8139887: Reduce visibility of few methods in TypeUtilities and Guards API

Reviewed-by: hannesw, sundar
This commit is contained in:
Attila Szegedi 2015-10-20 23:33:39 +02:00
parent f12273ae3b
commit 4b535d31c4
8 changed files with 309 additions and 262 deletions

View File

@ -91,7 +91,7 @@ import java.util.Map;
import java.util.WeakHashMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import jdk.internal.dynalink.linker.support.Guards;
import jdk.internal.dynalink.internal.InternalTypeUtilities;
/**
* A dual map that can either strongly or weakly reference a given class depending on whether the class is visible from
@ -153,7 +153,7 @@ abstract class ClassMap<T> {
final Boolean canReferenceDirectly = AccessController.doPrivileged(new PrivilegedAction<Boolean>() {
@Override
public Boolean run() {
return Guards.canReferenceDirectly(classLoader, clazz.getClassLoader());
return InternalTypeUtilities.canReferenceDirectly(classLoader, clazz.getClassLoader());
}
}, ClassLoaderGetterContextProvider.GET_CLASS_LOADER_CONTEXT);

View File

@ -99,13 +99,13 @@ import java.util.List;
import java.util.Map;
import jdk.internal.dynalink.CallSiteDescriptor;
import jdk.internal.dynalink.beans.GuardedInvocationComponent.ValidationType;
import jdk.internal.dynalink.internal.InternalTypeUtilities;
import jdk.internal.dynalink.linker.GuardedInvocation;
import jdk.internal.dynalink.linker.GuardingDynamicLinker;
import jdk.internal.dynalink.linker.LinkRequest;
import jdk.internal.dynalink.linker.LinkerServices;
import jdk.internal.dynalink.linker.support.Guards;
import jdk.internal.dynalink.linker.support.Lookup;
import jdk.internal.dynalink.linker.support.TypeUtilities;
import sun.reflect.CallerSensitive;
/**
@ -689,7 +689,7 @@ abstract class AbstractJavaLinker implements GuardingDynamicLinker {
assertParameterCount(callSiteDescriptor, 2);
final GuardedInvocationComponent nextComponent = getGuardedInvocationComponent(callSiteDescriptor,
linkerServices, ops);
if(nextComponent == null || !TypeUtilities.areAssignable(DynamicMethod.class,
if(nextComponent == null || !InternalTypeUtilities.areAssignable(DynamicMethod.class,
nextComponent.getGuardedInvocation().getInvocation().type().returnType())) {
// No next component operation, or it can never produce a dynamic method; just return a component
// for this operation.
@ -756,7 +756,7 @@ abstract class AbstractJavaLinker implements GuardingDynamicLinker {
static MethodPair matchReturnTypes(final MethodHandle m1, final MethodHandle m2) {
final MethodType type1 = m1.type();
final MethodType type2 = m2.type();
final Class<?> commonRetType = TypeUtilities.getCommonLosslessConversionType(type1.returnType(),
final Class<?> commonRetType = InternalTypeUtilities.getCommonLosslessConversionType(type1.returnType(),
type2.returnType());
return new MethodPair(
m1.asType(type1.changeReturnType(commonRetType)),

View File

@ -90,8 +90,8 @@ import java.security.Permission;
import java.security.PrivilegedAction;
import java.util.LinkedList;
import java.util.List;
import jdk.internal.dynalink.internal.InternalTypeUtilities;
import jdk.internal.dynalink.linker.LinkerServices;
import jdk.internal.dynalink.linker.support.Guards;
import jdk.internal.dynalink.linker.support.TypeUtilities;
/**
@ -152,7 +152,7 @@ final class ClassString {
@Override
public Boolean run() {
for(final Class<?> clazz: classes) {
if(!Guards.canReferenceDirectly(classLoader, clazz.getClassLoader())) {
if(!InternalTypeUtilities.canReferenceDirectly(classLoader, clazz.getClassLoader())) {
return false;
}
}

View File

@ -93,13 +93,16 @@ import java.security.ProtectionDomain;
import java.text.Collator;
import java.util.ArrayList;
import java.util.Collections;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import jdk.internal.dynalink.CallSiteDescriptor;
import jdk.internal.dynalink.beans.ApplicableOverloadedMethods.ApplicabilityTest;
import jdk.internal.dynalink.internal.InternalTypeUtilities;
import jdk.internal.dynalink.linker.LinkerServices;
import jdk.internal.dynalink.linker.support.TypeUtilities;
/**
* Represents a group of {@link SingleDynamicMethod} objects that represents all overloads of a particular name (or all
@ -344,7 +347,7 @@ class OverloadedDynamicMethod extends DynamicMethod {
private static boolean isApplicableDynamically(final LinkerServices linkerServices, final Class<?> callSiteType,
final Class<?> methodType) {
return TypeUtilities.isPotentiallyConvertible(callSiteType, methodType)
return isPotentiallyConvertible(callSiteType, methodType)
|| linkerServices.canConvert(callSiteType, methodType);
}
@ -365,4 +368,72 @@ class OverloadedDynamicMethod extends DynamicMethod {
private boolean constructorFlagConsistent(final SingleDynamicMethod method) {
return methods.isEmpty()? true : (methods.getFirst().isConstructor() == method.isConstructor());
}
/**
* Determines whether one type can be potentially converted to another type at runtime. Allows a conversion between
* any subtype and supertype in either direction, and also allows a conversion between any two primitive types, as
* well as between any primitive type and any reference type that can hold a boxed primitive.
*
* @param callSiteType the parameter type at the call site
* @param methodType the parameter type in the method declaration
* @return true if callSiteType is potentially convertible to the methodType.
*/
private static boolean isPotentiallyConvertible(final Class<?> callSiteType, final Class<?> methodType) {
// Widening or narrowing reference conversion
if(InternalTypeUtilities.areAssignable(callSiteType, methodType)) {
return true;
}
if(callSiteType.isPrimitive()) {
// Allow any conversion among primitives, as well as from any
// primitive to any type that can receive a boxed primitive.
// TODO: narrow this a bit, i.e. allow, say, boolean to Character?
// MethodHandles.convertArguments() allows it, so we might need to
// too.
return methodType.isPrimitive() || isAssignableFromBoxedPrimitive(methodType);
}
if(methodType.isPrimitive()) {
// Allow conversion from any reference type that can contain a
// boxed primitive to any primitive.
// TODO: narrow this a bit too?
return isAssignableFromBoxedPrimitive(callSiteType);
}
return false;
}
private static final Set<Class<?>> PRIMITIVE_WRAPPER_TYPES = createPrimitiveWrapperTypes();
private static Set<Class<?>> createPrimitiveWrapperTypes() {
final Map<Class<?>, Class<?>> classes = new IdentityHashMap<>();
addClassHierarchy(classes, Boolean.class);
addClassHierarchy(classes, Byte.class);
addClassHierarchy(classes, Character.class);
addClassHierarchy(classes, Short.class);
addClassHierarchy(classes, Integer.class);
addClassHierarchy(classes, Long.class);
addClassHierarchy(classes, Float.class);
addClassHierarchy(classes, Double.class);
return classes.keySet();
}
private static void addClassHierarchy(final Map<Class<?>, Class<?>> map, final Class<?> clazz) {
if(clazz == null) {
return;
}
map.put(clazz, clazz);
addClassHierarchy(map, clazz.getSuperclass());
for(final Class<?> itf: clazz.getInterfaces()) {
addClassHierarchy(map, itf);
}
}
/**
* Returns true if the class can be assigned from any boxed primitive.
*
* @param clazz the class
* @return true if the class can be assigned from any boxed primitive. Basically, it is true if the class is any
* primitive wrapper class, or a superclass or superinterface of any primitive wrapper class.
*/
private static boolean isAssignableFromBoxedPrimitive(final Class<?> clazz) {
return PRIMITIVE_WRAPPER_TYPES.contains(clazz);
}
}

View File

@ -91,9 +91,9 @@ import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import jdk.internal.dynalink.internal.InternalTypeUtilities;
import jdk.internal.dynalink.linker.LinkerServices;
import jdk.internal.dynalink.linker.support.Lookup;
import jdk.internal.dynalink.linker.support.TypeUtilities;
/**
* Represents a subset of overloaded methods for a certain method name on a certain class. It can be either a fixarg or
@ -273,7 +273,7 @@ class OverloadedMethod {
final Iterator<MethodHandle> it = methodHandles.iterator();
Class<?> retType = it.next().type().returnType();
while(it.hasNext()) {
retType = TypeUtilities.getCommonLosslessConversionType(retType, it.next().type().returnType());
retType = InternalTypeUtilities.getCommonLosslessConversionType(retType, it.next().type().returnType());
}
return retType;
}

View File

@ -0,0 +1,187 @@
/*
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.internal.dynalink.internal;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Set;
import jdk.internal.dynalink.linker.support.TypeUtilities;
/**
* Various static utility methods for testing type relationships; internal to Dynalink.
*/
public class InternalTypeUtilities {
private InternalTypeUtilities() {
}
/**
* Returns true if either of the types is assignable from the other.
* @param c1 one type
* @param c2 another type
* @return true if either c1 is assignable from c2 or c2 is assignable from c1.
*/
public static boolean areAssignable(final Class<?> c1, final Class<?> c2) {
return c1.isAssignableFrom(c2) || c2.isAssignableFrom(c1);
}
/**
* Return true if it is safe to strongly reference a class from the referred
* class loader from a class associated with the referring class loader
* without risking a class loader memory leak. Generally, it is only safe
* to reference classes from the same or ancestor class loader. {@code null}
* indicates the system class loader; classes from it can always be
* directly referenced, and it can only directly reference classes from
* itself. This method can be used by language runtimes to ensure they are
* using weak references in their linkages when they need to link to methods
* in unrelated class loaders.
*
* @param referrerLoader the referrer class loader.
* @param referredLoader the referred class loader
* @return true if it is safe to strongly reference the class from referred
* in referred.
* @throws SecurityException if the caller does not have the
* {@code RuntimePermission("getClassLoader")} permission and the method
* needs to traverse the parent class loader chain.
*/
public static boolean canReferenceDirectly(final ClassLoader referrerLoader, final ClassLoader referredLoader) {
if(referredLoader == null) {
// Can always refer directly to a system class
return true;
}
if(referrerLoader == null) {
// System classes can't refer directly to any non-system class
return false;
}
// Otherwise, can only refer directly to classes residing in same or
// parent class loader.
ClassLoader referrer = referrerLoader;
do {
if(referrer == referredLoader) {
return true;
}
referrer = referrer.getParent();
} while(referrer != null);
return false;
}
/**
* Given two types represented by c1 and c2, returns a type that is their
* most specific common supertype for purposes of lossless conversions.
*
* @param c1 one type
* @param c2 another type
* @return their most common superclass or superinterface for purposes of
* lossless conversions. If they have several unrelated superinterfaces as
* their most specific common type, or the types themselves are completely
* unrelated interfaces, {@link java.lang.Object} is returned.
*/
public static Class<?> getCommonLosslessConversionType(final Class<?> c1, final Class<?> c2) {
if(c1 == c2) {
return c1;
} else if (c1 == void.class || c2 == void.class) {
return Object.class;
} else if(TypeUtilities.isConvertibleWithoutLoss(c2, c1)) {
return c1;
} else if(TypeUtilities.isConvertibleWithoutLoss(c1, c2)) {
return c2;
} else if(c1.isPrimitive() && c2.isPrimitive()) {
if((c1 == byte.class && c2 == char.class) || (c1 == char.class && c2 == byte.class)) {
// byte + char = int
return int.class;
} else if((c1 == short.class && c2 == char.class) || (c1 == char.class && c2 == short.class)) {
// short + char = int
return int.class;
} else if((c1 == int.class && c2 == float.class) || (c1 == float.class && c2 == int.class)) {
// int + float = double
return double.class;
}
}
// For all other cases. This will handle long + (float|double) = Number case as well as boolean + anything = Object case too.
return getMostSpecificCommonTypeUnequalNonprimitives(c1, c2);
}
private static Class<?> getMostSpecificCommonTypeUnequalNonprimitives(final Class<?> c1, final Class<?> c2) {
final Class<?> npc1 = c1.isPrimitive() ? TypeUtilities.getWrapperType(c1) : c1;
final Class<?> npc2 = c2.isPrimitive() ? TypeUtilities.getWrapperType(c2) : c2;
final Set<Class<?>> a1 = getAssignables(npc1, npc2);
final Set<Class<?>> a2 = getAssignables(npc2, npc1);
a1.retainAll(a2);
if(a1.isEmpty()) {
// Can happen when at least one of the arguments is an interface,
// as they don't have Object at the root of their hierarchy.
return Object.class;
}
// Gather maximally specific elements. Yes, there can be more than one
// thank to interfaces. I.e., if you call this method for String.class
// and Number.class, you'll have Comparable, Serializable, and Object
// as maximal elements.
final List<Class<?>> max = new ArrayList<>();
outer: for(final Class<?> clazz: a1) {
for(final Iterator<Class<?>> maxiter = max.iterator(); maxiter.hasNext();) {
final Class<?> maxClazz = maxiter.next();
if(TypeUtilities.isSubtype(maxClazz, clazz)) {
// It can't be maximal, if there's already a more specific
// maximal than it.
continue outer;
}
if(TypeUtilities.isSubtype(clazz, maxClazz)) {
// If it's more specific than a currently maximal element,
// that currently maximal is no longer a maximal.
maxiter.remove();
}
}
// If we get here, no current maximal is more specific than the
// current class, so it is considered maximal as well
max.add(clazz);
}
if(max.size() > 1) {
return Object.class;
}
return max.get(0);
}
private static Set<Class<?>> getAssignables(final Class<?> c1, final Class<?> c2) {
final Set<Class<?>> s = new HashSet<>();
collectAssignables(c1, c2, s);
return s;
}
private static void collectAssignables(final Class<?> c1, final Class<?> c2, final Set<Class<?>> s) {
if(c1.isAssignableFrom(c2)) {
s.add(c1);
}
final Class<?> sc = c1.getSuperclass();
if(sc != null) {
collectAssignables(sc, c2, s);
}
final Class<?>[] itf = c1.getInterfaces();
for(int i = 0; i < itf.length; ++i) {
collectAssignables(itf[i], c2, s);
}
}
}

View File

@ -183,36 +183,6 @@ public final class Guards {
return asType(IS_ARRAY, pos, type);
}
/**
* Return true if it is safe to strongly reference a class from the referred class loader from a class associated
* with the referring class loader without risking a class loader memory leak.
*
* @param referrerLoader the referrer class loader
* @param referredLoader the referred class loader
* @return true if it is safe to strongly reference the class
*/
public static boolean canReferenceDirectly(final ClassLoader referrerLoader, final ClassLoader referredLoader) {
if(referredLoader == null) {
// Can always refer directly to a system class
return true;
}
if(referrerLoader == null) {
// System classes can't refer directly to any non-system class
return false;
}
// Otherwise, can only refer directly to classes residing in same or
// parent class loader.
ClassLoader referrer = referrerLoader;
do {
if(referrer == referredLoader) {
return true;
}
referrer = referrer.getParent();
} while(referrer != null);
return false;
}
private static MethodHandle getClassBoundArgumentTest(final MethodHandle test, final Class<?> clazz, final int pos, final MethodType type) {
// Bind the class to the first argument of the test
return asType(test.bindTo(clazz), pos, type);

View File

@ -83,19 +83,16 @@
package jdk.internal.dynalink.linker.support;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import jdk.internal.dynalink.DynamicLinkerFactory;
import jdk.internal.dynalink.linker.MethodTypeConversionStrategy;
/**
* Various static utility methods for testing type relationships.
* Various static utility methods for working with Java types.
*/
public class TypeUtilities {
static final Class<Object> OBJECT_CLASS = Object.class;
@ -103,107 +100,13 @@ public class TypeUtilities {
private TypeUtilities() {
}
/**
* Given two types represented by c1 and c2, returns a type that is their most specific common supertype for
* purposes of lossless conversions.
*
* @param c1 one type
* @param c2 another type
* @return their most common superclass or superinterface for purposes of lossless conversions. If they have several
* unrelated superinterfaces as their most specific common type, or the types themselves are completely
* unrelated interfaces, {@link java.lang.Object} is returned.
*/
public static Class<?> getCommonLosslessConversionType(final Class<?> c1, final Class<?> c2) {
if(c1 == c2) {
return c1;
} else if (c1 == void.class || c2 == void.class) {
return Object.class;
} else if(isConvertibleWithoutLoss(c2, c1)) {
return c1;
} else if(isConvertibleWithoutLoss(c1, c2)) {
return c2;
} else if(c1.isPrimitive() && c2.isPrimitive()) {
if((c1 == byte.class && c2 == char.class) || (c1 == char.class && c2 == byte.class)) {
// byte + char = int
return int.class;
} else if((c1 == short.class && c2 == char.class) || (c1 == char.class && c2 == short.class)) {
// short + char = int
return int.class;
} else if((c1 == int.class && c2 == float.class) || (c1 == float.class && c2 == int.class)) {
// int + float = double
return double.class;
}
}
// For all other cases. This will handle long + (float|double) = Number case as well as boolean + anything = Object case too.
return getMostSpecificCommonTypeUnequalNonprimitives(c1, c2);
}
private static Class<?> getMostSpecificCommonTypeUnequalNonprimitives(final Class<?> c1, final Class<?> c2) {
final Class<?> npc1 = c1.isPrimitive() ? getWrapperType(c1) : c1;
final Class<?> npc2 = c2.isPrimitive() ? getWrapperType(c2) : c2;
final Set<Class<?>> a1 = getAssignables(npc1, npc2);
final Set<Class<?>> a2 = getAssignables(npc2, npc1);
a1.retainAll(a2);
if(a1.isEmpty()) {
// Can happen when at least one of the arguments is an interface,
// as they don't have Object at the root of their hierarchy.
return Object.class;
}
// Gather maximally specific elements. Yes, there can be more than one
// thank to interfaces. I.e., if you call this method for String.class
// and Number.class, you'll have Comparable, Serializable, and Object
// as maximal elements.
final List<Class<?>> max = new ArrayList<>();
outer: for(final Class<?> clazz: a1) {
for(final Iterator<Class<?>> maxiter = max.iterator(); maxiter.hasNext();) {
final Class<?> maxClazz = maxiter.next();
if(isSubtype(maxClazz, clazz)) {
// It can't be maximal, if there's already a more specific
// maximal than it.
continue outer;
}
if(isSubtype(clazz, maxClazz)) {
// If it's more specific than a currently maximal element,
// that currently maximal is no longer a maximal.
maxiter.remove();
}
}
// If we get here, no current maximal is more specific than the
// current class, so it is considered maximal as well
max.add(clazz);
}
if(max.size() > 1) {
return Object.class;
}
return max.get(0);
}
private static Set<Class<?>> getAssignables(final Class<?> c1, final Class<?> c2) {
final Set<Class<?>> s = new HashSet<>();
collectAssignables(c1, c2, s);
return s;
}
private static void collectAssignables(final Class<?> c1, final Class<?> c2, final Set<Class<?>> s) {
if(c1.isAssignableFrom(c2)) {
s.add(c1);
}
final Class<?> sc = c1.getSuperclass();
if(sc != null) {
collectAssignables(sc, c2, s);
}
final Class<?>[] itf = c1.getInterfaces();
for(int i = 0; i < itf.length; ++i) {
collectAssignables(itf[i], c2, s);
}
}
private static final Map<Class<?>, Class<?>> WRAPPER_TYPES = createWrapperTypes();
private static final Map<Class<?>, Class<?>> PRIMITIVE_TYPES = invertMap(WRAPPER_TYPES);
private static final Map<String, Class<?>> PRIMITIVE_TYPES_BY_NAME = createClassNameMapping(WRAPPER_TYPES.keySet());
private static Map<Class<?>, Class<?>> createWrapperTypes() {
final Map<Class<?>, Class<?>> wrapperTypes = new IdentityHashMap<>(8);
wrapperTypes.put(Void.TYPE, Void.class);
wrapperTypes.put(Boolean.TYPE, Boolean.class);
wrapperTypes.put(Byte.TYPE, Byte.class);
wrapperTypes.put(Character.TYPE, Character.class);
@ -249,23 +152,32 @@ public class TypeUtilities {
if(targetType.isPrimitive()) {
return isProperPrimitiveSubtype(sourceType, targetType);
}
// Boxing + widening reference conversion
assert WRAPPER_TYPES.get(sourceType) != null : sourceType.getName();
return targetType.isAssignableFrom(WRAPPER_TYPES.get(sourceType));
return isBoxingAndWideningReferenceConversion(sourceType, targetType);
}
if(targetType.isPrimitive()) {
final Class<?> unboxedCallSiteType = PRIMITIVE_TYPES.get(sourceType);
final Class<?> unboxedCallSiteType = getPrimitiveType(sourceType);
return unboxedCallSiteType != null
&& (unboxedCallSiteType == targetType || isProperPrimitiveSubtype(unboxedCallSiteType, targetType));
}
return false;
}
private static boolean isBoxingAndWideningReferenceConversion(final Class<?> sourceType, final Class<?> targetType) {
final Class<?> wrapperType = getWrapperType(sourceType);
assert wrapperType != null : sourceType.getName();
return targetType.isAssignableFrom(wrapperType);
}
/**
* Determines whether a type can be converted to another without losing any precision. As a special case,
* void is considered convertible only to Object and void, while anything can be converted to void. This
* is because a target type of void means we don't care about the value, so the conversion is always
* permissible.
* Determines whether a type can be converted to another without losing any
* precision. As a special case, void is considered convertible only to void
* and {@link Object} (either as {@code null} or as a custom value set in
* {@link DynamicLinkerFactory#setAutoConversionStrategy(MethodTypeConversionStrategy)}).
* Somewhat unintuitively, we consider anything to be convertible to void
* even though converting to void causes the ultimate loss of data. On the
* other hand, conversion to void essentially means that the value is of no
* interest and should be discarded, thus there's no expectation of
* preserving any precision.
*
* @param sourceType the source type
* @param targetType the target type
@ -284,9 +196,7 @@ public class TypeUtilities {
if(targetType.isPrimitive()) {
return isProperPrimitiveLosslessSubtype(sourceType, targetType);
}
// Boxing + widening reference conversion
assert WRAPPER_TYPES.get(sourceType) != null : sourceType.getName();
return targetType.isAssignableFrom(WRAPPER_TYPES.get(sourceType));
return isBoxingAndWideningReferenceConversion(sourceType, targetType);
}
// Can't convert from any non-primitive type to any primitive type without data loss because of null.
// Also, can't convert non-assignable reference types.
@ -294,51 +204,11 @@ public class TypeUtilities {
}
/**
* Determines whether one type can be potentially converted to another type at runtime. Allows a conversion between
* any subtype and supertype in either direction, and also allows a conversion between any two primitive types, as
* well as between any primitive type and any reference type that can hold a boxed primitive.
*
* @param callSiteType the parameter type at the call site
* @param methodType the parameter type in the method declaration
* @return true if callSiteType is potentially convertible to the methodType.
*/
public static boolean isPotentiallyConvertible(final Class<?> callSiteType, final Class<?> methodType) {
// Widening or narrowing reference conversion
if(areAssignable(callSiteType, methodType)) {
return true;
}
if(callSiteType.isPrimitive()) {
// Allow any conversion among primitives, as well as from any
// primitive to any type that can receive a boxed primitive.
// TODO: narrow this a bit, i.e. allow, say, boolean to Character?
// MethodHandles.convertArguments() allows it, so we might need to
// too.
return methodType.isPrimitive() || isAssignableFromBoxedPrimitive(methodType);
}
if(methodType.isPrimitive()) {
// Allow conversion from any reference type that can contain a
// boxed primitive to any primitive.
// TODO: narrow this a bit too?
return isAssignableFromBoxedPrimitive(callSiteType);
}
return false;
}
/**
* Returns true if either of the types is assignable from the other.
* @param c1 one of the types
* @param c2 another one of the types
* @return true if either c1 is assignable from c2 or c2 is assignable from c1.
*/
public static boolean areAssignable(final Class<?> c1, final Class<?> c2) {
return c1.isAssignableFrom(c2) || c2.isAssignableFrom(c1);
}
/**
* Determines whether one type is a subtype of another type, as per JLS 4.10 "Subtyping". Note: this is not strict
* or proper subtype, therefore true is also returned for identical types; to be completely precise, it allows
* identity conversion (JLS 5.1.1), widening primitive conversion (JLS 5.1.2) and widening reference conversion (JLS
* 5.1.5).
* Determines whether one type is a subtype of another type, as per JLS
* 4.10 "Subtyping". Note: this is not strict or proper subtype, therefore
* true is also returned for identical types; to be completely precise, it
* allows identity conversion (JLS 5.1.1), widening primitive conversion
* (JLS 5.1.2) and widening reference conversion (JLS 5.1.5).
*
* @param subType the supposed subtype
* @param superType the supposed supertype of the subtype
@ -432,82 +302,31 @@ public class TypeUtilities {
return false;
}
private static final Map<Class<?>, Class<?>> WRAPPER_TO_PRIMITIVE_TYPES = createWrapperToPrimitiveTypes();
private static Map<Class<?>, Class<?>> createWrapperToPrimitiveTypes() {
final Map<Class<?>, Class<?>> classes = new IdentityHashMap<>();
classes.put(Void.class, Void.TYPE);
classes.put(Boolean.class, Boolean.TYPE);
classes.put(Byte.class, Byte.TYPE);
classes.put(Character.class, Character.TYPE);
classes.put(Short.class, Short.TYPE);
classes.put(Integer.class, Integer.TYPE);
classes.put(Long.class, Long.TYPE);
classes.put(Float.class, Float.TYPE);
classes.put(Double.class, Double.TYPE);
return classes;
}
private static final Set<Class<?>> PRIMITIVE_WRAPPER_TYPES = createPrimitiveWrapperTypes();
private static Set<Class<?>> createPrimitiveWrapperTypes() {
final Map<Class<?>, Class<?>> classes = new IdentityHashMap<>();
addClassHierarchy(classes, Boolean.class);
addClassHierarchy(classes, Byte.class);
addClassHierarchy(classes, Character.class);
addClassHierarchy(classes, Short.class);
addClassHierarchy(classes, Integer.class);
addClassHierarchy(classes, Long.class);
addClassHierarchy(classes, Float.class);
addClassHierarchy(classes, Double.class);
return classes.keySet();
}
private static void addClassHierarchy(final Map<Class<?>, Class<?>> map, final Class<?> clazz) {
if(clazz == null) {
return;
}
map.put(clazz, clazz);
addClassHierarchy(map, clazz.getSuperclass());
for(final Class<?> itf: clazz.getInterfaces()) {
addClassHierarchy(map, itf);
}
}
/**
* Returns true if the class can be assigned from any boxed primitive.
*
* @param clazz the class
* @return true if the class can be assigned from any boxed primitive. Basically, it is true if the class is any
* primitive wrapper class, or a superclass or superinterface of any primitive wrapper class.
*/
private static boolean isAssignableFromBoxedPrimitive(final Class<?> clazz) {
return PRIMITIVE_WRAPPER_TYPES.contains(clazz);
}
/**
* Given a name of a primitive type (except "void"), returns the class representing it. I.e. when invoked with
* "int", returns {@link Integer#TYPE}.
* Given a name of a primitive type returns the class representing it. I.e.
* when invoked with "int", returns {@link Integer#TYPE}.
* @param name the name of the primitive type
* @return the class representing the primitive type, or null if the name does not correspond to a primitive type
* or is "void".
* @return the class representing the primitive type, or null if the name
* does not correspond to a primitive type.
*/
public static Class<?> getPrimitiveTypeByName(final String name) {
return PRIMITIVE_TYPES_BY_NAME.get(name);
}
/**
* When passed a class representing a wrapper for a primitive type, returns the class representing the corresponding
* primitive type. I.e. calling it with {@code Integer.class} will return {@code Integer.TYPE}. If passed a class
* that is not a wrapper for primitive type, returns null.
* @param wrapperType the class object representing a wrapper for a primitive type
* @return the class object representing the primitive type, or null if the passed class is not a primitive wrapper.
* When passed a class representing a wrapper for a primitive type, returns
* the class representing the corresponding primitive type. I.e. calling it
* with {@code Integer.class} will return {@code Integer.TYPE}. If passed a
* class that is not a wrapper for primitive type, returns null.
* @param wrapperType the class object representing a wrapper for a
* primitive type.
* @return the class object representing the primitive type, or null if the
* passed class is not a primitive wrapper.
*/
public static Class<?> getPrimitiveType(final Class<?> wrapperType) {
return WRAPPER_TO_PRIMITIVE_TYPES.get(wrapperType);
return PRIMITIVE_TYPES.get(wrapperType);
}
/**
* When passed a class representing a primitive type, returns the class representing the corresponding
* wrapper type. I.e. calling it with {@code int.class} will return {@code Integer.class}. If passed a class