8136678: Implement adaptive sizing algorithm for IHOP

Add adaptive sizing for IHOP that maximizes throughput (starts marking as late as possible). This functionality is enabled using a new -XX:+G1AdaptiveIHOP switch (default: false).

Reviewed-by: mgerdin, jmasa, pliden
This commit is contained in:
Thomas Schatzl 2015-11-24 10:35:52 +01:00
parent 66a728fc27
commit 48264e4686
6 changed files with 255 additions and 10 deletions

View File

@ -1239,8 +1239,16 @@ void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t
}
G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
G1CollectedHeap::heap()->max_capacity());
if (G1UseAdaptiveIHOP) {
return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
G1CollectedHeap::heap()->max_capacity(),
&_predictor,
G1ReservePercent,
G1HeapWastePercent);
} else {
return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
G1CollectedHeap::heap()->max_capacity());
}
}
void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,

View File

@ -26,6 +26,7 @@
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1ErgoVerbose.hpp"
#include "gc/g1/g1IHOPControl.hpp"
#include "gc/g1/g1Predictions.hpp"
G1IHOPControl::G1IHOPControl(double initial_ihop_percent, size_t target_occupancy) :
_initial_ihop_percent(initial_ihop_percent),
@ -105,6 +106,181 @@ void G1StaticIHOPControl::test() {
assert(threshold == initial_ihop,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_ihop, threshold);
}
#endif
G1AdaptiveIHOPControl::G1AdaptiveIHOPControl(double ihop_percent,
size_t initial_target_occupancy,
G1Predictions const* predictor,
size_t heap_reserve_percent,
size_t heap_waste_percent) :
G1IHOPControl(ihop_percent, initial_target_occupancy),
_predictor(predictor),
_marking_times_s(10, 0.95),
_allocation_rate_s(10, 0.95),
_last_unrestrained_young_size(0),
_heap_reserve_percent(heap_reserve_percent),
_heap_waste_percent(heap_waste_percent)
{
}
size_t G1AdaptiveIHOPControl::actual_target_threshold() const {
// The actual target threshold takes the heap reserve and the expected waste in
// free space into account.
// _heap_reserve is that part of the total heap capacity that is reserved for
// eventual promotion failure.
// _heap_waste is the amount of space will never be reclaimed in any
// heap, so can not be used for allocation during marking and must always be
// considered.
double safe_total_heap_percentage = MIN2((double)(_heap_reserve_percent + _heap_waste_percent), 100.0);
return MIN2(
G1CollectedHeap::heap()->max_capacity() * (100.0 - safe_total_heap_percentage) / 100.0,
_target_occupancy * (100.0 - _heap_waste_percent) / 100.0
);
}
bool G1AdaptiveIHOPControl::have_enough_data_for_prediction() const {
return ((size_t)_marking_times_s.num() >= G1AdaptiveIHOPNumInitialSamples) &&
((size_t)_allocation_rate_s.num() >= G1AdaptiveIHOPNumInitialSamples);
}
size_t G1AdaptiveIHOPControl::get_conc_mark_start_threshold() {
if (have_enough_data_for_prediction()) {
double pred_marking_time = _predictor->get_new_prediction(&_marking_times_s);
double pred_promotion_rate = _predictor->get_new_prediction(&_allocation_rate_s);
size_t predicted_needed_bytes_during_marking =
(pred_marking_time * pred_promotion_rate +
_last_unrestrained_young_size); // In reality we would need the maximum size of the young gen during marking. This is a conservative estimate.
size_t internal_threshold = actual_target_threshold();
size_t predicted_initiating_threshold = predicted_needed_bytes_during_marking < internal_threshold ?
internal_threshold - predicted_needed_bytes_during_marking :
0;
return predicted_initiating_threshold;
} else {
// Use the initial value.
return _initial_ihop_percent * _target_occupancy / 100.0;
}
}
void G1AdaptiveIHOPControl::update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size) {
assert(allocation_time_s >= 0.0, "Allocation time must be positive but is %.3f", allocation_time_s);
double allocation_rate = (double) allocated_bytes / allocation_time_s;
_allocation_rate_s.add(allocation_rate);
_last_allocation_bytes = allocated_bytes;
_last_unrestrained_young_size = additional_buffer_size;
}
void G1AdaptiveIHOPControl::update_marking_length(double marking_length_s) {
assert(marking_length_s >= 0.0, "Marking length must be larger than zero but is %.3f", marking_length_s);
_marking_times_s.add(marking_length_s);
}
void G1AdaptiveIHOPControl::print() {
ergo_verbose6(ErgoIHOP,
"basic information",
ergo_format_reason("value update")
ergo_format_byte_perc("threshold")
ergo_format_byte("target occupancy")
ergo_format_byte("current occupancy")
ergo_format_double("recent old gen allocation rate")
ergo_format_double("recent marking phase length"),
get_conc_mark_start_threshold(),
percent_of(get_conc_mark_start_threshold(), _target_occupancy),
_target_occupancy,
G1CollectedHeap::heap()->used(),
_allocation_rate_s.last(),
_marking_times_s.last()
);
size_t actual_target = actual_target_threshold();
ergo_verbose6(ErgoIHOP,
"adaptive IHOP information",
ergo_format_reason("value update")
ergo_format_byte_perc("threshold")
ergo_format_byte("internal target occupancy")
ergo_format_double("predicted old gen allocation rate")
ergo_format_double("predicted marking phase length")
ergo_format_str("prediction active"),
get_conc_mark_start_threshold(),
percent_of(get_conc_mark_start_threshold(), actual_target),
actual_target,
_predictor->get_new_prediction(&_allocation_rate_s),
_predictor->get_new_prediction(&_marking_times_s),
have_enough_data_for_prediction() ? "true" : "false"
);
}
#ifndef PRODUCT
void G1AdaptiveIHOPControl::test() {
size_t const initial_threshold = 45;
size_t const young_size = 10;
size_t const target_size = 100;
// The final IHOP value is always
// target_size - (young_size + alloc_amount/alloc_time * marking_time)
G1Predictions pred(0.95);
G1AdaptiveIHOPControl ctrl(initial_threshold, target_size, &pred, 0, 0);
// First "load".
size_t const alloc_time1 = 2;
size_t const alloc_amount1 = 10;
size_t const marking_time1 = 2;
size_t const settled_ihop1 = target_size - (young_size + alloc_amount1/alloc_time1 * marking_time1);
size_t threshold;
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_threshold,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_threshold, threshold);
for (size_t i = 0; i < G1AdaptiveIHOPNumInitialSamples - 1; i++) {
ctrl.update_allocation_info(alloc_time1, alloc_amount1, young_size);
ctrl.update_marking_length(marking_time1);
// Not enough data yet.
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == initial_threshold,
"Expected IHOP threshold of " SIZE_FORMAT " but is " SIZE_FORMAT, initial_threshold, threshold);
}
test_update(&ctrl, alloc_time1, alloc_amount1, young_size, marking_time1);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == settled_ihop1,
"Expected IHOP threshold to settle at " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop1, threshold);
// Second "load". A bit higher allocation rate.
size_t const alloc_time2 = 2;
size_t const alloc_amount2 = 30;
size_t const marking_time2 = 2;
size_t const settled_ihop2 = target_size - (young_size + alloc_amount2/alloc_time2 * marking_time2);
test_update(&ctrl, alloc_time2, alloc_amount2, young_size, marking_time2);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold < settled_ihop1,
"Expected IHOP threshold to settle at a value lower than " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop1, threshold);
// Third "load". Very high (impossible) allocation rate.
size_t const alloc_time3 = 1;
size_t const alloc_amount3 = 50;
size_t const marking_time3 = 2;
size_t const settled_ihop3 = 0;
test_update(&ctrl, alloc_time3, alloc_amount3, young_size, marking_time3);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold == settled_ihop3,
"Expected IHOP threshold to settle at " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop3, threshold);
// And back to some arbitrary value.
test_update(&ctrl, alloc_time2, alloc_amount2, young_size, marking_time2);
threshold = ctrl.get_conc_mark_start_threshold();
assert(threshold > settled_ihop3,
"Expected IHOP threshold to settle at value larger than " SIZE_FORMAT " but is " SIZE_FORMAT, settled_ihop3, threshold);
}
void IHOP_test() {
G1StaticIHOPControl::test();

View File

@ -26,6 +26,9 @@
#define SHARE_VM_GC_G1_G1IHOPCONTROL_HPP
#include "memory/allocation.hpp"
#include "utilities/numberSeq.hpp"
class G1Predictions;
// Base class for algorithms that calculate the heap occupancy at which
// concurrent marking should start. This heap usage threshold should be relative
@ -95,4 +98,53 @@ class G1StaticIHOPControl : public G1IHOPControl {
#endif
};
// This algorithm tries to return a concurrent mark starting occupancy value that
// makes sure that during marking the given target occupancy is never exceeded,
// based on predictions of current allocation rate and time periods between
// initial mark and the first mixed gc.
class G1AdaptiveIHOPControl : public G1IHOPControl {
size_t _heap_reserve_percent; // Percentage of maximum heap capacity we should avoid to touch
size_t _heap_waste_percent; // Percentage of free heap that should be considered as waste.
const G1Predictions * _predictor;
TruncatedSeq _marking_times_s;
TruncatedSeq _allocation_rate_s;
size_t _last_allocation_bytes; // Most recent mutator allocation since last GC.
// The most recent unrestrained size of the young gen. This is used as an additional
// factor in the calculation of the threshold, as the threshold is based on
// non-young gen occupancy at the end of GC. For the IHOP threshold, we need to
// consider the young gen size during that time too.
// Since we cannot know what young gen sizes are used in the future, we will just
// use the current one. We expect that this one will be one with a fairly large size,
// as there is no marking or mixed gc that could impact its size too much.
size_t _last_unrestrained_young_size;
bool have_enough_data_for_prediction() const;
// The "actual" target threshold the algorithm wants to keep during and at the
// end of marking. This is typically lower than the requested threshold, as the
// algorithm needs to consider restrictions by the environment.
size_t actual_target_threshold() const;
protected:
virtual double last_marking_length_s() const { return _marking_times_s.last(); }
public:
G1AdaptiveIHOPControl(double ihop_percent,
size_t initial_target_occupancy,
G1Predictions const* predictor,
size_t heap_reserve_percent, // The percentage of total heap capacity that should not be tapped into.
size_t heap_waste_percent); // The percentage of the free space in the heap that we think is not usable for allocation.
virtual size_t get_conc_mark_start_threshold();
virtual void update_allocation_info(double allocation_time_s, size_t allocated_bytes, size_t additional_buffer_size);
virtual void update_marking_length(double marking_length_s);
virtual void print();
#ifndef PRODUCT
static void test();
#endif
};
#endif // SHARE_VM_GC_G1_G1IHOPCONTROL_HPP

View File

@ -125,14 +125,6 @@ void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
_sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
}
static double percent_of(size_t numerator, size_t denominator) {
if (denominator != 0) {
return (double)numerator / denominator * 100.0f;
} else {
return 0.0f;
}
}
static size_t round_to_K(size_t value) {
return value / K;
}

View File

@ -33,6 +33,16 @@
#define G1_FLAGS(develop, develop_pd, product, product_pd, diagnostic, experimental, notproduct, manageable, product_rw, range, constraint) \
\
product(bool, G1UseAdaptiveIHOP, false, \
"Adaptively adjust InitiatingHeapOccupancyPercent from the " \
"initial value.") \
\
experimental(size_t, G1AdaptiveIHOPNumInitialSamples, 3, \
"How many completed time periods from initial mark to first " \
"mixed gc are required to use the input values for prediction " \
"of the optimal occupancy to start marking.") \
range(1, max_intx) \
\
product(uintx, G1ConfidencePercent, 50, \
"Confidence level for MMU/pause predictions") \
range(0, 100) \

View File

@ -565,6 +565,13 @@ inline double fabsd(double value) {
return fabs(value);
}
// Returns numerator/denominator as percentage value from 0 to 100. If denominator
// is zero, return 0.0.
template<typename T>
inline double percent_of(T numerator, T denominator) {
return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
}
//----------------------------------------------------------------------------------------------------
// Special casts
// Cast floats into same-size integers and vice-versa w/o changing bit-pattern