has a "vmslots" field which gives the size of its
// argument list in JVM stack slots. This field is either located directly
// in every method handle, or else is indirectly accessed through the
// method handle's MethodType. This macro hides the distinction.
void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg) {
assert_different_registers(vmslots_reg, mh_reg, temp_reg);
// load mh.type.form.vmslots
Register temp2_reg = vmslots_reg;
load_heap_oop(Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
ld( Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
}
void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
assert_different_registers(mh_reg, temp_reg);
// pick out the interpreted side of the handler
// NOTE: vmentry is not an oop!
ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
// off we go...
ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jmp(temp_reg, 0);
// for the various stubs which take control at this point,
// see MethodHandles::generate_method_handle_stub
// Some callers can fill the delay slot.
if (emit_delayed_nop) {
delayed()->nop();
}
}
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot, RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
Register temp_reg, Register temp_reg,
int extra_slot_offset) { int extra_slot_offset) {
@ -3914,7 +3907,7 @@ void MacroAssembler::verify_tlab() {
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2); ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
or3(t1, t2, t3); or3(t1, t2, t3);
cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next); cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
stop("assert(top >= start)"); STOP("assert(top >= start)");
should_not_reach_here(); should_not_reach_here();
bind(next); bind(next);
@ -3922,13 +3915,13 @@ void MacroAssembler::verify_tlab() {
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2); ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
or3(t3, t2, t3); or3(t3, t2, t3);
cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2); cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
stop("assert(top <= end)"); STOP("assert(top <= end)");
should_not_reach_here(); should_not_reach_here();
bind(next2); bind(next2);
and3(t3, MinObjAlignmentInBytesMask, t3); and3(t3, MinObjAlignmentInBytesMask, t3);
cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok); cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
stop("assert(aligned)"); STOP("assert(aligned)");
should_not_reach_here(); should_not_reach_here();
bind(ok); bind(ok);
@ -3976,7 +3969,7 @@ void MacroAssembler::eden_allocate(
btst(MinObjAlignmentInBytesMask, obj); btst(MinObjAlignmentInBytesMask, obj);
br(Assembler::zero, false, Assembler::pt, L); br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop(); delayed()->nop();
stop("eden top is not properly aligned"); STOP("eden top is not properly aligned");
bind(L); bind(L);
} }
#endif // ASSERT #endif // ASSERT
@ -4013,7 +4006,7 @@ void MacroAssembler::eden_allocate(
btst(MinObjAlignmentInBytesMask, top_addr); btst(MinObjAlignmentInBytesMask, top_addr);
br(Assembler::zero, false, Assembler::pt, L); br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop(); delayed()->nop();
stop("eden top is not properly aligned"); STOP("eden top is not properly aligned");
bind(L); bind(L);
} }
#endif // ASSERT #endif // ASSERT
@ -4066,7 +4059,7 @@ void MacroAssembler::tlab_allocate(
btst(MinObjAlignmentInBytesMask, free); btst(MinObjAlignmentInBytesMask, free);
br(Assembler::zero, false, Assembler::pt, L); br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop(); delayed()->nop();
stop("updated TLAB free is not properly aligned"); STOP("updated TLAB free is not properly aligned");
bind(L); bind(L);
} }
#endif // ASSERT #endif // ASSERT
@ -4164,7 +4157,7 @@ void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2); ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
sll_ptr(t2, LogHeapWordSize, t2); sll_ptr(t2, LogHeapWordSize, t2);
cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok); cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
stop("assert(t1 == tlab_size)"); STOP("assert(t1 == tlab_size)");
should_not_reach_here(); should_not_reach_here();
bind(ok); bind(ok);

View File

@ -2538,6 +2538,11 @@ public:
Register temp_reg, Register temp2_reg, Register temp_reg, Register temp2_reg,
Label& no_such_interface); Label& no_such_interface);
// virtual method calling
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths. // Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow. // The fast path produces a tri-state answer: yes / no / maybe-slow.
@ -2577,12 +2582,6 @@ public:
Label& L_success); Label& L_success);
// method handles (JSR 292) // method handles (JSR 292)
void check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type);
void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg);
void jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop = true);
// offset relative to Gargs of argument at tos[arg_slot]. // offset relative to Gargs of argument at tos[arg_slot].
// (arg_slot == 0 means the last argument, not the first). // (arg_slot == 0 means the last argument, not the first).
RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
@ -2590,7 +2589,7 @@ public:
int extra_slot_offset = 0); int extra_slot_offset = 0);
// Address of Gargs and argument_offset. // Address of Gargs and argument_offset.
Address argument_address(RegisterOrConstant arg_slot, Address argument_address(RegisterOrConstant arg_slot,
Register temp_reg, Register temp_reg = noreg,
int extra_slot_offset = 0); int extra_slot_offset = 0);
// Stack overflow checking // Stack overflow checking

View File

@ -2956,6 +2956,7 @@ void LIR_Assembler::emit_lock(LIR_OpLock* op) {
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method(); ciMethod* method = op->profiled_method();
int bci = op->profiled_bci(); int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types // Update counter for all call types
ciMethodData* md = method->method_data_or_null(); ciMethodData* md = method->method_data_or_null();
@ -2984,9 +2985,11 @@ void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
Bytecodes::Code bc = method->java_code_at_bci(bci); Bytecodes::Code bc = method->java_code_at_bci(bci);
const bool callee_is_static = callee->is_loaded() && callee->is_static();
// Perform additional virtual call profiling for invokevirtual and // Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes // invokeinterface bytecodes
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
!callee_is_static && // required for optimized MH invokes
C1ProfileVirtualCalls) { C1ProfileVirtualCalls) {
assert(op->recv()->is_single_cpu(), "recv must be allocated"); assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register(); Register recv = op->recv()->as_register();

View File

@ -515,9 +515,9 @@ address InterpreterGenerator::generate_accessor_entry(void) {
// Need to differentiate between igetfield, agetfield, bgetfield etc. // Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes. // because they are different sizes.
// Get the type from the constant pool cache // Get the type from the constant pool cache
__ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch); __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
// Make sure we don't need to mask G1_scratch for tosBits after the above shift // Make sure we don't need to mask G1_scratch after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(G1_scratch, atos ); __ cmp(G1_scratch, atos );
__ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i); __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);

View File

@ -514,7 +514,6 @@ frame frame::sender(RegisterMap* map) const {
// interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be // interpreted but its pc is in the code cache (for c1 -> osr_frame_return_id stub), so it must be
// explicitly recognized. // explicitly recognized.
if (is_ricochet_frame()) return sender_for_ricochet_frame(map);
bool frame_is_interpreted = is_interpreted_frame(); bool frame_is_interpreted = is_interpreted_frame();
if (frame_is_interpreted) { if (frame_is_interpreted) {
@ -821,9 +820,7 @@ void frame::describe_pd(FrameValues& values, int frame_no) {
values.describe(frame_no, sp() + w, err_msg("register save area word %d", w), 1); values.describe(frame_no, sp() + w, err_msg("register save area word %d", w), 1);
} }
if (is_ricochet_frame()) { if (is_interpreted_frame()) {
MethodHandles::RicochetFrame::describe(this, values, frame_no);
} else if (is_interpreted_frame()) {
DESCRIBE_FP_OFFSET(interpreter_frame_d_scratch_fp); DESCRIBE_FP_OFFSET(interpreter_frame_d_scratch_fp);
DESCRIBE_FP_OFFSET(interpreter_frame_l_scratch_fp); DESCRIBE_FP_OFFSET(interpreter_frame_l_scratch_fp);
DESCRIBE_FP_OFFSET(interpreter_frame_padding); DESCRIBE_FP_OFFSET(interpreter_frame_padding);

View File

@ -505,7 +505,7 @@ void InterpreterMacroAssembler::store_ptr(int n, Register val) {
void InterpreterMacroAssembler::load_receiver(Register param_count, void InterpreterMacroAssembler::load_receiver(Register param_count,
Register recv) { Register recv) {
sll(param_count, Interpreter::logStackElementSize, param_count); sll(param_count, Interpreter::logStackElementSize, param_count);
ld_ptr(Lesp, param_count, recv); // gets receiver Oop ld_ptr(Lesp, param_count, recv); // gets receiver oop
} }
void InterpreterMacroAssembler::empty_expression_stack() { void InterpreterMacroAssembler::empty_expression_stack() {
@ -767,8 +767,12 @@ void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register
get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size); get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
ld_ptr(cache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode); ld_ptr(cache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
const int shift_count = (1 + byte_no) * BitsPerByte; const int shift_count = (1 + byte_no) * BitsPerByte;
srl( bytecode, shift_count, bytecode); assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
and3(bytecode, 0xFF, bytecode); (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
"correct shift count");
srl(bytecode, shift_count, bytecode);
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
} }

View File

@ -32,7 +32,6 @@
address generate_normal_entry(bool synchronized); address generate_normal_entry(bool synchronized);
address generate_native_entry(bool synchronized); address generate_native_entry(bool synchronized);
address generate_abstract_entry(void); address generate_abstract_entry(void);
address generate_method_handle_entry(void);
address generate_math_entry(AbstractInterpreter::MethodKind kind); address generate_math_entry(AbstractInterpreter::MethodKind kind);
address generate_empty_entry(void); address generate_empty_entry(void);
address generate_accessor_entry(void); address generate_accessor_entry(void);

View File

@ -255,17 +255,6 @@ address InterpreterGenerator::generate_abstract_entry(void) {
} }
// Method handle invoker
// Dispatch a method of the form java.lang.invoke.MethodHandles::invoke(...)
address InterpreterGenerator::generate_method_handle_entry(void) {
if (!EnableInvokeDynamic) {
return generate_abstract_entry();
}
return MethodHandles::generate_method_handle_interpreter_entry(_masm);
}
//---------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------
// Entry points & stack frame layout // Entry points & stack frame layout
// //
@ -395,7 +384,7 @@ address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter:
case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
case Interpreter::java_lang_math_sin : break; case Interpreter::java_lang_math_sin : break;
case Interpreter::java_lang_math_cos : break; case Interpreter::java_lang_math_cos : break;
case Interpreter::java_lang_math_tan : break; case Interpreter::java_lang_math_tan : break;
@ -407,7 +396,9 @@ address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter:
case Interpreter::java_lang_math_exp : break; case Interpreter::java_lang_math_exp : break;
case Interpreter::java_lang_ref_reference_get case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default : ShouldNotReachHere(); break; default:
fatal(err_msg("unexpected method kind: %d", kind));
break;
} }
if (entry_point) return entry_point; if (entry_point) return entry_point;

File diff suppressed because it is too large Load Diff

View File

@ -30,186 +30,9 @@ enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(23000 DEBUG_ONLY(+ 40000)) LP64_ONLY(35000 DEBUG_ONLY(+ 50000)) adapter_code_size = NOT_LP64(23000 DEBUG_ONLY(+ 40000)) LP64_ONLY(35000 DEBUG_ONLY(+ 50000))
}; };
public:
class RicochetFrame : public ResourceObj {
friend class MethodHandles;
private:
/*
RF field x86 SPARC
sender_pc *(rsp+0) I7-0x8
sender_link rbp I6+BIAS
exact_sender_sp rsi/r13 I5_savedSP
conversion *(rcx+&amh_conv) L5_conv
saved_args_base rax L4_sab (cf. Gargs = G4)
saved_args_layout #NULL L3_sal
saved_target *(rcx+&mh_vmtgt) L2_stgt
continuation #STUB_CON L1_cont
*/
static const Register L1_continuation ; // what to do when control gets back here
static const Register L2_saved_target ; // target method handle to invoke on saved_args
static const Register L3_saved_args_layout; // caching point for MethodTypeForm.vmlayout cookie
static const Register L4_saved_args_base ; // base of pushed arguments (slot 0, arg N) (-3)
static const Register L5_conversion ; // misc. information from original AdapterMethodHandle (-2)
frame _fr;
RicochetFrame(const frame& fr) : _fr(fr) { }
intptr_t* register_addr(Register reg) const {
assert((_fr.sp() + reg->sp_offset_in_saved_window()) == _fr.register_addr(reg), "must agree");
return _fr.register_addr(reg);
}
intptr_t register_value(Register reg) const { return *register_addr(reg); }
public:
intptr_t* continuation() const { return (intptr_t*) register_value(L1_continuation); }
oop saved_target() const { return (oop) register_value(L2_saved_target); }
oop saved_args_layout() const { return (oop) register_value(L3_saved_args_layout); }
intptr_t* saved_args_base() const { return (intptr_t*) register_value(L4_saved_args_base); }
intptr_t conversion() const { return register_value(L5_conversion); }
intptr_t* exact_sender_sp() const { return (intptr_t*) register_value(I5_savedSP); }
intptr_t* sender_link() const { return _fr.sender_sp(); } // XXX
address sender_pc() const { return _fr.sender_pc(); }
// This value is not used for much, but it apparently must be nonzero.
static int frame_size_in_bytes() { return wordSize * 4; }
intptr_t* extended_sender_sp() const { return saved_args_base(); }
intptr_t return_value_slot_number() const {
return adapter_conversion_vminfo(conversion());
}
BasicType return_value_type() const {
return adapter_conversion_dest_type(conversion());
}
bool has_return_value_slot() const {
return return_value_type() != T_VOID;
}
intptr_t* return_value_slot_addr() const {
assert(has_return_value_slot(), "");
return saved_arg_slot_addr(return_value_slot_number());
}
intptr_t* saved_target_slot_addr() const {
return saved_arg_slot_addr(saved_args_length());
}
intptr_t* saved_arg_slot_addr(int slot) const {
assert(slot >= 0, "");
return (intptr_t*)( (address)saved_args_base() + (slot * Interpreter::stackElementSize) );
}
jint saved_args_length() const;
jint saved_arg_offset(int arg) const;
// GC interface
oop* saved_target_addr() { return (oop*)register_addr(L2_saved_target); }
oop* saved_args_layout_addr() { return (oop*)register_addr(L3_saved_args_layout); }
oop compute_saved_args_layout(bool read_cache, bool write_cache);
#ifdef ASSERT
// The magic number is supposed to help find ricochet frames within the bytes of stack dumps.
enum { MAGIC_NUMBER_1 = 0xFEED03E, MAGIC_NUMBER_2 = 0xBEEF03E };
static const Register L0_magic_number_1 ; // cookie for debugging, at start of RSA
static Address magic_number_2_addr() { return Address(L4_saved_args_base, -wordSize); }
intptr_t magic_number_1() const { return register_value(L0_magic_number_1); }
intptr_t magic_number_2() const { return saved_args_base()[-1]; }
#endif //ASSERT
public:
enum { RETURN_VALUE_PLACEHOLDER = (NOT_DEBUG(0) DEBUG_ONLY(42)) };
void verify() const NOT_DEBUG_RETURN; // check for MAGIC_NUMBER, etc.
static void generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words);
static void enter_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register argv_reg,
address return_handler);
static void leave_ricochet_frame(MacroAssembler* _masm,
Register recv_reg,
Register new_sp_reg,
Register sender_pc_reg);
static RicochetFrame* from_frame(const frame& fr) {
RicochetFrame* rf = new RicochetFrame(fr);
rf->verify();
return rf;
}
static void verify_clean(MacroAssembler* _masm) NOT_DEBUG_RETURN;
static void describe(const frame* fr, FrameValues& values, int frame_no) PRODUCT_RETURN;
};
// Additional helper methods for MethodHandles code generation: // Additional helper methods for MethodHandles code generation:
public: public:
static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg); static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg);
static void load_conversion_vminfo(MacroAssembler* _masm, Address conversion_field_addr, Register reg);
static void extract_conversion_vminfo(MacroAssembler* _masm, Register conversion_field_reg, Register reg);
static void extract_conversion_dest_type(MacroAssembler* _masm, Register conversion_field_reg, Register reg);
static void load_stack_move(MacroAssembler* _masm,
Address G3_amh_conversion,
Register G5_stack_move);
static void insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg);
static void remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register argslot_reg,
Register temp_reg, Register temp2_reg, Register temp3_reg);
static void push_arg_slots(MacroAssembler* _masm,
Register argslot_reg,
RegisterOrConstant slot_count,
Register temp_reg, Register temp2_reg);
static void move_arg_slots_up(MacroAssembler* _masm,
Register bottom_reg, // invariant
Address top_addr, // can use temp_reg
RegisterOrConstant positive_distance_in_slots,
Register temp_reg, Register temp2_reg);
static void move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use temp_reg
Register top_reg, // invariant
RegisterOrConstant negative_distance_in_slots,
Register temp_reg, Register temp2_reg);
static void move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address value_src, Address slot_dest,
Register temp_reg);
static void move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot);
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
Register temp_reg,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_argslots(MacroAssembler* _masm,
RegisterOrConstant argslot_count,
Register argslot_reg,
Register temp_reg,
Register temp2_reg,
bool negate_argslot,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int direction) NOT_DEBUG_RETURN;
static void verify_klass(MacroAssembler* _masm, static void verify_klass(MacroAssembler* _masm,
Register obj_reg, KlassHandle klass, Register obj_reg, KlassHandle klass,
@ -223,8 +46,17 @@ public:
"reference is a MH"); "reference is a MH");
} }
static void verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) NOT_DEBUG_RETURN;
// Similar to InterpreterMacroAssembler::jump_from_interpreted. // Similar to InterpreterMacroAssembler::jump_from_interpreted.
// Takes care of special dispatch from single stepping too. // Takes care of special dispatch from single stepping too.
static void jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp, Register temp2); static void jump_from_method_handle(MacroAssembler* _masm, Register method,
Register temp, Register temp2,
bool for_compiler_entry);
static void jump_to_lambda_form(MacroAssembler* _masm,
Register recv, Register method_temp,
Register temp2, Register temp3,
bool for_compiler_entry);
static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN; static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN;

View File

@ -400,13 +400,13 @@ int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
case T_LONG: // LP64, longs compete with int args case T_LONG: // LP64, longs compete with int args
assert(sig_bt[i+1] == T_VOID, ""); assert(sig_bt[i+1] == T_VOID, "");
#ifdef _LP64 #ifdef _LP64
if (int_reg_cnt < int_reg_max) int_reg_cnt++; if (int_reg_cnt < int_reg_max) int_reg_cnt++;
#endif #endif
break; break;
case T_OBJECT: case T_OBJECT:
case T_ARRAY: case T_ARRAY:
case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address case T_ADDRESS: // Used, e.g., in slow-path locking for the lock's stack address
if (int_reg_cnt < int_reg_max) int_reg_cnt++; if (int_reg_cnt < int_reg_max) int_reg_cnt++;
#ifndef _LP64 #ifndef _LP64
else stk_reg_pairs++; else stk_reg_pairs++;
#endif #endif
@ -416,11 +416,11 @@ int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
case T_CHAR: case T_CHAR:
case T_BYTE: case T_BYTE:
case T_BOOLEAN: case T_BOOLEAN:
if (int_reg_cnt < int_reg_max) int_reg_cnt++; if (int_reg_cnt < int_reg_max) int_reg_cnt++;
else stk_reg_pairs++; else stk_reg_pairs++;
break; break;
case T_FLOAT: case T_FLOAT:
if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++; if (flt_reg_cnt < flt_reg_max) flt_reg_cnt++;
else stk_reg_pairs++; else stk_reg_pairs++;
break; break;
case T_DOUBLE: case T_DOUBLE:
@ -436,7 +436,6 @@ int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
// This is where the longs/doubles start on the stack. // This is where the longs/doubles start on the stack.
stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round stk_reg_pairs = (stk_reg_pairs+1) & ~1; // Round
int int_reg_pairs = (int_reg_cnt+1) & ~1; // 32-bit 2-reg longs only
int flt_reg_pairs = (flt_reg_cnt+1) & ~1; int flt_reg_pairs = (flt_reg_cnt+1) & ~1;
// int stk_reg = frame::register_save_words*(wordSize>>2); // int stk_reg = frame::register_save_words*(wordSize>>2);
@ -517,24 +516,15 @@ int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
stk_reg_pairs += 2; stk_reg_pairs += 2;
} }
#else // COMPILER2 #else // COMPILER2
if (int_reg_pairs + 1 < int_reg_max) {
if (is_outgoing) {
regs[i].set_pair(as_oRegister(int_reg_pairs + 1)->as_VMReg(), as_oRegister(int_reg_pairs)->as_VMReg());
} else {
regs[i].set_pair(as_iRegister(int_reg_pairs + 1)->as_VMReg(), as_iRegister(int_reg_pairs)->as_VMReg());
}
int_reg_pairs += 2;
} else {
regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs)); regs[i].set2(VMRegImpl::stack2reg(stk_reg_pairs));
stk_reg_pairs += 2; stk_reg_pairs += 2;
}
#endif // COMPILER2 #endif // COMPILER2
#endif // _LP64 #endif // _LP64
break; break;
case T_FLOAT: case T_FLOAT:
if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg()); if (flt_reg < flt_reg_max) regs[i].set1(as_FloatRegister(flt_reg++)->as_VMReg());
else regs[i].set1( VMRegImpl::stack2reg(stk_reg++)); else regs[i].set1(VMRegImpl::stack2reg(stk_reg++));
break; break;
case T_DOUBLE: case T_DOUBLE:
assert(sig_bt[i+1] == T_VOID, "expecting half"); assert(sig_bt[i+1] == T_VOID, "expecting half");
@ -886,6 +876,20 @@ void AdapterGenerator::gen_c2i_adapter(
__ delayed()->add(SP, G1, Gargs); __ delayed()->add(SP, G1, Gargs);
} }
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, Register temp2_reg,
address code_start, address code_end,
Label& L_ok) {
Label L_fail;
__ set(ExternalAddress(code_start), temp_reg);
__ set(pointer_delta(code_end, code_start, 1), temp2_reg);
__ cmp(pc_reg, temp_reg);
__ brx(Assembler::lessEqualUnsigned, false, Assembler::pn, L_fail);
__ delayed()->add(temp_reg, temp2_reg, temp_reg);
__ cmp(pc_reg, temp_reg);
__ cmp_and_brx_short(pc_reg, temp_reg, Assembler::lessUnsigned, Assembler::pt, L_ok);
__ bind(L_fail);
}
void AdapterGenerator::gen_i2c_adapter( void AdapterGenerator::gen_i2c_adapter(
int total_args_passed, int total_args_passed,
// VMReg max_arg, // VMReg max_arg,
@ -907,6 +911,51 @@ void AdapterGenerator::gen_i2c_adapter(
// This removes all sorts of headaches on the x86 side and also eliminates // This removes all sorts of headaches on the x86 side and also eliminates
// the possibility of having c2i -> i2c -> c2i -> ... endless transitions. // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
// More detail:
// Adapters can be frameless because they do not require the caller
// to perform additional cleanup work, such as correcting the stack pointer.
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
// even if a callee has modified the stack pointer.
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
// routinely repairs its caller's stack pointer (from sender_sp, which is set
// up via the senderSP register).
// In other words, if *either* the caller or callee is interpreted, we can
// get the stack pointer repaired after a call.
// This is why c2i and i2c adapters cannot be indefinitely composed.
// In particular, if a c2i adapter were to somehow call an i2c adapter,
// both caller and callee would be compiled methods, and neither would
// clean up the stack pointer changes performed by the two adapters.
// If this happens, control eventually transfers back to the compiled
// caller, but with an uncorrected stack, causing delayed havoc.
if (VerifyAdapterCalls &&
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
// So, let's test for cascading c2i/i2c adapters right now.
// assert(Interpreter::contains($return_addr) ||
// StubRoutines::contains($return_addr),
// "i2c adapter must return to an interpreter frame");
__ block_comment("verify_i2c { ");
Label L_ok;
if (Interpreter::code() != NULL)
range_check(masm, O7, O0, O1,
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
L_ok);
if (StubRoutines::code1() != NULL)
range_check(masm, O7, O0, O1,
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
L_ok);
if (StubRoutines::code2() != NULL)
range_check(masm, O7, O0, O1,
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
L_ok);
const char* msg = "i2c adapter must return to an interpreter frame";
__ block_comment(msg);
__ stop(msg);
__ bind(L_ok);
__ block_comment("} verify_i2ce ");
}
// As you can see from the list of inputs & outputs there are not a lot // As you can see from the list of inputs & outputs there are not a lot
// of temp registers to work with: mostly G1, G3 & G4. // of temp registers to work with: mostly G1, G3 & G4.
@ -1937,20 +1986,156 @@ static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType
__ bind(done); __ bind(done);
} }
static void verify_oop_args(MacroAssembler* masm,
int total_args_passed,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = G5_method; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_OBJECT ||
sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
ld_off = __ ensure_simm13_or_reg(ld_off, temp_reg);
__ ld_ptr(SP, ld_off, temp_reg);
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
int total_args_passed,
int comp_args_on_stack,
vmIntrinsics::ID special_dispatch,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, total_args_passed, sig_bt, regs);
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
if (ref_kind != 0) {
member_arg_pos = total_args_passed - 1; // trailing MemberName argument
member_reg = G5_method; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (special_dispatch == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
fatal(err_msg("special_dispatch=%d", special_dispatch));
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
VMReg r = regs[member_arg_pos].first();
assert(r->is_valid(), "bad member arg");
if (r->is_stack()) {
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
__ ld_ptr(SP, ld_off, member_reg);
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(total_args_passed > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
assert(false, "receiver always in a register");
receiver_reg = G3_scratch; // known to be free at this point
RegisterOrConstant ld_off = reg2offset(r) + STACK_BIAS;
ld_off = __ ensure_simm13_or_reg(ld_off, member_reg);
__ ld_ptr(SP, ld_off, receiver_reg);
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments // Generate a native wrapper for a given method. The method takes arguments
// in the Java compiled code convention, marshals them to the native // in the Java compiled code convention, marshals them to the native
// convention (handlizes oops, etc), transitions to native, makes the call, // convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and // returns to java state (possibly blocking), unhandlizes any result and
// returns. // returns.
//
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions. The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GC_locker
// lock_critical/unlock_critical semantics are followed. Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
// if (GC_locker::needs_gc())
// SharedRuntime::block_for_jni_critical();
// tranistion to thread_in_native
// unpack arrray arguments and call native entry point
// check for safepoint in progress
// check if any thread suspend flags are set
// call into JVM and possible unlock the JNI critical
// if a GC was suppressed while in the critical native.
// transition back to thread_in_Java
// return to caller
//
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm, nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
methodHandle method, methodHandle method,
int compile_id, int compile_id,
int total_in_args, int total_in_args,
int comp_args_on_stack, // in VMRegStackSlots int comp_args_on_stack, // in VMRegStackSlots
BasicType *in_sig_bt, BasicType* in_sig_bt,
VMRegPair *in_regs, VMRegPair* in_regs,
BasicType ret_type) { BasicType ret_type) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
total_in_args,
comp_args_on_stack,
method->intrinsic_id(),
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true; bool is_critical_native = true;
address native_func = method->critical_native_function(); address native_func = method->critical_native_function();
if (native_func == NULL) { if (native_func == NULL) {

View File

@ -3404,14 +3404,6 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry; StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
#endif // COMPILER2 !=> _LP64 #endif // COMPILER2 !=> _LP64
// Build this early so it's available for the interpreter. The
// stub expects the required and actual type to already be in O1
// and O2 respectively.
StubRoutines::_throw_WrongMethodTypeException_entry =
generate_throw_exception("WrongMethodTypeException throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
G5_method_type, G3_method_handle);
// Build this early so it's available for the interpreter. // Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
} }

View File

@ -694,9 +694,9 @@ address InterpreterGenerator::generate_accessor_entry(void) {
// Need to differentiate between igetfield, agetfield, bgetfield etc. // Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes. // because they are different sizes.
// Get the type from the constant pool cache // Get the type from the constant pool cache
__ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch); __ srl(G1_scratch, ConstantPoolCacheEntry::tos_state_shift, G1_scratch);
// Make sure we don't need to mask G1_scratch for tosBits after the above shift // Make sure we don't need to mask G1_scratch after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(G1_scratch, atos ); __ cmp(G1_scratch, atos );
__ br(Assembler::equal, true, Assembler::pt, xreturn_path); __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
__ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i); __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
@ -1662,7 +1662,7 @@ int AbstractInterpreter::layout_activation(methodOop method,
int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0; int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
*interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS; *interpreter_frame->register_addr(I5_savedSP) = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
} else { } else {
assert(caller->is_compiled_frame() || caller->is_entry_frame() || caller->is_ricochet_frame(), "only possible cases"); assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
// Don't have Lesp available; lay out locals block in the caller // Don't have Lesp available; lay out locals block in the caller
// adjacent to the register window save area. // adjacent to the register window save area.
// //

View File

@ -378,7 +378,7 @@ void TemplateTable::fast_aldc(bool wide) {
Register Rcache = G3_scratch; Register Rcache = G3_scratch;
Register Rscratch = G4_scratch; Register Rscratch = G4_scratch;
resolve_cache_and_index(f1_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1)); resolve_cache_and_index(f12_oop, Otos_i, Rcache, Rscratch, wide ? sizeof(u2) : sizeof(u1));
__ verify_oop(Otos_i); __ verify_oop(Otos_i);
@ -2093,10 +2093,12 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
// Depends on cpCacheOop layout! // Depends on cpCacheOop layout!
Label resolved; Label resolved;
if (byte_no == f1_oop) { if (byte_no == f12_oop) {
// We are resolved if the f1 field contains a non-null object (CallSite, etc.) // We are resolved if the f1 field contains a non-null object (CallSite, MethodType, etc.)
// This kind of CP cache entry does not need to match the flags byte, because // This kind of CP cache entry does not need to match bytecode_1 or bytecode_2, because
// there is a 1-1 relation between bytecode type and CP entry type. // there is a 1-1 relation between bytecode type and CP entry type.
// The caller will also load a methodOop from f2.
assert(result != noreg, "");
assert_different_registers(result, Rcache); assert_different_registers(result, Rcache);
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() + __ ld_ptr(Rcache, constantPoolCacheOopDesc::base_offset() +
@ -2123,10 +2125,13 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
case Bytecodes::_invokespecial : // fall through case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
case Bytecodes::_fast_aldc : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; case Bytecodes::_fast_aldc : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break;
case Bytecodes::_fast_aldc_w : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; case Bytecodes::_fast_aldc_w : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break;
default : ShouldNotReachHere(); break; default:
fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
break;
} }
// first time invocation - must resolve first // first time invocation - must resolve first
__ call_VM(noreg, entry, O1); __ call_VM(noreg, entry, O1);
@ -2139,48 +2144,54 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
} }
void TemplateTable::load_invoke_cp_cache_entry(int byte_no, void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register Rmethod, Register method,
Register Ritable_index, Register itable_index,
Register Rflags, Register flags,
bool is_invokevirtual, bool is_invokevirtual,
bool is_invokevfinal, bool is_invokevfinal,
bool is_invokedynamic) { bool is_invokedynamic) {
// Uses both G3_scratch and G4_scratch // Uses both G3_scratch and G4_scratch
Register Rcache = G3_scratch; Register cache = G3_scratch;
Register Rscratch = G4_scratch; Register index = G4_scratch;
assert_different_registers(Rcache, Rmethod, Ritable_index); assert_different_registers(cache, method, itable_index);
ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
// determine constant pool cache field offsets // determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes( const int method_offset = in_bytes(
cp_base_offset + constantPoolCacheOopDesc::base_offset() +
(is_invokevirtual ((byte_no == f2_byte)
? ConstantPoolCacheEntry::f2_offset() ? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset() : ConstantPoolCacheEntry::f1_offset()
) )
); );
const int flags_offset = in_bytes(cp_base_offset + const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::flags_offset()); ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields // access constant pool cache fields
const int index_offset = in_bytes(cp_base_offset + const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::f2_offset()); ConstantPoolCacheEntry::f2_offset());
if (is_invokevfinal) { if (is_invokevfinal) {
__ get_cache_and_index_at_bcp(Rcache, Rscratch, 1); __ get_cache_and_index_at_bcp(cache, index, 1);
__ ld_ptr(Rcache, method_offset, Rmethod); __ ld_ptr(Address(cache, method_offset), method);
} else if (byte_no == f1_oop) { } else if (byte_no == f12_oop) {
// Resolved f1_oop goes directly into 'method' register. // Resolved f1_oop (CallSite, MethodType, etc.) goes into 'itable_index'.
resolve_cache_and_index(byte_no, Rmethod, Rcache, Rscratch, sizeof(u4)); // Resolved f2_oop (methodOop invoker) will go into 'method' (at index_offset).
// See ConstantPoolCacheEntry::set_dynamic_call and set_method_handle.
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, itable_index, cache, index, index_size);
__ ld_ptr(Address(cache, index_offset), method);
itable_index = noreg; // hack to disable load below
} else { } else {
resolve_cache_and_index(byte_no, noreg, Rcache, Rscratch, sizeof(u2)); resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
__ ld_ptr(Rcache, method_offset, Rmethod); __ ld_ptr(Address(cache, method_offset), method);
} }
if (Ritable_index != noreg) { if (itable_index != noreg) {
__ ld_ptr(Rcache, index_offset, Ritable_index); // pick up itable index from f2 also:
assert(byte_no == f1_byte, "already picked up f1");
__ ld_ptr(Address(cache, index_offset), itable_index);
} }
__ ld_ptr(Rcache, flags_offset, Rflags); __ ld_ptr(Address(cache, flags_offset), flags);
} }
// The Rcache register must be set before call // The Rcache register must be set before call
@ -2272,7 +2283,7 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
if (__ membar_has_effect(membar_bits)) { if (__ membar_has_effect(membar_bits)) {
// Get volatile flag // Get volatile flag
__ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch); __ and3(Rflags, Lscratch, Lscratch);
} }
@ -2280,9 +2291,9 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
// compute field type // compute field type
Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj; Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj;
__ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags); __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags for tosBits after the above shift // Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
// Check atos before itos for getstatic, more likely (in Queens at least) // Check atos before itos for getstatic, more likely (in Queens at least)
__ cmp(Rflags, atos); __ cmp(Rflags, atos);
@ -2445,7 +2456,7 @@ void TemplateTable::fast_accessfield(TosState state) {
if (__ membar_has_effect(membar_bits)) { if (__ membar_has_effect(membar_bits)) {
// Get volatile flag // Get volatile flag
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags); __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::f2_offset(), Rflags);
__ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
} }
switch (bytecode()) { switch (bytecode()) {
@ -2569,9 +2580,9 @@ void TemplateTable::jvmti_post_field_mod(Register Rcache, Register index, bool i
Label two_word, valsizeknown; Label two_word, valsizeknown;
__ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); __ ld_ptr(G1_scratch, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
__ mov(Lesp, G4_scratch); __ mov(Lesp, G4_scratch);
__ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags); __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags for tosBits after the above shift // Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmp(Rflags, ltos); __ cmp(Rflags, ltos);
__ br(Assembler::equal, false, Assembler::pt, two_word); __ br(Assembler::equal, false, Assembler::pt, two_word);
__ delayed()->cmp(Rflags, dtos); __ delayed()->cmp(Rflags, dtos);
@ -2625,7 +2636,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label notVolatile, checkVolatile, exit; Label notVolatile, checkVolatile, exit;
if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
__ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch); __ and3(Rflags, Lscratch, Lscratch);
if (__ membar_has_effect(read_bits)) { if (__ membar_has_effect(read_bits)) {
@ -2635,9 +2646,9 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
} }
} }
__ srl(Rflags, ConstantPoolCacheEntry::tosBits, Rflags); __ srl(Rflags, ConstantPoolCacheEntry::tos_state_shift, Rflags);
// Make sure we don't need to mask Rflags for tosBits after the above shift // Make sure we don't need to mask Rflags after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
// compute field type // compute field type
Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat; Label notInt, notShort, notChar, notObj, notByte, notLong, notFloat;
@ -2833,7 +2844,7 @@ void TemplateTable::fast_storefield(TosState state) {
Label notVolatile, checkVolatile, exit; Label notVolatile, checkVolatile, exit;
if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) { if (__ membar_has_effect(read_bits) || __ membar_has_effect(write_bits)) {
__ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags); __ ld_ptr(Rcache, cp_base_offset + ConstantPoolCacheEntry::flags_offset(), Rflags);
__ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ and3(Rflags, Lscratch, Lscratch); __ and3(Rflags, Lscratch, Lscratch);
if (__ membar_has_effect(read_bits)) { if (__ membar_has_effect(read_bits)) {
__ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile); __ cmp_and_br_short(Lscratch, 0, Assembler::equal, Assembler::pt, notVolatile);
@ -2916,7 +2927,7 @@ void TemplateTable::fast_xaccess(TosState state) {
// Test volatile // Test volatile
Label notVolatile; Label notVolatile;
__ set((1 << ConstantPoolCacheEntry::volatileField), Lscratch); __ set((1 << ConstantPoolCacheEntry::is_volatile_shift), Lscratch);
__ btst(Rflags, Lscratch); __ btst(Rflags, Lscratch);
__ br(Assembler::zero, false, Assembler::pt, notVolatile); __ br(Assembler::zero, false, Assembler::pt, notVolatile);
__ delayed()->nop(); __ delayed()->nop();
@ -2936,27 +2947,82 @@ void TemplateTable::count_calls(Register method, Register temp) {
ShouldNotReachHere(); ShouldNotReachHere();
} }
void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register ra, // return address
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags
const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (recv != noreg);
assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(recv == noreg || recv == O0, "");
assert(flags == noreg || flags == O1, "");
// setup registers & access constant pool cache
if (recv == noreg) recv = O0;
if (flags == noreg) flags = O1;
const Register temp = O2;
assert_different_registers(method, ra, index, recv, flags, temp);
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// maybe push appendix to arguments
if (is_invokedynamic || is_invokehandle) {
Label L_no_push;
__ verify_oop(index);
__ set((1 << ConstantPoolCacheEntry::has_appendix_shift), temp);
__ btst(flags, temp);
__ br(Assembler::zero, false, Assembler::pt, L_no_push);
__ delayed()->nop();
// Push the appendix as a trailing parameter.
// This must be done before we get the receiver,
// since the parameter_size includes it.
__ push_ptr(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
}
// load receiver if needed (after appendix is pushed so parameter size is correct)
if (load_receiver) {
__ and3(flags, ConstantPoolCacheEntry::parameter_size_mask, temp); // get parameter size
__ load_receiver(temp, recv); // __ argument_address uses Gargs but we need Lesp
__ verify_oop(recv);
}
// compute return type
__ srl(flags, ConstantPoolCacheEntry::tos_state_shift, ra);
// Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address
{
const address table_addr = (is_invokeinterface || is_invokedynamic) ?
(address)Interpreter::return_5_addrs_by_index_table() :
(address)Interpreter::return_3_addrs_by_index_table();
AddressLiteral table(table_addr);
__ set(table, temp);
__ sll(ra, LogBytesPerWord, ra);
__ ld_ptr(Address(temp, ra), ra);
}
}
void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) { void TemplateTable::generate_vtable_call(Register Rrecv, Register Rindex, Register Rret) {
Register Rtemp = G4_scratch; Register Rtemp = G4_scratch;
Register Rcall = Rindex; Register Rcall = Rindex;
assert_different_registers(Rcall, G5_method, Gargs, Rret); assert_different_registers(Rcall, G5_method, Gargs, Rret);
// get target methodOop & entry point // get target methodOop & entry point
const int base = instanceKlass::vtable_start_offset() * wordSize; __ lookup_virtual_method(Rrecv, Rindex, G5_method);
if (vtableEntry::size() % 3 == 0) {
// scale the vtable index by 12:
int one_third = vtableEntry::size() / 3;
__ sll(Rindex, exact_log2(one_third * 1 * wordSize), Rtemp);
__ sll(Rindex, exact_log2(one_third * 2 * wordSize), Rindex);
__ add(Rindex, Rtemp, Rindex);
} else {
// scale the vtable index by 8:
__ sll(Rindex, exact_log2(vtableEntry::size() * wordSize), Rindex);
}
__ add(Rrecv, Rindex, Rrecv);
__ ld_ptr(Rrecv, base + vtableEntry::method_offset_in_bytes(), G5_method);
__ call_from_interpreter(Rcall, Gargs, Rret); __ call_from_interpreter(Rcall, Gargs, Rret);
} }
@ -2965,16 +3031,16 @@ void TemplateTable::invokevirtual(int byte_no) {
assert(byte_no == f2_byte, "use this argument"); assert(byte_no == f2_byte, "use this argument");
Register Rscratch = G3_scratch; Register Rscratch = G3_scratch;
Register Rtemp = G4_scratch; Register Rtemp = G4_scratch;
Register Rret = Lscratch; Register Rret = Lscratch;
Register Rrecv = G5_method; Register O0_recv = O0;
Label notFinal; Label notFinal;
load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false); load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, true, false, false);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore __ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// Check for vfinal // Check for vfinal
__ set((1 << ConstantPoolCacheEntry::vfinalMethod), G4_scratch); __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), G4_scratch);
__ btst(Rret, G4_scratch); __ btst(Rret, G4_scratch);
__ br(Assembler::zero, false, Assembler::pt, notFinal); __ br(Assembler::zero, false, Assembler::pt, notFinal);
__ delayed()->and3(Rret, 0xFF, G4_scratch); // gets number of parameters __ delayed()->and3(Rret, 0xFF, G4_scratch); // gets number of parameters
@ -2986,27 +3052,27 @@ void TemplateTable::invokevirtual(int byte_no) {
__ bind(notFinal); __ bind(notFinal);
__ mov(G5_method, Rscratch); // better scratch register __ mov(G5_method, Rscratch); // better scratch register
__ load_receiver(G4_scratch, O0); // gets receiverOop __ load_receiver(G4_scratch, O0_recv); // gets receiverOop
// receiver is in O0 // receiver is in O0_recv
__ verify_oop(O0); __ verify_oop(O0_recv);
// get return address // get return address
AddressLiteral table(Interpreter::return_3_addrs_by_index_table()); AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
__ set(table, Rtemp); __ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift // Make sure we don't need to mask Rret after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ sll(Rret, LogBytesPerWord, Rret); __ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address __ ld_ptr(Rtemp, Rret, Rret); // get return address
// get receiver klass // get receiver klass
__ null_check(O0, oopDesc::klass_offset_in_bytes()); __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
__ load_klass(O0, Rrecv); __ load_klass(O0_recv, O0_recv);
__ verify_oop(Rrecv); __ verify_oop(O0_recv);
__ profile_virtual_call(Rrecv, O4); __ profile_virtual_call(O0_recv, O4);
generate_vtable_call(Rrecv, Rscratch, Rret); generate_vtable_call(O0_recv, Rscratch, Rret);
} }
void TemplateTable::fast_invokevfinal(int byte_no) { void TemplateTable::fast_invokevfinal(int byte_no) {
@ -3036,9 +3102,9 @@ void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
// get return address // get return address
AddressLiteral table(Interpreter::return_3_addrs_by_index_table()); AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
__ set(table, Rtemp); __ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type __ srl(Rret, ConstantPoolCacheEntry::tos_state_shift, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift // Make sure we don't need to mask Rret after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ sll(Rret, LogBytesPerWord, Rret); __ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address __ ld_ptr(Rtemp, Rret, Rret); // get return address
@ -3047,65 +3113,37 @@ void TemplateTable::invokevfinal_helper(Register Rscratch, Register Rret) {
__ call_from_interpreter(Rscratch, Gargs, Rret); __ call_from_interpreter(Rscratch, Gargs, Rret);
} }
void TemplateTable::invokespecial(int byte_no) { void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
Register Rscratch = G3_scratch; const Register Rret = Lscratch;
Register Rtemp = G4_scratch; const Register O0_recv = O0;
Register Rret = Lscratch; const Register Rscratch = G3_scratch;
load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false); prepare_invoke(byte_no, G5_method, Rret, noreg, O0_recv); // get receiver also for null check
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore __ null_check(O0_recv);
__ verify_oop(G5_method);
__ lduh(G5_method, in_bytes(methodOopDesc::size_of_parameters_offset()), G4_scratch);
__ load_receiver(G4_scratch, O0);
// receiver NULL check
__ null_check(O0);
__ profile_call(O4);
// get return address
AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
__ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift
ConstantPoolCacheEntry::verify_tosBits();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
// do the call // do the call
__ verify_oop(G5_method);
__ profile_call(O4);
__ call_from_interpreter(Rscratch, Gargs, Rret); __ call_from_interpreter(Rscratch, Gargs, Rret);
} }
void TemplateTable::invokestatic(int byte_no) { void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
Register Rscratch = G3_scratch; const Register Rret = Lscratch;
Register Rtemp = G4_scratch; const Register Rscratch = G3_scratch;
Register Rret = Lscratch;
load_invoke_cp_cache_entry(byte_no, G5_method, noreg, Rret, /*virtual*/ false, false, false); prepare_invoke(byte_no, G5_method, Rret); // get f1 methodOop
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
__ verify_oop(G5_method);
__ profile_call(O4);
// get return address
AddressLiteral table(Interpreter::return_3_addrs_by_index_table());
__ set(table, Rtemp);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift
ConstantPoolCacheEntry::verify_tosBits();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
// do the call // do the call
__ verify_oop(G5_method);
__ profile_call(O4);
__ call_from_interpreter(Rscratch, Gargs, Rret); __ call_from_interpreter(Rscratch, Gargs, Rret);
} }
@ -3122,7 +3160,7 @@ void TemplateTable::invokeinterface_object_method(Register RklassOop,
Label notFinal; Label notFinal;
// Check for vfinal // Check for vfinal
__ set((1 << ConstantPoolCacheEntry::vfinalMethod), Rscratch); __ set((1 << ConstantPoolCacheEntry::is_vfinal_shift), Rscratch);
__ btst(Rflags, Rscratch); __ btst(Rflags, Rscratch);
__ br(Assembler::zero, false, Assembler::pt, notFinal); __ br(Assembler::zero, false, Assembler::pt, notFinal);
__ delayed()->nop(); __ delayed()->nop();
@ -3144,53 +3182,37 @@ void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
Register Rscratch = G4_scratch; const Register Rinterface = G1_scratch;
Register Rret = G3_scratch; const Register Rret = G3_scratch;
Register Rindex = Lscratch; const Register Rindex = Lscratch;
Register Rinterface = G1_scratch; const Register O0_recv = O0;
Register RklassOop = G5_method; const Register O1_flags = O1;
Register Rflags = O1; const Register O2_klassOop = O2;
const Register Rscratch = G4_scratch;
assert_different_registers(Rscratch, G5_method); assert_different_registers(Rscratch, G5_method);
load_invoke_cp_cache_entry(byte_no, Rinterface, Rindex, Rflags, /*virtual*/ false, false, false); prepare_invoke(byte_no, Rinterface, Rret, Rindex, O0_recv, O1_flags);
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// get receiver
__ and3(Rflags, 0xFF, Rscratch); // gets number of parameters
__ load_receiver(Rscratch, O0);
__ verify_oop(O0);
__ mov(Rflags, Rret);
// get return address
AddressLiteral table(Interpreter::return_5_addrs_by_index_table());
__ set(table, Rscratch);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift
ConstantPoolCacheEntry::verify_tosBits();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rscratch, Rret, Rret); // get return address
// get receiver klass // get receiver klass
__ null_check(O0, oopDesc::klass_offset_in_bytes()); __ null_check(O0_recv, oopDesc::klass_offset_in_bytes());
__ load_klass(O0, RklassOop); __ load_klass(O0_recv, O2_klassOop);
__ verify_oop(RklassOop); __ verify_oop(O2_klassOop);
// Special case of invokeinterface called for virtual method of // Special case of invokeinterface called for virtual method of
// java.lang.Object. See cpCacheOop.cpp for details. // java.lang.Object. See cpCacheOop.cpp for details.
// This code isn't produced by javac, but could be produced by // This code isn't produced by javac, but could be produced by
// another compliant java compiler. // another compliant java compiler.
Label notMethod; Label notMethod;
__ set((1 << ConstantPoolCacheEntry::methodInterface), Rscratch); __ set((1 << ConstantPoolCacheEntry::is_forced_virtual_shift), Rscratch);
__ btst(Rflags, Rscratch); __ btst(O1_flags, Rscratch);
__ br(Assembler::zero, false, Assembler::pt, notMethod); __ br(Assembler::zero, false, Assembler::pt, notMethod);
__ delayed()->nop(); __ delayed()->nop();
invokeinterface_object_method(RklassOop, Rinterface, Rret, Rflags); invokeinterface_object_method(O2_klassOop, Rinterface, Rret, O1_flags);
__ bind(notMethod); __ bind(notMethod);
__ profile_virtual_call(RklassOop, O4); __ profile_virtual_call(O2_klassOop, O4);
// //
// find entry point to call // find entry point to call
@ -3199,9 +3221,9 @@ void TemplateTable::invokeinterface(int byte_no) {
// compute start of first itableOffsetEntry (which is at end of vtable) // compute start of first itableOffsetEntry (which is at end of vtable)
const int base = instanceKlass::vtable_start_offset() * wordSize; const int base = instanceKlass::vtable_start_offset() * wordSize;
Label search; Label search;
Register Rtemp = Rflags; Register Rtemp = O1_flags;
__ ld(RklassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp); __ ld(O2_klassOop, instanceKlass::vtable_length_offset() * wordSize, Rtemp);
if (align_object_offset(1) > 1) { if (align_object_offset(1) > 1) {
__ round_to(Rtemp, align_object_offset(1)); __ round_to(Rtemp, align_object_offset(1));
} }
@ -3212,7 +3234,7 @@ void TemplateTable::invokeinterface(int byte_no) {
__ set(base, Rscratch); __ set(base, Rscratch);
__ add(Rscratch, Rtemp, Rtemp); __ add(Rscratch, Rtemp, Rtemp);
} }
__ add(RklassOop, Rtemp, Rscratch); __ add(O2_klassOop, Rtemp, Rscratch);
__ bind(search); __ bind(search);
@ -3244,7 +3266,7 @@ void TemplateTable::invokeinterface(int byte_no) {
assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below"); assert(itableMethodEntry::method_offset_in_bytes() == 0, "adjust instruction below");
__ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex); // Rindex *= 8; __ sll(Rindex, exact_log2(itableMethodEntry::size() * wordSize), Rindex); // Rindex *= 8;
__ add(Rscratch, Rindex, Rscratch); __ add(Rscratch, Rindex, Rscratch);
__ ld_ptr(RklassOop, Rscratch, G5_method); __ ld_ptr(O2_klassOop, Rscratch, G5_method);
// Check for abstract method error. // Check for abstract method error.
{ {
@ -3260,13 +3282,42 @@ void TemplateTable::invokeinterface(int byte_no) {
__ verify_oop(G5_method); __ verify_oop(G5_method);
__ call_from_interpreter(Rcall, Gargs, Rret); __ call_from_interpreter(Rcall, Gargs, Rret);
}
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f12_oop, "use this argument");
if (!EnableInvokeDynamic) {
// rewriter does not generate this bytecode
__ should_not_reach_here();
return;
}
const Register Rret = Lscratch;
const Register G4_mtype = G4_scratch; // f1
const Register O0_recv = O0;
const Register Rscratch = G3_scratch;
prepare_invoke(byte_no, G5_method, Rret, G4_mtype, O0_recv);
__ null_check(O0_recv);
// G4: MethodType object (from f1)
// G5: MH.linkToCallSite method (from f2)
// Note: G4_mtype is already pushed (if necessary) by prepare_invoke
// do the call
__ verify_oop(G5_method);
__ profile_final_call(O4); // FIXME: profile the LambdaForm also
__ call_from_interpreter(Rscratch, Gargs, Rret);
} }
void TemplateTable::invokedynamic(int byte_no) { void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_oop, "use this argument"); assert(byte_no == f12_oop, "use this argument");
if (!EnableInvokeDynamic) { if (!EnableInvokeDynamic) {
// We should not encounter this bytecode if !EnableInvokeDynamic. // We should not encounter this bytecode if !EnableInvokeDynamic.
@ -3279,42 +3330,24 @@ void TemplateTable::invokedynamic(int byte_no) {
return; return;
} }
// G5: CallSite object (f1) const Register Rret = Lscratch;
// XX: unused (f2) const Register G4_callsite = G4_scratch;
// XX: flags (unused) const Register Rscratch = G3_scratch;
Register G5_callsite = G5_method; prepare_invoke(byte_no, G5_method, Rret, G4_callsite);
Register Rscratch = G3_scratch;
Register Rtemp = G1_scratch;
Register Rret = Lscratch;
load_invoke_cp_cache_entry(byte_no, G5_callsite, noreg, Rret, // G4: CallSite object (from f1)
/*virtual*/ false, /*vfinal*/ false, /*indy*/ true); // G5: MH.linkToCallSite method (from f2)
__ mov(SP, O5_savedSP); // record SP that we wanted the callee to restore
// Note: G4_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call // profile this call
__ profile_call(O4); __ profile_call(O4);
// get return address // do the call
AddressLiteral table(Interpreter::return_5_addrs_by_index_table()); __ verify_oop(G5_method);
__ set(table, Rtemp); __ call_from_interpreter(Rscratch, Gargs, Rret);
__ srl(Rret, ConstantPoolCacheEntry::tosBits, Rret); // get return type
// Make sure we don't need to mask Rret for tosBits after the above shift
ConstantPoolCacheEntry::verify_tosBits();
__ sll(Rret, LogBytesPerWord, Rret);
__ ld_ptr(Rtemp, Rret, Rret); // get return address
__ verify_oop(G5_callsite);
__ load_heap_oop(G5_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, Rscratch), G3_method_handle);
__ null_check(G3_method_handle);
__ verify_oop(G3_method_handle);
// Adjust Rret first so Llast_SP can be same as Rret
__ add(Rret, -frame::pc_return_offset, O7);
__ add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
__ jump_to_method_handle_entry(G3_method_handle, Rtemp, /* emit_delayed_nop */ false);
// Record SP so we can remove any stack space allocated by adapter transition
__ delayed()->mov(SP, Llast_SP);
} }

View File

@ -25,6 +25,13 @@
#ifndef CPU_SPARC_VM_TEMPLATETABLE_SPARC_HPP #ifndef CPU_SPARC_VM_TEMPLATETABLE_SPARC_HPP
#define CPU_SPARC_VM_TEMPLATETABLE_SPARC_HPP #define CPU_SPARC_VM_TEMPLATETABLE_SPARC_HPP
static void prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register ra, // return address
Register index = noreg, // itable index, MethodType, etc.
Register recv = noreg, // if caller wants to see it
Register flags = noreg // if caller wants to test it
);
// helper function // helper function
static void invokevfinal_helper(Register Rcache, Register Rret); static void invokevfinal_helper(Register Rcache, Register Rret);
static void invokeinterface_object_method(Register RklassOop, Register Rcall, static void invokeinterface_object_method(Register RklassOop, Register Rcall,

View File

@ -44,10 +44,11 @@ protected:
fmaf_instructions = 10, fmaf_instructions = 10,
fmau_instructions = 11, fmau_instructions = 11,
vis3_instructions = 12, vis3_instructions = 12,
sparc64_family = 13, cbcond_instructions = 13,
T_family = 14, sparc64_family = 14,
T1_model = 15, M_family = 15,
cbcond_instructions = 16 T_family = 16,
T1_model = 17
}; };
enum Feature_Flag_Set { enum Feature_Flag_Set {
@ -67,10 +68,11 @@ protected:
fmaf_instructions_m = 1 << fmaf_instructions, fmaf_instructions_m = 1 << fmaf_instructions,
fmau_instructions_m = 1 << fmau_instructions, fmau_instructions_m = 1 << fmau_instructions,
vis3_instructions_m = 1 << vis3_instructions, vis3_instructions_m = 1 << vis3_instructions,
cbcond_instructions_m = 1 << cbcond_instructions,
sparc64_family_m = 1 << sparc64_family, sparc64_family_m = 1 << sparc64_family,
M_family_m = 1 << M_family,
T_family_m = 1 << T_family, T_family_m = 1 << T_family,
T1_model_m = 1 << T1_model, T1_model_m = 1 << T1_model,
cbcond_instructions_m = 1 << cbcond_instructions,
generic_v8_m = v8_instructions_m | hardware_mul32_m | hardware_div32_m | hardware_fsmuld_m, generic_v8_m = v8_instructions_m | hardware_mul32_m | hardware_div32_m | hardware_fsmuld_m,
generic_v9_m = generic_v8_m | v9_instructions_m, generic_v9_m = generic_v8_m | v9_instructions_m,
@ -89,6 +91,7 @@ protected:
static int platform_features(int features); static int platform_features(int features);
// Returns true if the platform is in the niagara line (T series) // Returns true if the platform is in the niagara line (T series)
static bool is_M_family(int features) { return (features & M_family_m) != 0; }
static bool is_T_family(int features) { return (features & T_family_m) != 0; } static bool is_T_family(int features) { return (features & T_family_m) != 0; }
static bool is_niagara() { return is_T_family(_features); } static bool is_niagara() { return is_T_family(_features); }
DEBUG_ONLY( static bool is_niagara(int features) { return (features & sun4v_m) != 0; } ) DEBUG_ONLY( static bool is_niagara(int features) { return (features & sun4v_m) != 0; } )

View File

@ -70,7 +70,6 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
__ load_klass(O0, G3_scratch); __ load_klass(O0, G3_scratch);
// set methodOop (in case of interpreted method), and destination address // set methodOop (in case of interpreted method), and destination address
int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
#ifndef PRODUCT #ifndef PRODUCT
if (DebugVtables) { if (DebugVtables) {
Label L; Label L;
@ -82,13 +81,8 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
__ bind(L); __ bind(L);
} }
#endif #endif
int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
if (Assembler::is_simm13(v_off)) { __ lookup_virtual_method(G3_scratch, vtable_index, G5_method);
__ ld_ptr(G3, v_off, G5_method);
} else {
__ set(v_off,G5);
__ ld_ptr(G3, G5, G5_method);
}
#ifndef PRODUCT #ifndef PRODUCT
if (DebugVtables) { if (DebugVtables) {

View File

@ -41,6 +41,15 @@
#include "gc_implementation/g1/heapRegion.hpp" #include "gc_implementation/g1/heapRegion.hpp"
#endif #endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
// Implementation of AddressLiteral // Implementation of AddressLiteral
AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) { AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
@ -5508,23 +5517,7 @@ void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rd
// To see where a verify_oop failed, get $ebx+40/X for this frame. // To see where a verify_oop failed, get $ebx+40/X for this frame.
// This is the value of eip which points to where verify_oop will return. // This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) { if (os::message_box(msg, "Execution stopped, print registers?")) {
ttyLocker ttyl; print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
if ((WizardMode || Verbose) && PrintMiscellaneous) {
tty->cr();
findpc(eip);
tty->cr();
}
#endif
tty->print_cr("rax = 0x%08x", rax);
tty->print_cr("rbx = 0x%08x", rbx);
tty->print_cr("rcx = 0x%08x", rcx);
tty->print_cr("rdx = 0x%08x", rdx);
tty->print_cr("rdi = 0x%08x", rdi);
tty->print_cr("rsi = 0x%08x", rsi);
tty->print_cr("rbp = 0x%08x", rbp);
tty->print_cr("rsp = 0x%08x", rsp);
BREAKPOINT; BREAKPOINT;
assert(false, "start up GDB"); assert(false, "start up GDB");
} }
@ -5536,12 +5529,53 @@ void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rd
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
} }
void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("eip = 0x%08x", eip);
#ifndef PRODUCT
if ((WizardMode || Verbose) && PrintMiscellaneous) {
tty->cr();
findpc(eip);
tty->cr();
}
#endif
#define PRINT_REG(rax) \
{ tty->print("%s = ", #rax); os::print_location(tty, rax); }
PRINT_REG(rax);
PRINT_REG(rbx);
PRINT_REG(rcx);
PRINT_REG(rdx);
PRINT_REG(rdi);
PRINT_REG(rsi);
PRINT_REG(rbp);
PRINT_REG(rsp);
#undef PRINT_REG
// Print some words near top of staack.
int* dump_sp = (int*) rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 16; row++) {
tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
for (int col = 0; col < 8; col++) {
tty->print(" 0x%08x", *dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)eip-64, (address)eip);
tty->print_cr("--------");
Disassembler::decode((address)eip, (address)eip+32);
}
void MacroAssembler::stop(const char* msg) { void MacroAssembler::stop(const char* msg) {
ExternalAddress message((address)msg); ExternalAddress message((address)msg);
// push address of message // push address of message
pushptr(message.addr()); pushptr(message.addr());
{ Label L; call(L, relocInfo::none); bind(L); } // push eip { Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers pusha(); // push registers
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
hlt(); hlt();
} }
@ -5558,6 +5592,18 @@ void MacroAssembler::warn(const char* msg) {
pop_CPU_state(); pop_CPU_state();
} }
void MacroAssembler::print_state() {
{ Label L; call(L, relocInfo::none); bind(L); } // push eip
pusha(); // push registers
push_CPU_state();
call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
pop_CPU_state();
popa();
addl(rsp, wordSize);
}
#else // _LP64 #else // _LP64
// 64 bit versions // 64 bit versions
@ -6023,14 +6069,33 @@ void MacroAssembler::stop(const char* msg) {
} }
void MacroAssembler::warn(const char* msg) { void MacroAssembler::warn(const char* msg) {
push(rsp); push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, ExternalAddress((address) msg)); lea(c_rarg0, ExternalAddress((address) msg));
call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0); call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
pop_CPU_state(); pop_CPU_state();
pop(rsp); mov(rsp, rbp);
pop(rbp);
}
void MacroAssembler::print_state() {
address rip = pc();
pusha(); // get regs on stack
push(rbp);
movq(rbp, rsp);
andq(rsp, -16); // align stack as required by push_CPU_state and call
push_CPU_state(); // keeps alignment at 16 bytes
lea(c_rarg0, InternalAddress(rip));
lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
pop_CPU_state();
mov(rsp, rbp);
pop(rbp);
popa();
} }
#ifndef PRODUCT #ifndef PRODUCT
@ -6039,7 +6104,7 @@ extern "C" void findpc(intptr_t x);
void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
// In order to get locks to work, we need to fake a in_VM state // In order to get locks to work, we need to fake a in_VM state
if (ShowMessageBoxOnError ) { if (ShowMessageBoxOnError) {
JavaThread* thread = JavaThread::current(); JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state(); JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm); thread->set_thread_state(_thread_in_vm);
@ -6053,30 +6118,9 @@ void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
// XXX correct this offset for amd64 // XXX correct this offset for amd64
// This is the value of eip which points to where verify_oop will return. // This is the value of eip which points to where verify_oop will return.
if (os::message_box(msg, "Execution stopped, print registers?")) { if (os::message_box(msg, "Execution stopped, print registers?")) {
ttyLocker ttyl; print_state64(pc, regs);
tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
tty->print_cr("rax = 0x%016lx", regs[15]);
tty->print_cr("rbx = 0x%016lx", regs[12]);
tty->print_cr("rcx = 0x%016lx", regs[14]);
tty->print_cr("rdx = 0x%016lx", regs[13]);
tty->print_cr("rdi = 0x%016lx", regs[8]);
tty->print_cr("rsi = 0x%016lx", regs[9]);
tty->print_cr("rbp = 0x%016lx", regs[10]);
tty->print_cr("rsp = 0x%016lx", regs[11]);
tty->print_cr("r8 = 0x%016lx", regs[7]);
tty->print_cr("r9 = 0x%016lx", regs[6]);
tty->print_cr("r10 = 0x%016lx", regs[5]);
tty->print_cr("r11 = 0x%016lx", regs[4]);
tty->print_cr("r12 = 0x%016lx", regs[3]);
tty->print_cr("r13 = 0x%016lx", regs[2]);
tty->print_cr("r14 = 0x%016lx", regs[1]);
tty->print_cr("r15 = 0x%016lx", regs[0]);
BREAKPOINT; BREAKPOINT;
assert(false, "start up GDB");
} }
ThreadStateTransition::transition(thread, _thread_in_vm, saved_state); ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
} else { } else {
@ -6087,6 +6131,54 @@ void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
} }
} }
void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
ttyLocker ttyl;
FlagSetting fs(Debugging, true);
tty->print_cr("rip = 0x%016lx", pc);
#ifndef PRODUCT
tty->cr();
findpc(pc);
tty->cr();
#endif
#define PRINT_REG(rax, value) \
{ tty->print("%s = ", #rax); os::print_location(tty, value); }
PRINT_REG(rax, regs[15]);
PRINT_REG(rbx, regs[12]);
PRINT_REG(rcx, regs[14]);
PRINT_REG(rdx, regs[13]);
PRINT_REG(rdi, regs[8]);
PRINT_REG(rsi, regs[9]);
PRINT_REG(rbp, regs[10]);
PRINT_REG(rsp, regs[11]);
PRINT_REG(r8 , regs[7]);
PRINT_REG(r9 , regs[6]);
PRINT_REG(r10, regs[5]);
PRINT_REG(r11, regs[4]);
PRINT_REG(r12, regs[3]);
PRINT_REG(r13, regs[2]);
PRINT_REG(r14, regs[1]);
PRINT_REG(r15, regs[0]);
#undef PRINT_REG
// Print some words near top of staack.
int64_t* rsp = (int64_t*) regs[11];
int64_t* dump_sp = rsp;
for (int col1 = 0; col1 < 8; col1++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
os::print_location(tty, *dump_sp++);
}
for (int row = 0; row < 25; row++) {
tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
for (int col = 0; col < 4; col++) {
tty->print(" 0x%016lx", *dump_sp++);
}
tty->cr();
}
// Print some instructions around pc:
Disassembler::decode((address)pc-64, (address)pc);
tty->print_cr("--------");
Disassembler::decode((address)pc, (address)pc+32);
}
#endif // _LP64 #endif // _LP64
// Now versions that are common to 32/64 bit // Now versions that are common to 32/64 bit
@ -6456,7 +6548,7 @@ void MacroAssembler::call_VM_base(Register oop_result,
get_thread(rax); get_thread(rax);
cmpptr(java_thread, rax); cmpptr(java_thread, rax);
jcc(Assembler::equal, L); jcc(Assembler::equal, L);
stop("MacroAssembler::call_VM_base: rdi not callee saved?"); STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
bind(L); bind(L);
} }
pop(rax); pop(rax);
@ -7196,7 +7288,7 @@ void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
jcc(Assembler::notZero, integer); jcc(Assembler::notZero, integer);
cmpl(tmp3, 0x80000000); cmpl(tmp3, 0x80000000);
jcc(Assembler::notZero, integer); jcc(Assembler::notZero, integer);
stop("integer indefinite value shouldn't be seen here"); STOP("integer indefinite value shouldn't be seen here");
bind(integer); bind(integer);
} }
#else #else
@ -7206,7 +7298,7 @@ void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
shlq(tmp3, 1); shlq(tmp3, 1);
jcc(Assembler::carryClear, integer); jcc(Assembler::carryClear, integer);
jcc(Assembler::notZero, integer); jcc(Assembler::notZero, integer);
stop("integer indefinite value shouldn't be seen here"); STOP("integer indefinite value shouldn't be seen here");
bind(integer); bind(integer);
} }
#endif #endif
@ -8388,7 +8480,7 @@ Register MacroAssembler::tlab_refill(Label& retry,
shlptr(tsize, LogHeapWordSize); shlptr(tsize, LogHeapWordSize);
cmpptr(t1, tsize); cmpptr(t1, tsize);
jcc(Assembler::equal, ok); jcc(Assembler::equal, ok);
stop("assert(t1 != tlab size)"); STOP("assert(t1 != tlab size)");
should_not_reach_here(); should_not_reach_here();
bind(ok); bind(ok);
@ -8727,6 +8819,19 @@ void MacroAssembler::lookup_interface_method(Register recv_klass,
} }
// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result) {
const int base = instanceKlass::vtable_start_offset() * wordSize;
assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
Address vtable_entry_addr(recv_klass,
vtable_index, Address::times_ptr,
base + vtableEntry::method_offset_in_bytes());
movptr(method_result, vtable_entry_addr);
}
void MacroAssembler::check_klass_subtype(Register sub_klass, void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass, Register super_klass,
Register temp_reg, Register temp_reg,
@ -8976,6 +9081,7 @@ void MacroAssembler::verify_oop(Register reg, const char* s) {
// Pass register number to verify_oop_subroutine // Pass register number to verify_oop_subroutine
char* b = new char[strlen(s) + 50]; char* b = new char[strlen(s) + 50];
sprintf(b, "verify_oop: %s: %s", reg->name(), s); sprintf(b, "verify_oop: %s: %s", reg->name(), s);
BLOCK_COMMENT("verify_oop {");
#ifdef _LP64 #ifdef _LP64
push(rscratch1); // save r10, trashed by movptr() push(rscratch1); // save r10, trashed by movptr()
#endif #endif
@ -8990,6 +9096,7 @@ void MacroAssembler::verify_oop(Register reg, const char* s) {
movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
call(rax); call(rax);
// Caller pops the arguments (oop, message) and restores rax, r10 // Caller pops the arguments (oop, message) and restores rax, r10
BLOCK_COMMENT("} verify_oop");
} }
@ -9010,7 +9117,7 @@ RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_ad
jcc(Assembler::notZero, L); jcc(Assembler::notZero, L);
char* buf = new char[40]; char* buf = new char[40];
sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]); sprintf(buf, "DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
stop(buf); STOP(buf);
} else { } else {
jccb(Assembler::notZero, L); jccb(Assembler::notZero, L);
hlt(); hlt();
@ -9026,60 +9133,6 @@ RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_ad
} }
// registers on entry:
// - rax ('check' register): required MethodType
// - rcx: method handle
// - rdx, rsi, or ?: killable temp
void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type) {
Address type_addr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg));
// compare method type against that of the receiver
if (UseCompressedOops) {
load_heap_oop(temp_reg, type_addr);
cmpptr(mtype_reg, temp_reg);
} else {
cmpptr(mtype_reg, type_addr);
}
jcc(Assembler::notEqual, wrong_method_type);
}
// A method handle has a "vmslots" field which gives the size of its
// argument list in JVM stack slots. This field is either located directly
// in every method handle, or else is indirectly accessed through the
// method handle's MethodType. This macro hides the distinction.
void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg) {
assert_different_registers(vmslots_reg, mh_reg, temp_reg);
// load mh.type.form.vmslots
Register temp2_reg = vmslots_reg;
load_heap_oop(temp2_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)));
load_heap_oop(temp2_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)));
movl(vmslots_reg, Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
}
// registers on entry:
// - rcx: method handle
// - rdx: killable temp (interpreted only)
// - rax: killable temp (compiled only)
void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
assert(mh_reg == rcx, "caller must put MH object in rcx");
assert_different_registers(mh_reg, temp_reg);
// pick out the interpreted side of the handler
// NOTE: vmentry is not an oop!
movptr(temp_reg, Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
// off we go...
jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
// for the various stubs which take control at this point,
// see MethodHandles::generate_method_handle_stub
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
int extra_slot_offset) { int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver). // cf. TemplateTable::prepare_invoke(), if (load_receiver).
@ -9152,14 +9205,14 @@ void MacroAssembler::verify_tlab() {
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
jcc(Assembler::aboveEqual, next); jcc(Assembler::aboveEqual, next);
stop("assert(top >= start)"); STOP("assert(top >= start)");
should_not_reach_here(); should_not_reach_here();
bind(next); bind(next);
movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
jcc(Assembler::aboveEqual, ok); jcc(Assembler::aboveEqual, ok);
stop("assert(top <= end)"); STOP("assert(top <= end)");
should_not_reach_here(); should_not_reach_here();
bind(ok); bind(ok);
@ -9592,6 +9645,25 @@ void MacroAssembler::store_heap_oop(Address dst, Register src) {
movptr(dst, src); movptr(dst, src);
} }
void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
assert_different_registers(src1, tmp);
#ifdef _LP64
if (UseCompressedOops) {
bool did_push = false;
if (tmp == noreg) {
tmp = rax;
push(tmp);
did_push = true;
assert(!src2.uses(rsp), "can't push");
}
load_heap_oop(tmp, src2);
cmpptr(src1, tmp);
if (did_push) pop(tmp);
} else
#endif
cmpptr(src1, src2);
}
// Used for storing NULLs. // Used for storing NULLs.
void MacroAssembler::store_heap_oop_null(Address dst) { void MacroAssembler::store_heap_oop_null(Address dst) {
#ifdef _LP64 #ifdef _LP64
@ -9622,7 +9694,7 @@ void MacroAssembler::verify_heapbase(const char* msg) {
push(rscratch1); // cmpptr trashes rscratch1 push(rscratch1); // cmpptr trashes rscratch1
cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr())); cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
jcc(Assembler::equal, ok); jcc(Assembler::equal, ok);
stop(msg); STOP(msg);
bind(ok); bind(ok);
pop(rscratch1); pop(rscratch1);
} }
@ -9655,7 +9727,7 @@ void MacroAssembler::encode_heap_oop_not_null(Register r) {
Label ok; Label ok;
testq(r, r); testq(r, r);
jcc(Assembler::notEqual, ok); jcc(Assembler::notEqual, ok);
stop("null oop passed to encode_heap_oop_not_null"); STOP("null oop passed to encode_heap_oop_not_null");
bind(ok); bind(ok);
} }
#endif #endif
@ -9676,7 +9748,7 @@ void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
Label ok; Label ok;
testq(src, src); testq(src, src);
jcc(Assembler::notEqual, ok); jcc(Assembler::notEqual, ok);
stop("null oop passed to encode_heap_oop_not_null2"); STOP("null oop passed to encode_heap_oop_not_null2");
bind(ok); bind(ok);
} }
#endif #endif
@ -9867,7 +9939,7 @@ void MacroAssembler::verified_entry(int framesize, bool stack_bang, bool fp_mode
cmpptr(rax, StackAlignmentInBytes-wordSize); cmpptr(rax, StackAlignmentInBytes-wordSize);
pop(rax); pop(rax);
jcc(Assembler::equal, L); jcc(Assembler::equal, L);
stop("Stack is not properly aligned!"); STOP("Stack is not properly aligned!");
bind(L); bind(L);
} }
#endif #endif
@ -10541,13 +10613,6 @@ void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Regist
bind(DONE); bind(DONE);
} }
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
void MacroAssembler::generate_fill(BasicType t, bool aligned, void MacroAssembler::generate_fill(BasicType t, bool aligned,
Register to, Register value, Register count, Register to, Register value, Register count,
Register rtmp, XMMRegister xtmp) { Register rtmp, XMMRegister xtmp) {

View File

@ -1940,6 +1940,7 @@ class MacroAssembler: public Assembler {
void load_heap_oop(Register dst, Address src); void load_heap_oop(Register dst, Address src);
void load_heap_oop_not_null(Register dst, Address src); void load_heap_oop_not_null(Register dst, Address src);
void store_heap_oop(Address dst, Register src); void store_heap_oop(Address dst, Register src);
void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
// Used for storing NULL. All other oop constants should be // Used for storing NULL. All other oop constants should be
// stored using routines that take a jobject. // stored using routines that take a jobject.
@ -2117,6 +2118,11 @@ class MacroAssembler: public Assembler {
Register scan_temp, Register scan_temp,
Label& no_such_interface); Label& no_such_interface);
// virtual method calling
void lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result);
// Test sub_klass against super_klass, with fast and slow paths. // Test sub_klass against super_klass, with fast and slow paths.
// The fast path produces a tri-state answer: yes / no / maybe-slow. // The fast path produces a tri-state answer: yes / no / maybe-slow.
@ -2152,15 +2158,8 @@ class MacroAssembler: public Assembler {
Label& L_success); Label& L_success);
// method handles (JSR 292) // method handles (JSR 292)
void check_method_handle_type(Register mtype_reg, Register mh_reg,
Register temp_reg,
Label& wrong_method_type);
void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
Register temp_reg);
void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
//---- //----
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0 void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
@ -2179,8 +2178,13 @@ class MacroAssembler: public Assembler {
// prints msg and continues // prints msg and continues
void warn(const char* msg); void warn(const char* msg);
// dumps registers and other state
void print_state();
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
static void debug64(char* msg, int64_t pc, int64_t regs[]); static void debug64(char* msg, int64_t pc, int64_t regs[]);
static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
static void print_state64(int64_t pc, int64_t regs[]);
void os_breakpoint(); void os_breakpoint();

View File

@ -3508,6 +3508,7 @@ void LIR_Assembler::emit_lock(LIR_OpLock* op) {
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
ciMethod* method = op->profiled_method(); ciMethod* method = op->profiled_method();
int bci = op->profiled_bci(); int bci = op->profiled_bci();
ciMethod* callee = op->profiled_callee();
// Update counter for all call types // Update counter for all call types
ciMethodData* md = method->method_data_or_null(); ciMethodData* md = method->method_data_or_null();
@ -3519,9 +3520,11 @@ void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
__ movoop(mdo, md->constant_encoding()); __ movoop(mdo, md->constant_encoding());
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
Bytecodes::Code bc = method->java_code_at_bci(bci); Bytecodes::Code bc = method->java_code_at_bci(bci);
const bool callee_is_static = callee->is_loaded() && callee->is_static();
// Perform additional virtual call profiling for invokevirtual and // Perform additional virtual call profiling for invokevirtual and
// invokeinterface bytecodes // invokeinterface bytecodes
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
!callee_is_static && // required for optimized MH invokes
C1ProfileVirtualCalls) { C1ProfileVirtualCalls) {
assert(op->recv()->is_single_cpu(), "recv must be allocated"); assert(op->recv()->is_single_cpu(), "recv must be allocated");
Register recv = op->recv()->as_register(); Register recv = op->recv()->as_register();

View File

@ -871,9 +871,9 @@ address InterpreterGenerator::generate_accessor_entry(void) {
// Need to differentiate between igetfield, agetfield, bgetfield etc. // Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes. // because they are different sizes.
// Use the type from the constant pool cache // Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tosBits); __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rdx for tosBits after the above shift // Make sure we don't need to mask rdx after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
#ifdef _LP64 #ifdef _LP64
Label notObj; Label notObj;
__ cmpl(rdx, atos); __ cmpl(rdx, atos);

View File

@ -439,7 +439,6 @@ frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
// frame::sender_for_compiled_frame // frame::sender_for_compiled_frame
frame frame::sender_for_compiled_frame(RegisterMap* map) const { frame frame::sender_for_compiled_frame(RegisterMap* map) const {
assert(map != NULL, "map must be set"); assert(map != NULL, "map must be set");
assert(!is_ricochet_frame(), "caller must handle this");
// frame owned by optimizing compiler // frame owned by optimizing compiler
assert(_cb->frame_size() >= 0, "must have non-zero frame size"); assert(_cb->frame_size() >= 0, "must have non-zero frame size");
@ -483,7 +482,6 @@ frame frame::sender(RegisterMap* map) const {
if (is_entry_frame()) return sender_for_entry_frame(map); if (is_entry_frame()) return sender_for_entry_frame(map);
if (is_interpreted_frame()) return sender_for_interpreter_frame(map); if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
assert(_cb == CodeCache::find_blob(pc()),"Must be the same"); assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
if (is_ricochet_frame()) return sender_for_ricochet_frame(map);
if (_cb != NULL) { if (_cb != NULL) {
return sender_for_compiled_frame(map); return sender_for_compiled_frame(map);
@ -658,9 +656,7 @@ intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
values.describe(frame_no, fp() + frame::name##_offset, #name) values.describe(frame_no, fp() + frame::name##_offset, #name)
void frame::describe_pd(FrameValues& values, int frame_no) { void frame::describe_pd(FrameValues& values, int frame_no) {
if (is_ricochet_frame()) { if (is_interpreted_frame()) {
MethodHandles::RicochetFrame::describe(this, values, frame_no);
} else if (is_interpreted_frame()) {
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp); DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp); DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
DESCRIBE_FP_OFFSET(interpreter_frame_method); DESCRIBE_FP_OFFSET(interpreter_frame_method);
@ -682,12 +678,7 @@ intptr_t* frame::real_fp() const {
if (_cb != NULL) { if (_cb != NULL) {
// use the frame size if valid // use the frame size if valid
int size = _cb->frame_size(); int size = _cb->frame_size();
if ((size > 0) && if (size > 0) {
(! is_ricochet_frame())) {
// Work-around: ricochet explicitly excluded because frame size is not
// constant for the ricochet blob but its frame_size could not, for
// some reasons, be declared as <= 0. This potentially confusing
// size declaration should be fixed as another CR.
return unextended_sp() + size; return unextended_sp() + size;
} }
} }

View File

@ -253,8 +253,12 @@ void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
movptr(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset())); movptr(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
const int shift_count = (1 + byte_no) * BitsPerByte; const int shift_count = (1 + byte_no) * BitsPerByte;
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
"correct shift count");
shrptr(bytecode, shift_count); shrptr(bytecode, shift_count);
andptr(bytecode, 0xFF); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
} }

View File

@ -256,8 +256,12 @@ void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register
// little-endian machines allow us that. // little-endian machines allow us that.
movl(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset())); movl(bytecode, Address(cache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset()));
const int shift_count = (1 + byte_no) * BitsPerByte; const int shift_count = (1 + byte_no) * BitsPerByte;
assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
(byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
"correct shift count");
shrl(bytecode, shift_count); shrl(bytecode, shift_count);
andl(bytecode, 0xFF); assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
} }

View File

@ -35,7 +35,6 @@
address generate_normal_entry(bool synchronized); address generate_normal_entry(bool synchronized);
address generate_native_entry(bool synchronized); address generate_native_entry(bool synchronized);
address generate_abstract_entry(void); address generate_abstract_entry(void);
address generate_method_handle_entry(void);
address generate_math_entry(AbstractInterpreter::MethodKind kind); address generate_math_entry(AbstractInterpreter::MethodKind kind);
address generate_empty_entry(void); address generate_empty_entry(void);
address generate_accessor_entry(void); address generate_accessor_entry(void);

View File

@ -243,18 +243,6 @@ address InterpreterGenerator::generate_abstract_entry(void) {
} }
// Method handle invoker
// Dispatch a method of the form java.lang.invoke.MethodHandles::invoke(...)
address InterpreterGenerator::generate_method_handle_entry(void) {
if (!EnableInvokeDynamic) {
return generate_abstract_entry();
}
address entry_point = MethodHandles::generate_method_handle_interpreter_entry(_masm);
return entry_point;
}
void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
// This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in

View File

@ -325,19 +325,6 @@ address InterpreterGenerator::generate_abstract_entry(void) {
} }
// Method handle invoker
// Dispatch a method of the form java.lang.invoke.MethodHandles::invoke(...)
address InterpreterGenerator::generate_method_handle_entry(void) {
if (!EnableInvokeDynamic) {
return generate_abstract_entry();
}
address entry_point = MethodHandles::generate_method_handle_interpreter_entry(_masm);
return entry_point;
}
// Empty method, generate a very fast return. // Empty method, generate a very fast return.
address InterpreterGenerator::generate_empty_entry(void) { address InterpreterGenerator::generate_empty_entry(void) {

File diff suppressed because it is too large Load Diff

View File

@ -27,266 +27,12 @@
// Adapters // Adapters
enum /* platform_dependent_constants */ { enum /* platform_dependent_constants */ {
adapter_code_size = NOT_LP64(16000 DEBUG_ONLY(+ 15000)) LP64_ONLY(32000 DEBUG_ONLY(+ 120000)) adapter_code_size = NOT_LP64(16000 DEBUG_ONLY(+ 25000)) LP64_ONLY(32000 DEBUG_ONLY(+ 150000))
};
public:
// The stack just after the recursive call from a ricochet frame
// looks something like this. Offsets are marked in words, not bytes.
// rsi (r13 on LP64) is part of the interpreter calling sequence
// which tells the callee where is my real rsp (for frame walking).
// (...lower memory addresses)
// rsp: [ return pc ] always the global RicochetBlob::bounce_addr
// rsp+1: [ recursive arg N ]
// rsp+2: [ recursive arg N-1 ]
// ...
// rsp+N: [ recursive arg 1 ]
// rsp+N+1: [ recursive method handle ]
// ...
// rbp-6: [ cleanup continuation pc ] <-- (struct RicochetFrame)
// rbp-5: [ saved target MH ] the MH we will call on the saved args
// rbp-4: [ saved args layout oop ] an int[] array which describes argument layout
// rbp-3: [ saved args pointer ] address of transformed adapter arg M (slot 0)
// rbp-2: [ conversion ] information about how the return value is used
// rbp-1: [ exact sender sp ] exact TOS (rsi/r13) of original sender frame
// rbp+0: [ saved sender fp ] (for original sender of AMH)
// rbp+1: [ saved sender pc ] (back to original sender of AMH)
// rbp+2: [ transformed adapter arg M ] <-- (extended TOS of original sender)
// rbp+3: [ transformed adapter arg M-1]
// ...
// rbp+M+1: [ transformed adapter arg 1 ]
// rbp+M+2: [ padding ] <-- (rbp + saved args base offset)
// ... [ optional padding]
// (higher memory addresses...)
//
// The arguments originally passed by the original sender
// are lost, and arbitrary amounts of stack motion might have
// happened due to argument transformation.
// (This is done by C2I/I2C adapters and non-direct method handles.)
// This is why there is an unpredictable amount of memory between
// the extended and exact TOS of the sender.
// The ricochet adapter itself will also (in general) perform
// transformations before the recursive call.
//
// The transformed and saved arguments, immediately above the saved
// return PC, are a well-formed method handle invocation ready to execute.
// When the GC needs to walk the stack, these arguments are described
// via the saved arg types oop, an int[] array with a private format.
// This array is derived from the type of the transformed adapter
// method handle, which also sits at the base of the saved argument
// bundle. Since the GC may not be able to fish out the int[]
// array, so it is pushed explicitly on the stack. This may be
// an unnecessary expense.
//
// The following register conventions are significant at this point:
// rsp the thread stack, as always; preserved by caller
// rsi/r13 exact TOS of recursive frame (contents of [rbp-2])
// rcx recursive method handle (contents of [rsp+N+1])
// rbp preserved by caller (not used by caller)
// Unless otherwise specified, all registers can be blown by the call.
//
// If this frame must be walked, the transformed adapter arguments
// will be found with the help of the saved arguments descriptor.
//
// Therefore, the descriptor must match the referenced arguments.
// The arguments must be followed by at least one word of padding,
// which will be necessary to complete the final method handle call.
// That word is not treated as holding an oop. Neither is the word
//
// The word pointed to by the return argument pointer is not
// treated as an oop, even if points to a saved argument.
// This allows the saved argument list to have a "hole" in it
// to receive an oop from the recursive call.
// (The hole might temporarily contain RETURN_VALUE_PLACEHOLDER.)
//
// When the recursive callee returns, RicochetBlob::bounce_addr will
// immediately jump to the continuation stored in the RF.
// This continuation will merge the recursive return value
// into the saved argument list. At that point, the original
// rsi, rbp, and rsp will be reloaded, the ricochet frame will
// disappear, and the final target of the adapter method handle
// will be invoked on the transformed argument list.
class RicochetFrame {
friend class MethodHandles;
friend class VMStructs;
private:
intptr_t* _continuation; // what to do when control gets back here
oopDesc* _saved_target; // target method handle to invoke on saved_args
oopDesc* _saved_args_layout; // caching point for MethodTypeForm.vmlayout cookie
intptr_t* _saved_args_base; // base of pushed arguments (slot 0, arg N) (-3)
intptr_t _conversion; // misc. information from original AdapterMethodHandle (-2)
intptr_t* _exact_sender_sp; // parallel to interpreter_frame_sender_sp (-1)
intptr_t* _sender_link; // *must* coincide with frame::link_offset (0)
address _sender_pc; // *must* coincide with frame::return_addr_offset (1)
public:
intptr_t* continuation() const { return _continuation; }
oop saved_target() const { return _saved_target; }
oop saved_args_layout() const { return _saved_args_layout; }
intptr_t* saved_args_base() const { return _saved_args_base; }
intptr_t conversion() const { return _conversion; }
intptr_t* exact_sender_sp() const { return _exact_sender_sp; }
intptr_t* sender_link() const { return _sender_link; }
address sender_pc() const { return _sender_pc; }
intptr_t* extended_sender_sp() const {
// The extended sender SP is above the current RicochetFrame.
return (intptr_t*) (((address) this) + sizeof(RicochetFrame));
}
intptr_t return_value_slot_number() const {
return adapter_conversion_vminfo(conversion());
}
BasicType return_value_type() const {
return adapter_conversion_dest_type(conversion());
}
bool has_return_value_slot() const {
return return_value_type() != T_VOID;
}
intptr_t* return_value_slot_addr() const {
assert(has_return_value_slot(), "");
return saved_arg_slot_addr(return_value_slot_number());
}
intptr_t* saved_target_slot_addr() const {
return saved_arg_slot_addr(saved_args_length());
}
intptr_t* saved_arg_slot_addr(int slot) const {
assert(slot >= 0, "");
return (intptr_t*)( (address)saved_args_base() + (slot * Interpreter::stackElementSize) );
}
jint saved_args_length() const;
jint saved_arg_offset(int arg) const;
// GC interface
oop* saved_target_addr() { return (oop*)&_saved_target; }
oop* saved_args_layout_addr() { return (oop*)&_saved_args_layout; }
oop compute_saved_args_layout(bool read_cache, bool write_cache);
// Compiler/assembler interface.
static int continuation_offset_in_bytes() { return offset_of(RicochetFrame, _continuation); }
static int saved_target_offset_in_bytes() { return offset_of(RicochetFrame, _saved_target); }
static int saved_args_layout_offset_in_bytes(){ return offset_of(RicochetFrame, _saved_args_layout); }
static int saved_args_base_offset_in_bytes() { return offset_of(RicochetFrame, _saved_args_base); }
static int conversion_offset_in_bytes() { return offset_of(RicochetFrame, _conversion); }
static int exact_sender_sp_offset_in_bytes() { return offset_of(RicochetFrame, _exact_sender_sp); }
static int sender_link_offset_in_bytes() { return offset_of(RicochetFrame, _sender_link); }
static int sender_pc_offset_in_bytes() { return offset_of(RicochetFrame, _sender_pc); }
// This value is not used for much, but it apparently must be nonzero.
static int frame_size_in_bytes() { return sender_link_offset_in_bytes(); }
#ifdef ASSERT
// The magic number is supposed to help find ricochet frames within the bytes of stack dumps.
enum { MAGIC_NUMBER_1 = 0xFEED03E, MAGIC_NUMBER_2 = 0xBEEF03E };
static int magic_number_1_offset_in_bytes() { return -wordSize; }
static int magic_number_2_offset_in_bytes() { return sizeof(RicochetFrame); }
intptr_t magic_number_1() const { return *(intptr_t*)((address)this + magic_number_1_offset_in_bytes()); };
intptr_t magic_number_2() const { return *(intptr_t*)((address)this + magic_number_2_offset_in_bytes()); };
#endif //ASSERT
enum { RETURN_VALUE_PLACEHOLDER = (NOT_DEBUG(0) DEBUG_ONLY(42)) };
static void verify_offsets() NOT_DEBUG_RETURN;
void verify() const NOT_DEBUG_RETURN; // check for MAGIC_NUMBER, etc.
void zap_arguments() NOT_DEBUG_RETURN;
static void generate_ricochet_blob(MacroAssembler* _masm,
// output params:
int* bounce_offset,
int* exception_offset,
int* frame_size_in_words);
static void enter_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register rax_argv,
address return_handler,
Register rbx_temp);
static void leave_ricochet_frame(MacroAssembler* _masm,
Register rcx_recv,
Register new_sp_reg,
Register sender_pc_reg);
static Address frame_address(int offset = 0) {
// The RicochetFrame is found by subtracting a constant offset from rbp.
return Address(rbp, - sender_link_offset_in_bytes() + offset);
}
static RicochetFrame* from_frame(const frame& fr) {
address bp = (address) fr.fp();
RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
rf->verify();
return rf;
}
static void verify_clean(MacroAssembler* _masm) NOT_DEBUG_RETURN;
static void describe(const frame* fr, FrameValues& values, int frame_no) PRODUCT_RETURN;
}; };
// Additional helper methods for MethodHandles code generation: // Additional helper methods for MethodHandles code generation:
public: public:
static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg); static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg);
static void load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr);
static void load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr);
static void load_stack_move(MacroAssembler* _masm,
Register rdi_stack_move,
Register rcx_amh,
bool might_be_negative);
static void insert_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp);
static void remove_arg_slots(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
Register rax_argslot,
Register rbx_temp, Register rdx_temp);
static void push_arg_slots(MacroAssembler* _masm,
Register rax_argslot,
RegisterOrConstant slot_count,
int skip_words_count,
Register rbx_temp, Register rdx_temp);
static void move_arg_slots_up(MacroAssembler* _masm,
Register rbx_bottom, // invariant
Address top_addr, // can use rax_temp
RegisterOrConstant positive_distance_in_slots,
Register rax_temp, Register rdx_temp);
static void move_arg_slots_down(MacroAssembler* _masm,
Address bottom_addr, // can use rax_temp
Register rbx_top, // invariant
RegisterOrConstant negative_distance_in_slots,
Register rax_temp, Register rdx_temp);
static void move_typed_arg(MacroAssembler* _masm,
BasicType type, bool is_element,
Address slot_dest, Address value_src,
Register rbx_temp, Register rdx_temp);
static void move_return_value(MacroAssembler* _masm, BasicType type,
Address return_slot);
static void verify_argslot(MacroAssembler* _masm, Register argslot_reg,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_argslots(MacroAssembler* _masm,
RegisterOrConstant argslot_count,
Register argslot_reg,
bool negate_argslot,
const char* error_message) NOT_DEBUG_RETURN;
static void verify_stack_move(MacroAssembler* _masm,
RegisterOrConstant arg_slots,
int direction) NOT_DEBUG_RETURN;
static void verify_klass(MacroAssembler* _masm, static void verify_klass(MacroAssembler* _masm,
Register obj, KlassHandle klass, Register obj, KlassHandle klass,
@ -297,9 +43,17 @@ public:
"reference is a MH"); "reference is a MH");
} }
static void verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) NOT_DEBUG_RETURN;
// Similar to InterpreterMacroAssembler::jump_from_interpreted. // Similar to InterpreterMacroAssembler::jump_from_interpreted.
// Takes care of special dispatch from single stepping too. // Takes care of special dispatch from single stepping too.
static void jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp); static void jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
bool for_compiler_entry);
static void jump_to_lambda_form(MacroAssembler* _masm,
Register recv, Register method_temp,
Register temp2,
bool for_compiler_entry);
static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN; static void trace_method_handle(MacroAssembler* _masm, const char* adaptername) PRODUCT_RETURN;

View File

@ -643,6 +643,19 @@ static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_
__ movdbl(r, Address(saved_sp, next_val_off)); __ movdbl(r, Address(saved_sp, next_val_off));
} }
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
address code_start, address code_end,
Label& L_ok) {
Label L_fail;
__ lea(temp_reg, ExternalAddress(code_start));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::belowEqual, L_fail);
__ lea(temp_reg, ExternalAddress(code_end));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::below, L_ok);
__ bind(L_fail);
}
static void gen_i2c_adapter(MacroAssembler *masm, static void gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed, int total_args_passed,
int comp_args_on_stack, int comp_args_on_stack,
@ -653,9 +666,53 @@ static void gen_i2c_adapter(MacroAssembler *masm,
// we may do a i2c -> c2i transition if we lose a race where compiled // we may do a i2c -> c2i transition if we lose a race where compiled
// code goes non-entrant while we get args ready. // code goes non-entrant while we get args ready.
// Adapters can be frameless because they do not require the caller
// to perform additional cleanup work, such as correcting the stack pointer.
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
// even if a callee has modified the stack pointer.
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
// routinely repairs its caller's stack pointer (from sender_sp, which is set
// up via the senderSP register).
// In other words, if *either* the caller or callee is interpreted, we can
// get the stack pointer repaired after a call.
// This is why c2i and i2c adapters cannot be indefinitely composed.
// In particular, if a c2i adapter were to somehow call an i2c adapter,
// both caller and callee would be compiled methods, and neither would
// clean up the stack pointer changes performed by the two adapters.
// If this happens, control eventually transfers back to the compiled
// caller, but with an uncorrected stack, causing delayed havoc.
// Pick up the return address // Pick up the return address
__ movptr(rax, Address(rsp, 0)); __ movptr(rax, Address(rsp, 0));
if (VerifyAdapterCalls &&
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
// So, let's test for cascading c2i/i2c adapters right now.
// assert(Interpreter::contains($return_addr) ||
// StubRoutines::contains($return_addr),
// "i2c adapter must return to an interpreter frame");
__ block_comment("verify_i2c { ");
Label L_ok;
if (Interpreter::code() != NULL)
range_check(masm, rax, rdi,
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
L_ok);
if (StubRoutines::code1() != NULL)
range_check(masm, rax, rdi,
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
L_ok);
if (StubRoutines::code2() != NULL)
range_check(masm, rax, rdi,
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
L_ok);
const char* msg = "i2c adapter must return to an interpreter frame";
__ block_comment(msg);
__ stop(msg);
__ bind(L_ok);
__ block_comment("} verify_i2ce ");
}
// Must preserve original SP for loading incoming arguments because // Must preserve original SP for loading incoming arguments because
// we need to align the outgoing SP for compiled code. // we need to align the outgoing SP for compiled code.
__ movptr(rdi, rsp); __ movptr(rdi, rsp);
@ -1293,6 +1350,89 @@ static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType
__ bind(done); __ bind(done);
} }
static void verify_oop_args(MacroAssembler* masm,
int total_args_passed,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = rbx; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_OBJECT ||
sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
int total_args_passed,
int comp_args_on_stack,
vmIntrinsics::ID special_dispatch,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, total_args_passed, sig_bt, regs);
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
if (ref_kind != 0) {
member_arg_pos = total_args_passed - 1; // trailing MemberName argument
member_reg = rbx; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (special_dispatch == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
VMReg r = regs[member_arg_pos].first();
assert(r->is_valid(), "bad member arg");
if (r->is_stack()) {
__ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(total_args_passed > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
assert(false, "receiver always in a register");
receiver_reg = rcx; // known to be free at this point
__ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments // Generate a native wrapper for a given method. The method takes arguments
@ -1323,14 +1463,37 @@ static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType
// transition back to thread_in_Java // transition back to thread_in_Java
// return to caller // return to caller
// //
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm, nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
methodHandle method, methodHandle method,
int compile_id, int compile_id,
int total_in_args, int total_in_args,
int comp_args_on_stack, int comp_args_on_stack,
BasicType *in_sig_bt, BasicType* in_sig_bt,
VMRegPair *in_regs, VMRegPair* in_regs,
BasicType ret_type) { BasicType ret_type) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
total_in_args,
comp_args_on_stack,
method->intrinsic_id(),
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true; bool is_critical_native = true;
address native_func = method->critical_native_function(); address native_func = method->critical_native_function();
if (native_func == NULL) { if (native_func == NULL) {
@ -1436,7 +1599,7 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
if (in_regs[i].first()->is_Register()) { if (in_regs[i].first()->is_Register()) {
const Register reg = in_regs[i].first()->as_Register(); const Register reg = in_regs[i].first()->as_Register();
switch (in_sig_bt[i]) { switch (in_sig_bt[i]) {
case T_ARRAY: case T_ARRAY: // critical array (uses 2 slots on LP64)
case T_BOOLEAN: case T_BOOLEAN:
case T_BYTE: case T_BYTE:
case T_SHORT: case T_SHORT:

View File

@ -590,6 +590,19 @@ static void gen_c2i_adapter(MacroAssembler *masm,
__ jmp(rcx); __ jmp(rcx);
} }
static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
address code_start, address code_end,
Label& L_ok) {
Label L_fail;
__ lea(temp_reg, ExternalAddress(code_start));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::belowEqual, L_fail);
__ lea(temp_reg, ExternalAddress(code_end));
__ cmpptr(pc_reg, temp_reg);
__ jcc(Assembler::below, L_ok);
__ bind(L_fail);
}
static void gen_i2c_adapter(MacroAssembler *masm, static void gen_i2c_adapter(MacroAssembler *masm,
int total_args_passed, int total_args_passed,
int comp_args_on_stack, int comp_args_on_stack,
@ -605,9 +618,53 @@ static void gen_i2c_adapter(MacroAssembler *masm,
// save code can segv when fxsave instructions find improperly // save code can segv when fxsave instructions find improperly
// aligned stack pointer. // aligned stack pointer.
// Adapters can be frameless because they do not require the caller
// to perform additional cleanup work, such as correcting the stack pointer.
// An i2c adapter is frameless because the *caller* frame, which is interpreted,
// routinely repairs its own stack pointer (from interpreter_frame_last_sp),
// even if a callee has modified the stack pointer.
// A c2i adapter is frameless because the *callee* frame, which is interpreted,
// routinely repairs its caller's stack pointer (from sender_sp, which is set
// up via the senderSP register).
// In other words, if *either* the caller or callee is interpreted, we can
// get the stack pointer repaired after a call.
// This is why c2i and i2c adapters cannot be indefinitely composed.
// In particular, if a c2i adapter were to somehow call an i2c adapter,
// both caller and callee would be compiled methods, and neither would
// clean up the stack pointer changes performed by the two adapters.
// If this happens, control eventually transfers back to the compiled
// caller, but with an uncorrected stack, causing delayed havoc.
// Pick up the return address // Pick up the return address
__ movptr(rax, Address(rsp, 0)); __ movptr(rax, Address(rsp, 0));
if (VerifyAdapterCalls &&
(Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
// So, let's test for cascading c2i/i2c adapters right now.
// assert(Interpreter::contains($return_addr) ||
// StubRoutines::contains($return_addr),
// "i2c adapter must return to an interpreter frame");
__ block_comment("verify_i2c { ");
Label L_ok;
if (Interpreter::code() != NULL)
range_check(masm, rax, r11,
Interpreter::code()->code_start(), Interpreter::code()->code_end(),
L_ok);
if (StubRoutines::code1() != NULL)
range_check(masm, rax, r11,
StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
L_ok);
if (StubRoutines::code2() != NULL)
range_check(masm, rax, r11,
StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
L_ok);
const char* msg = "i2c adapter must return to an interpreter frame";
__ block_comment(msg);
__ stop(msg);
__ bind(L_ok);
__ block_comment("} verify_i2ce ");
}
// Must preserve original SP for loading incoming arguments because // Must preserve original SP for loading incoming arguments because
// we need to align the outgoing SP for compiled code. // we need to align the outgoing SP for compiled code.
__ movptr(r11, rsp); __ movptr(r11, rsp);
@ -1366,6 +1423,14 @@ static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType
} }
// Different signatures may require very different orders for the move
// to avoid clobbering other arguments. There's no simple way to
// order them safely. Compute a safe order for issuing stores and
// break any cycles in those stores. This code is fairly general but
// it's not necessary on the other platforms so we keep it in the
// platform dependent code instead of moving it into a shared file.
// (See bugs 7013347 & 7145024.)
// Note that this code is specific to LP64.
class ComputeMoveOrder: public StackObj { class ComputeMoveOrder: public StackObj {
class MoveOperation: public ResourceObj { class MoveOperation: public ResourceObj {
friend class ComputeMoveOrder; friend class ComputeMoveOrder;
@ -1532,6 +1597,89 @@ class ComputeMoveOrder: public StackObj {
} }
}; };
static void verify_oop_args(MacroAssembler* masm,
int total_args_passed,
const BasicType* sig_bt,
const VMRegPair* regs) {
Register temp_reg = rbx; // not part of any compiled calling seq
if (VerifyOops) {
for (int i = 0; i < total_args_passed; i++) {
if (sig_bt[i] == T_OBJECT ||
sig_bt[i] == T_ARRAY) {
VMReg r = regs[i].first();
assert(r->is_valid(), "bad oop arg");
if (r->is_stack()) {
__ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
__ verify_oop(temp_reg);
} else {
__ verify_oop(r->as_Register());
}
}
}
}
}
static void gen_special_dispatch(MacroAssembler* masm,
int total_args_passed,
int comp_args_on_stack,
vmIntrinsics::ID special_dispatch,
const BasicType* sig_bt,
const VMRegPair* regs) {
verify_oop_args(masm, total_args_passed, sig_bt, regs);
// Now write the args into the outgoing interpreter space
bool has_receiver = false;
Register receiver_reg = noreg;
int member_arg_pos = -1;
Register member_reg = noreg;
int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(special_dispatch);
if (ref_kind != 0) {
member_arg_pos = total_args_passed - 1; // trailing MemberName argument
member_reg = rbx; // known to be free at this point
has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
} else if (special_dispatch == vmIntrinsics::_invokeBasic) {
has_receiver = true;
} else {
guarantee(false, err_msg("special_dispatch=%d", special_dispatch));
}
if (member_reg != noreg) {
// Load the member_arg into register, if necessary.
assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
VMReg r = regs[member_arg_pos].first();
assert(r->is_valid(), "bad member arg");
if (r->is_stack()) {
__ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
member_reg = r->as_Register();
}
}
if (has_receiver) {
// Make sure the receiver is loaded into a register.
assert(total_args_passed > 0, "oob");
assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
VMReg r = regs[0].first();
assert(r->is_valid(), "bad receiver arg");
if (r->is_stack()) {
// Porting note: This assumes that compiled calling conventions always
// pass the receiver oop in a register. If this is not true on some
// platform, pick a temp and load the receiver from stack.
assert(false, "receiver always in a register");
receiver_reg = j_rarg0; // known to be free at this point
__ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
} else {
// no data motion is needed
receiver_reg = r->as_Register();
}
}
// Figure out which address we are really jumping to:
MethodHandles::generate_method_handle_dispatch(masm, special_dispatch,
receiver_reg, member_reg, /*for_compiler_entry:*/ true);
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// Generate a native wrapper for a given method. The method takes arguments // Generate a native wrapper for a given method. The method takes arguments
@ -1539,14 +1687,60 @@ class ComputeMoveOrder: public StackObj {
// convention (handlizes oops, etc), transitions to native, makes the call, // convention (handlizes oops, etc), transitions to native, makes the call,
// returns to java state (possibly blocking), unhandlizes any result and // returns to java state (possibly blocking), unhandlizes any result and
// returns. // returns.
nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm, //
// Critical native functions are a shorthand for the use of
// GetPrimtiveArrayCritical and disallow the use of any other JNI
// functions. The wrapper is expected to unpack the arguments before
// passing them to the callee and perform checks before and after the
// native call to ensure that they GC_locker
// lock_critical/unlock_critical semantics are followed. Some other
// parts of JNI setup are skipped like the tear down of the JNI handle
// block and the check for pending exceptions it's impossible for them
// to be thrown.
//
// They are roughly structured like this:
// if (GC_locker::needs_gc())
// SharedRuntime::block_for_jni_critical();
// tranistion to thread_in_native
// unpack arrray arguments and call native entry point
// check for safepoint in progress
// check if any thread suspend flags are set
// call into JVM and possible unlock the JNI critical
// if a GC was suppressed while in the critical native.
// transition back to thread_in_Java
// return to caller
//
nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
methodHandle method, methodHandle method,
int compile_id, int compile_id,
int total_in_args, int total_in_args,
int comp_args_on_stack, int comp_args_on_stack,
BasicType *in_sig_bt, BasicType* in_sig_bt,
VMRegPair *in_regs, VMRegPair* in_regs,
BasicType ret_type) { BasicType ret_type) {
if (method->is_method_handle_intrinsic()) {
vmIntrinsics::ID iid = method->intrinsic_id();
intptr_t start = (intptr_t)__ pc();
int vep_offset = ((intptr_t)__ pc()) - start;
gen_special_dispatch(masm,
total_in_args,
comp_args_on_stack,
method->intrinsic_id(),
in_sig_bt,
in_regs);
int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
__ flush();
int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
return nmethod::new_native_nmethod(method,
compile_id,
masm->code(),
vep_offset,
frame_complete,
stack_slots / VMRegImpl::slots_per_word,
in_ByteSize(-1),
in_ByteSize(-1),
(OopMapSet*)NULL);
}
bool is_critical_native = true; bool is_critical_native = true;
address native_func = method->critical_native_function(); address native_func = method->critical_native_function();
if (native_func == NULL) { if (native_func == NULL) {
@ -1658,7 +1852,7 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
case T_SHORT: case T_SHORT:
case T_CHAR: case T_CHAR:
case T_INT: single_slots++; break; case T_INT: single_slots++; break;
case T_ARRAY: case T_ARRAY: // specific to LP64 (7145024)
case T_LONG: double_slots++; break; case T_LONG: double_slots++; break;
default: ShouldNotReachHere(); default: ShouldNotReachHere();
} }

View File

@ -2326,12 +2326,6 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG, StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
// Build this early so it's available for the interpreter
StubRoutines::_throw_WrongMethodTypeException_entry =
generate_throw_exception("WrongMethodTypeException throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
rax, rcx);
// Build this early so it's available for the interpreter // Build this early so it's available for the interpreter
StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError)); StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
} }

View File

@ -3102,14 +3102,6 @@ class StubGenerator: public StubCodeGenerator {
StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
// Build this early so it's available for the interpreter. Stub
// expects the required and actual types as register arguments in
// j_rarg0 and j_rarg1 respectively.
StubRoutines::_throw_WrongMethodTypeException_entry =
generate_throw_exception("WrongMethodTypeException throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
rax, rcx);
// Build this early so it's available for the interpreter. // Build this early so it's available for the interpreter.
StubRoutines::_throw_StackOverflowError_entry = StubRoutines::_throw_StackOverflowError_entry =
generate_throw_exception("StackOverflowError throw_exception", generate_throw_exception("StackOverflowError throw_exception",

View File

@ -710,9 +710,9 @@ address InterpreterGenerator::generate_accessor_entry(void) {
// Need to differentiate between igetfield, agetfield, bgetfield etc. // Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes. // because they are different sizes.
// Use the type from the constant pool cache // Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tosBits); __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rdx for tosBits after the above shift // Make sure we don't need to mask rdx after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmpl(rdx, btos); __ cmpl(rdx, btos);
__ jcc(Assembler::notEqual, notByte); __ jcc(Assembler::notEqual, notByte);
__ load_signed_byte(rax, field_address); __ load_signed_byte(rax, field_address);
@ -1513,7 +1513,6 @@ address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter:
case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
case Interpreter::method_handle : entry_point = ((InterpreterGenerator*)this)->generate_method_handle_entry(); break;
case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_cos : // fall thru
@ -1526,7 +1525,9 @@ address AbstractInterpreterGenerator::generate_method_entry(AbstractInterpreter:
case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break; case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default : ShouldNotReachHere(); break; default:
fatal(err_msg("unexpected method kind: %d", kind));
break;
} }
if (entry_point) return entry_point; if (entry_point) return entry_point;

View File

@ -683,9 +683,9 @@ address InterpreterGenerator::generate_accessor_entry(void) {
// Need to differentiate between igetfield, agetfield, bgetfield etc. // Need to differentiate between igetfield, agetfield, bgetfield etc.
// because they are different sizes. // because they are different sizes.
// Use the type from the constant pool cache // Use the type from the constant pool cache
__ shrl(rdx, ConstantPoolCacheEntry::tosBits); __ shrl(rdx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask edx for tosBits after the above shift // Make sure we don't need to mask edx after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmpl(rdx, atos); __ cmpl(rdx, atos);
__ jcc(Assembler::notEqual, notObj); __ jcc(Assembler::notEqual, notObj);
@ -1524,12 +1524,11 @@ address AbstractInterpreterGenerator::generate_method_entry(
switch (kind) { switch (kind) {
case Interpreter::zerolocals : break; case Interpreter::zerolocals : break;
case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::zerolocals_synchronized: synchronized = true; break;
case Interpreter::native : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(false); break; case Interpreter::native : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(false); break;
case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*) this)->generate_native_entry(true); break; case Interpreter::native_synchronized : entry_point = ((InterpreterGenerator*)this)->generate_native_entry(true); break;
case Interpreter::empty : entry_point = ((InterpreterGenerator*) this)->generate_empty_entry(); break; case Interpreter::empty : entry_point = ((InterpreterGenerator*)this)->generate_empty_entry(); break;
case Interpreter::accessor : entry_point = ((InterpreterGenerator*) this)->generate_accessor_entry(); break; case Interpreter::accessor : entry_point = ((InterpreterGenerator*)this)->generate_accessor_entry(); break;
case Interpreter::abstract : entry_point = ((InterpreterGenerator*) this)->generate_abstract_entry(); break; case Interpreter::abstract : entry_point = ((InterpreterGenerator*)this)->generate_abstract_entry(); break;
case Interpreter::method_handle : entry_point = ((InterpreterGenerator*) this)->generate_method_handle_entry();break;
case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_sin : // fall thru
case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_cos : // fall thru
@ -1539,10 +1538,12 @@ address AbstractInterpreterGenerator::generate_method_entry(
case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_log10 : // fall thru
case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru
case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_pow : // fall thru
case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*) this)->generate_math_entry(kind); break; case Interpreter::java_lang_math_exp : entry_point = ((InterpreterGenerator*)this)->generate_math_entry(kind); break;
case Interpreter::java_lang_ref_reference_get case Interpreter::java_lang_ref_reference_get
: entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break; : entry_point = ((InterpreterGenerator*)this)->generate_Reference_get_entry(); break;
default : ShouldNotReachHere(); break; default:
fatal(err_msg("unexpected method kind: %d", kind));
break;
} }
if (entry_point) { if (entry_point) {

View File

@ -446,13 +446,13 @@ void TemplateTable::fast_aldc(bool wide) {
const Register cache = rcx; const Register cache = rcx;
const Register index = rdx; const Register index = rdx;
resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1)); resolve_cache_and_index(f12_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
if (VerifyOops) { if (VerifyOops) {
__ verify_oop(rax); __ verify_oop(rax);
} }
Label L_done, L_throw_exception; Label L_done, L_throw_exception;
const Register con_klass_temp = rcx; // same as Rcache const Register con_klass_temp = rcx; // same as cache
__ load_klass(con_klass_temp, rax); __ load_klass(con_klass_temp, rax);
__ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr())); __ cmpptr(con_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
__ jcc(Assembler::notEqual, L_done); __ jcc(Assembler::notEqual, L_done);
@ -2084,15 +2084,15 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache, Register Rcache,
Register index, Register index,
size_t index_size) { size_t index_size) {
Register temp = rbx; const Register temp = rbx;
assert_different_registers(result, Rcache, index, temp); assert_different_registers(result, Rcache, index, temp);
Label resolved; Label resolved;
if (byte_no == f1_oop) { if (byte_no == f12_oop) {
// We are resolved if the f1 field contains a non-null object (CallSite, etc.) // We are resolved if the f1 field contains a non-null object (CallSite, MethodType, etc.)
// This kind of CP cache entry does not need to match the flags byte, because // This kind of CP cache entry does not need to match bytecode_1 or bytecode_2, because
// there is a 1-1 relation between bytecode type and CP entry type. // there is a 1-1 relation between bytecode type and CP entry type.
// The caller will also load a methodOop from f2.
assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD) assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
@ -2112,15 +2112,18 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
case Bytecodes::_getstatic : // fall through case Bytecodes::_getstatic : // fall through
case Bytecodes::_putstatic : // fall through case Bytecodes::_putstatic : // fall through
case Bytecodes::_getfield : // fall through case Bytecodes::_getfield : // fall through
case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break; case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
case Bytecodes::_invokevirtual : // fall through case Bytecodes::_invokevirtual : // fall through
case Bytecodes::_invokespecial : // fall through case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break; case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break; case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
case Bytecodes::_fast_aldc : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
case Bytecodes::_fast_aldc_w : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break; case Bytecodes::_fast_aldc : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break;
default : ShouldNotReachHere(); break; case Bytecodes::_fast_aldc_w : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); break;
default:
fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
break;
} }
__ movl(temp, (int)bytecode()); __ movl(temp, (int)bytecode());
__ call_VM(noreg, entry, temp); __ call_VM(noreg, entry, temp);
@ -2149,7 +2152,7 @@ void TemplateTable::load_field_cp_cache_entry(Register obj,
__ movl(flags, Address(cache, index, Address::times_ptr, __ movl(flags, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()))); in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
// klass overwrite register // klass overwrite register
if (is_static) { if (is_static) {
__ movptr(obj, Address(cache, index, Address::times_ptr, __ movptr(obj, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset()))); in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
@ -2161,7 +2164,7 @@ void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
Register itable_index, Register itable_index,
Register flags, Register flags,
bool is_invokevirtual, bool is_invokevirtual,
bool is_invokevfinal /*unused*/, bool is_invokevfinal, /*unused*/
bool is_invokedynamic) { bool is_invokedynamic) {
// setup registers // setup registers
const Register cache = rcx; const Register cache = rcx;
@ -2171,28 +2174,33 @@ void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
assert_different_registers(itable_index, flags); assert_different_registers(itable_index, flags);
assert_different_registers(itable_index, cache, index); assert_different_registers(itable_index, cache, index);
// determine constant pool cache field offsets // determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes( const int method_offset = in_bytes(
constantPoolCacheOopDesc::base_offset() + constantPoolCacheOopDesc::base_offset() +
(is_invokevirtual ((byte_no == f2_byte)
? ConstantPoolCacheEntry::f2_offset() ? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset() : ConstantPoolCacheEntry::f1_offset()));
)
);
const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::flags_offset()); ConstantPoolCacheEntry::flags_offset());
// access constant pool cache fields // access constant pool cache fields
const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::f2_offset()); ConstantPoolCacheEntry::f2_offset());
if (byte_no == f1_oop) { if (byte_no == f12_oop) {
// Resolved f1_oop goes directly into 'method' register. // Resolved f1_oop (CallSite, MethodType, etc.) goes into 'itable_index'.
assert(is_invokedynamic, ""); // Resolved f2_oop (methodOop invoker) will go into 'method' (at index_offset).
resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4)); // See ConstantPoolCacheEntry::set_dynamic_call and set_method_handle.
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, itable_index, cache, index, index_size);
__ movptr(method, Address(cache, index, Address::times_ptr, index_offset));
itable_index = noreg; // hack to disable load below
} else { } else {
resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
__ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
} }
if (itable_index != noreg) { if (itable_index != noreg) {
// pick up itable index from f2 also:
assert(byte_no == f1_byte, "already picked up f1");
__ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
} }
__ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
@ -2260,10 +2268,10 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
assert(btos == 0, "change code, btos != 0"); assert(btos == 0, "change code, btos != 0");
// btos // btos
__ andptr(flags, 0x0f); __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte); __ jcc(Assembler::notZero, notByte);
__ load_signed_byte(rax, lo ); __ load_signed_byte(rax, lo );
@ -2415,9 +2423,9 @@ void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is
__ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset + __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset()))); ConstantPoolCacheEntry::flags_offset())));
__ mov(rbx, rsp); __ mov(rbx, rsp);
__ shrl(rcx, ConstantPoolCacheEntry::tosBits); __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rcx for tosBits after the above shift // Make sure we don't need to mask rcx after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
__ cmpl(rcx, ltos); __ cmpl(rcx, ltos);
__ jccb(Assembler::equal, two_word); __ jccb(Assembler::equal, two_word);
__ cmpl(rcx, dtos); __ cmpl(rcx, dtos);
@ -2467,7 +2475,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label notVolatile, Done; Label notVolatile, Done;
__ movl(rdx, flags); __ movl(rdx, flags);
__ shrl(rdx, ConstantPoolCacheEntry::volatileField); __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1); __ andl(rdx, 0x1);
// field addresses // field addresses
@ -2476,9 +2484,9 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; Label notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
assert(btos == 0, "change code, btos != 0"); assert(btos == 0, "change code, btos != 0");
__ andl(flags, 0x0f); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte); __ jcc(Assembler::notZero, notByte);
// btos // btos
@ -2719,7 +2727,7 @@ void TemplateTable::fast_storefield(TosState state) {
// volatile_barrier( ); // volatile_barrier( );
Label notVolatile, Done; Label notVolatile, Done;
__ shrl(rdx, ConstantPoolCacheEntry::volatileField); __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1); __ andl(rdx, 0x1);
// Check for volatile store // Check for volatile store
__ testl(rdx, rdx); __ testl(rdx, rdx);
@ -2885,19 +2893,29 @@ void TemplateTable::count_calls(Register method, Register temp) {
} }
void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) { void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags // determine flags
Bytecodes::Code code = bytecode(); const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic); const bool load_receiver = (recv != noreg);
const bool receiver_null_check = is_invokespecial; const bool save_flags = (flags != noreg);
const bool save_flags = is_invokeinterface || is_invokevirtual; assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == rdx, "");
assert(recv == noreg || recv == rcx, "");
// setup registers & access constant pool cache // setup registers & access constant pool cache
const Register recv = rcx; if (recv == noreg) recv = rcx;
const Register flags = rdx; if (flags == noreg) flags = rdx;
assert_different_registers(method, index, recv, flags); assert_different_registers(method, index, recv, flags);
// save 'interpreter return address' // save 'interpreter return address'
@ -2905,20 +2923,28 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// load receiver if needed (note: no return address pushed yet) // maybe push appendix to arguments (just before return address)
if (load_receiver) { if (is_invokedynamic || is_invokehandle) {
assert(!is_invokedynamic, ""); Label L_no_push;
__ movl(recv, flags); __ verify_oop(index);
__ andl(recv, 0xFF); __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
// recv count is 0 based? __ jccb(Assembler::zero, L_no_push);
Address recv_addr(rsp, recv, Interpreter::stackElementScale(), -Interpreter::expr_offset_in_bytes(1)); // Push the appendix as a trailing parameter.
__ movptr(recv, recv_addr); // This must be done before we get the receiver,
__ verify_oop(recv); // since the parameter_size includes it.
__ push(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
} }
// do null check if needed // load receiver if needed (note: no return address pushed yet)
if (receiver_null_check) { if (load_receiver) {
__ null_check(recv); __ movl(recv, flags);
__ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
const int receiver_is_at_end = -1; // back off one slot to get receiver
Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
__ movptr(recv, recv_addr);
__ verify_oop(recv);
} }
if (save_flags) { if (save_flags) {
@ -2926,16 +2952,14 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
} }
// compute return type // compute return type
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags for tosBits after the above shift // Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address // load return address
{ {
address table_addr; const address table_addr = (is_invokeinterface || is_invokedynamic) ?
if (is_invokeinterface || is_invokedynamic) (address)Interpreter::return_5_addrs_by_index_table() :
table_addr = (address)Interpreter::return_5_addrs_by_index_table(); (address)Interpreter::return_3_addrs_by_index_table();
else
table_addr = (address)Interpreter::return_3_addrs_by_index_table();
ExternalAddress table(table_addr); ExternalAddress table(table_addr);
__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))); __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
} }
@ -2943,7 +2967,7 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
// push return address // push return address
__ push(flags); __ push(flags);
// Restore flag value from the constant pool cache, and restore rsi // Restore flags value from the constant pool cache, and restore rsi
// for later null checks. rsi is the bytecode pointer // for later null checks. rsi is the bytecode pointer
if (save_flags) { if (save_flags) {
__ mov(flags, rsi); __ mov(flags, rsi);
@ -2952,22 +2976,26 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
} }
void TemplateTable::invokevirtual_helper(Register index, Register recv, void TemplateTable::invokevirtual_helper(Register index,
Register flags) { Register recv,
Register flags) {
// Uses temporary registers rax, rdx // Uses temporary registers rax, rdx
assert_different_registers(index, recv, rax, rdx); assert_different_registers(index, recv, rax, rdx);
assert(index == rbx, "");
assert(recv == rcx, "");
// Test for an invoke of a final method // Test for an invoke of a final method
Label notFinal; Label notFinal;
__ movl(rax, flags); __ movl(rax, flags);
__ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod)); __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
__ jcc(Assembler::zero, notFinal); __ jcc(Assembler::zero, notFinal);
Register method = index; // method must be rbx, const Register method = index; // method must be rbx
assert(method == rbx, "methodOop must be rbx, for interpreter calling convention"); assert(method == rbx,
"methodOop must be rbx for interpreter calling convention");
// do the call - the index is actually the method to call // do the call - the index is actually the method to call
// that is, f2 is a vtable index if !is_vfinal, else f2 is a methodOop
__ verify_oop(method); __ verify_oop(method);
// It's final, need a null check here! // It's final, need a null check here!
@ -2982,7 +3010,6 @@ void TemplateTable::invokevirtual_helper(Register index, Register recv,
// get receiver klass // get receiver klass
__ null_check(recv, oopDesc::klass_offset_in_bytes()); __ null_check(recv, oopDesc::klass_offset_in_bytes());
// Keep recv in rcx for callee expects it there
__ load_klass(rax, recv); __ load_klass(rax, recv);
__ verify_oop(rax); __ verify_oop(rax);
@ -2990,9 +3017,7 @@ void TemplateTable::invokevirtual_helper(Register index, Register recv,
__ profile_virtual_call(rax, rdi, rdx); __ profile_virtual_call(rax, rdi, rdx);
// get target methodOop & entry point // get target methodOop & entry point
const int base = instanceKlass::vtable_start_offset() * wordSize; __ lookup_virtual_method(rax, index, method);
assert(vtableEntry::size() * wordSize == 4, "adjust the scaling in the code below");
__ movptr(method, Address(rax, index, Address::times_ptr, base + vtableEntry::method_offset_in_bytes()));
__ jump_from_interpreted(method, rdx); __ jump_from_interpreted(method, rdx);
} }
@ -3000,9 +3025,12 @@ void TemplateTable::invokevirtual_helper(Register index, Register recv,
void TemplateTable::invokevirtual(int byte_no) { void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument"); assert(byte_no == f2_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no,
rbx, // method or vtable index
noreg, // unused itable index
rcx, rdx); // recv, flags
// rbx,: index // rbx: index
// rcx: receiver // rcx: receiver
// rdx: flags // rdx: flags
@ -3013,7 +3041,10 @@ void TemplateTable::invokevirtual(int byte_no) {
void TemplateTable::invokespecial(int byte_no) { void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no, rbx, noreg, // get f1 methodOop
rcx); // get receiver also for null check
__ verify_oop(rcx);
__ null_check(rcx);
// do the call // do the call
__ verify_oop(rbx); __ verify_oop(rbx);
__ profile_call(rax); __ profile_call(rax);
@ -3024,7 +3055,7 @@ void TemplateTable::invokespecial(int byte_no) {
void TemplateTable::invokestatic(int byte_no) { void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no, rbx); // get f1 methodOop
// do the call // do the call
__ verify_oop(rbx); __ verify_oop(rbx);
__ profile_call(rax); __ profile_call(rax);
@ -3042,10 +3073,11 @@ void TemplateTable::fast_invokevfinal(int byte_no) {
void TemplateTable::invokeinterface(int byte_no) { void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rax, rbx, byte_no); prepare_invoke(byte_no, rax, rbx, // get f1 klassOop, f2 itable index
rcx, rdx); // recv, flags
// rax,: Interface // rax: interface klass (from f1)
// rbx,: index // rbx: itable index (from f2)
// rcx: receiver // rcx: receiver
// rdx: flags // rdx: flags
@ -3055,7 +3087,7 @@ void TemplateTable::invokeinterface(int byte_no) {
// another compliant java compiler. // another compliant java compiler.
Label notMethod; Label notMethod;
__ movl(rdi, rdx); __ movl(rdi, rdx);
__ andl(rdi, (1 << ConstantPoolCacheEntry::methodInterface)); __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
__ jcc(Assembler::zero, notMethod); __ jcc(Assembler::zero, notMethod);
invokevirtual_helper(rbx, rcx, rdx); invokevirtual_helper(rbx, rcx, rdx);
@ -3063,6 +3095,7 @@ void TemplateTable::invokeinterface(int byte_no) {
// Get receiver klass into rdx - also a null check // Get receiver klass into rdx - also a null check
__ restore_locals(); // restore rdi __ restore_locals(); // restore rdi
__ null_check(rcx, oopDesc::klass_offset_in_bytes());
__ load_klass(rdx, rcx); __ load_klass(rdx, rcx);
__ verify_oop(rdx); __ verify_oop(rdx);
@ -3077,7 +3110,7 @@ void TemplateTable::invokeinterface(int byte_no) {
rbx, rsi, rbx, rsi,
no_such_interface); no_such_interface);
// rbx,: methodOop to call // rbx: methodOop to call
// rcx: receiver // rcx: receiver
// Check for abstract method error // Check for abstract method error
// Note: This should be done more efficiently via a throw_abstract_method_error // Note: This should be done more efficiently via a throw_abstract_method_error
@ -3116,9 +3149,39 @@ void TemplateTable::invokeinterface(int byte_no) {
__ should_not_reach_here(); __ should_not_reach_here();
} }
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f12_oop, "use this argument");
const Register rbx_method = rbx; // (from f2)
const Register rax_mtype = rax; // (from f1)
const Register rcx_recv = rcx;
const Register rdx_flags = rdx;
if (!EnableInvokeDynamic) {
// rewriter does not generate this bytecode
__ should_not_reach_here();
return;
}
prepare_invoke(byte_no,
rbx_method, rax_mtype, // get f2 methodOop, f1 MethodType
rcx_recv);
__ verify_oop(rbx_method);
__ verify_oop(rcx_recv);
__ null_check(rcx_recv);
// Note: rax_mtype is already pushed (if necessary) by prepare_invoke
// FIXME: profile the LambdaForm also
__ profile_final_call(rax);
__ jump_from_interpreted(rbx_method, rdx);
}
void TemplateTable::invokedynamic(int byte_no) { void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_oop, "use this argument"); assert(byte_no == f12_oop, "use this argument");
if (!EnableInvokeDynamic) { if (!EnableInvokeDynamic) {
// We should not encounter this bytecode if !EnableInvokeDynamic. // We should not encounter this bytecode if !EnableInvokeDynamic.
@ -3131,26 +3194,23 @@ void TemplateTable::invokedynamic(int byte_no) {
return; return;
} }
prepare_invoke(rax, rbx, byte_no); const Register rbx_method = rbx;
const Register rax_callsite = rax;
// rax: CallSite object (f1) prepare_invoke(byte_no, rbx_method, rax_callsite);
// rbx: unused (f2)
// rcx: receiver address
// rdx: flags (unused)
Register rax_callsite = rax; // rax: CallSite object (from f1)
Register rcx_method_handle = rcx; // rbx: MH.linkToCallSite method (from f2)
// Note: rax_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument // %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call // profile this call
__ profile_call(rsi); __ profile_call(rsi);
__ verify_oop(rax_callsite); __ verify_oop(rax_callsite);
__ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
__ null_check(rcx_method_handle); __ jump_from_interpreted(rbx_method, rdx);
__ verify_oop(rcx_method_handle);
__ prepare_to_jump_from_interpreted();
__ jump_to_method_handle_entry(rcx_method_handle, rdx);
} }
//---------------------------------------------------------------------------------------------------- //----------------------------------------------------------------------------------------------------

View File

@ -25,10 +25,15 @@
#ifndef CPU_X86_VM_TEMPLATETABLE_X86_32_HPP #ifndef CPU_X86_VM_TEMPLATETABLE_X86_32_HPP
#define CPU_X86_VM_TEMPLATETABLE_X86_32_HPP #define CPU_X86_VM_TEMPLATETABLE_X86_32_HPP
static void prepare_invoke(Register method, Register index, int byte_no); static void prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index = noreg, // itable index, MethodType, etc.
Register recv = noreg, // if caller wants to see it
Register flags = noreg // if caller wants to test it
);
static void invokevirtual_helper(Register index, Register recv, static void invokevirtual_helper(Register index, Register recv,
Register flags); Register flags);
static void volatile_barrier(Assembler::Membar_mask_bits order_constraint ); static void volatile_barrier(Assembler::Membar_mask_bits order_constraint);
// Helpers // Helpers
static void index_check(Register array, Register index); static void index_check(Register array, Register index);

View File

@ -458,7 +458,7 @@ void TemplateTable::fast_aldc(bool wide) {
const Register cache = rcx; const Register cache = rcx;
const Register index = rdx; const Register index = rdx;
resolve_cache_and_index(f1_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1)); resolve_cache_and_index(f12_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
if (VerifyOops) { if (VerifyOops) {
__ verify_oop(rax); __ verify_oop(rax);
} }
@ -2125,10 +2125,11 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
assert_different_registers(result, Rcache, index, temp); assert_different_registers(result, Rcache, index, temp);
Label resolved; Label resolved;
if (byte_no == f1_oop) { if (byte_no == f12_oop) {
// We are resolved if the f1 field contains a non-null object (CallSite, etc.) // We are resolved if the f1 field contains a non-null object (CallSite, MethodType, etc.)
// This kind of CP cache entry does not need to match the flags byte, because // This kind of CP cache entry does not need to match bytecode_1 or bytecode_2, because
// there is a 1-1 relation between bytecode type and CP entry type. // there is a 1-1 relation between bytecode type and CP entry type.
// The caller will also load a methodOop from f2.
assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD) assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset())); __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
@ -2157,6 +2158,9 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
case Bytecodes::_invokeinterface: case Bytecodes::_invokeinterface:
entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
break; break;
case Bytecodes::_invokehandle:
entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
break;
case Bytecodes::_invokedynamic: case Bytecodes::_invokedynamic:
entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
break; break;
@ -2167,7 +2171,7 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
break; break;
default: default:
ShouldNotReachHere(); fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
break; break;
} }
__ movl(temp, (int) bytecode()); __ movl(temp, (int) bytecode());
@ -2180,7 +2184,7 @@ void TemplateTable::resolve_cache_and_index(int byte_no,
__ bind(resolved); __ bind(resolved);
} }
// The Rcache and index registers must be set before call // The cache and index registers must be set before call
void TemplateTable::load_field_cp_cache_entry(Register obj, void TemplateTable::load_field_cp_cache_entry(Register obj,
Register cache, Register cache,
Register index, Register index,
@ -2191,17 +2195,17 @@ void TemplateTable::load_field_cp_cache_entry(Register obj,
ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset(); ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
// Field offset // Field offset
__ movptr(off, Address(cache, index, Address::times_8, __ movptr(off, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset + in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f2_offset()))); ConstantPoolCacheEntry::f2_offset())));
// Flags // Flags
__ movl(flags, Address(cache, index, Address::times_8, __ movl(flags, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset + in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset()))); ConstantPoolCacheEntry::flags_offset())));
// klass overwrite register // klass overwrite register
if (is_static) { if (is_static) {
__ movptr(obj, Address(cache, index, Address::times_8, __ movptr(obj, Address(cache, index, Address::times_ptr,
in_bytes(cp_base_offset + in_bytes(cp_base_offset +
ConstantPoolCacheEntry::f1_offset()))); ConstantPoolCacheEntry::f1_offset())));
} }
@ -2222,9 +2226,10 @@ void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
assert_different_registers(itable_index, flags); assert_different_registers(itable_index, flags);
assert_different_registers(itable_index, cache, index); assert_different_registers(itable_index, cache, index);
// determine constant pool cache field offsets // determine constant pool cache field offsets
assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
const int method_offset = in_bytes( const int method_offset = in_bytes(
constantPoolCacheOopDesc::base_offset() + constantPoolCacheOopDesc::base_offset() +
(is_invokevirtual ((byte_no == f2_byte)
? ConstantPoolCacheEntry::f2_offset() ? ConstantPoolCacheEntry::f2_offset()
: ConstantPoolCacheEntry::f1_offset())); : ConstantPoolCacheEntry::f1_offset()));
const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
@ -2233,15 +2238,21 @@ void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() + const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
ConstantPoolCacheEntry::f2_offset()); ConstantPoolCacheEntry::f2_offset());
if (byte_no == f1_oop) { if (byte_no == f12_oop) {
// Resolved f1_oop goes directly into 'method' register. // Resolved f1_oop (CallSite, MethodType, etc.) goes into 'itable_index'.
assert(is_invokedynamic, ""); // Resolved f2_oop (methodOop invoker) will go into 'method' (at index_offset).
resolve_cache_and_index(byte_no, method, cache, index, sizeof(u4)); // See ConstantPoolCacheEntry::set_dynamic_call and set_method_handle.
size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
resolve_cache_and_index(byte_no, itable_index, cache, index, index_size);
__ movptr(method, Address(cache, index, Address::times_ptr, index_offset));
itable_index = noreg; // hack to disable load below
} else { } else {
resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2)); resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
__ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
} }
if (itable_index != noreg) { if (itable_index != noreg) {
// pick up itable index from f2 also:
assert(byte_no == f1_byte, "already picked up f1");
__ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
} }
__ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
@ -2317,10 +2328,11 @@ void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
Label Done, notByte, notInt, notShort, notChar, Label Done, notByte, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble; notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask edx after the above shift
assert(btos == 0, "change code, btos != 0"); assert(btos == 0, "change code, btos != 0");
__ andl(flags, 0x0F); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte); __ jcc(Assembler::notZero, notByte);
// btos // btos
__ load_signed_byte(rax, field); __ load_signed_byte(rax, field);
@ -2466,10 +2478,9 @@ void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is
Address::times_8, Address::times_8,
in_bytes(cp_base_offset + in_bytes(cp_base_offset +
ConstantPoolCacheEntry::flags_offset()))); ConstantPoolCacheEntry::flags_offset())));
__ shrl(c_rarg3, ConstantPoolCacheEntry::tosBits); __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask rcx for tosBits after the // Make sure we don't need to mask rcx after the above shift
// above shift ConstantPoolCacheEntry::verify_tos_state_shift();
ConstantPoolCacheEntry::verify_tosBits();
__ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
__ cmpl(c_rarg3, ltos); __ cmpl(c_rarg3, ltos);
__ cmovptr(Assembler::equal, __ cmovptr(Assembler::equal,
@ -2516,7 +2527,7 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label notVolatile, Done; Label notVolatile, Done;
__ movl(rdx, flags); __ movl(rdx, flags);
__ shrl(rdx, ConstantPoolCacheEntry::volatileField); __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1); __ andl(rdx, 0x1);
// field address // field address
@ -2525,10 +2536,10 @@ void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
Label notByte, notInt, notShort, notChar, Label notByte, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble; notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
assert(btos == 0, "change code, btos != 0"); assert(btos == 0, "change code, btos != 0");
__ andl(flags, 0x0f); __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte); __ jcc(Assembler::notZero, notByte);
// btos // btos
@ -2751,7 +2762,7 @@ void TemplateTable::fast_storefield(TosState state) {
// Assembler::StoreStore)); // Assembler::StoreStore));
Label notVolatile; Label notVolatile;
__ shrl(rdx, ConstantPoolCacheEntry::volatileField); __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1); __ andl(rdx, 0x1);
// Get object from stack // Get object from stack
@ -2832,7 +2843,7 @@ void TemplateTable::fast_accessfield(TosState state) {
// __ movl(rdx, Address(rcx, rbx, Address::times_8, // __ movl(rdx, Address(rcx, rbx, Address::times_8,
// in_bytes(constantPoolCacheOopDesc::base_offset() + // in_bytes(constantPoolCacheOopDesc::base_offset() +
// ConstantPoolCacheEntry::flags_offset()))); // ConstantPoolCacheEntry::flags_offset())));
// __ shrl(rdx, ConstantPoolCacheEntry::volatileField); // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
// __ andl(rdx, 0x1); // __ andl(rdx, 0x1);
// } // }
__ movptr(rbx, Address(rcx, rbx, Address::times_8, __ movptr(rbx, Address(rcx, rbx, Address::times_8,
@ -2920,7 +2931,7 @@ void TemplateTable::fast_xaccess(TosState state) {
// __ movl(rdx, Address(rcx, rdx, Address::times_8, // __ movl(rdx, Address(rcx, rdx, Address::times_8,
// in_bytes(constantPoolCacheOopDesc::base_offset() + // in_bytes(constantPoolCacheOopDesc::base_offset() +
// ConstantPoolCacheEntry::flags_offset()))); // ConstantPoolCacheEntry::flags_offset())));
// __ shrl(rdx, ConstantPoolCacheEntry::volatileField); // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
// __ testl(rdx, 0x1); // __ testl(rdx, 0x1);
// __ jcc(Assembler::zero, notVolatile); // __ jcc(Assembler::zero, notVolatile);
// __ membar(Assembler::LoadLoad); // __ membar(Assembler::LoadLoad);
@ -2940,19 +2951,29 @@ void TemplateTable::count_calls(Register method, Register temp) {
ShouldNotReachHere(); ShouldNotReachHere();
} }
void TemplateTable::prepare_invoke(Register method, Register index, int byte_no) { void TemplateTable::prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index, // itable index, MethodType, etc.
Register recv, // if caller wants to see it
Register flags // if caller wants to test it
) {
// determine flags // determine flags
Bytecodes::Code code = bytecode(); const Bytecodes::Code code = bytecode();
const bool is_invokeinterface = code == Bytecodes::_invokeinterface; const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = code == Bytecodes::_invokedynamic; const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
const bool is_invokehandle = code == Bytecodes::_invokehandle;
const bool is_invokevirtual = code == Bytecodes::_invokevirtual; const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
const bool is_invokespecial = code == Bytecodes::_invokespecial; const bool is_invokespecial = code == Bytecodes::_invokespecial;
const bool load_receiver = (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic); const bool load_receiver = (recv != noreg);
const bool receiver_null_check = is_invokespecial; const bool save_flags = (flags != noreg);
const bool save_flags = is_invokeinterface || is_invokevirtual; assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
assert(flags == noreg || flags == rdx, "");
assert(recv == noreg || recv == rcx, "");
// setup registers & access constant pool cache // setup registers & access constant pool cache
const Register recv = rcx; if (recv == noreg) recv = rcx;
const Register flags = rdx; if (flags == noreg) flags = rdx;
assert_different_registers(method, index, recv, flags); assert_different_registers(method, index, recv, flags);
// save 'interpreter return address' // save 'interpreter return address'
@ -2960,19 +2981,29 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
// load receiver if needed (note: no return address pushed yet) // maybe push appendix to arguments (just before return address)
if (load_receiver) { if (is_invokedynamic || is_invokehandle) {
assert(!is_invokedynamic, ""); Label L_no_push;
__ movl(recv, flags); __ verify_oop(index);
__ andl(recv, 0xFF); __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
Address recv_addr(rsp, recv, Address::times_8, -Interpreter::expr_offset_in_bytes(1)); __ jccb(Assembler::zero, L_no_push);
__ movptr(recv, recv_addr); // Push the appendix as a trailing parameter.
__ verify_oop(recv); // This must be done before we get the receiver,
// since the parameter_size includes it.
__ push(index); // push appendix (MethodType, CallSite, etc.)
__ bind(L_no_push);
} }
// do null check if needed // load receiver if needed (after appendix is pushed so parameter size is correct)
if (receiver_null_check) { // Note: no return address pushed yet
__ null_check(recv); if (load_receiver) {
__ movl(recv, flags);
__ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
const int receiver_is_at_end = -1; // back off one slot to get receiver
Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
__ movptr(recv, recv_addr);
__ verify_oop(recv);
} }
if (save_flags) { if (save_flags) {
@ -2980,16 +3011,14 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
} }
// compute return type // compute return type
__ shrl(flags, ConstantPoolCacheEntry::tosBits); __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
// Make sure we don't need to mask flags for tosBits after the above shift // Make sure we don't need to mask flags after the above shift
ConstantPoolCacheEntry::verify_tosBits(); ConstantPoolCacheEntry::verify_tos_state_shift();
// load return address // load return address
{ {
address table_addr; const address table_addr = (is_invokeinterface || is_invokedynamic) ?
if (is_invokeinterface || is_invokedynamic) (address)Interpreter::return_5_addrs_by_index_table() :
table_addr = (address)Interpreter::return_5_addrs_by_index_table(); (address)Interpreter::return_3_addrs_by_index_table();
else
table_addr = (address)Interpreter::return_3_addrs_by_index_table();
ExternalAddress table(table_addr); ExternalAddress table(table_addr);
__ lea(rscratch1, table); __ lea(rscratch1, table);
__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)); __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
@ -2998,7 +3027,7 @@ void TemplateTable::prepare_invoke(Register method, Register index, int byte_no)
// push return address // push return address
__ push(flags); __ push(flags);
// Restore flag field from the constant pool cache, and restore esi // Restore flags value from the constant pool cache, and restore rsi
// for later null checks. r13 is the bytecode pointer // for later null checks. r13 is the bytecode pointer
if (save_flags) { if (save_flags) {
__ movl(flags, r13); __ movl(flags, r13);
@ -3012,11 +3041,13 @@ void TemplateTable::invokevirtual_helper(Register index,
Register flags) { Register flags) {
// Uses temporary registers rax, rdx // Uses temporary registers rax, rdx
assert_different_registers(index, recv, rax, rdx); assert_different_registers(index, recv, rax, rdx);
assert(index == rbx, "");
assert(recv == rcx, "");
// Test for an invoke of a final method // Test for an invoke of a final method
Label notFinal; Label notFinal;
__ movl(rax, flags); __ movl(rax, flags);
__ andl(rax, (1 << ConstantPoolCacheEntry::vfinalMethod)); __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
__ jcc(Assembler::zero, notFinal); __ jcc(Assembler::zero, notFinal);
const Register method = index; // method must be rbx const Register method = index; // method must be rbx
@ -3024,6 +3055,7 @@ void TemplateTable::invokevirtual_helper(Register index,
"methodOop must be rbx for interpreter calling convention"); "methodOop must be rbx for interpreter calling convention");
// do the call - the index is actually the method to call // do the call - the index is actually the method to call
// that is, f2 is a vtable index if !is_vfinal, else f2 is a methodOop
__ verify_oop(method); __ verify_oop(method);
// It's final, need a null check here! // It's final, need a null check here!
@ -3039,20 +3071,13 @@ void TemplateTable::invokevirtual_helper(Register index,
// get receiver klass // get receiver klass
__ null_check(recv, oopDesc::klass_offset_in_bytes()); __ null_check(recv, oopDesc::klass_offset_in_bytes());
__ load_klass(rax, recv); __ load_klass(rax, recv);
__ verify_oop(rax); __ verify_oop(rax);
// profile this call // profile this call
__ profile_virtual_call(rax, r14, rdx); __ profile_virtual_call(rax, r14, rdx);
// get target methodOop & entry point // get target methodOop & entry point
const int base = instanceKlass::vtable_start_offset() * wordSize; __ lookup_virtual_method(rax, index, method);
assert(vtableEntry::size() * wordSize == 8,
"adjust the scaling in the code below");
__ movptr(method, Address(rax, index,
Address::times_8,
base + vtableEntry::method_offset_in_bytes()));
__ movptr(rdx, Address(method, methodOopDesc::interpreter_entry_offset()));
__ jump_from_interpreted(method, rdx); __ jump_from_interpreted(method, rdx);
} }
@ -3060,7 +3085,10 @@ void TemplateTable::invokevirtual_helper(Register index,
void TemplateTable::invokevirtual(int byte_no) { void TemplateTable::invokevirtual(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f2_byte, "use this argument"); assert(byte_no == f2_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no,
rbx, // method or vtable index
noreg, // unused itable index
rcx, rdx); // recv, flags
// rbx: index // rbx: index
// rcx: receiver // rcx: receiver
@ -3073,7 +3101,10 @@ void TemplateTable::invokevirtual(int byte_no) {
void TemplateTable::invokespecial(int byte_no) { void TemplateTable::invokespecial(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no, rbx, noreg, // get f1 methodOop
rcx); // get receiver also for null check
__ verify_oop(rcx);
__ null_check(rcx);
// do the call // do the call
__ verify_oop(rbx); __ verify_oop(rbx);
__ profile_call(rax); __ profile_call(rax);
@ -3084,7 +3115,7 @@ void TemplateTable::invokespecial(int byte_no) {
void TemplateTable::invokestatic(int byte_no) { void TemplateTable::invokestatic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rbx, noreg, byte_no); prepare_invoke(byte_no, rbx); // get f1 methodOop
// do the call // do the call
__ verify_oop(rbx); __ verify_oop(rbx);
__ profile_call(rax); __ profile_call(rax);
@ -3100,10 +3131,11 @@ void TemplateTable::fast_invokevfinal(int byte_no) {
void TemplateTable::invokeinterface(int byte_no) { void TemplateTable::invokeinterface(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_byte, "use this argument"); assert(byte_no == f1_byte, "use this argument");
prepare_invoke(rax, rbx, byte_no); prepare_invoke(byte_no, rax, rbx, // get f1 klassOop, f2 itable index
rcx, rdx); // recv, flags
// rax: Interface // rax: interface klass (from f1)
// rbx: index // rbx: itable index (from f2)
// rcx: receiver // rcx: receiver
// rdx: flags // rdx: flags
@ -3113,14 +3145,15 @@ void TemplateTable::invokeinterface(int byte_no) {
// another compliant java compiler. // another compliant java compiler.
Label notMethod; Label notMethod;
__ movl(r14, rdx); __ movl(r14, rdx);
__ andl(r14, (1 << ConstantPoolCacheEntry::methodInterface)); __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
__ jcc(Assembler::zero, notMethod); __ jcc(Assembler::zero, notMethod);
invokevirtual_helper(rbx, rcx, rdx); invokevirtual_helper(rbx, rcx, rdx);
__ bind(notMethod); __ bind(notMethod);
// Get receiver klass into rdx - also a null check // Get receiver klass into rdx - also a null check
__ restore_locals(); // restore r14 __ restore_locals(); // restore r14
__ null_check(rcx, oopDesc::klass_offset_in_bytes());
__ load_klass(rdx, rcx); __ load_klass(rdx, rcx);
__ verify_oop(rdx); __ verify_oop(rdx);
@ -3135,7 +3168,7 @@ void TemplateTable::invokeinterface(int byte_no) {
rbx, r13, rbx, r13,
no_such_interface); no_such_interface);
// rbx,: methodOop to call // rbx: methodOop to call
// rcx: receiver // rcx: receiver
// Check for abstract method error // Check for abstract method error
// Note: This should be done more efficiently via a throw_abstract_method_error // Note: This should be done more efficiently via a throw_abstract_method_error
@ -3172,12 +3205,42 @@ void TemplateTable::invokeinterface(int byte_no) {
InterpreterRuntime::throw_IncompatibleClassChangeError)); InterpreterRuntime::throw_IncompatibleClassChangeError));
// the call_VM checks for exception, so we should never return here. // the call_VM checks for exception, so we should never return here.
__ should_not_reach_here(); __ should_not_reach_here();
return;
} }
void TemplateTable::invokehandle(int byte_no) {
transition(vtos, vtos);
assert(byte_no == f12_oop, "use this argument");
const Register rbx_method = rbx; // f2
const Register rax_mtype = rax; // f1
const Register rcx_recv = rcx;
const Register rdx_flags = rdx;
if (!EnableInvokeDynamic) {
// rewriter does not generate this bytecode
__ should_not_reach_here();
return;
}
prepare_invoke(byte_no,
rbx_method, rax_mtype, // get f2 methodOop, f1 MethodType
rcx_recv);
__ verify_oop(rbx_method);
__ verify_oop(rcx_recv);
__ null_check(rcx_recv);
// Note: rax_mtype is already pushed (if necessary) by prepare_invoke
// FIXME: profile the LambdaForm also
__ profile_final_call(rax);
__ jump_from_interpreted(rbx_method, rdx);
}
void TemplateTable::invokedynamic(int byte_no) { void TemplateTable::invokedynamic(int byte_no) {
transition(vtos, vtos); transition(vtos, vtos);
assert(byte_no == f1_oop, "use this argument"); assert(byte_no == f12_oop, "use this argument");
if (!EnableInvokeDynamic) { if (!EnableInvokeDynamic) {
// We should not encounter this bytecode if !EnableInvokeDynamic. // We should not encounter this bytecode if !EnableInvokeDynamic.
@ -3190,26 +3253,23 @@ void TemplateTable::invokedynamic(int byte_no) {
return; return;
} }
prepare_invoke(rax, rbx, byte_no); const Register rbx_method = rbx;
const Register rax_callsite = rax;
// rax: CallSite object (f1) prepare_invoke(byte_no, rbx_method, rax_callsite);
// rbx: unused (f2)
// rcx: receiver address
// rdx: flags (unused)
Register rax_callsite = rax; // rax: CallSite object (from f1)
Register rcx_method_handle = rcx; // rbx: MH.linkToCallSite method (from f2)
// Note: rax_callsite is already pushed by prepare_invoke
// %%% should make a type profile for any invokedynamic that takes a ref argument // %%% should make a type profile for any invokedynamic that takes a ref argument
// profile this call // profile this call
__ profile_call(r13); __ profile_call(r13);
__ verify_oop(rax_callsite); __ verify_oop(rax_callsite);
__ load_heap_oop(rcx_method_handle, Address(rax_callsite, __ delayed_value(java_lang_invoke_CallSite::target_offset_in_bytes, rdx)));
__ null_check(rcx_method_handle); __ jump_from_interpreted(rbx_method, rdx);
__ verify_oop(rcx_method_handle);
__ prepare_to_jump_from_interpreted();
__ jump_to_method_handle_entry(rcx_method_handle, rdx);
} }

View File

@ -25,7 +25,12 @@
#ifndef CPU_X86_VM_TEMPLATETABLE_X86_64_HPP #ifndef CPU_X86_VM_TEMPLATETABLE_X86_64_HPP
#define CPU_X86_VM_TEMPLATETABLE_X86_64_HPP #define CPU_X86_VM_TEMPLATETABLE_X86_64_HPP
static void prepare_invoke(Register method, Register index, int byte_no); static void prepare_invoke(int byte_no,
Register method, // linked method (or i-klass)
Register index = noreg, // itable index, MethodType, etc.
Register recv = noreg, // if caller wants to see it
Register flags = noreg // if caller wants to test it
);
static void invokevirtual_helper(Register index, Register recv, static void invokevirtual_helper(Register index, Register recv,
Register flags); Register flags);
static void volatile_barrier(Assembler::Membar_mask_bits order_constraint); static void volatile_barrier(Assembler::Membar_mask_bits order_constraint);

View File

@ -76,8 +76,7 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
// get receiver klass // get receiver klass
address npe_addr = __ pc(); address npe_addr = __ pc();
__ movptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes())); __ movptr(rax, Address(rcx, oopDesc::klass_offset_in_bytes()));
// compute entry offset (in words)
int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
#ifndef PRODUCT #ifndef PRODUCT
if (DebugVtables) { if (DebugVtables) {
Label L; Label L;
@ -93,7 +92,8 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
const Register method = rbx; const Register method = rbx;
// load methodOop and target address // load methodOop and target address
__ movptr(method, Address(rax, entry_offset*wordSize + vtableEntry::method_offset_in_bytes())); __ lookup_virtual_method(rax, vtable_index, method);
if (DebugVtables) { if (DebugVtables) {
Label L; Label L;
__ cmpptr(method, (int32_t)NULL_WORD); __ cmpptr(method, (int32_t)NULL_WORD);

View File

@ -69,10 +69,6 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
address npe_addr = __ pc(); address npe_addr = __ pc();
__ load_klass(rax, j_rarg0); __ load_klass(rax, j_rarg0);
// compute entry offset (in words)
int entry_offset =
instanceKlass::vtable_start_offset() + vtable_index * vtableEntry::size();
#ifndef PRODUCT #ifndef PRODUCT
if (DebugVtables) { if (DebugVtables) {
Label L; Label L;
@ -90,9 +86,8 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
// load methodOop and target address // load methodOop and target address
const Register method = rbx; const Register method = rbx;
__ movptr(method, Address(rax, __ lookup_virtual_method(rax, vtable_index, method);
entry_offset * wordSize +
vtableEntry::method_offset_in_bytes()));
if (DebugVtables) { if (DebugVtables) {
Label L; Label L;
__ cmpptr(method, (int32_t)NULL_WORD); __ cmpptr(method, (int32_t)NULL_WORD);

View File

@ -646,16 +646,15 @@ int CppInterpreter::method_handle_entry(methodOop method,
oop method_type = (oop) p; oop method_type = (oop) p;
// The MethodHandle is in the slot after the arguments // The MethodHandle is in the slot after the arguments
oop form = java_lang_invoke_MethodType::form(method_type); int num_vmslots = argument_slots - 1;
int num_vmslots = java_lang_invoke_MethodTypeForm::vmslots(form);
assert(argument_slots == num_vmslots + 1, "should be");
oop method_handle = VMSLOTS_OBJECT(num_vmslots); oop method_handle = VMSLOTS_OBJECT(num_vmslots);
// InvokeGeneric requires some extra shuffling // InvokeGeneric requires some extra shuffling
oop mhtype = java_lang_invoke_MethodHandle::type(method_handle); oop mhtype = java_lang_invoke_MethodHandle::type(method_handle);
bool is_exact = mhtype == method_type; bool is_exact = mhtype == method_type;
if (!is_exact) { if (!is_exact) {
if (method->intrinsic_id() == vmIntrinsics::_invokeExact) { if (true || // FIXME
method->intrinsic_id() == vmIntrinsics::_invokeExact) {
CALL_VM_NOCHECK_NOFIX( CALL_VM_NOCHECK_NOFIX(
SharedRuntime::throw_WrongMethodTypeException( SharedRuntime::throw_WrongMethodTypeException(
thread, method_type, mhtype)); thread, method_type, mhtype));
@ -670,8 +669,8 @@ int CppInterpreter::method_handle_entry(methodOop method,
// NB the x86 code for this (in methodHandles_x86.cpp, search for // NB the x86 code for this (in methodHandles_x86.cpp, search for
// "genericInvoker") is really really odd. I'm hoping it's trying // "genericInvoker") is really really odd. I'm hoping it's trying
// to accomodate odd VM/class library combinations I can ignore. // to accomodate odd VM/class library combinations I can ignore.
oop adapter = java_lang_invoke_MethodTypeForm::genericInvoker(form); oop adapter = NULL; //FIXME: load the adapter from the CP cache
if (adapter == NULL) { IF (adapter == NULL) {
CALL_VM_NOCHECK_NOFIX( CALL_VM_NOCHECK_NOFIX(
SharedRuntime::throw_WrongMethodTypeException( SharedRuntime::throw_WrongMethodTypeException(
thread, method_type, mhtype)); thread, method_type, mhtype));
@ -761,7 +760,7 @@ void CppInterpreter::process_method_handle(oop method_handle, TRAPS) {
return; return;
} }
if (entry_kind != MethodHandles::_invokespecial_mh) { if (entry_kind != MethodHandles::_invokespecial_mh) {
int index = java_lang_invoke_DirectMethodHandle::vmindex(method_handle); intptr_t index = java_lang_invoke_DirectMethodHandle::vmindex(method_handle);
instanceKlass* rcvrKlass = instanceKlass* rcvrKlass =
(instanceKlass *) receiver->klass()->klass_part(); (instanceKlass *) receiver->klass()->klass_part();
if (entry_kind == MethodHandles::_invokevirtual_mh) { if (entry_kind == MethodHandles::_invokevirtual_mh) {
@ -1179,8 +1178,7 @@ BasicType CppInterpreter::result_type_of_handle(oop method_handle) {
intptr_t* CppInterpreter::calculate_unwind_sp(ZeroStack* stack, intptr_t* CppInterpreter::calculate_unwind_sp(ZeroStack* stack,
oop method_handle) { oop method_handle) {
oop method_type = java_lang_invoke_MethodHandle::type(method_handle); oop method_type = java_lang_invoke_MethodHandle::type(method_handle);
oop form = java_lang_invoke_MethodType::form(method_type); int argument_slots = java_lang_invoke_MethodType::ptype_slot_count(method_type);
int argument_slots = java_lang_invoke_MethodTypeForm::vmslots(form);
return stack->sp() + argument_slots; return stack->sp() + argument_slots;
} }

View File

@ -38,6 +38,5 @@
address generate_empty_entry(); address generate_empty_entry();
address generate_accessor_entry(); address generate_accessor_entry();
address generate_Reference_get_entry(); address generate_Reference_get_entry();
address generate_method_handle_entry();
#endif // CPU_ZERO_VM_INTERPRETERGENERATOR_ZERO_HPP #endif // CPU_ZERO_VM_INTERPRETERGENERATOR_ZERO_HPP

View File

@ -70,14 +70,6 @@ address InterpreterGenerator::generate_abstract_entry() {
return generate_entry((address) ShouldNotCallThisEntry()); return generate_entry((address) ShouldNotCallThisEntry());
} }
address InterpreterGenerator::generate_method_handle_entry() {
#ifdef CC_INTERP
return generate_entry((address) CppInterpreter::method_handle_entry);
#else
return generate_entry((address) ShouldNotCallThisEntry());
#endif // CC_INTERP
}
bool AbstractInterpreter::can_be_compiled(methodHandle m) { bool AbstractInterpreter::can_be_compiled(methodHandle m) {
return true; return true;
} }

View File

@ -201,13 +201,23 @@ int VM_Version::platform_features(int features) {
impl[i] = (char)toupper((uint)impl[i]); impl[i] = (char)toupper((uint)impl[i]);
if (strstr(impl, "SPARC64") != NULL) { if (strstr(impl, "SPARC64") != NULL) {
features |= sparc64_family_m; features |= sparc64_family_m;
} else if (strstr(impl, "SPARC-M") != NULL) {
// M-series SPARC is based on T-series.
features |= (M_family_m | T_family_m);
} else if (strstr(impl, "SPARC-T") != NULL) { } else if (strstr(impl, "SPARC-T") != NULL) {
features |= T_family_m; features |= T_family_m;
if (strstr(impl, "SPARC-T1") != NULL) { if (strstr(impl, "SPARC-T1") != NULL) {
features |= T1_model_m; features |= T1_model_m;
} }
} else { } else {
assert(strstr(impl, "SPARC") != NULL, "should be sparc"); if (strstr(impl, "SPARC") == NULL) {
#ifndef PRODUCT
// kstat on Solaris 8 virtual machines (branded zones)
// returns "(unsupported)" implementation.
warning("kstat cpu_info implementation = '%s', should contain SPARC", impl);
#endif
implementation = "SPARC";
}
} }
free((void*)impl); free((void*)impl);
break; break;

View File

@ -674,16 +674,19 @@ void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &inst, bool for_c
else if( inst.is_ideal_mem() ) { else if( inst.is_ideal_mem() ) {
// Print out the field name if available to improve readability // Print out the field name if available to improve readability
fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n"); fprintf(fp, " if (ra->C->alias_type(adr_type())->field() != NULL) {\n");
fprintf(fp, " st->print(\" ! Field \");\n"); fprintf(fp, " ciField* f = ra->C->alias_type(adr_type())->field();\n");
fprintf(fp, " if( ra->C->alias_type(adr_type())->is_volatile() )\n"); fprintf(fp, " st->print(\" ! Field: \");\n");
fprintf(fp, " st->print(\" Volatile\");\n"); fprintf(fp, " if (f->is_volatile())\n");
fprintf(fp, " ra->C->alias_type(adr_type())->field()->holder()->name()->print_symbol_on(st);\n"); fprintf(fp, " st->print(\"volatile \");\n");
fprintf(fp, " f->holder()->name()->print_symbol_on(st);\n");
fprintf(fp, " st->print(\".\");\n"); fprintf(fp, " st->print(\".\");\n");
fprintf(fp, " ra->C->alias_type(adr_type())->field()->name()->print_symbol_on(st);\n"); fprintf(fp, " f->name()->print_symbol_on(st);\n");
fprintf(fp, " if (f->is_constant())\n");
fprintf(fp, " st->print(\" (constant)\");\n");
fprintf(fp, " } else\n"); fprintf(fp, " } else\n");
// Make sure 'Volatile' gets printed out // Make sure 'Volatile' gets printed out
fprintf(fp, " if( ra->C->alias_type(adr_type())->is_volatile() )\n"); fprintf(fp, " if (ra->C->alias_type(adr_type())->is_volatile())\n");
fprintf(fp, " st->print(\" Volatile!\");\n"); fprintf(fp, " st->print(\" volatile!\");\n");
} }
// Complete the definition of the format function // Complete the definition of the format function

View File

@ -318,6 +318,16 @@ void DelayedConstant::update_all() {
} }
} }
RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
intptr_t val = (intptr_t) (*value_fn)();
if (val != 0) return val + offset;
return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
intptr_t val = (intptr_t) (*value_fn)();
if (val != 0) return val + offset;
return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) { intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn); DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
return &dcon->value; return &dcon->value;

View File

@ -406,12 +406,8 @@ class AbstractAssembler : public ResourceObj {
// offsets in code which must be generated before the object class is loaded. // offsets in code which must be generated before the object class is loaded.
// Field offsets are never zero, since an object's header (mark word) // Field offsets are never zero, since an object's header (mark word)
// is located at offset zero. // is located at offset zero.
RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0) { RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0);
return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset); RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0);
}
RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0) {
return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0; virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0;
// Last overloading is platform-dependent; look in assembler_<arch>.cpp. // Last overloading is platform-dependent; look in assembler_<arch>.cpp.
static intptr_t* delayed_value_addr(int(*constant_fn)()); static intptr_t* delayed_value_addr(int(*constant_fn)());

View File

@ -103,7 +103,8 @@ inline void assert_different_registers(
) { ) {
assert( assert(
a != b, a != b,
"registers must be different" err_msg("registers must be different: a=%d, b=%d",
a, b)
); );
} }
@ -116,7 +117,8 @@ inline void assert_different_registers(
assert( assert(
a != b && a != c a != b && a != c
&& b != c, && b != c,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d",
a, b, c)
); );
} }
@ -131,7 +133,8 @@ inline void assert_different_registers(
a != b && a != c && a != d a != b && a != c && a != d
&& b != c && b != d && b != c && b != d
&& c != d, && c != d,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d",
a, b, c, d)
); );
} }
@ -148,7 +151,8 @@ inline void assert_different_registers(
&& b != c && b != d && b != e && b != c && b != d && b != e
&& c != d && c != e && c != d && c != e
&& d != e, && d != e,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d, e=%d",
a, b, c, d, e)
); );
} }
@ -167,7 +171,8 @@ inline void assert_different_registers(
&& c != d && c != e && c != f && c != d && c != e && c != f
&& d != e && d != f && d != e && d != f
&& e != f, && e != f,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d, e=%d, f=%d",
a, b, c, d, e, f)
); );
} }
@ -188,7 +193,8 @@ inline void assert_different_registers(
&& d != e && d != f && d != g && d != e && d != f && d != g
&& e != f && e != g && e != f && e != g
&& f != g, && f != g,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d",
a, b, c, d, e, f, g)
); );
} }
@ -211,7 +217,34 @@ inline void assert_different_registers(
&& e != f && e != g && e != h && e != f && e != g && e != h
&& f != g && f != h && f != g && f != h
&& g != h, && g != h,
"registers must be different" err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d, h=%d",
a, b, c, d, e, f, g, h)
);
}
inline void assert_different_registers(
AbstractRegister a,
AbstractRegister b,
AbstractRegister c,
AbstractRegister d,
AbstractRegister e,
AbstractRegister f,
AbstractRegister g,
AbstractRegister h,
AbstractRegister i
) {
assert(
a != b && a != c && a != d && a != e && a != f && a != g && a != h && a != i
&& b != c && b != d && b != e && b != f && b != g && b != h && b != i
&& c != d && c != e && c != f && c != g && c != h && c != i
&& d != e && d != f && d != g && d != h && d != i
&& e != f && e != g && e != h && e != i
&& f != g && f != h && f != i
&& g != h && g != i
&& h != i,
err_msg("registers must be different: a=%d, b=%d, c=%d, d=%d, e=%d, f=%d, g=%d, h=%d, i=%d",
a, b, c, d, e, f, g, h, i)
); );
} }

View File

@ -567,6 +567,7 @@ void Canonicalizer::do_NullCheck (NullCheck* x) {
} }
} }
void Canonicalizer::do_TypeCast (TypeCast* x) {}
void Canonicalizer::do_Invoke (Invoke* x) {} void Canonicalizer::do_Invoke (Invoke* x) {}
void Canonicalizer::do_NewInstance (NewInstance* x) {} void Canonicalizer::do_NewInstance (NewInstance* x) {}
void Canonicalizer::do_NewTypeArray (NewTypeArray* x) {} void Canonicalizer::do_NewTypeArray (NewTypeArray* x) {}

View File

@ -74,6 +74,7 @@ class Canonicalizer: InstructionVisitor {
virtual void do_IfInstanceOf (IfInstanceOf* x); virtual void do_IfInstanceOf (IfInstanceOf* x);
virtual void do_Convert (Convert* x); virtual void do_Convert (Convert* x);
virtual void do_NullCheck (NullCheck* x); virtual void do_NullCheck (NullCheck* x);
virtual void do_TypeCast (TypeCast* x);
virtual void do_Invoke (Invoke* x); virtual void do_Invoke (Invoke* x);
virtual void do_NewInstance (NewInstance* x); virtual void do_NewInstance (NewInstance* x);
virtual void do_NewTypeArray (NewTypeArray* x); virtual void do_NewTypeArray (NewTypeArray* x);

View File

@ -523,7 +523,7 @@ void Compilation::bailout(const char* msg) {
assert(msg != NULL, "bailout message must exist"); assert(msg != NULL, "bailout message must exist");
if (!bailed_out()) { if (!bailed_out()) {
// keep first bailout message // keep first bailout message
if (PrintBailouts) tty->print_cr("compilation bailout: %s", msg); if (PrintCompilation || PrintBailouts) tty->print_cr("compilation bailout: %s", msg);
_bailout_msg = msg; _bailout_msg = msg;
} }
} }

View File

@ -92,7 +92,6 @@ CallingConvention* FrameMap::java_calling_convention(const BasicTypeArray* signa
for (i = 0; i < sizeargs;) { for (i = 0; i < sizeargs;) {
BasicType t = sig_bt[i]; BasicType t = sig_bt[i];
assert(t != T_VOID, "should be skipping these"); assert(t != T_VOID, "should be skipping these");
LIR_Opr opr = map_to_opr(t, regs + i, outgoing); LIR_Opr opr = map_to_opr(t, regs + i, outgoing);
args->append(opr); args->append(opr);
if (opr->is_address()) { if (opr->is_address()) {

View File

@ -181,8 +181,8 @@ class FrameMap : public CompilationResourceObj {
// for outgoing calls, these also update the reserved area to // for outgoing calls, these also update the reserved area to
// include space for arguments and any ABI area. // include space for arguments and any ABI area.
CallingConvention* c_calling_convention (const BasicTypeArray* signature); CallingConvention* c_calling_convention(const BasicTypeArray* signature);
CallingConvention* java_calling_convention (const BasicTypeArray* signature, bool outgoing); CallingConvention* java_calling_convention(const BasicTypeArray* signature, bool outgoing);
// deopt support // deopt support
ByteSize sp_offset_for_orig_pc() { return sp_offset_for_monitor_base(_num_monitors); } ByteSize sp_offset_for_orig_pc() { return sp_offset_for_monitor_base(_num_monitors); }

View File

@ -31,7 +31,7 @@
#include "ci/ciCallSite.hpp" #include "ci/ciCallSite.hpp"
#include "ci/ciField.hpp" #include "ci/ciField.hpp"
#include "ci/ciKlass.hpp" #include "ci/ciKlass.hpp"
#include "ci/ciMethodHandle.hpp" #include "ci/ciMemberName.hpp"
#include "compiler/compileBroker.hpp" #include "compiler/compileBroker.hpp"
#include "interpreter/bytecode.hpp" #include "interpreter/bytecode.hpp"
#include "runtime/sharedRuntime.hpp" #include "runtime/sharedRuntime.hpp"
@ -914,11 +914,11 @@ void GraphBuilder::load_local(ValueType* type, int index) {
void GraphBuilder::store_local(ValueType* type, int index) { void GraphBuilder::store_local(ValueType* type, int index) {
Value x = pop(type); Value x = pop(type);
store_local(state(), x, type, index); store_local(state(), x, index);
} }
void GraphBuilder::store_local(ValueStack* state, Value x, ValueType* type, int index) { void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
if (parsing_jsr()) { if (parsing_jsr()) {
// We need to do additional tracking of the location of the return // We need to do additional tracking of the location of the return
// address for jsrs since we don't handle arbitrary jsr/ret // address for jsrs since we don't handle arbitrary jsr/ret
@ -1535,7 +1535,7 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
case T_ARRAY: case T_ARRAY:
case T_OBJECT: case T_OBJECT:
if (field_val.as_object()->should_be_constant()) { if (field_val.as_object()->should_be_constant()) {
constant = new Constant(as_ValueType(field_val)); constant = new Constant(as_ValueType(field_val));
} }
break; break;
@ -1562,12 +1562,53 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching)); append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
} }
break; break;
case Bytecodes::_getfield : case Bytecodes::_getfield: {
{ // Check for compile-time constants, i.e., trusted final non-static fields.
Instruction* constant = NULL;
obj = apop();
ObjectType* obj_type = obj->type()->as_ObjectType();
if (obj_type->is_constant() && !PatchALot) {
ciObject* const_oop = obj_type->constant_value();
if (!const_oop->is_null_object()) {
if (field->is_constant()) {
ciConstant field_val = field->constant_value_of(const_oop);
BasicType field_type = field_val.basic_type();
switch (field_type) {
case T_ARRAY:
case T_OBJECT:
if (field_val.as_object()->should_be_constant()) {
constant = new Constant(as_ValueType(field_val));
}
break;
default:
constant = new Constant(as_ValueType(field_val));
}
} else {
// For CallSite objects treat the target field as a compile time constant.
if (const_oop->is_call_site()) {
ciCallSite* call_site = const_oop->as_call_site();
if (field->is_call_site_target()) {
ciMethodHandle* target = call_site->get_target();
if (target != NULL) { // just in case
ciConstant field_val(T_OBJECT, target);
constant = new Constant(as_ValueType(field_val));
// Add a dependence for invalidation of the optimization.
if (!call_site->is_constant_call_site()) {
dependency_recorder()->assert_call_site_target_value(call_site, target);
}
}
}
}
}
}
}
if (constant != NULL) {
push(type, append(constant));
} else {
if (state_before == NULL) { if (state_before == NULL) {
state_before = copy_state_for_exception(); state_before = copy_state_for_exception();
} }
LoadField* load = new LoadField(apop(), offset, field, false, state_before, needs_patching); LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
Value replacement = !needs_patching ? _memory->load(load) : load; Value replacement = !needs_patching ? _memory->load(load) : load;
if (replacement != load) { if (replacement != load) {
assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked"); assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
@ -1575,22 +1616,23 @@ void GraphBuilder::access_field(Bytecodes::Code code) {
} else { } else {
push(type, append(load)); push(type, append(load));
} }
break;
}
case Bytecodes::_putfield :
{ Value val = pop(type);
if (state_before == NULL) {
state_before = copy_state_for_exception();
}
StoreField* store = new StoreField(apop(), offset, field, val, false, state_before, needs_patching);
if (!needs_patching) store = _memory->store(store);
if (store != NULL) {
append(store);
}
} }
break; break;
default : }
case Bytecodes::_putfield: {
Value val = pop(type);
obj = apop();
if (state_before == NULL) {
state_before = copy_state_for_exception();
}
StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
if (!needs_patching) store = _memory->store(store);
if (store != NULL) {
append(store);
}
break;
}
default:
ShouldNotReachHere(); ShouldNotReachHere();
break; break;
} }
@ -1604,38 +1646,73 @@ Dependencies* GraphBuilder::dependency_recorder() const {
void GraphBuilder::invoke(Bytecodes::Code code) { void GraphBuilder::invoke(Bytecodes::Code code) {
const bool has_receiver =
code == Bytecodes::_invokespecial ||
code == Bytecodes::_invokevirtual ||
code == Bytecodes::_invokeinterface;
const bool is_invokedynamic = (code == Bytecodes::_invokedynamic);
bool will_link; bool will_link;
ciMethod* target = stream()->get_method(will_link); ciMethod* target = stream()->get_method(will_link);
ciKlass* holder = stream()->get_declared_method_holder();
const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
// FIXME bail out for now
if ((bc_raw == Bytecodes::_invokehandle || is_invokedynamic) && !will_link) {
BAILOUT("unlinked call site (FIXME needs patching or recompile support)");
}
// we have to make sure the argument size (incl. the receiver) // we have to make sure the argument size (incl. the receiver)
// is correct for compilation (the call would fail later during // is correct for compilation (the call would fail later during
// linkage anyway) - was bug (gri 7/28/99) // linkage anyway) - was bug (gri 7/28/99)
if (target->is_loaded() && target->is_static() != (code == Bytecodes::_invokestatic)) BAILOUT("will cause link error"); {
// Use raw to get rewritten bytecode.
const bool is_invokestatic = bc_raw == Bytecodes::_invokestatic;
const bool allow_static =
is_invokestatic ||
bc_raw == Bytecodes::_invokehandle ||
bc_raw == Bytecodes::_invokedynamic;
if (target->is_loaded()) {
if (( target->is_static() && !allow_static) ||
(!target->is_static() && is_invokestatic)) {
BAILOUT("will cause link error");
}
}
}
ciInstanceKlass* klass = target->holder(); ciInstanceKlass* klass = target->holder();
// check if CHA possible: if so, change the code to invoke_special // check if CHA possible: if so, change the code to invoke_special
ciInstanceKlass* calling_klass = method()->holder(); ciInstanceKlass* calling_klass = method()->holder();
ciKlass* holder = stream()->get_declared_method_holder();
ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder); ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
ciInstanceKlass* actual_recv = callee_holder; ciInstanceKlass* actual_recv = callee_holder;
// some methods are obviously bindable without any type checks so // Some methods are obviously bindable without any type checks so
// convert them directly to an invokespecial. // convert them directly to an invokespecial or invokestatic.
if (target->is_loaded() && !target->is_abstract() && if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
target->can_be_statically_bound() && code == Bytecodes::_invokevirtual) { switch (bc_raw) {
code = Bytecodes::_invokespecial; case Bytecodes::_invokevirtual: code = Bytecodes::_invokespecial; break;
case Bytecodes::_invokehandle: code = Bytecodes::_invokestatic; break;
}
} }
bool is_invokedynamic = code == Bytecodes::_invokedynamic; // Push appendix argument (MethodType, CallSite, etc.), if one.
if (stream()->has_appendix()) {
ciObject* appendix = stream()->get_appendix();
Value arg = append(new Constant(new ObjectConstant(appendix)));
apush(arg);
}
// NEEDS_CLEANUP // NEEDS_CLEANUP
// I've added the target-is_loaded() test below but I don't really understand // I've added the target->is_loaded() test below but I don't really understand
// how klass->is_loaded() can be true and yet target->is_loaded() is false. // how klass->is_loaded() can be true and yet target->is_loaded() is false.
// this happened while running the JCK invokevirtual tests under doit. TKR // this happened while running the JCK invokevirtual tests under doit. TKR
ciMethod* cha_monomorphic_target = NULL; ciMethod* cha_monomorphic_target = NULL;
ciMethod* exact_target = NULL; ciMethod* exact_target = NULL;
Value better_receiver = NULL; Value better_receiver = NULL;
if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded() && if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded() &&
!target->is_method_handle_invoke()) { !(// %%% FIXME: Are both of these relevant?
target->is_method_handle_intrinsic() ||
target->is_compiled_lambda_form())) {
Value receiver = NULL; Value receiver = NULL;
ciInstanceKlass* receiver_klass = NULL; ciInstanceKlass* receiver_klass = NULL;
bool type_is_exact = false; bool type_is_exact = false;
@ -1761,23 +1838,15 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
code == Bytecodes::_invokedynamic) { code == Bytecodes::_invokedynamic) {
ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target; ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target;
bool success = false; bool success = false;
if (target->is_method_handle_invoke()) { if (target->is_method_handle_intrinsic()) {
// method handle invokes // method handle invokes
success = !is_invokedynamic ? for_method_handle_inline(target) : for_invokedynamic_inline(target); success = for_method_handle_inline(target);
} } else {
if (!success) {
// static binding => check if callee is ok // static binding => check if callee is ok
success = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL), better_receiver); success = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL), code, better_receiver);
} }
CHECK_BAILOUT(); CHECK_BAILOUT();
#ifndef PRODUCT
// printing
if (PrintInlining && !success) {
// if it was successfully inlined, then it was already printed.
print_inline_result(inline_target, success);
}
#endif
clear_inline_bailout(); clear_inline_bailout();
if (success) { if (success) {
// Register dependence if JVMTI has either breakpoint // Register dependence if JVMTI has either breakpoint
@ -1788,8 +1857,13 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
} }
return; return;
} }
} else {
print_inlining(target, "no static binding", /*success*/ false);
} }
} else {
print_inlining(target, "not inlineable", /*success*/ false);
} }
// If we attempted an inline which did not succeed because of a // If we attempted an inline which did not succeed because of a
// bailout during construction of the callee graph, the entire // bailout during construction of the callee graph, the entire
// compilation has to be aborted. This is fairly rare and currently // compilation has to be aborted. This is fairly rare and currently
@ -1803,10 +1877,6 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
// inlining not successful => standard invoke // inlining not successful => standard invoke
bool is_loaded = target->is_loaded(); bool is_loaded = target->is_loaded();
bool has_receiver =
code == Bytecodes::_invokespecial ||
code == Bytecodes::_invokevirtual ||
code == Bytecodes::_invokeinterface;
ValueType* result_type = as_ValueType(target->return_type()); ValueType* result_type = as_ValueType(target->return_type());
// We require the debug info to be the "state before" because // We require the debug info to be the "state before" because
@ -1855,7 +1925,7 @@ void GraphBuilder::invoke(Bytecodes::Code code) {
} else if (exact_target != NULL) { } else if (exact_target != NULL) {
target_klass = exact_target->holder(); target_klass = exact_target->holder();
} }
profile_call(recv, target_klass); profile_call(target, recv, target_klass);
} }
} }
@ -3097,30 +3167,61 @@ int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
} }
bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, Value receiver) { bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, Bytecodes::Code bc, Value receiver) {
// Clear out any existing inline bailout condition const char* msg = NULL;
// clear out any existing inline bailout condition
clear_inline_bailout(); clear_inline_bailout();
if (callee->should_exclude()) { // exclude methods we don't want to inline
// callee is excluded msg = should_not_inline(callee);
INLINE_BAILOUT("excluded by CompilerOracle") if (msg != NULL) {
} else if (callee->should_not_inline()) { print_inlining(callee, msg, /*success*/ false);
// callee is excluded return false;
INLINE_BAILOUT("disallowed by CompilerOracle")
} else if (!callee->can_be_compiled()) {
// callee is not compilable (prob. has breakpoints)
INLINE_BAILOUT("not compilable (disabled)")
} else if (callee->intrinsic_id() != vmIntrinsics::_none && try_inline_intrinsics(callee)) {
// intrinsics can be native or not
return true;
} else if (callee->is_native()) {
// non-intrinsic natives cannot be inlined
INLINE_BAILOUT("non-intrinsic native")
} else if (callee->is_abstract()) {
INLINE_BAILOUT("abstract")
} else {
return try_inline_full(callee, holder_known, NULL, receiver);
} }
// handle intrinsics
if (callee->intrinsic_id() != vmIntrinsics::_none) {
if (try_inline_intrinsics(callee)) {
print_inlining(callee, "intrinsic");
return true;
}
// try normal inlining
}
// certain methods cannot be parsed at all
msg = check_can_parse(callee);
if (msg != NULL) {
print_inlining(callee, msg, /*success*/ false);
return false;
}
// If bytecode not set use the current one.
if (bc == Bytecodes::_illegal) {
bc = code();
}
if (try_inline_full(callee, holder_known, bc, receiver))
return true;
print_inlining(callee, _inline_bailout_msg, /*success*/ false);
return false;
}
const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
// Certain methods cannot be parsed at all:
if ( callee->is_native()) return "native method";
if ( callee->is_abstract()) return "abstract method";
if (!callee->can_be_compiled()) return "not compilable (disabled)";
return NULL;
}
// negative filter: should callee NOT be inlined? returns NULL, ok to inline, or rejection msg
const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
if ( callee->should_exclude()) return "excluded by CompilerOracle";
if ( callee->should_not_inline()) return "disallowed by CompilerOracle";
if ( callee->dont_inline()) return "don't inline by annotation";
return NULL;
} }
@ -3304,7 +3405,7 @@ bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
recv = args->at(0); recv = args->at(0);
null_check(recv); null_check(recv);
} }
profile_call(recv, NULL); profile_call(callee, recv, NULL);
} }
} }
} }
@ -3315,13 +3416,6 @@ bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
Value value = append_split(result); Value value = append_split(result);
if (result_type != voidType) push(result_type, value); if (result_type != voidType) push(result_type, value);
#ifndef PRODUCT
// printing
if (PrintInlining) {
print_inline_result(callee, true);
}
#endif
// done // done
return true; return true;
} }
@ -3477,7 +3571,7 @@ void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool
} }
bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBegin* cont_block, Value receiver) { bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, Bytecodes::Code bc, Value receiver) {
assert(!callee->is_native(), "callee must not be native"); assert(!callee->is_native(), "callee must not be native");
if (CompilationPolicy::policy()->should_not_inline(compilation()->env(), callee)) { if (CompilationPolicy::policy()->should_not_inline(compilation()->env(), callee)) {
INLINE_BAILOUT("inlining prohibited by policy"); INLINE_BAILOUT("inlining prohibited by policy");
@ -3508,10 +3602,10 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
if (callee->force_inline() || callee->should_inline()) { if (callee->force_inline() || callee->should_inline()) {
// ignore heuristic controls on inlining // ignore heuristic controls on inlining
if (callee->force_inline()) if (callee->force_inline())
CompileTask::print_inlining(callee, scope()->level(), bci(), "force inline by annotation"); print_inlining(callee, "force inline by annotation");
} else { } else {
if (inline_level() > MaxInlineLevel ) INLINE_BAILOUT("too-deep inlining"); if (inline_level() > MaxInlineLevel ) INLINE_BAILOUT("inlining too deep");
if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("too-deep recursive inlining"); if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large"); if (callee->code_size_for_inlining() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
// don't inline throwable methods unless the inlining tree is rooted in a throwable class // don't inline throwable methods unless the inlining tree is rooted in a throwable class
@ -3530,28 +3624,25 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) { if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
INLINE_BAILOUT("total inlining greater than DesiredMethodLimit"); INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
} }
// printing
print_inlining(callee, "");
} }
#ifndef PRODUCT
// printing
if (PrintInlining) {
print_inline_result(callee, true);
}
#endif
// NOTE: Bailouts from this point on, which occur at the // NOTE: Bailouts from this point on, which occur at the
// GraphBuilder level, do not cause bailout just of the inlining but // GraphBuilder level, do not cause bailout just of the inlining but
// in fact of the entire compilation. // in fact of the entire compilation.
BlockBegin* orig_block = block(); BlockBegin* orig_block = block();
const bool is_invokedynamic = bc == Bytecodes::_invokedynamic;
const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
const int args_base = state()->stack_size() - callee->arg_size(); const int args_base = state()->stack_size() - callee->arg_size();
assert(args_base >= 0, "stack underflow during inlining"); assert(args_base >= 0, "stack underflow during inlining");
// Insert null check if necessary // Insert null check if necessary
Value recv = NULL; Value recv = NULL;
if (code() != Bytecodes::_invokestatic && if (has_receiver) {
code() != Bytecodes::_invokedynamic) {
// note: null check must happen even if first instruction of callee does // note: null check must happen even if first instruction of callee does
// an implicit null check since the callee is in a different scope // an implicit null check since the callee is in a different scope
// and we must make sure exception handling does the right thing // and we must make sure exception handling does the right thing
@ -3567,7 +3658,7 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
compilation()->set_would_profile(true); compilation()->set_would_profile(true);
if (profile_calls()) { if (profile_calls()) {
profile_call(recv, holder_known ? callee->holder() : NULL); profile_call(callee, recv, holder_known ? callee->holder() : NULL);
} }
} }
@ -3576,7 +3667,7 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
// fall-through of control flow, all return instructions of the // fall-through of control flow, all return instructions of the
// callee will need to be replaced by Goto's pointing to this // callee will need to be replaced by Goto's pointing to this
// continuation point. // continuation point.
BlockBegin* cont = cont_block != NULL ? cont_block : block_at(next_bci()); BlockBegin* cont = block_at(next_bci());
bool continuation_existed = true; bool continuation_existed = true;
if (cont == NULL) { if (cont == NULL) {
cont = new BlockBegin(next_bci()); cont = new BlockBegin(next_bci());
@ -3609,17 +3700,10 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
// note: this will also ensure that all arguments are computed before being passed // note: this will also ensure that all arguments are computed before being passed
ValueStack* callee_state = state(); ValueStack* callee_state = state();
ValueStack* caller_state = state()->caller_state(); ValueStack* caller_state = state()->caller_state();
{ int i = args_base; for (int i = args_base; i < caller_state->stack_size(); ) {
while (i < caller_state->stack_size()) { const int arg_no = i - args_base;
const int par_no = i - args_base; Value arg = caller_state->stack_at_inc(i);
Value arg = caller_state->stack_at_inc(i); store_local(callee_state, arg, arg_no);
// NOTE: take base() of arg->type() to avoid problems storing
// constants
if (receiver != NULL && par_no == 0) {
arg = receiver;
}
store_local(callee_state, arg, arg->type()->base(), par_no);
}
} }
// Remove args from stack. // Remove args from stack.
@ -3695,29 +3779,27 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
// block merging. This allows load elimination and CSE to take place // block merging. This allows load elimination and CSE to take place
// across multiple callee scopes if they are relatively simple, and // across multiple callee scopes if they are relatively simple, and
// is currently essential to making inlining profitable. // is currently essential to making inlining profitable.
if (cont_block == NULL) { if (num_returns() == 1
if (num_returns() == 1 && block() == orig_block
&& block() == orig_block && block() == inline_cleanup_block()) {
&& block() == inline_cleanup_block()) { _last = inline_cleanup_return_prev();
_last = inline_cleanup_return_prev(); _state = inline_cleanup_state();
_state = inline_cleanup_state(); } else if (continuation_preds == cont->number_of_preds()) {
} else if (continuation_preds == cont->number_of_preds()) { // Inlining caused that the instructions after the invoke in the
// Inlining caused that the instructions after the invoke in the // caller are not reachable any more. So skip filling this block
// caller are not reachable any more. So skip filling this block // with instructions!
// with instructions! assert(cont == continuation(), "");
assert(cont == continuation(), ""); assert(_last && _last->as_BlockEnd(), "");
_skip_block = true;
} else {
// Resume parsing in continuation block unless it was already parsed.
// Note that if we don't change _last here, iteration in
// iterate_bytecodes_for_block will stop when we return.
if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
// add continuation to work list instead of parsing it immediately
assert(_last && _last->as_BlockEnd(), ""); assert(_last && _last->as_BlockEnd(), "");
scope_data()->parent()->add_to_work_list(continuation());
_skip_block = true; _skip_block = true;
} else {
// Resume parsing in continuation block unless it was already parsed.
// Note that if we don't change _last here, iteration in
// iterate_bytecodes_for_block will stop when we return.
if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
// add continuation to work list instead of parsing it immediately
assert(_last && _last->as_BlockEnd(), "");
scope_data()->parent()->add_to_work_list(continuation());
_skip_block = true;
}
} }
} }
@ -3735,114 +3817,88 @@ bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, BlockBeg
bool GraphBuilder::for_method_handle_inline(ciMethod* callee) { bool GraphBuilder::for_method_handle_inline(ciMethod* callee) {
assert(!callee->is_static(), "change next line"); ValueStack* state_before = state()->copy_for_parsing();
int index = state()->stack_size() - (callee->arg_size_no_receiver() + 1); vmIntrinsics::ID iid = callee->intrinsic_id();
Value receiver = state()->stack_at(index); switch (iid) {
case vmIntrinsics::_invokeBasic:
if (receiver->type()->is_constant()) { {
ciMethodHandle* method_handle = receiver->type()->as_ObjectType()->constant_value()->as_method_handle(); // get MethodHandle receiver
const int args_base = state()->stack_size() - callee->arg_size();
// Set the callee to have access to the class and signature in ValueType* type = state()->stack_at(args_base)->type();
// the MethodHandleCompiler. if (type->is_constant()) {
method_handle->set_callee(callee); ciMethod* target = type->as_ObjectType()->constant_value()->as_method_handle()->get_vmtarget();
method_handle->set_caller(method()); guarantee(!target->is_method_handle_intrinsic(), "should not happen"); // XXX remove
Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
// Get an adapter for the MethodHandle. if (try_inline(target, /*holder_known*/ true, bc)) {
ciMethod* method_handle_adapter = method_handle->get_method_handle_adapter();
if (method_handle_adapter != NULL) {
return try_inline(method_handle_adapter, /*holder_known=*/ true);
}
} else if (receiver->as_CheckCast()) {
// Match MethodHandle.selectAlternative idiom
Phi* phi = receiver->as_CheckCast()->obj()->as_Phi();
if (phi != NULL && phi->operand_count() == 2) {
// Get the two MethodHandle inputs from the Phi.
Value op1 = phi->operand_at(0);
Value op2 = phi->operand_at(1);
ObjectType* op1type = op1->type()->as_ObjectType();
ObjectType* op2type = op2->type()->as_ObjectType();
if (op1type->is_constant() && op2type->is_constant()) {
ciMethodHandle* mh1 = op1type->constant_value()->as_method_handle();
ciMethodHandle* mh2 = op2type->constant_value()->as_method_handle();
// Set the callee to have access to the class and signature in
// the MethodHandleCompiler.
mh1->set_callee(callee);
mh1->set_caller(method());
mh2->set_callee(callee);
mh2->set_caller(method());
// Get adapters for the MethodHandles.
ciMethod* mh1_adapter = mh1->get_method_handle_adapter();
ciMethod* mh2_adapter = mh2->get_method_handle_adapter();
if (mh1_adapter != NULL && mh2_adapter != NULL) {
set_inline_cleanup_info();
// Build the If guard
BlockBegin* one = new BlockBegin(next_bci());
BlockBegin* two = new BlockBegin(next_bci());
BlockBegin* end = new BlockBegin(next_bci());
Instruction* iff = append(new If(phi, If::eql, false, op1, one, two, NULL, false));
block()->set_end(iff->as_BlockEnd());
// Connect up the states
one->merge(block()->end()->state());
two->merge(block()->end()->state());
// Save the state for the second inlinee
ValueStack* state_before = copy_state_before();
// Parse first adapter
_last = _block = one;
if (!try_inline_full(mh1_adapter, /*holder_known=*/ true, end, NULL)) {
restore_inline_cleanup_info();
block()->clear_end(); // remove appended iff
return false;
}
// Parse second adapter
_last = _block = two;
_state = state_before;
if (!try_inline_full(mh2_adapter, /*holder_known=*/ true, end, NULL)) {
restore_inline_cleanup_info();
block()->clear_end(); // remove appended iff
return false;
}
connect_to_end(end);
return true; return true;
} }
} else {
print_inlining(callee, "receiver not constant", /*success*/ false);
} }
} }
} break;
return false;
}
case vmIntrinsics::_linkToVirtual:
bool GraphBuilder::for_invokedynamic_inline(ciMethod* callee) { case vmIntrinsics::_linkToStatic:
// Get the MethodHandle from the CallSite. case vmIntrinsics::_linkToSpecial:
ciCallSite* call_site = stream()->get_call_site(); case vmIntrinsics::_linkToInterface:
ciMethodHandle* method_handle = call_site->get_target(); {
// pop MemberName argument
// Set the callee to have access to the class and signature in the const int args_base = state()->stack_size() - callee->arg_size();
// MethodHandleCompiler. ValueType* type = apop()->type();
method_handle->set_callee(callee); if (type->is_constant()) {
method_handle->set_caller(method()); ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
// If the target is another method handle invoke try recursivly to get
// Get an adapter for the MethodHandle. // a better target.
ciMethod* method_handle_adapter = method_handle->get_invokedynamic_adapter(); if (target->is_method_handle_intrinsic()) {
if (method_handle_adapter != NULL) { if (for_method_handle_inline(target)) {
if (try_inline(method_handle_adapter, /*holder_known=*/ true)) { return true;
// Add a dependence for invalidation of the optimization. }
if (!call_site->is_constant_call_site()) { } else {
dependency_recorder()->assert_call_site_target_value(call_site, method_handle); ciSignature* signature = target->signature();
const int receiver_skip = target->is_static() ? 0 : 1;
// Cast receiver to its type.
if (!target->is_static()) {
ciKlass* tk = signature->accessing_klass();
Value obj = state()->stack_at(args_base);
if (obj->exact_type() == NULL &&
obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
TypeCast* c = new TypeCast(tk, obj, state_before);
append(c);
state()->stack_at_put(args_base, c);
}
}
// Cast reference arguments to its type.
for (int i = 0, j = 0; i < signature->count(); i++) {
ciType* t = signature->type_at(i);
if (t->is_klass()) {
ciKlass* tk = t->as_klass();
Value obj = state()->stack_at(args_base + receiver_skip + j);
if (obj->exact_type() == NULL &&
obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
TypeCast* c = new TypeCast(t, obj, state_before);
append(c);
state()->stack_at_put(args_base + receiver_skip + j, c);
}
}
j += t->size(); // long and double take two slots
}
Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
if (try_inline(target, /*holder_known*/ true, bc)) {
return true;
}
}
} else {
print_inlining(callee, "MemberName not constant", /*success*/ false);
} }
return true;
} }
break;
default:
fatal(err_msg("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
break;
} }
set_state(state_before);
return false; return false;
} }
@ -4034,22 +4090,24 @@ void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
} }
#ifndef PRODUCT void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
void GraphBuilder::print_inline_result(ciMethod* callee, bool res) { if (!PrintInlining) return;
CompileTask::print_inlining(callee, scope()->level(), bci(), _inline_bailout_msg); assert(msg != NULL, "must be");
if (res && CIPrintMethodCodes) { CompileTask::print_inlining(callee, scope()->level(), bci(), msg);
if (success && CIPrintMethodCodes) {
callee->print_codes(); callee->print_codes();
} }
} }
#ifndef PRODUCT
void GraphBuilder::print_stats() { void GraphBuilder::print_stats() {
vmap()->print(); vmap()->print();
} }
#endif // PRODUCT #endif // PRODUCT
void GraphBuilder::profile_call(Value recv, ciKlass* known_holder) { void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder) {
append(new ProfileCall(method(), bci(), recv, known_holder)); append(new ProfileCall(method(), bci(), callee, recv, known_holder));
} }
void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) { void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {

View File

@ -225,7 +225,7 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
void load_constant(); void load_constant();
void load_local(ValueType* type, int index); void load_local(ValueType* type, int index);
void store_local(ValueType* type, int index); void store_local(ValueType* type, int index);
void store_local(ValueStack* state, Value value, ValueType* type, int index); void store_local(ValueStack* state, Value value, int index);
void load_indexed (BasicType type); void load_indexed (BasicType type);
void store_indexed(BasicType type); void store_indexed(BasicType type);
void stack_op(Bytecodes::Code code); void stack_op(Bytecodes::Code code);
@ -337,14 +337,16 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
void fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler = false); void fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler = false);
// inliners // inliners
bool try_inline( ciMethod* callee, bool holder_known, Value receiver = NULL); bool try_inline( ciMethod* callee, bool holder_known, Bytecodes::Code bc = Bytecodes::_illegal, Value receiver = NULL);
bool try_inline_intrinsics(ciMethod* callee); bool try_inline_intrinsics(ciMethod* callee);
bool try_inline_full( ciMethod* callee, bool holder_known, BlockBegin* cont_block, Value receiver); bool try_inline_full( ciMethod* callee, bool holder_known, Bytecodes::Code bc = Bytecodes::_illegal, Value receiver = NULL);
bool try_inline_jsr(int jsr_dest_bci); bool try_inline_jsr(int jsr_dest_bci);
const char* check_can_parse(ciMethod* callee) const;
const char* should_not_inline(ciMethod* callee) const;
// JSR 292 support // JSR 292 support
bool for_method_handle_inline(ciMethod* callee); bool for_method_handle_inline(ciMethod* callee);
bool for_invokedynamic_inline(ciMethod* callee);
// helpers // helpers
void inline_bailout(const char* msg); void inline_bailout(const char* msg);
@ -366,9 +368,9 @@ class GraphBuilder VALUE_OBJ_CLASS_SPEC {
bool append_unsafe_prefetch(ciMethod* callee, bool is_store, bool is_static); bool append_unsafe_prefetch(ciMethod* callee, bool is_store, bool is_static);
void append_unsafe_CAS(ciMethod* callee); void append_unsafe_CAS(ciMethod* callee);
NOT_PRODUCT(void print_inline_result(ciMethod* callee, bool res);) void print_inlining(ciMethod* callee, const char* msg, bool success = true);
void profile_call(Value recv, ciKlass* predicted_holder); void profile_call(ciMethod* callee, Value recv, ciKlass* predicted_holder);
void profile_invocation(ciMethod* inlinee, ValueStack* state); void profile_invocation(ciMethod* inlinee, ValueStack* state);
// Shortcuts to profiling control. // Shortcuts to profiling control.

View File

@ -161,6 +161,12 @@ ciType* Local::exact_type() const {
return NULL; return NULL;
} }
ciType* Constant::exact_type() const {
if (type()->is_object()) {
return type()->as_ObjectType()->exact_type();
}
return NULL;
}
ciType* LoadIndexed::exact_type() const { ciType* LoadIndexed::exact_type() const {
ciType* array_type = array()->exact_type(); ciType* array_type = array()->exact_type();

View File

@ -66,6 +66,7 @@ class CompareOp;
class IfOp; class IfOp;
class Convert; class Convert;
class NullCheck; class NullCheck;
class TypeCast;
class OsrEntry; class OsrEntry;
class ExceptionObject; class ExceptionObject;
class StateSplit; class StateSplit;
@ -174,6 +175,7 @@ class InstructionVisitor: public StackObj {
virtual void do_IfOp (IfOp* x) = 0; virtual void do_IfOp (IfOp* x) = 0;
virtual void do_Convert (Convert* x) = 0; virtual void do_Convert (Convert* x) = 0;
virtual void do_NullCheck (NullCheck* x) = 0; virtual void do_NullCheck (NullCheck* x) = 0;
virtual void do_TypeCast (TypeCast* x) = 0;
virtual void do_Invoke (Invoke* x) = 0; virtual void do_Invoke (Invoke* x) = 0;
virtual void do_NewInstance (NewInstance* x) = 0; virtual void do_NewInstance (NewInstance* x) = 0;
virtual void do_NewTypeArray (NewTypeArray* x) = 0; virtual void do_NewTypeArray (NewTypeArray* x) = 0;
@ -302,7 +304,8 @@ class Instruction: public CompilationResourceObj {
void update_exception_state(ValueStack* state); void update_exception_state(ValueStack* state);
protected: //protected:
public:
void set_type(ValueType* type) { void set_type(ValueType* type) {
assert(type != NULL, "type must exist"); assert(type != NULL, "type must exist");
_type = type; _type = type;
@ -485,6 +488,7 @@ class Instruction: public CompilationResourceObj {
virtual TypeCheck* as_TypeCheck() { return NULL; } virtual TypeCheck* as_TypeCheck() { return NULL; }
virtual CheckCast* as_CheckCast() { return NULL; } virtual CheckCast* as_CheckCast() { return NULL; }
virtual InstanceOf* as_InstanceOf() { return NULL; } virtual InstanceOf* as_InstanceOf() { return NULL; }
virtual TypeCast* as_TypeCast() { return NULL; }
virtual AccessMonitor* as_AccessMonitor() { return NULL; } virtual AccessMonitor* as_AccessMonitor() { return NULL; }
virtual MonitorEnter* as_MonitorEnter() { return NULL; } virtual MonitorEnter* as_MonitorEnter() { return NULL; }
virtual MonitorExit* as_MonitorExit() { return NULL; } virtual MonitorExit* as_MonitorExit() { return NULL; }
@ -638,8 +642,8 @@ LEAF(Local, Instruction)
// accessors // accessors
int java_index() const { return _java_index; } int java_index() const { return _java_index; }
ciType* declared_type() const { return _declared_type; } virtual ciType* declared_type() const { return _declared_type; }
ciType* exact_type() const; virtual ciType* exact_type() const;
// generic // generic
virtual void input_values_do(ValueVisitor* f) { /* no values */ } virtual void input_values_do(ValueVisitor* f) { /* no values */ }
@ -650,13 +654,13 @@ LEAF(Constant, Instruction)
public: public:
// creation // creation
Constant(ValueType* type): Constant(ValueType* type):
Instruction(type, NULL, true) Instruction(type, NULL, /*type_is_constant*/ true)
{ {
assert(type->is_constant(), "must be a constant"); assert(type->is_constant(), "must be a constant");
} }
Constant(ValueType* type, ValueStack* state_before): Constant(ValueType* type, ValueStack* state_before):
Instruction(type, state_before, true) Instruction(type, state_before, /*type_is_constant*/ true)
{ {
assert(state_before != NULL, "only used for constants which need patching"); assert(state_before != NULL, "only used for constants which need patching");
assert(type->is_constant(), "must be a constant"); assert(type->is_constant(), "must be a constant");
@ -670,6 +674,7 @@ LEAF(Constant, Instruction)
virtual intx hash() const; virtual intx hash() const;
virtual bool is_equal(Value v) const; virtual bool is_equal(Value v) const;
virtual ciType* exact_type() const;
enum CompareResult { not_comparable = -1, cond_false, cond_true }; enum CompareResult { not_comparable = -1, cond_false, cond_true };
@ -1103,6 +1108,29 @@ LEAF(NullCheck, Instruction)
}; };
// This node is supposed to cast the type of another node to a more precise
// declared type.
LEAF(TypeCast, Instruction)
private:
ciType* _declared_type;
Value _obj;
public:
// The type of this node is the same type as the object type (and it might be constant).
TypeCast(ciType* type, Value obj, ValueStack* state_before)
: Instruction(obj->type(), state_before, obj->type()->is_constant()),
_declared_type(type),
_obj(obj) {}
// accessors
ciType* declared_type() const { return _declared_type; }
Value obj() const { return _obj; }
// generic
virtual void input_values_do(ValueVisitor* f) { f->visit(&_obj); }
};
BASE(StateSplit, Instruction) BASE(StateSplit, Instruction)
private: private:
ValueStack* _state; ValueStack* _state;
@ -1166,6 +1194,7 @@ LEAF(Invoke, StateSplit)
// JSR 292 support // JSR 292 support
bool is_invokedynamic() const { return code() == Bytecodes::_invokedynamic; } bool is_invokedynamic() const { return code() == Bytecodes::_invokedynamic; }
bool is_method_handle_intrinsic() const { return target()->is_method_handle_intrinsic(); }
virtual bool needs_exception_state() const { return false; } virtual bool needs_exception_state() const { return false; }
@ -2277,14 +2306,16 @@ LEAF(ProfileCall, Instruction)
private: private:
ciMethod* _method; ciMethod* _method;
int _bci_of_invoke; int _bci_of_invoke;
ciMethod* _callee; // the method that is called at the given bci
Value _recv; Value _recv;
ciKlass* _known_holder; ciKlass* _known_holder;
public: public:
ProfileCall(ciMethod* method, int bci, Value recv, ciKlass* known_holder) ProfileCall(ciMethod* method, int bci, ciMethod* callee, Value recv, ciKlass* known_holder)
: Instruction(voidType) : Instruction(voidType)
, _method(method) , _method(method)
, _bci_of_invoke(bci) , _bci_of_invoke(bci)
, _callee(callee)
, _recv(recv) , _recv(recv)
, _known_holder(known_holder) , _known_holder(known_holder)
{ {
@ -2294,6 +2325,7 @@ LEAF(ProfileCall, Instruction)
ciMethod* method() { return _method; } ciMethod* method() { return _method; }
int bci_of_invoke() { return _bci_of_invoke; } int bci_of_invoke() { return _bci_of_invoke; }
ciMethod* callee() { return _callee; }
Value recv() { return _recv; } Value recv() { return _recv; }
ciKlass* known_holder() { return _known_holder; } ciKlass* known_holder() { return _known_holder; }

View File

@ -137,12 +137,16 @@ void InstructionPrinter::print_object(Value obj) {
ciMethod* m = (ciMethod*)value; ciMethod* m = (ciMethod*)value;
output()->print("<method %s.%s>", m->holder()->name()->as_utf8(), m->name()->as_utf8()); output()->print("<method %s.%s>", m->holder()->name()->as_utf8(), m->name()->as_utf8());
} else { } else {
output()->print("<object " PTR_FORMAT ">", value->constant_encoding()); output()->print("<object " PTR_FORMAT " klass=", value->constant_encoding());
print_klass(value->klass());
output()->print(">");
} }
} else if (type->as_InstanceConstant() != NULL) { } else if (type->as_InstanceConstant() != NULL) {
ciInstance* value = type->as_InstanceConstant()->value(); ciInstance* value = type->as_InstanceConstant()->value();
if (value->is_loaded()) { if (value->is_loaded()) {
output()->print("<instance " PTR_FORMAT ">", value->constant_encoding()); output()->print("<instance " PTR_FORMAT " klass=", value->constant_encoding());
print_klass(value->klass());
output()->print(">");
} else { } else {
output()->print("<unloaded instance " PTR_FORMAT ">", value); output()->print("<unloaded instance " PTR_FORMAT ">", value);
} }
@ -453,6 +457,14 @@ void InstructionPrinter::do_NullCheck(NullCheck* x) {
} }
void InstructionPrinter::do_TypeCast(TypeCast* x) {
output()->print("type_cast(");
print_value(x->obj());
output()->print(") ");
print_klass(x->declared_type()->klass());
}
void InstructionPrinter::do_Invoke(Invoke* x) { void InstructionPrinter::do_Invoke(Invoke* x) {
if (x->receiver() != NULL) { if (x->receiver() != NULL) {
print_value(x->receiver()); print_value(x->receiver());

View File

@ -101,6 +101,7 @@ class InstructionPrinter: public InstructionVisitor {
virtual void do_IfOp (IfOp* x); virtual void do_IfOp (IfOp* x);
virtual void do_Convert (Convert* x); virtual void do_Convert (Convert* x);
virtual void do_NullCheck (NullCheck* x); virtual void do_NullCheck (NullCheck* x);
virtual void do_TypeCast (TypeCast* x);
virtual void do_Invoke (Invoke* x); virtual void do_Invoke (Invoke* x);
virtual void do_NewInstance (NewInstance* x); virtual void do_NewInstance (NewInstance* x);
virtual void do_NewTypeArray (NewTypeArray* x); virtual void do_NewTypeArray (NewTypeArray* x);

View File

@ -1,5 +1,5 @@
/* /*
* Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
* *
* This code is free software; you can redistribute it and/or modify it * This code is free software; you can redistribute it and/or modify it
@ -26,6 +26,7 @@
#define SHARE_VM_C1_C1_LIR_HPP #define SHARE_VM_C1_C1_LIR_HPP
#include "c1/c1_ValueType.hpp" #include "c1/c1_ValueType.hpp"
#include "oops/methodOop.hpp"
class BlockBegin; class BlockBegin;
class BlockList; class BlockList;
@ -1162,8 +1163,9 @@ class LIR_OpJavaCall: public LIR_OpCall {
return return
is_invokedynamic() // An invokedynamic is always a MethodHandle call site. is_invokedynamic() // An invokedynamic is always a MethodHandle call site.
|| ||
(method()->holder()->name() == ciSymbol::java_lang_invoke_MethodHandle() && method()->is_compiled_lambda_form() // Java-generated adapter
methodOopDesc::is_method_handle_invoke_name(method()->name()->sid())); ||
method()->is_method_handle_intrinsic(); // JVM-generated MH intrinsic
} }
intptr_t vtable_offset() const { intptr_t vtable_offset() const {
@ -1823,18 +1825,20 @@ class LIR_OpProfileCall : public LIR_Op {
private: private:
ciMethod* _profiled_method; ciMethod* _profiled_method;
int _profiled_bci; int _profiled_bci;
LIR_Opr _mdo; ciMethod* _profiled_callee;
LIR_Opr _recv; LIR_Opr _mdo;
LIR_Opr _tmp1; LIR_Opr _recv;
ciKlass* _known_holder; LIR_Opr _tmp1;
ciKlass* _known_holder;
public: public:
// Destroys recv // Destroys recv
LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder) LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
: LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) // no result, no info
, _profiled_method(profiled_method) , _profiled_method(profiled_method)
, _profiled_bci(profiled_bci) , _profiled_bci(profiled_bci)
, _profiled_callee(profiled_callee)
, _mdo(mdo) , _mdo(mdo)
, _recv(recv) , _recv(recv)
, _tmp1(t1) , _tmp1(t1)
@ -1842,6 +1846,7 @@ class LIR_OpProfileCall : public LIR_Op {
ciMethod* profiled_method() const { return _profiled_method; } ciMethod* profiled_method() const { return _profiled_method; }
int profiled_bci() const { return _profiled_bci; } int profiled_bci() const { return _profiled_bci; }
ciMethod* profiled_callee() const { return _profiled_callee; }
LIR_Opr mdo() const { return _mdo; } LIR_Opr mdo() const { return _mdo; }
LIR_Opr recv() const { return _recv; } LIR_Opr recv() const { return _recv; }
LIR_Opr tmp1() const { return _tmp1; } LIR_Opr tmp1() const { return _tmp1; }
@ -2145,8 +2150,8 @@ class LIR_List: public CompilationResourceObj {
CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
ciMethod* profiled_method, int profiled_bci); ciMethod* profiled_method, int profiled_bci);
// methodDataOop profiling // methodDataOop profiling
void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); append(new LIR_OpProfileCall(lir_profile_call, method, bci, callee, mdo, recv, t1, cha_klass));
} }
}; };

View File

@ -1940,6 +1940,14 @@ void LIRGenerator::do_NullCheck(NullCheck* x) {
} }
void LIRGenerator::do_TypeCast(TypeCast* x) {
LIRItem value(x->obj(), this);
value.load_item();
// the result is the same as from the node we are casting
set_result(x, value.result());
}
void LIRGenerator::do_Throw(Throw* x) { void LIRGenerator::do_Throw(Throw* x) {
LIRItem exception(x->exception(), this); LIRItem exception(x->exception(), this);
exception.load_item(); exception.load_item();
@ -2767,7 +2775,10 @@ void LIRGenerator::do_Invoke(Invoke* x) {
// JSR 292 // JSR 292
// Preserve the SP over MethodHandle call sites. // Preserve the SP over MethodHandle call sites.
ciMethod* target = x->target(); ciMethod* target = x->target();
if (target->is_method_handle_invoke()) { bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
target->is_method_handle_intrinsic() ||
target->is_compiled_lambda_form());
if (is_method_handle_invoke) {
info->set_is_method_handle_invoke(true); info->set_is_method_handle_invoke(true);
__ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr()); __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
} }
@ -2843,7 +2854,7 @@ void LIRGenerator::do_Invoke(Invoke* x) {
// JSR 292 // JSR 292
// Restore the SP after MethodHandle call sites. // Restore the SP after MethodHandle call sites.
if (target->is_method_handle_invoke()) { if (is_method_handle_invoke) {
__ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer()); __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
} }
@ -3027,7 +3038,7 @@ void LIRGenerator::do_ProfileCall(ProfileCall* x) {
recv = new_register(T_OBJECT); recv = new_register(T_OBJECT);
__ move(value.result(), recv); __ move(value.result(), recv);
} }
__ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder()); __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
} }
void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) { void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {

View File

@ -500,6 +500,7 @@ class LIRGenerator: public InstructionVisitor, public BlockClosure {
virtual void do_IfOp (IfOp* x); virtual void do_IfOp (IfOp* x);
virtual void do_Convert (Convert* x); virtual void do_Convert (Convert* x);
virtual void do_NullCheck (NullCheck* x); virtual void do_NullCheck (NullCheck* x);
virtual void do_TypeCast (TypeCast* x);
virtual void do_Invoke (Invoke* x); virtual void do_Invoke (Invoke* x);
virtual void do_NewInstance (NewInstance* x); virtual void do_NewInstance (NewInstance* x);
virtual void do_NewTypeArray (NewTypeArray* x); virtual void do_NewTypeArray (NewTypeArray* x);

View File

@ -478,6 +478,7 @@ public:
void do_IfOp (IfOp* x); void do_IfOp (IfOp* x);
void do_Convert (Convert* x); void do_Convert (Convert* x);
void do_NullCheck (NullCheck* x); void do_NullCheck (NullCheck* x);
void do_TypeCast (TypeCast* x);
void do_Invoke (Invoke* x); void do_Invoke (Invoke* x);
void do_NewInstance (NewInstance* x); void do_NewInstance (NewInstance* x);
void do_NewTypeArray (NewTypeArray* x); void do_NewTypeArray (NewTypeArray* x);
@ -648,6 +649,7 @@ void NullCheckVisitor::do_CompareOp (CompareOp* x) {}
void NullCheckVisitor::do_IfOp (IfOp* x) {} void NullCheckVisitor::do_IfOp (IfOp* x) {}
void NullCheckVisitor::do_Convert (Convert* x) {} void NullCheckVisitor::do_Convert (Convert* x) {}
void NullCheckVisitor::do_NullCheck (NullCheck* x) { nce()->handle_NullCheck(x); } void NullCheckVisitor::do_NullCheck (NullCheck* x) { nce()->handle_NullCheck(x); }
void NullCheckVisitor::do_TypeCast (TypeCast* x) {}
void NullCheckVisitor::do_Invoke (Invoke* x) { nce()->handle_Invoke(x); } void NullCheckVisitor::do_Invoke (Invoke* x) { nce()->handle_Invoke(x); }
void NullCheckVisitor::do_NewInstance (NewInstance* x) { nce()->handle_NewInstance(x); } void NullCheckVisitor::do_NewInstance (NewInstance* x) { nce()->handle_NewInstance(x); }
void NullCheckVisitor::do_NewTypeArray (NewTypeArray* x) { nce()->handle_NewArray(x); } void NullCheckVisitor::do_NewTypeArray (NewTypeArray* x) { nce()->handle_NewArray(x); }

View File

@ -178,6 +178,7 @@ class ValueNumberingVisitor: public InstructionVisitor {
void do_IfOp (IfOp* x) { /* nothing to do */ } void do_IfOp (IfOp* x) { /* nothing to do */ }
void do_Convert (Convert* x) { /* nothing to do */ } void do_Convert (Convert* x) { /* nothing to do */ }
void do_NullCheck (NullCheck* x) { /* nothing to do */ } void do_NullCheck (NullCheck* x) { /* nothing to do */ }
void do_TypeCast (TypeCast* x) { /* nothing to do */ }
void do_NewInstance (NewInstance* x) { /* nothing to do */ } void do_NewInstance (NewInstance* x) { /* nothing to do */ }
void do_NewTypeArray (NewTypeArray* x) { /* nothing to do */ } void do_NewTypeArray (NewTypeArray* x) { /* nothing to do */ }
void do_NewObjectArray (NewObjectArray* x) { /* nothing to do */ } void do_NewObjectArray (NewObjectArray* x) { /* nothing to do */ }

View File

@ -195,6 +195,7 @@ void ValueStack::setup_phi_for_local(BlockBegin* b, int index) {
void ValueStack::print() { void ValueStack::print() {
scope()->method()->print_name(); scope()->method()->print_name();
tty->cr();
if (stack_is_empty()) { if (stack_is_empty()) {
tty->print_cr("empty stack"); tty->print_cr("empty stack");
} else { } else {

View File

@ -142,6 +142,10 @@ class ValueStack: public CompilationResourceObj {
return x; return x;
} }
void stack_at_put(int i, Value x) {
_stack.at_put(i, x);
}
// pinning support // pinning support
void pin_stack_for_linear_scan(); void pin_stack_for_linear_scan();

View File

@ -101,6 +101,23 @@ ciObject* ArrayConstant::constant_value() const { return _val
ciObject* InstanceConstant::constant_value() const { return _value; } ciObject* InstanceConstant::constant_value() const { return _value; }
ciObject* ClassConstant::constant_value() const { return _value; } ciObject* ClassConstant::constant_value() const { return _value; }
ciType* ObjectConstant::exact_type() const {
ciObject* c = constant_value();
return (c != NULL && !c->is_null_object()) ? c->klass() : NULL;
}
ciType* ArrayConstant::exact_type() const {
ciObject* c = constant_value();
return (c != NULL && !c->is_null_object()) ? c->klass() : NULL;
}
ciType* InstanceConstant::exact_type() const {
ciObject* c = constant_value();
return (c != NULL && !c->is_null_object()) ? c->klass() : NULL;
}
ciType* ClassConstant::exact_type() const {
ciObject* c = constant_value();
return (c != NULL && !c->is_null_object()) ? c->klass() : NULL;
}
ValueType* as_ValueType(BasicType type) { ValueType* as_ValueType(BasicType type) {
switch (type) { switch (type) {

View File

@ -297,7 +297,8 @@ class ObjectType: public ValueType {
virtual const char tchar() const { return 'a'; } virtual const char tchar() const { return 'a'; }
virtual const char* name() const { return "object"; } virtual const char* name() const { return "object"; }
virtual ObjectType* as_ObjectType() { return this; } virtual ObjectType* as_ObjectType() { return this; }
virtual ciObject* constant_value() const { ShouldNotReachHere(); return NULL; } virtual ciObject* constant_value() const { ShouldNotReachHere(); return NULL; }
virtual ciType* exact_type() const { return NULL; }
bool is_loaded() const; bool is_loaded() const;
jobject encoding() const; jobject encoding() const;
}; };
@ -315,6 +316,7 @@ class ObjectConstant: public ObjectType {
virtual bool is_constant() const { return true; } virtual bool is_constant() const { return true; }
virtual ObjectConstant* as_ObjectConstant() { return this; } virtual ObjectConstant* as_ObjectConstant() { return this; }
virtual ciObject* constant_value() const; virtual ciObject* constant_value() const;
virtual ciType* exact_type() const;
}; };
@ -334,9 +336,9 @@ class ArrayConstant: public ArrayType {
ciArray* value() const { return _value; } ciArray* value() const { return _value; }
virtual bool is_constant() const { return true; } virtual bool is_constant() const { return true; }
virtual ArrayConstant* as_ArrayConstant() { return this; } virtual ArrayConstant* as_ArrayConstant() { return this; }
virtual ciObject* constant_value() const; virtual ciObject* constant_value() const;
virtual ciType* exact_type() const;
}; };
@ -356,9 +358,9 @@ class InstanceConstant: public InstanceType {
ciInstance* value() const { return _value; } ciInstance* value() const { return _value; }
virtual bool is_constant() const { return true; } virtual bool is_constant() const { return true; }
virtual InstanceConstant* as_InstanceConstant(){ return this; } virtual InstanceConstant* as_InstanceConstant(){ return this; }
virtual ciObject* constant_value() const; virtual ciObject* constant_value() const;
virtual ciType* exact_type() const;
}; };
@ -378,9 +380,9 @@ class ClassConstant: public ClassType {
ciInstanceKlass* value() const { return _value; } ciInstanceKlass* value() const { return _value; }
virtual bool is_constant() const { return true; } virtual bool is_constant() const { return true; }
virtual ClassConstant* as_ClassConstant() { return this; } virtual ClassConstant* as_ClassConstant() { return this; }
virtual ciObject* constant_value() const; virtual ciObject* constant_value() const;
virtual ciType* exact_type() const;
}; };

View File

@ -238,9 +238,11 @@ void BCEscapeAnalyzer::invoke(StateInfo &state, Bytecodes::Code code, ciMethod*
// some methods are obviously bindable without any type checks so // some methods are obviously bindable without any type checks so
// convert them directly to an invokespecial. // convert them directly to an invokespecial.
if (target->is_loaded() && !target->is_abstract() && if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
target->can_be_statically_bound() && code == Bytecodes::_invokevirtual) { switch (code) {
code = Bytecodes::_invokespecial; case Bytecodes::_invokevirtual: code = Bytecodes::_invokespecial; break;
case Bytecodes::_invokehandle: code = Bytecodes::_invokestatic; break;
}
} }
// compute size of arguments // compute size of arguments
@ -866,7 +868,12 @@ void BCEscapeAnalyzer::iterate_one_block(ciBlock *blk, StateInfo &state, Growabl
{ bool will_link; { bool will_link;
ciMethod* target = s.get_method(will_link); ciMethod* target = s.get_method(will_link);
ciKlass* holder = s.get_declared_method_holder(); ciKlass* holder = s.get_declared_method_holder();
invoke(state, s.cur_bc(), target, holder); // Push appendix argument, if one.
if (s.has_appendix()) {
state.apush(unknown_obj);
}
// Pass in raw bytecode because we need to see invokehandle instructions.
invoke(state, s.cur_bc_raw(), target, holder);
ciType* return_type = target->return_type(); ciType* return_type = target->return_type();
if (!return_type->is_primitive_type()) { if (!return_type->is_primitive_type()) {
state.apush(unknown_obj); state.apush(unknown_obj);

View File

@ -47,6 +47,7 @@ class ciObject;
class ciNullObject; class ciNullObject;
class ciInstance; class ciInstance;
class ciCallSite; class ciCallSite;
class ciMemberName;
class ciMethodHandle; class ciMethodHandle;
class ciMethod; class ciMethod;
class ciMethodData; class ciMethodData;
@ -100,6 +101,7 @@ friend class ciExceptionHandlerStream; \
friend class ciObject; \ friend class ciObject; \
friend class ciNullObject; \ friend class ciNullObject; \
friend class ciInstance; \ friend class ciInstance; \
friend class ciMemberName; \
friend class ciMethod; \ friend class ciMethod; \
friend class ciMethodData; \ friend class ciMethodData; \
friend class ciMethodHandle; \ friend class ciMethodHandle; \

View File

@ -50,7 +50,6 @@
#include "oops/oop.inline.hpp" #include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp" #include "oops/oop.inline2.hpp"
#include "prims/jvmtiExport.hpp" #include "prims/jvmtiExport.hpp"
#include "prims/methodHandleWalk.hpp"
#include "runtime/init.hpp" #include "runtime/init.hpp"
#include "runtime/reflection.hpp" #include "runtime/reflection.hpp"
#include "runtime/sharedRuntime.hpp" #include "runtime/sharedRuntime.hpp"
@ -582,7 +581,7 @@ ciConstant ciEnv::get_constant_by_index_impl(constantPoolHandle cpool,
assert(index < 0, "only one kind of index at a time"); assert(index < 0, "only one kind of index at a time");
ConstantPoolCacheEntry* cpc_entry = cpool->cache()->entry_at(cache_index); ConstantPoolCacheEntry* cpc_entry = cpool->cache()->entry_at(cache_index);
index = cpc_entry->constant_pool_index(); index = cpc_entry->constant_pool_index();
oop obj = cpc_entry->f1(); oop obj = cpc_entry->f1_as_instance();
if (obj != NULL) { if (obj != NULL) {
assert(obj->is_instance() || obj->is_array(), "must be a Java reference"); assert(obj->is_instance() || obj->is_array(), "must be a Java reference");
ciObject* ciobj = get_object(obj); ciObject* ciobj = get_object(obj);
@ -750,7 +749,7 @@ ciMethod* ciEnv::get_method_by_index_impl(constantPoolHandle cpool,
if (cpool->has_preresolution() if (cpool->has_preresolution()
|| (holder == ciEnv::MethodHandle_klass() && || (holder == ciEnv::MethodHandle_klass() &&
methodOopDesc::is_method_handle_invoke_name(name_sym))) { MethodHandles::is_signature_polymorphic_name(holder->get_klassOop(), name_sym))) {
// Short-circuit lookups for JSR 292-related call sites. // Short-circuit lookups for JSR 292-related call sites.
// That is, do not rely only on name-based lookups, because they may fail // That is, do not rely only on name-based lookups, because they may fail
// if the names are not resolvable in the boot class loader (7056328). // if the names are not resolvable in the boot class loader (7056328).
@ -760,11 +759,13 @@ ciMethod* ciEnv::get_method_by_index_impl(constantPoolHandle cpool,
case Bytecodes::_invokespecial: case Bytecodes::_invokespecial:
case Bytecodes::_invokestatic: case Bytecodes::_invokestatic:
{ {
methodOop m = constantPoolOopDesc::method_at_if_loaded(cpool, index, bc); oop appendix_oop = NULL;
methodOop m = constantPoolOopDesc::method_at_if_loaded(cpool, index);
if (m != NULL) { if (m != NULL) {
return get_object(m)->as_method(); return get_object(m)->as_method();
} }
} }
break;
} }
} }
@ -800,27 +801,28 @@ ciMethod* ciEnv::get_fake_invokedynamic_method_impl(constantPoolHandle cpool,
// Compare the following logic with InterpreterRuntime::resolve_invokedynamic. // Compare the following logic with InterpreterRuntime::resolve_invokedynamic.
assert(bc == Bytecodes::_invokedynamic, "must be invokedynamic"); assert(bc == Bytecodes::_invokedynamic, "must be invokedynamic");
bool is_resolved = cpool->cache()->main_entry_at(index)->is_resolved(bc); ConstantPoolCacheEntry* secondary_entry = cpool->cache()->secondary_entry_at(index);
if (is_resolved && cpool->cache()->secondary_entry_at(index)->is_f1_null()) bool is_resolved = !secondary_entry->is_f1_null();
// FIXME: code generation could allow for null (unlinked) call site // FIXME: code generation could allow for null (unlinked) call site
is_resolved = false; // The call site could be made patchable as follows:
// Load the appendix argument from the constant pool.
// Test the appendix argument and jump to a known deopt routine if it is null.
// Jump through a patchable call site, which is initially a deopt routine.
// Patch the call site to the nmethod entry point of the static compiled lambda form.
// As with other two-component call sites, both values must be independently verified.
// Call site might not be resolved yet. We could create a real invoker method from the // Call site might not be resolved yet.
// compiler, but it is simpler to stop the code path here with an unlinked method. // Stop the code path here with an unlinked method.
if (!is_resolved) { if (!is_resolved) {
ciInstanceKlass* holder = get_object(SystemDictionary::MethodHandle_klass())->as_instance_klass(); ciInstanceKlass* holder = get_object(SystemDictionary::MethodHandle_klass())->as_instance_klass();
ciSymbol* name = ciSymbol::invokeExact_name(); ciSymbol* name = ciSymbol::invokeBasic_name();
ciSymbol* signature = get_symbol(cpool->signature_ref_at(index)); ciSymbol* signature = get_symbol(cpool->signature_ref_at(index));
return get_unloaded_method(holder, name, signature, accessor); return get_unloaded_method(holder, name, signature, accessor);
} }
// Get the invoker methodOop from the constant pool. // Get the invoker methodOop and the extra argument from the constant pool.
oop f1_value = cpool->cache()->main_entry_at(index)->f1(); methodOop adapter = secondary_entry->f2_as_vfinal_method();
methodOop signature_invoker = (methodOop) f1_value; return get_object(adapter)->as_method();
assert(signature_invoker != NULL && signature_invoker->is_method() && signature_invoker->is_method_handle_invoke(),
"correct result from LinkResolver::resolve_invokedynamic");
return get_object(signature_invoker)->as_method();
} }
@ -1131,7 +1133,7 @@ uint ciEnv::compile_id() {
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciEnv::notice_inlined_method() // ciEnv::notice_inlined_method()
void ciEnv::notice_inlined_method(ciMethod* method) { void ciEnv::notice_inlined_method(ciMethod* method) {
_num_inlined_bytecodes += method->code_size(); _num_inlined_bytecodes += method->code_size_for_inlining();
} }
// ------------------------------------------------------------------ // ------------------------------------------------------------------

View File

@ -0,0 +1,39 @@
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciClassList.hpp"
#include "ci/ciMemberName.hpp"
#include "ci/ciUtilities.hpp"
#include "classfile/javaClasses.hpp"
// ------------------------------------------------------------------
// ciMemberName::get_vmtarget
//
// Return: MN.vmtarget
ciMethod* ciMemberName::get_vmtarget() const {
VM_ENTRY_MARK;
oop vmtarget_oop = java_lang_invoke_MemberName::vmtarget(get_oop());
return CURRENT_ENV->get_object(vmtarget_oop)->as_method();
}

View File

@ -0,0 +1,44 @@
/*
* Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_CI_CIMEMBERNAME_HPP
#define SHARE_VM_CI_CIMEMBERNAME_HPP
#include "ci/ciCallProfile.hpp"
#include "ci/ciInstance.hpp"
// ciMemberName
//
// The class represents a java.lang.invoke.MemberName object.
class ciMemberName : public ciInstance {
public:
ciMemberName(instanceHandle h_i) : ciInstance(h_i) {}
// What kind of ciObject is this?
bool is_member_name() const { return true; }
ciMethod* get_vmtarget() const;
};
#endif // SHARE_VM_CI_CIMEMBERNAME_HPP

View File

@ -769,39 +769,37 @@ int ciMethod::scale_count(int count, float prof_factor) {
// invokedynamic support // invokedynamic support
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciMethod::is_method_handle_invoke // ciMethod::is_method_handle_intrinsic
// //
// Return true if the method is an instance of one of the two // Return true if the method is an instance of the JVM-generated
// signature-polymorphic MethodHandle methods, invokeExact or invokeGeneric. // signature-polymorphic MethodHandle methods, _invokeBasic, _linkToVirtual, etc.
bool ciMethod::is_method_handle_invoke() const { bool ciMethod::is_method_handle_intrinsic() const {
if (!is_loaded()) { vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
bool flag = (holder()->name() == ciSymbol::java_lang_invoke_MethodHandle() && return (MethodHandles::is_signature_polymorphic(iid) &&
methodOopDesc::is_method_handle_invoke_name(name()->sid())); MethodHandles::is_signature_polymorphic_intrinsic(iid));
return flag;
}
VM_ENTRY_MARK;
return get_methodOop()->is_method_handle_invoke();
} }
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciMethod::is_method_handle_adapter // ciMethod::is_compiled_lambda_form
// //
// Return true if the method is a generated MethodHandle adapter. // Return true if the method is a generated MethodHandle adapter.
// These are built by MethodHandleCompiler. // These are built by Java code.
bool ciMethod::is_method_handle_adapter() const { bool ciMethod::is_compiled_lambda_form() const {
if (!is_loaded()) return false; vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
VM_ENTRY_MARK; return iid == vmIntrinsics::_compiledLambdaForm;
return get_methodOop()->is_method_handle_adapter();
} }
ciInstance* ciMethod::method_handle_type() { // ------------------------------------------------------------------
check_is_loaded(); // ciMethod::has_member_arg
VM_ENTRY_MARK; //
oop mtype = get_methodOop()->method_handle_type(); // Return true if the method is a linker intrinsic like _linkToVirtual.
return CURRENT_THREAD_ENV->get_object(mtype)->as_instance(); // These are built by the JVM.
bool ciMethod::has_member_arg() const {
vmIntrinsics::ID iid = _intrinsic_id; // do not check if loaded
return (MethodHandles::is_signature_polymorphic(iid) &&
MethodHandles::has_member_arg(iid));
} }
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciMethod::ensure_method_data // ciMethod::ensure_method_data
// //
@ -1024,28 +1022,13 @@ int ciMethod::highest_osr_comp_level() {
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciMethod::code_size_for_inlining // ciMethod::code_size_for_inlining
// //
// Code size for inlining decisions. // Code size for inlining decisions. This method returns a code
// // size of 1 for methods which has the ForceInline annotation.
// Don't fully count method handle adapters against inlining budgets:
// the metric we use here is the number of call sites in the adapter
// as they are probably the instructions which generate some code.
int ciMethod::code_size_for_inlining() { int ciMethod::code_size_for_inlining() {
check_is_loaded(); check_is_loaded();
if (get_methodOop()->force_inline()) {
// Method handle adapters return 1;
if (is_method_handle_adapter()) {
// Count call sites
int call_site_count = 0;
ciBytecodeStream iter(this);
while (iter.next() != ciBytecodeStream::EOBC()) {
if (Bytecodes::is_invoke(iter.cur_bc())) {
call_site_count++;
}
}
return call_site_count;
} }
// Normal method
return code_size(); return code_size();
} }
@ -1127,7 +1110,8 @@ bool ciMethod::check_call(int refinfo_index, bool is_static) const {
constantPoolHandle pool (THREAD, get_methodOop()->constants()); constantPoolHandle pool (THREAD, get_methodOop()->constants());
methodHandle spec_method; methodHandle spec_method;
KlassHandle spec_klass; KlassHandle spec_klass;
LinkResolver::resolve_method(spec_method, spec_klass, pool, refinfo_index, THREAD); Bytecodes::Code code = (is_static ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual);
LinkResolver::resolve_method_statically(spec_method, spec_klass, code, pool, refinfo_index, THREAD);
if (HAS_PENDING_EXCEPTION) { if (HAS_PENDING_EXCEPTION) {
CLEAR_PENDING_EXCEPTION; CLEAR_PENDING_EXCEPTION;
return false; return false;
@ -1207,8 +1191,16 @@ void ciMethod::print_name(outputStream* st) {
// //
// Print the name of this method, without signature. // Print the name of this method, without signature.
void ciMethod::print_short_name(outputStream* st) { void ciMethod::print_short_name(outputStream* st) {
check_is_loaded(); if (is_loaded()) {
GUARDED_VM_ENTRY(get_methodOop()->print_short_name(st);) GUARDED_VM_ENTRY(get_methodOop()->print_short_name(st););
} else {
// Fall back if method is not loaded.
holder()->print_name_on(st);
st->print("::");
name()->print_symbol_on(st);
if (WizardMode)
signature()->as_symbol()->print_symbol_on(st);
}
} }
// ------------------------------------------------------------------ // ------------------------------------------------------------------
@ -1223,6 +1215,7 @@ void ciMethod::print_impl(outputStream* st) {
holder()->print_name_on(st); holder()->print_name_on(st);
st->print(" signature="); st->print(" signature=");
signature()->as_symbol()->print_symbol_on(st); signature()->as_symbol()->print_symbol_on(st);
st->print(" arg_size=%d", arg_size());
if (is_loaded()) { if (is_loaded()) {
st->print(" loaded=true flags="); st->print(" loaded=true flags=");
flags().print_member_flags(st); flags().print_member_flags(st);

View File

@ -133,16 +133,20 @@ class ciMethod : public ciObject {
return _signature->size() + (_flags.is_static() ? 0 : 1); return _signature->size() + (_flags.is_static() ? 0 : 1);
} }
// Report the number of elements on stack when invoking this method. // Report the number of elements on stack when invoking this method.
// This is different than the regular arg_size because invokdynamic // This is different than the regular arg_size because invokedynamic
// has an implicit receiver. // has an implicit receiver.
int invoke_arg_size(Bytecodes::Code code) const { int invoke_arg_size(Bytecodes::Code code) const {
int arg_size = _signature->size(); if (is_loaded()) {
// Add a receiver argument, maybe: return arg_size();
if (code != Bytecodes::_invokestatic && } else {
code != Bytecodes::_invokedynamic) { int arg_size = _signature->size();
arg_size++; // Add a receiver argument, maybe:
if (code != Bytecodes::_invokestatic &&
code != Bytecodes::_invokedynamic) {
arg_size++;
}
return arg_size;
} }
return arg_size;
} }
@ -161,6 +165,7 @@ class ciMethod : public ciObject {
int code_size_for_inlining(); int code_size_for_inlining();
bool force_inline() { return get_methodOop()->force_inline(); } bool force_inline() { return get_methodOop()->force_inline(); }
bool dont_inline() { return get_methodOop()->dont_inline(); }
int comp_level(); int comp_level();
int highest_osr_comp_level(); int highest_osr_comp_level();
@ -258,9 +263,9 @@ class ciMethod : public ciObject {
int scale_count(int count, float prof_factor = 1.); // make MDO count commensurate with IIC int scale_count(int count, float prof_factor = 1.); // make MDO count commensurate with IIC
// JSR 292 support // JSR 292 support
bool is_method_handle_invoke() const; bool is_method_handle_intrinsic() const;
bool is_method_handle_adapter() const; bool is_compiled_lambda_form() const;
ciInstance* method_handle_type(); bool has_member_arg() const;
// What kind of ciObject is this? // What kind of ciObject is this?
bool is_method() { return true; } bool is_method() { return true; }

View File

@ -24,84 +24,18 @@
#include "precompiled.hpp" #include "precompiled.hpp"
#include "ci/ciClassList.hpp" #include "ci/ciClassList.hpp"
#include "ci/ciInstance.hpp"
#include "ci/ciMethodData.hpp"
#include "ci/ciMethodHandle.hpp" #include "ci/ciMethodHandle.hpp"
#include "ci/ciUtilities.hpp" #include "ci/ciUtilities.hpp"
#include "prims/methodHandleWalk.hpp" #include "classfile/javaClasses.hpp"
#include "prims/methodHandles.hpp"
// ciMethodHandle
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciMethodHandle::get_adapter // ciMethodHandle::get_vmtarget
// //
// Return an adapter for this MethodHandle. // Return: MH.form -> LF.vmentry -> MN.vmtarget
ciMethod* ciMethodHandle::get_adapter_impl(bool is_invokedynamic) { ciMethod* ciMethodHandle::get_vmtarget() const {
VM_ENTRY_MARK; VM_ENTRY_MARK;
Handle h(get_oop()); oop form_oop = java_lang_invoke_MethodHandle::form(get_oop());
methodHandle callee(_callee->get_methodOop()); oop vmentry_oop = java_lang_invoke_LambdaForm::vmentry(form_oop);
assert(callee->is_method_handle_invoke(), ""); oop vmtarget_oop = java_lang_invoke_MemberName::vmtarget(vmentry_oop);
oop mt1 = callee->method_handle_type(); return CURRENT_ENV->get_object(vmtarget_oop)->as_method();
oop mt2 = java_lang_invoke_MethodHandle::type(h());
if (!java_lang_invoke_MethodType::equals(mt1, mt2)) {
if (PrintMiscellaneous && (Verbose || WizardMode)) {
tty->print_cr("ciMethodHandle::get_adapter: types not equal");
mt1->print(); mt2->print();
}
return NULL;
}
// We catch all exceptions here that could happen in the method
// handle compiler and stop the VM.
MethodHandleCompiler mhc(h, callee->name(), callee->signature(), _profile.count(), is_invokedynamic, THREAD);
if (!HAS_PENDING_EXCEPTION) {
methodHandle m = mhc.compile(THREAD);
if (!HAS_PENDING_EXCEPTION) {
return CURRENT_ENV->get_object(m())->as_method();
}
}
if (PrintMiscellaneous && (Verbose || WizardMode)) {
tty->print("*** ciMethodHandle::get_adapter => ");
PENDING_EXCEPTION->print();
tty->print("*** get_adapter (%s): ", is_invokedynamic ? "indy" : "mh"); ((ciObject*)this)->print();
}
CLEAR_PENDING_EXCEPTION;
return NULL;
} }
// ------------------------------------------------------------------
// ciMethodHandle::get_adapter
//
// Return an adapter for this MethodHandle.
ciMethod* ciMethodHandle::get_adapter(bool is_invokedynamic) {
ciMethod* result = get_adapter_impl(is_invokedynamic);
if (result) {
// Fake up the MDO maturity.
ciMethodData* mdo = result->method_data();
if (mdo != NULL && _caller->method_data() != NULL && _caller->method_data()->is_mature()) {
mdo->set_mature();
}
}
return result;
}
#ifdef ASSERT
// ------------------------------------------------------------------
// ciMethodHandle::print_chain_impl
//
// Implementation of the print method.
void ciMethodHandle::print_chain_impl() {
ASSERT_IN_VM;
MethodHandleChain::print(get_oop());
}
// ------------------------------------------------------------------
// ciMethodHandle::print_chain
//
// Implementation of the print_chain method.
void ciMethodHandle::print_chain() {
GUARDED_VM_ENTRY(print_chain_impl(););
}
#endif

View File

@ -25,61 +25,20 @@
#ifndef SHARE_VM_CI_CIMETHODHANDLE_HPP #ifndef SHARE_VM_CI_CIMETHODHANDLE_HPP
#define SHARE_VM_CI_CIMETHODHANDLE_HPP #define SHARE_VM_CI_CIMETHODHANDLE_HPP
#include "ci/ciCallProfile.hpp" #include "ci/ciClassList.hpp"
#include "ci/ciInstance.hpp" #include "ci/ciInstance.hpp"
#include "prims/methodHandles.hpp"
// ciMethodHandle // ciMethodHandle
// //
// The class represents a java.lang.invoke.MethodHandle object. // The class represents a java.lang.invoke.MethodHandle object.
class ciMethodHandle : public ciInstance { class ciMethodHandle : public ciInstance {
private:
ciMethod* _callee;
ciMethod* _caller;
ciCallProfile _profile;
ciMethod* _method_handle_adapter;
ciMethod* _invokedynamic_adapter;
// Return an adapter for this MethodHandle.
ciMethod* get_adapter_impl(bool is_invokedynamic);
ciMethod* get_adapter( bool is_invokedynamic);
protected:
void print_chain_impl() NOT_DEBUG_RETURN;
public: public:
ciMethodHandle(instanceHandle h_i) : ciMethodHandle(instanceHandle h_i) : ciInstance(h_i) {}
ciInstance(h_i),
_callee(NULL),
_caller(NULL),
_method_handle_adapter(NULL),
_invokedynamic_adapter(NULL)
{}
// What kind of ciObject is this? // What kind of ciObject is this?
bool is_method_handle() const { return true; } bool is_method_handle() const { return true; }
void set_callee(ciMethod* m) { _callee = m; } ciMethod* get_vmtarget() const;
void set_caller(ciMethod* m) { _caller = m; }
void set_call_profile(ciCallProfile profile) { _profile = profile; }
// Return an adapter for a MethodHandle call.
ciMethod* get_method_handle_adapter() {
if (_method_handle_adapter == NULL) {
_method_handle_adapter = get_adapter(false);
}
return _method_handle_adapter;
}
// Return an adapter for an invokedynamic call.
ciMethod* get_invokedynamic_adapter() {
if (_invokedynamic_adapter == NULL) {
_invokedynamic_adapter = get_adapter(true);
}
return _invokedynamic_adapter;
}
void print_chain() NOT_DEBUG_RETURN;
}; };
#endif // SHARE_VM_CI_CIMETHODHANDLE_HPP #endif // SHARE_VM_CI_CIMETHODHANDLE_HPP

View File

@ -138,13 +138,14 @@ public:
jobject constant_encoding(); jobject constant_encoding();
// What kind of ciObject is this? // What kind of ciObject is this?
virtual bool is_null_object() const { return false; } virtual bool is_null_object() const { return false; }
virtual bool is_call_site() const { return false; } virtual bool is_call_site() const { return false; }
virtual bool is_cpcache() const { return false; } virtual bool is_cpcache() const { return false; }
virtual bool is_instance() { return false; } virtual bool is_instance() { return false; }
virtual bool is_member_name() const { return false; }
virtual bool is_method() { return false; } virtual bool is_method() { return false; }
virtual bool is_method_data() { return false; } virtual bool is_method_data() { return false; }
virtual bool is_method_handle() const { return false; } virtual bool is_method_handle() const { return false; }
virtual bool is_array() { return false; } virtual bool is_array() { return false; }
virtual bool is_obj_array() { return false; } virtual bool is_obj_array() { return false; }
virtual bool is_type_array() { return false; } virtual bool is_type_array() { return false; }
@ -208,6 +209,10 @@ public:
assert(is_instance(), "bad cast"); assert(is_instance(), "bad cast");
return (ciInstance*)this; return (ciInstance*)this;
} }
ciMemberName* as_member_name() {
assert(is_member_name(), "bad cast");
return (ciMemberName*)this;
}
ciMethod* as_method() { ciMethod* as_method() {
assert(is_method(), "bad cast"); assert(is_method(), "bad cast");
return (ciMethod*)this; return (ciMethod*)this;
@ -290,7 +295,8 @@ public:
} }
// Print debugging output about this ciObject. // Print debugging output about this ciObject.
void print(outputStream* st = tty); void print(outputStream* st);
void print() { print(tty); } // GDB cannot handle default arguments
// Print debugging output about the oop this ciObject represents. // Print debugging output about the oop this ciObject represents.
void print_oop(outputStream* st = tty); void print_oop(outputStream* st = tty);

View File

@ -28,6 +28,7 @@
#include "ci/ciInstance.hpp" #include "ci/ciInstance.hpp"
#include "ci/ciInstanceKlass.hpp" #include "ci/ciInstanceKlass.hpp"
#include "ci/ciInstanceKlassKlass.hpp" #include "ci/ciInstanceKlassKlass.hpp"
#include "ci/ciMemberName.hpp"
#include "ci/ciMethod.hpp" #include "ci/ciMethod.hpp"
#include "ci/ciMethodData.hpp" #include "ci/ciMethodData.hpp"
#include "ci/ciMethodHandle.hpp" #include "ci/ciMethodHandle.hpp"
@ -344,6 +345,8 @@ ciObject* ciObjectFactory::create_new_object(oop o) {
instanceHandle h_i(THREAD, (instanceOop)o); instanceHandle h_i(THREAD, (instanceOop)o);
if (java_lang_invoke_CallSite::is_instance(o)) if (java_lang_invoke_CallSite::is_instance(o))
return new (arena()) ciCallSite(h_i); return new (arena()) ciCallSite(h_i);
else if (java_lang_invoke_MemberName::is_instance(o))
return new (arena()) ciMemberName(h_i);
else if (java_lang_invoke_MethodHandle::is_instance(o)) else if (java_lang_invoke_MethodHandle::is_instance(o))
return new (arena()) ciMethodHandle(h_i); return new (arena()) ciMethodHandle(h_i);
else else

View File

@ -39,10 +39,11 @@ private:
ciKlass* _accessing_klass; ciKlass* _accessing_klass;
GrowableArray<ciType*>* _types; GrowableArray<ciType*>* _types;
int _size; int _size; // number of stack slots required for arguments
int _count; int _count; // number of parameter types in the signature
friend class ciMethod; friend class ciMethod;
friend class ciBytecodeStream;
friend class ciObjectFactory; friend class ciObjectFactory;
ciSignature(ciKlass* accessing_klass, constantPoolHandle cpool, ciSymbol* signature); ciSignature(ciKlass* accessing_klass, constantPoolHandle cpool, ciSymbol* signature);

View File

@ -363,6 +363,29 @@ ciMethod* ciBytecodeStream::get_method(bool& will_link) {
return m; return m;
} }
// ------------------------------------------------------------------
// ciBytecodeStream::has_appendix
//
// Returns true if there is an appendix argument stored in the
// constant pool cache at the current bci.
bool ciBytecodeStream::has_appendix() {
VM_ENTRY_MARK;
constantPoolHandle cpool(_method->get_methodOop()->constants());
return constantPoolOopDesc::has_appendix_at_if_loaded(cpool, get_method_index());
}
// ------------------------------------------------------------------
// ciBytecodeStream::get_appendix
//
// Return the appendix argument stored in the constant pool cache at
// the current bci.
ciObject* ciBytecodeStream::get_appendix() {
VM_ENTRY_MARK;
constantPoolHandle cpool(_method->get_methodOop()->constants());
oop appendix_oop = constantPoolOopDesc::appendix_at_if_loaded(cpool, get_method_index());
return CURRENT_ENV->get_object(appendix_oop);
}
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciBytecodeStream::get_declared_method_holder // ciBytecodeStream::get_declared_method_holder
// //
@ -378,9 +401,9 @@ ciKlass* ciBytecodeStream::get_declared_method_holder() {
VM_ENTRY_MARK; VM_ENTRY_MARK;
constantPoolHandle cpool(_method->get_methodOop()->constants()); constantPoolHandle cpool(_method->get_methodOop()->constants());
bool ignore; bool ignore;
// report as InvokeDynamic for invokedynamic, which is syntactically classless // report as MethodHandle for invokedynamic, which is syntactically classless
if (cur_bc() == Bytecodes::_invokedynamic) if (cur_bc() == Bytecodes::_invokedynamic)
return CURRENT_ENV->get_klass_by_name(_holder, ciSymbol::java_lang_invoke_InvokeDynamic(), false); return CURRENT_ENV->get_klass_by_name(_holder, ciSymbol::java_lang_invoke_MethodHandle(), false);
return CURRENT_ENV->get_klass_by_index(cpool, get_method_holder_index(), ignore, _holder); return CURRENT_ENV->get_klass_by_index(cpool, get_method_holder_index(), ignore, _holder);
} }
@ -395,6 +418,24 @@ int ciBytecodeStream::get_method_holder_index() {
return cpool->klass_ref_index_at(get_method_index()); return cpool->klass_ref_index_at(get_method_index());
} }
// ------------------------------------------------------------------
// ciBytecodeStream::get_declared_method_signature
//
// Get the declared signature of the currently referenced method.
//
// This is always the same as the signature of the resolved method
// itself, except for _invokehandle and _invokedynamic calls.
//
ciSignature* ciBytecodeStream::get_declared_method_signature() {
int sig_index = get_method_signature_index();
VM_ENTRY_MARK;
ciEnv* env = CURRENT_ENV;
constantPoolHandle cpool(_method->get_methodOop()->constants());
Symbol* sig_sym = cpool->symbol_at(sig_index);
ciKlass* pool_holder = env->get_object(cpool->pool_holder())->as_klass();
return new (env->arena()) ciSignature(pool_holder, cpool, env->get_symbol(sig_sym));
}
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciBytecodeStream::get_method_signature_index // ciBytecodeStream::get_method_signature_index
// //
@ -434,7 +475,7 @@ ciCallSite* ciBytecodeStream::get_call_site() {
// Get the CallSite from the constant pool cache. // Get the CallSite from the constant pool cache.
int method_index = get_method_index(); int method_index = get_method_index();
ConstantPoolCacheEntry* cpcache_entry = cpcache->secondary_entry_at(method_index); ConstantPoolCacheEntry* cpcache_entry = cpcache->secondary_entry_at(method_index);
oop call_site_oop = cpcache_entry->f1(); oop call_site_oop = cpcache_entry->f1_as_instance();
// Create a CallSite object and return it. // Create a CallSite object and return it.
return CURRENT_ENV->get_object(call_site_oop)->as_call_site(); return CURRENT_ENV->get_object(call_site_oop)->as_call_site();

View File

@ -259,8 +259,11 @@ public:
// If this is a method invocation bytecode, get the invoked method. // If this is a method invocation bytecode, get the invoked method.
ciMethod* get_method(bool& will_link); ciMethod* get_method(bool& will_link);
bool has_appendix();
ciObject* get_appendix();
ciKlass* get_declared_method_holder(); ciKlass* get_declared_method_holder();
int get_method_holder_index(); int get_method_holder_index();
ciSignature* get_declared_method_signature();
int get_method_signature_index(); int get_method_signature_index();
ciCPCache* get_cpcache() const; ciCPCache* get_cpcache() const;

View File

@ -83,6 +83,10 @@ bool ciSymbol::starts_with(const char* prefix, int len) const {
GUARDED_VM_ENTRY(return get_symbol()->starts_with(prefix, len);) GUARDED_VM_ENTRY(return get_symbol()->starts_with(prefix, len);)
} }
bool ciSymbol::is_signature_polymorphic_name() const {
GUARDED_VM_ENTRY(return MethodHandles::is_signature_polymorphic_name(get_symbol());)
}
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciSymbol::index_of // ciSymbol::index_of
// //

View File

@ -107,6 +107,8 @@ public:
// Are two ciSymbols equal? // Are two ciSymbols equal?
bool equals(ciSymbol* obj) { return this->_symbol == obj->get_symbol(); } bool equals(ciSymbol* obj) { return this->_symbol == obj->get_symbol(); }
bool is_signature_polymorphic_name() const;
}; };
#endif // SHARE_VM_CI_CISYMBOL_HPP #endif // SHARE_VM_CI_CISYMBOL_HPP

View File

@ -643,9 +643,9 @@ void ciTypeFlow::StateVector::do_getstatic(ciBytecodeStream* str) {
// ------------------------------------------------------------------ // ------------------------------------------------------------------
// ciTypeFlow::StateVector::do_invoke // ciTypeFlow::StateVector::do_invoke
void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str, void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
bool has_receiver) { bool has_receiver_foo) {
bool will_link; bool will_link;
ciMethod* method = str->get_method(will_link); ciMethod* callee = str->get_method(will_link);
if (!will_link) { if (!will_link) {
// We weren't able to find the method. // We weren't able to find the method.
if (str->cur_bc() == Bytecodes::_invokedynamic) { if (str->cur_bc() == Bytecodes::_invokedynamic) {
@ -654,12 +654,24 @@ void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
(Deoptimization::Reason_uninitialized, (Deoptimization::Reason_uninitialized,
Deoptimization::Action_reinterpret)); Deoptimization::Action_reinterpret));
} else { } else {
ciKlass* unloaded_holder = method->holder(); ciKlass* unloaded_holder = callee->holder();
trap(str, unloaded_holder, str->get_method_holder_index()); trap(str, unloaded_holder, str->get_method_holder_index());
} }
} else { } else {
ciSignature* signature = method->signature(); // TODO Use Bytecode_invoke after metadata changes.
//Bytecode_invoke inv(str->method(), str->cur_bci());
//const bool has_receiver = callee->is_loaded() ? !callee->is_static() : inv.has_receiver();
Bytecode inv(str);
Bytecodes::Code code = inv.invoke_code();
const bool has_receiver = callee->is_loaded() ? !callee->is_static() : code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic;
ciSignature* signature = callee->signature();
ciSignatureStream sigstr(signature); ciSignatureStream sigstr(signature);
// Push appendix argument, if one.
if (str->has_appendix()) {
ciObject* appendix = str->get_appendix();
push_object(appendix->klass());
}
int arg_size = signature->size(); int arg_size = signature->size();
int stack_base = stack_size() - arg_size; int stack_base = stack_size() - arg_size;
int i = 0; int i = 0;
@ -677,6 +689,7 @@ void ciTypeFlow::StateVector::do_invoke(ciBytecodeStream* str,
for (int j = 0; j < arg_size; j++) { for (int j = 0; j < arg_size; j++) {
pop(); pop();
} }
assert(!callee->is_loaded() || has_receiver == !callee->is_static(), "mismatch");
if (has_receiver) { if (has_receiver) {
// Check this? // Check this?
pop_object(); pop_object();

Some files were not shown because too many files have changed in this diff Show More