7016856: dashing performance was reduced during latest changes to the OpenJDK rasterizer
Optimized dashing, rasterizing, and the flow of transformed coordinates Reviewed-by: flar
This commit is contained in:
parent
8e2b437a8b
commit
4b61d914f1
@ -27,7 +27,7 @@ package sun.java2d.pisces;
|
||||
|
||||
import java.util.Iterator;
|
||||
|
||||
class Curve {
|
||||
final class Curve {
|
||||
|
||||
float ax, ay, bx, by, cx, cy, dx, dy;
|
||||
float dax, day, dbx, dby;
|
||||
@ -101,14 +101,6 @@ class Curve {
|
||||
return t * (t * day + dby) + cy;
|
||||
}
|
||||
|
||||
private float ddxat(float t) {
|
||||
return 2 * dax * t + dbx;
|
||||
}
|
||||
|
||||
private float ddyat(float t) {
|
||||
return 2 * day * t + dby;
|
||||
}
|
||||
|
||||
int dxRoots(float[] roots, int off) {
|
||||
return Helpers.quadraticRoots(dax, dbx, cx, roots, off);
|
||||
}
|
||||
@ -131,17 +123,17 @@ class Curve {
|
||||
// finds points where the first and second derivative are
|
||||
// perpendicular. This happens when g(t) = f'(t)*f''(t) == 0 (where
|
||||
// * is a dot product). Unfortunately, we have to solve a cubic.
|
||||
private int perpendiculardfddf(float[] pts, int off, final float err) {
|
||||
private int perpendiculardfddf(float[] pts, int off) {
|
||||
assert pts.length >= off + 4;
|
||||
|
||||
// these are the coefficients of g(t):
|
||||
// these are the coefficients of some multiple of g(t) (not g(t),
|
||||
// because the roots of a polynomial are not changed after multiplication
|
||||
// by a constant, and this way we save a few multiplications).
|
||||
final float a = 2*(dax*dax + day*day);
|
||||
final float b = 3*(dax*dbx + day*dby);
|
||||
final float c = 2*(dax*cx + day*cy) + dbx*dbx + dby*dby;
|
||||
final float d = dbx*cx + dby*cy;
|
||||
// TODO: We might want to divide the polynomial by a to make the
|
||||
// coefficients smaller. This won't change the roots.
|
||||
return Helpers.cubicRootsInAB(a, b, c, d, pts, off, err, 0f, 1f);
|
||||
return Helpers.cubicRootsInAB(a, b, c, d, pts, off, 0f, 1f);
|
||||
}
|
||||
|
||||
// Tries to find the roots of the function ROC(t)-w in [0, 1). It uses
|
||||
@ -161,7 +153,7 @@ class Curve {
|
||||
// no OOB exception, because by now off<=6, and roots.length >= 10
|
||||
assert off <= 6 && roots.length >= 10;
|
||||
int ret = off;
|
||||
int numPerpdfddf = perpendiculardfddf(roots, off, err);
|
||||
int numPerpdfddf = perpendiculardfddf(roots, off);
|
||||
float t0 = 0, ft0 = ROCsq(t0) - w*w;
|
||||
roots[off + numPerpdfddf] = 1f; // always check interval end points
|
||||
numPerpdfddf++;
|
||||
@ -189,8 +181,9 @@ class Curve {
|
||||
// A slight modification of the false position algorithm on wikipedia.
|
||||
// This only works for the ROCsq-x functions. It might be nice to have
|
||||
// the function as an argument, but that would be awkward in java6.
|
||||
// It is something to consider for java7, depending on how closures
|
||||
// and function objects turn out. Same goes for the newton's method
|
||||
// TODO: It is something to consider for java8 (or whenever lambda
|
||||
// expressions make it into the language), depending on how closures
|
||||
// and turn out. Same goes for the newton's method
|
||||
// algorithm in Helpers.java
|
||||
private float falsePositionROCsqMinusX(float x0, float x1,
|
||||
final float x, final float err)
|
||||
@ -203,7 +196,7 @@ class Curve {
|
||||
for (int i = 0; i < iterLimit && Math.abs(t - s) > err * Math.abs(t + s); i++) {
|
||||
r = (fs * t - ft * s) / (fs - ft);
|
||||
fr = ROCsq(r) - x;
|
||||
if (fr * ft > 0) {// have the same sign
|
||||
if (sameSign(fr, ft)) {
|
||||
ft = fr; t = r;
|
||||
if (side < 0) {
|
||||
fs /= (1 << (-side));
|
||||
@ -226,55 +219,65 @@ class Curve {
|
||||
return r;
|
||||
}
|
||||
|
||||
private static boolean sameSign(double x, double y) {
|
||||
// another way is to test if x*y > 0. This is bad for small x, y.
|
||||
return (x < 0 && y < 0) || (x > 0 && y > 0);
|
||||
}
|
||||
|
||||
// returns the radius of curvature squared at t of this curve
|
||||
// see http://en.wikipedia.org/wiki/Radius_of_curvature_(applications)
|
||||
private float ROCsq(final float t) {
|
||||
final float dx = dxat(t);
|
||||
final float dy = dyat(t);
|
||||
final float ddx = ddxat(t);
|
||||
final float ddy = ddyat(t);
|
||||
// dx=xat(t) and dy=yat(t). These calls have been inlined for efficiency
|
||||
final float dx = t * (t * dax + dbx) + cx;
|
||||
final float dy = t * (t * day + dby) + cy;
|
||||
final float ddx = 2 * dax * t + dbx;
|
||||
final float ddy = 2 * day * t + dby;
|
||||
final float dx2dy2 = dx*dx + dy*dy;
|
||||
final float ddx2ddy2 = ddx*ddx + ddy*ddy;
|
||||
final float ddxdxddydy = ddx*dx + ddy*dy;
|
||||
float ret = ((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy))*dx2dy2;
|
||||
return ret;
|
||||
return dx2dy2*((dx2dy2*dx2dy2) / (dx2dy2 * ddx2ddy2 - ddxdxddydy*ddxdxddydy));
|
||||
}
|
||||
|
||||
// curve to be broken should be in pts[0]
|
||||
// this will change the contents of both pts and Ts
|
||||
// curve to be broken should be in pts
|
||||
// this will change the contents of pts but not Ts
|
||||
// TODO: There's no reason for Ts to be an array. All we need is a sequence
|
||||
// of t values at which to subdivide. An array statisfies this condition,
|
||||
// but is unnecessarily restrictive. Ts should be an Iterator<Float> instead.
|
||||
// Doing this will also make dashing easier, since we could easily make
|
||||
// LengthIterator an Iterator<Float> and feed it to this function to simplify
|
||||
// the loop in Dasher.somethingTo.
|
||||
static Iterator<float[]> breakPtsAtTs(final float[][] pts, final int type,
|
||||
static Iterator<Integer> breakPtsAtTs(final float[] pts, final int type,
|
||||
final float[] Ts, final int numTs)
|
||||
{
|
||||
assert pts.length >= 2 && pts[0].length >= 8 && numTs <= Ts.length;
|
||||
return new Iterator<float[]>() {
|
||||
int nextIdx = 0;
|
||||
assert pts.length >= 2*type && numTs <= Ts.length;
|
||||
return new Iterator<Integer>() {
|
||||
// these prevent object creation and destruction during autoboxing.
|
||||
// Because of this, the compiler should be able to completely
|
||||
// eliminate the boxing costs.
|
||||
final Integer i0 = 0;
|
||||
final Integer itype = type;
|
||||
int nextCurveIdx = 0;
|
||||
Integer curCurveOff = i0;
|
||||
float prevT = 0;
|
||||
|
||||
@Override public boolean hasNext() {
|
||||
return nextCurveIdx < numTs + 1;
|
||||
}
|
||||
|
||||
@Override public float[] next() {
|
||||
float[] ret;
|
||||
@Override public Integer next() {
|
||||
Integer ret;
|
||||
if (nextCurveIdx < numTs) {
|
||||
float curT = Ts[nextCurveIdx];
|
||||
float splitT = (curT - prevT) / (1 - prevT);
|
||||
Helpers.subdivideAt(splitT,
|
||||
pts[nextIdx], 0,
|
||||
pts[nextIdx], 0,
|
||||
pts[1-nextIdx], 0, type);
|
||||
updateTs(Ts, Ts[nextCurveIdx], nextCurveIdx + 1, numTs - nextCurveIdx - 1);
|
||||
ret = pts[nextIdx];
|
||||
nextIdx = 1 - nextIdx;
|
||||
pts, curCurveOff,
|
||||
pts, 0,
|
||||
pts, type, type);
|
||||
prevT = curT;
|
||||
ret = i0;
|
||||
curCurveOff = itype;
|
||||
} else {
|
||||
ret = pts[nextIdx];
|
||||
ret = curCurveOff;
|
||||
}
|
||||
nextCurveIdx++;
|
||||
return ret;
|
||||
@ -283,12 +286,5 @@ class Curve {
|
||||
@Override public void remove() {}
|
||||
};
|
||||
}
|
||||
|
||||
// precondition: ts[off]...ts[off+len-1] must all be greater than t.
|
||||
private static void updateTs(float[] ts, final float t, final int off, final int len) {
|
||||
for (int i = off; i < off + len; i++) {
|
||||
ts[i] = (ts[i] - t) / (1 - t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -38,7 +38,7 @@ import sun.awt.geom.PathConsumer2D;
|
||||
* semantics are unclear.
|
||||
*
|
||||
*/
|
||||
public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
final class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
|
||||
private final PathConsumer2D out;
|
||||
private final float[] dash;
|
||||
@ -169,7 +169,7 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
float dx = x1 - x0;
|
||||
float dy = y1 - y0;
|
||||
|
||||
float len = (float) Math.hypot(dx, dy);
|
||||
float len = (float) Math.sqrt(dx*dx + dy*dy);
|
||||
|
||||
if (len == 0) {
|
||||
return;
|
||||
@ -226,7 +226,7 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
return;
|
||||
}
|
||||
if (li == null) {
|
||||
li = new LengthIterator(4, 0.0001f);
|
||||
li = new LengthIterator(4, 0.01f);
|
||||
}
|
||||
li.initializeIterationOnCurve(curCurvepts, type);
|
||||
|
||||
@ -307,6 +307,11 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
private int recLevel;
|
||||
private boolean done;
|
||||
|
||||
// the lengths of the lines of the control polygon. Only its first
|
||||
// curveType/2 - 1 elements are valid. This is an optimization. See
|
||||
// next(float) for more detail.
|
||||
private float[] curLeafCtrlPolyLengths = new float[3];
|
||||
|
||||
public LengthIterator(int reclimit, float err) {
|
||||
this.limit = reclimit;
|
||||
this.minTincrement = 1f / (1 << limit);
|
||||
@ -344,11 +349,52 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
this.lastSegLen = 0;
|
||||
}
|
||||
|
||||
// 0 == false, 1 == true, -1 == invalid cached value.
|
||||
private int cachedHaveLowAcceleration = -1;
|
||||
|
||||
private boolean haveLowAcceleration(float err) {
|
||||
if (cachedHaveLowAcceleration == -1) {
|
||||
final float len1 = curLeafCtrlPolyLengths[0];
|
||||
final float len2 = curLeafCtrlPolyLengths[1];
|
||||
// the test below is equivalent to !within(len1/len2, 1, err).
|
||||
// It is using a multiplication instead of a division, so it
|
||||
// should be a bit faster.
|
||||
if (!Helpers.within(len1, len2, err*len2)) {
|
||||
cachedHaveLowAcceleration = 0;
|
||||
return false;
|
||||
}
|
||||
if (curveType == 8) {
|
||||
final float len3 = curLeafCtrlPolyLengths[2];
|
||||
// if len1 is close to 2 and 2 is close to 3, that probably
|
||||
// means 1 is close to 3 so the second part of this test might
|
||||
// not be needed, but it doesn't hurt to include it.
|
||||
if (!(Helpers.within(len2, len3, err*len3) &&
|
||||
Helpers.within(len1, len3, err*len3))) {
|
||||
cachedHaveLowAcceleration = 0;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
cachedHaveLowAcceleration = 1;
|
||||
return true;
|
||||
}
|
||||
|
||||
return (cachedHaveLowAcceleration == 1);
|
||||
}
|
||||
|
||||
// we want to avoid allocations/gc so we keep this array so we
|
||||
// can put roots in it,
|
||||
private float[] nextRoots = new float[4];
|
||||
|
||||
// caches the coefficients of the current leaf in its flattened
|
||||
// form (see inside next() for what that means). The cache is
|
||||
// invalid when it's third element is negative, since in any
|
||||
// valid flattened curve, this would be >= 0.
|
||||
private float[] flatLeafCoefCache = new float[] {0, 0, -1, 0};
|
||||
// returns the t value where the remaining curve should be split in
|
||||
// order for the left subdivided curve to have length len. If len
|
||||
// is >= than the length of the uniterated curve, it returns 1.
|
||||
public float next(float len) {
|
||||
float targetLength = lenAtLastSplit + len;
|
||||
public float next(final float len) {
|
||||
final float targetLength = lenAtLastSplit + len;
|
||||
while(lenAtNextT < targetLength) {
|
||||
if (done) {
|
||||
lastSegLen = lenAtNextT - lenAtLastSplit;
|
||||
@ -357,8 +403,46 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
goToNextLeaf();
|
||||
}
|
||||
lenAtLastSplit = targetLength;
|
||||
float t = binSearchForLen(lenAtLastSplit - lenAtLastT,
|
||||
recCurveStack[recLevel], curveType, lenAtNextT - lenAtLastT, ERR);
|
||||
final float leaflen = lenAtNextT - lenAtLastT;
|
||||
float t = (targetLength - lenAtLastT) / leaflen;
|
||||
|
||||
// cubicRootsInAB is a fairly expensive call, so we just don't do it
|
||||
// if the acceleration in this section of the curve is small enough.
|
||||
if (!haveLowAcceleration(0.05f)) {
|
||||
// We flatten the current leaf along the x axis, so that we're
|
||||
// left with a, b, c which define a 1D Bezier curve. We then
|
||||
// solve this to get the parameter of the original leaf that
|
||||
// gives us the desired length.
|
||||
|
||||
if (flatLeafCoefCache[2] < 0) {
|
||||
float x = 0+curLeafCtrlPolyLengths[0],
|
||||
y = x+curLeafCtrlPolyLengths[1];
|
||||
if (curveType == 8) {
|
||||
float z = y + curLeafCtrlPolyLengths[2];
|
||||
flatLeafCoefCache[0] = 3*(x - y) + z;
|
||||
flatLeafCoefCache[1] = 3*(y - 2*x);
|
||||
flatLeafCoefCache[2] = 3*x;
|
||||
flatLeafCoefCache[3] = -z;
|
||||
} else if (curveType == 6) {
|
||||
flatLeafCoefCache[0] = 0f;
|
||||
flatLeafCoefCache[1] = y - 2*x;
|
||||
flatLeafCoefCache[2] = 2*x;
|
||||
flatLeafCoefCache[3] = -y;
|
||||
}
|
||||
}
|
||||
float a = flatLeafCoefCache[0];
|
||||
float b = flatLeafCoefCache[1];
|
||||
float c = flatLeafCoefCache[2];
|
||||
float d = t*flatLeafCoefCache[3];
|
||||
|
||||
// we use cubicRootsInAB here, because we want only roots in 0, 1,
|
||||
// and our quadratic root finder doesn't filter, so it's just a
|
||||
// matter of convenience.
|
||||
int n = Helpers.cubicRootsInAB(a, b, c, d, nextRoots, 0, 0, 1);
|
||||
if (n == 1 && !Float.isNaN(nextRoots[0])) {
|
||||
t = nextRoots[0];
|
||||
}
|
||||
}
|
||||
// t is relative to the current leaf, so we must make it a valid parameter
|
||||
// of the original curve.
|
||||
t = t * (nextT - lastT) + lastT;
|
||||
@ -379,36 +463,6 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
return lastSegLen;
|
||||
}
|
||||
|
||||
// Returns t such that if leaf is subdivided at t the left
|
||||
// curve will have length len. leafLen must be the length of leaf.
|
||||
private static Curve bsc = new Curve();
|
||||
private static float binSearchForLen(float len, float[] leaf, int type,
|
||||
float leafLen, float err)
|
||||
{
|
||||
assert len <= leafLen;
|
||||
bsc.set(leaf, type);
|
||||
float errBound = err*len;
|
||||
float left = 0, right = 1;
|
||||
while (left < right) {
|
||||
float m = (left + right) / 2;
|
||||
if (m == left || m == right) {
|
||||
return m;
|
||||
}
|
||||
float x = bsc.xat(m);
|
||||
float y = bsc.yat(m);
|
||||
float leftLen = Helpers.linelen(leaf[0], leaf[1], x, y);
|
||||
if (Math.abs(leftLen - len) < errBound) {
|
||||
return m;
|
||||
}
|
||||
if (leftLen < len) {
|
||||
left = m;
|
||||
} else {
|
||||
right = m;
|
||||
}
|
||||
}
|
||||
return left;
|
||||
}
|
||||
|
||||
// go to the next leaf (in an inorder traversal) in the recursion tree
|
||||
// preconditions: must be on a leaf, and that leaf must not be the root.
|
||||
private void goToNextLeaf() {
|
||||
@ -437,6 +491,9 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
lenAtLastT = lenAtNextT;
|
||||
nextT += (1 << (limit - recLevel)) * minTincrement;
|
||||
lenAtNextT += len;
|
||||
// invalidate caches
|
||||
flatLeafCoefCache[2] = -1;
|
||||
cachedHaveLowAcceleration = -1;
|
||||
} else {
|
||||
Helpers.subdivide(recCurveStack[recLevel], 0,
|
||||
recCurveStack[recLevel+1], 0,
|
||||
@ -450,11 +507,24 @@ public class Dasher implements sun.awt.geom.PathConsumer2D {
|
||||
// this is a bit of a hack. It returns -1 if we're not on a leaf, and
|
||||
// the length of the leaf if we are on a leaf.
|
||||
private float onLeaf() {
|
||||
float polylen = Helpers.polyLineLength(recCurveStack[recLevel], 0, curveType);
|
||||
float linelen = Helpers.linelen(recCurveStack[recLevel][0], recCurveStack[recLevel][1],
|
||||
recCurveStack[recLevel][curveType - 2], recCurveStack[recLevel][curveType - 1]);
|
||||
return (polylen - linelen < ERR || recLevel == limit) ?
|
||||
(polylen + linelen)/2 : -1;
|
||||
float[] curve = recCurveStack[recLevel];
|
||||
float polyLen = 0;
|
||||
|
||||
float x0 = curve[0], y0 = curve[1];
|
||||
for (int i = 2; i < curveType; i += 2) {
|
||||
final float x1 = curve[i], y1 = curve[i+1];
|
||||
final float len = Helpers.linelen(x0, y0, x1, y1);
|
||||
polyLen += len;
|
||||
curLeafCtrlPolyLengths[i/2 - 1] = len;
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
}
|
||||
|
||||
final float lineLen = Helpers.linelen(curve[0], curve[1], curve[curveType-2], curve[curveType-1]);
|
||||
if (polyLen - lineLen < ERR || recLevel == limit) {
|
||||
return (polyLen + lineLen)/2;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -26,6 +26,12 @@
|
||||
package sun.java2d.pisces;
|
||||
|
||||
import java.util.Arrays;
|
||||
import static java.lang.Math.PI;
|
||||
import static java.lang.Math.cos;
|
||||
import static java.lang.Math.sqrt;
|
||||
import static java.lang.Math.cbrt;
|
||||
import static java.lang.Math.acos;
|
||||
|
||||
|
||||
final class Helpers {
|
||||
private Helpers() {
|
||||
@ -75,100 +81,74 @@ final class Helpers {
|
||||
return ret - off;
|
||||
}
|
||||
|
||||
// find the roots of g(t) = a*t^3 + b*t^2 + c*t + d in [A,B)
|
||||
// We will not use Cardano's method, since it is complicated and
|
||||
// involves too many square and cubic roots. We will use Newton's method.
|
||||
// TODO: this should probably return ALL roots. Then the user can do
|
||||
// his own filtering of roots outside [A,B).
|
||||
static int cubicRootsInAB(final float a, final float b,
|
||||
final float c, final float d,
|
||||
float[] pts, final int off, final float E,
|
||||
// find the roots of g(t) = d*t^3 + a*t^2 + b*t + c in [A,B)
|
||||
static int cubicRootsInAB(float d, float a, float b, float c,
|
||||
float[] pts, final int off,
|
||||
final float A, final float B)
|
||||
{
|
||||
if (a == 0) {
|
||||
return quadraticRoots(b, c, d, pts, off);
|
||||
}
|
||||
// the coefficients of g'(t). no dc variable because dc=c
|
||||
// we use these to get the critical points of g(t), which
|
||||
// we then use to chose starting points for Newton's method. These
|
||||
// should be very close to the actual roots.
|
||||
final float da = 3 * a;
|
||||
final float db = 2 * b;
|
||||
int numCritPts = quadraticRoots(da, db, c, pts, off+1);
|
||||
numCritPts = filterOutNotInAB(pts, off+1, numCritPts, A, B) - off - 1;
|
||||
// need them sorted.
|
||||
if (numCritPts == 2 && pts[off+1] > pts[off+2]) {
|
||||
float tmp = pts[off+1];
|
||||
pts[off+1] = pts[off+2];
|
||||
pts[off+2] = tmp;
|
||||
if (d == 0) {
|
||||
int num = quadraticRoots(a, b, c, pts, off);
|
||||
return filterOutNotInAB(pts, off, num, A, B) - off;
|
||||
}
|
||||
// From Graphics Gems:
|
||||
// http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
|
||||
// (also from awt.geom.CubicCurve2D. But here we don't need as
|
||||
// much accuracy and we don't want to create arrays so we use
|
||||
// our own customized version).
|
||||
|
||||
int ret = off;
|
||||
/* normal form: x^3 + ax^2 + bx + c = 0 */
|
||||
a /= d;
|
||||
b /= d;
|
||||
c /= d;
|
||||
|
||||
// we don't actually care much about the extrema themselves. We
|
||||
// only use them to ensure that g(t) is monotonic in each
|
||||
// interval [pts[i],pts[i+1] (for i in off...off+numCritPts+1).
|
||||
// This will allow us to determine intervals containing exactly
|
||||
// one root.
|
||||
// The end points of the interval are always local extrema.
|
||||
pts[off] = A;
|
||||
pts[off + numCritPts + 1] = B;
|
||||
numCritPts += 2;
|
||||
// substitute x = y - A/3 to eliminate quadratic term:
|
||||
// x^3 +Px + Q = 0
|
||||
//
|
||||
// Since we actually need P/3 and Q/2 for all of the
|
||||
// calculations that follow, we will calculate
|
||||
// p = P/3
|
||||
// q = Q/2
|
||||
// instead and use those values for simplicity of the code.
|
||||
double sq_A = a * a;
|
||||
double p = 1.0/3 * (-1.0/3 * sq_A + b);
|
||||
double q = 1.0/2 * (2.0/27 * a * sq_A - 1.0/3 * a * b + c);
|
||||
|
||||
float x0 = pts[off], fx0 = evalCubic(a, b, c, d, x0);
|
||||
for (int i = off; i < off + numCritPts - 1; i++) {
|
||||
float x1 = pts[i+1], fx1 = evalCubic(a, b, c, d, x1);
|
||||
if (fx0 == 0f) {
|
||||
pts[ret++] = x0;
|
||||
} else if (fx1 * fx0 < 0f) { // have opposite signs
|
||||
pts[ret++] = CubicNewton(a, b, c, d,
|
||||
x0 + fx0 * (x1 - x0) / (fx0 - fx1), E);
|
||||
}
|
||||
x0 = x1;
|
||||
fx0 = fx1;
|
||||
}
|
||||
return ret - off;
|
||||
}
|
||||
/* use Cardano's formula */
|
||||
|
||||
// precondition: the polynomial to be evaluated must not be 0 at x0.
|
||||
static float CubicNewton(final float a, final float b,
|
||||
final float c, final float d,
|
||||
float x0, final float err)
|
||||
{
|
||||
// considering how this function is used, 10 should be more than enough
|
||||
final int itlimit = 10;
|
||||
float fx0 = evalCubic(a, b, c, d, x0);
|
||||
float x1;
|
||||
int count = 0;
|
||||
while(true) {
|
||||
x1 = x0 - (fx0 / evalCubic(0, 3 * a, 2 * b, c, x0));
|
||||
if (Math.abs(x1 - x0) < err * Math.abs(x1 + x0) || count == itlimit) {
|
||||
break;
|
||||
}
|
||||
x0 = x1;
|
||||
fx0 = evalCubic(a, b, c, d, x0);
|
||||
count++;
|
||||
}
|
||||
return x1;
|
||||
}
|
||||
double cb_p = p * p * p;
|
||||
double D = q * q + cb_p;
|
||||
|
||||
// fills the input array with numbers 0, INC, 2*INC, ...
|
||||
static void fillWithIdxes(final float[] data, final int[] idxes) {
|
||||
if (idxes.length > 0) {
|
||||
idxes[0] = 0;
|
||||
for (int i = 1; i < idxes.length; i++) {
|
||||
idxes[i] = idxes[i-1] + (int)data[idxes[i-1]];
|
||||
}
|
||||
int num;
|
||||
if (D < 0) {
|
||||
// see: http://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
|
||||
final double phi = 1.0/3 * acos(-q / sqrt(-cb_p));
|
||||
final double t = 2 * sqrt(-p);
|
||||
|
||||
pts[ off+0 ] = (float)( t * cos(phi));
|
||||
pts[ off+1 ] = (float)(-t * cos(phi + PI / 3));
|
||||
pts[ off+2 ] = (float)(-t * cos(phi - PI / 3));
|
||||
num = 3;
|
||||
} else {
|
||||
final double sqrt_D = sqrt(D);
|
||||
final double u = cbrt(sqrt_D - q);
|
||||
final double v = - cbrt(sqrt_D + q);
|
||||
|
||||
pts[ off ] = (float)(u + v);
|
||||
num = 1;
|
||||
|
||||
if (within(D, 0, 1e-8)) {
|
||||
pts[off+1] = -(pts[off] / 2);
|
||||
num = 2;
|
||||
}
|
||||
}
|
||||
|
||||
static void fillWithIdxes(final int[] idxes, final int inc) {
|
||||
if (idxes.length > 0) {
|
||||
idxes[0] = 0;
|
||||
for (int i = 1; i < idxes.length; i++) {
|
||||
idxes[i] = idxes[i-1] + inc;
|
||||
}
|
||||
final float sub = 1.0f/3 * a;
|
||||
|
||||
for (int i = 0; i < num; ++i) {
|
||||
pts[ off+i ] -= sub;
|
||||
}
|
||||
|
||||
return filterOutNotInAB(pts, off, num, A, B) - off;
|
||||
}
|
||||
|
||||
// These use a hardcoded factor of 2 for increasing sizes. Perhaps this
|
||||
@ -182,6 +162,7 @@ final class Helpers {
|
||||
}
|
||||
return Arrays.copyOf(in, 2 * (cursize + numToAdd));
|
||||
}
|
||||
|
||||
static int[] widenArray(int[] in, final int cursize, final int numToAdd) {
|
||||
if (in.length >= cursize + numToAdd) {
|
||||
return in;
|
||||
@ -208,7 +189,7 @@ final class Helpers {
|
||||
{
|
||||
int ret = off;
|
||||
for (int i = off; i < off + len; i++) {
|
||||
if (nums[i] > a && nums[i] < b) {
|
||||
if (nums[i] >= a && nums[i] < b) {
|
||||
nums[ret++] = nums[i];
|
||||
}
|
||||
}
|
||||
@ -225,7 +206,9 @@ final class Helpers {
|
||||
}
|
||||
|
||||
static float linelen(float x1, float y1, float x2, float y2) {
|
||||
return (float)Math.hypot(x2 - x1, y2 - y1);
|
||||
final float dx = x2 - x1;
|
||||
final float dy = y2 - y1;
|
||||
return (float)Math.sqrt(dx*dx + dy*dy);
|
||||
}
|
||||
|
||||
static void subdivide(float[] src, int srcoff, float[] left, int leftoff,
|
||||
|
@ -32,7 +32,7 @@ import java.util.Arrays;
|
||||
*
|
||||
* @see PiscesRenderer#render
|
||||
*/
|
||||
public final class PiscesCache {
|
||||
final class PiscesCache {
|
||||
|
||||
final int bboxX0, bboxY0, bboxX1, bboxY1;
|
||||
|
||||
|
@ -27,7 +27,6 @@ package sun.java2d.pisces;
|
||||
|
||||
import java.awt.Shape;
|
||||
import java.awt.BasicStroke;
|
||||
import java.awt.geom.NoninvertibleTransformException;
|
||||
import java.awt.geom.Path2D;
|
||||
import java.awt.geom.AffineTransform;
|
||||
import java.awt.geom.PathIterator;
|
||||
@ -250,7 +249,7 @@ public class PiscesRenderingEngine extends RenderingEngine {
|
||||
float dashphase,
|
||||
PathConsumer2D pc2d)
|
||||
{
|
||||
// We use inat and outat so that in Stroker and Dasher we can work only
|
||||
// We use strokerat and outat so that in Stroker and Dasher we can work only
|
||||
// with the pre-transformation coordinates. This will repeat a lot of
|
||||
// computations done in the path iterator, but the alternative is to
|
||||
// work with transformed paths and compute untransformed coordinates
|
||||
@ -265,7 +264,7 @@ public class PiscesRenderingEngine extends RenderingEngine {
|
||||
// transformation after the path processing has been done.
|
||||
// We can't do this if normalization is on, because it isn't a good
|
||||
// idea to normalize before the transformation is applied.
|
||||
AffineTransform inat = null;
|
||||
AffineTransform strokerat = null;
|
||||
AffineTransform outat = null;
|
||||
|
||||
PathIterator pi = null;
|
||||
@ -284,9 +283,9 @@ public class PiscesRenderingEngine extends RenderingEngine {
|
||||
// again so, nothing can be drawn.
|
||||
|
||||
// Every path needs an initial moveTo and a pathDone. If these
|
||||
// aren't there this causes a SIGSEV in libawt.so (at the time
|
||||
// are not there this causes a SIGSEGV in libawt.so (at the time
|
||||
// of writing of this comment (September 16, 2010)). Actually,
|
||||
// I'm not sure if the moveTo is necessary to avoid the SIGSEV
|
||||
// I am not sure if the moveTo is necessary to avoid the SIGSEGV
|
||||
// but the pathDone is definitely needed.
|
||||
pc2d.moveTo(0, 0);
|
||||
pc2d.pathDone();
|
||||
@ -313,25 +312,32 @@ public class PiscesRenderingEngine extends RenderingEngine {
|
||||
if (normalize != NormMode.OFF) {
|
||||
pi = new NormalizingPathIterator(pi, normalize);
|
||||
}
|
||||
// leave inat and outat null.
|
||||
// by now strokerat == null && outat == null. Input paths to
|
||||
// stroker (and maybe dasher) will have the full transform at
|
||||
// applied to them and nothing will happen to the output paths.
|
||||
} else {
|
||||
// We only need the inverse if normalization is on. Otherwise
|
||||
// we just don't transform the input paths, do all the stroking
|
||||
// and then transform out output (instead of making PathIterator
|
||||
// apply the transformation, us applying the inverse, and then
|
||||
// us applying the transform again to our output).
|
||||
outat = at;
|
||||
if (normalize != NormMode.OFF) {
|
||||
try {
|
||||
inat = outat.createInverse();
|
||||
} catch (NoninvertibleTransformException e) {
|
||||
// we made sure this can't happen
|
||||
e.printStackTrace();
|
||||
}
|
||||
strokerat = at;
|
||||
pi = src.getPathIterator(at);
|
||||
pi = new NormalizingPathIterator(pi, normalize);
|
||||
// by now strokerat == at && outat == null. Input paths to
|
||||
// stroker (and maybe dasher) will have the full transform at
|
||||
// applied to them, then they will be normalized, and then
|
||||
// the inverse of *only the non translation part of at* will
|
||||
// be applied to the normalized paths. This won't cause problems
|
||||
// in stroker, because, suppose at = T*A, where T is just the
|
||||
// translation part of at, and A is the rest. T*A has already
|
||||
// been applied to Stroker/Dasher's input. Then Ainv will be
|
||||
// applied. Ainv*T*A is not equal to T, but it is a translation,
|
||||
// which means that none of stroker's assumptions about its
|
||||
// input will be violated. After all this, A will be applied
|
||||
// to stroker's output.
|
||||
} else {
|
||||
outat = at;
|
||||
pi = src.getPathIterator(null);
|
||||
// outat == at && strokerat == null. This is because if no
|
||||
// normalization is done, we can just apply all our
|
||||
// transformations to stroker's output.
|
||||
}
|
||||
}
|
||||
} else {
|
||||
@ -343,13 +349,17 @@ public class PiscesRenderingEngine extends RenderingEngine {
|
||||
}
|
||||
}
|
||||
|
||||
// by now, at least one of outat and strokerat will be null. Unless at is not
|
||||
// a constant multiple of an orthogonal transformation, they will both be
|
||||
// null. In other cases, outat == at if normalization is off, and if
|
||||
// normalization is on, strokerat == at.
|
||||
pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, outat);
|
||||
pc2d = TransformingPathConsumer2D.deltaTransformConsumer(pc2d, strokerat);
|
||||
pc2d = new Stroker(pc2d, width, caps, join, miterlimit);
|
||||
if (dashes != null) {
|
||||
pc2d = new Dasher(pc2d, dashes, dashphase);
|
||||
}
|
||||
pc2d = TransformingPathConsumer2D.transformConsumer(pc2d, inat);
|
||||
|
||||
pc2d = TransformingPathConsumer2D.inverseDeltaTransformConsumer(pc2d, strokerat);
|
||||
pathTo(pi, pc2d);
|
||||
}
|
||||
|
||||
|
@ -30,7 +30,7 @@ import java.util.concurrent.ConcurrentHashMap;
|
||||
|
||||
import sun.java2d.pipe.AATileGenerator;
|
||||
|
||||
public final class PiscesTileGenerator implements AATileGenerator {
|
||||
final class PiscesTileGenerator implements AATileGenerator {
|
||||
public static final int TILE_SIZE = PiscesCache.TILE_SIZE;
|
||||
|
||||
// perhaps we should be using weak references here, but right now
|
||||
|
@ -25,12 +25,9 @@
|
||||
|
||||
package sun.java2d.pisces;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.Iterator;
|
||||
|
||||
import sun.awt.geom.PathConsumer2D;
|
||||
|
||||
public class Renderer implements PathConsumer2D {
|
||||
final class Renderer implements PathConsumer2D {
|
||||
|
||||
private class ScanlineIterator {
|
||||
|
||||
@ -39,115 +36,81 @@ public class Renderer implements PathConsumer2D {
|
||||
// crossing bounds. The bounds are not necessarily tight (the scan line
|
||||
// at minY, for example, might have no crossings). The x bounds will
|
||||
// be accumulated as crossings are computed.
|
||||
private int minY, maxY;
|
||||
private final int maxY;
|
||||
private int nextY;
|
||||
|
||||
// indices into the segment pointer lists. They indicate the "active"
|
||||
// sublist in the segment lists (the portion of the list that contains
|
||||
// all the segments that cross the next scan line).
|
||||
private int elo, ehi;
|
||||
private final int[] edgePtrs;
|
||||
private int qlo, qhi;
|
||||
private final int[] quadPtrs;
|
||||
private int clo, chi;
|
||||
private final int[] curvePtrs;
|
||||
private int edgeCount;
|
||||
private int[] edgePtrs;
|
||||
|
||||
private static final int INIT_CROSSINGS_SIZE = 10;
|
||||
|
||||
private ScanlineIterator() {
|
||||
crossings = new int[INIT_CROSSINGS_SIZE];
|
||||
|
||||
edgePtrs = new int[numEdges];
|
||||
Helpers.fillWithIdxes(edgePtrs, SIZEOF_EDGE);
|
||||
qsort(edges, edgePtrs, YMIN, 0, numEdges - 1);
|
||||
|
||||
quadPtrs = new int[numQuads];
|
||||
Helpers.fillWithIdxes(quadPtrs, SIZEOF_QUAD);
|
||||
qsort(quads, quadPtrs, YMIN, 0, numQuads - 1);
|
||||
|
||||
curvePtrs = new int[numCurves];
|
||||
Helpers.fillWithIdxes(curvePtrs, SIZEOF_CURVE);
|
||||
qsort(curves, curvePtrs, YMIN, 0, numCurves - 1);
|
||||
edgePtrs = new int[INIT_CROSSINGS_SIZE];
|
||||
|
||||
// We don't care if we clip some of the line off with ceil, since
|
||||
// no scan line crossings will be eliminated (in fact, the ceil is
|
||||
// the y of the first scan line crossing).
|
||||
nextY = minY = Math.max(boundsMinY, (int)Math.ceil(edgeMinY));
|
||||
maxY = Math.min(boundsMaxY, (int)Math.ceil(edgeMaxY));
|
||||
|
||||
for (elo = 0; elo < numEdges && edges[edgePtrs[elo]+YMAX] <= minY; elo++)
|
||||
;
|
||||
// the active list is *edgePtrs[lo] (inclusive) *edgePtrs[hi] (exclusive)
|
||||
for (ehi = elo; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= minY; ehi++)
|
||||
edgeSetCurY(edgePtrs[ehi], minY);// TODO: make minY a float to avoid casts
|
||||
|
||||
for (qlo = 0; qlo < numQuads && quads[quadPtrs[qlo]+YMAX] <= minY; qlo++)
|
||||
;
|
||||
for (qhi = qlo; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= minY; qhi++)
|
||||
quadSetCurY(quadPtrs[qhi], minY);
|
||||
|
||||
for (clo = 0; clo < numCurves && curves[curvePtrs[clo]+YMAX] <= minY; clo++)
|
||||
;
|
||||
for (chi = clo; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= minY; chi++)
|
||||
curveSetCurY(curvePtrs[chi], minY);
|
||||
final int minY = getFirstScanLineCrossing();
|
||||
nextY = minY;
|
||||
maxY = getScanLineCrossingEnd()-1;
|
||||
edgeCount = 0;
|
||||
}
|
||||
|
||||
private int next() {
|
||||
// we go through the active lists and remove segments that don't cross
|
||||
// the nextY scanline.
|
||||
int crossingIdx = 0;
|
||||
for (int i = elo; i < ehi; i++) {
|
||||
if (edges[edgePtrs[i]+YMAX] <= nextY) {
|
||||
edgePtrs[i] = edgePtrs[elo++];
|
||||
int cury = nextY++;
|
||||
int bucket = cury - boundsMinY;
|
||||
int count = this.edgeCount;
|
||||
int ptrs[] = this.edgePtrs;
|
||||
int bucketcount = edgeBucketCounts[bucket];
|
||||
if ((bucketcount & 0x1) != 0) {
|
||||
int newCount = 0;
|
||||
for (int i = 0; i < count; i++) {
|
||||
int ecur = ptrs[i];
|
||||
if (edges[ecur+YMAX] > cury) {
|
||||
ptrs[newCount++] = ecur;
|
||||
}
|
||||
}
|
||||
for (int i = qlo; i < qhi; i++) {
|
||||
if (quads[quadPtrs[i]+YMAX] <= nextY) {
|
||||
quadPtrs[i] = quadPtrs[qlo++];
|
||||
count = newCount;
|
||||
}
|
||||
ptrs = Helpers.widenArray(ptrs, count, bucketcount >> 1);
|
||||
for (int ecur = edgeBuckets[bucket]; ecur != NULL; ecur = (int)edges[ecur+NEXT]) {
|
||||
ptrs[count++] = ecur;
|
||||
// REMIND: Adjust start Y if necessary
|
||||
}
|
||||
for (int i = clo; i < chi; i++) {
|
||||
if (curves[curvePtrs[i]+YMAX] <= nextY) {
|
||||
curvePtrs[i] = curvePtrs[clo++];
|
||||
this.edgePtrs = ptrs;
|
||||
this.edgeCount = count;
|
||||
// if ((count & 0x1) != 0) {
|
||||
// System.out.println("ODD NUMBER OF EDGES!!!!");
|
||||
// }
|
||||
int xings[] = this.crossings;
|
||||
if (xings.length < count) {
|
||||
this.crossings = xings = new int[ptrs.length];
|
||||
}
|
||||
for (int i = 0; i < count; i++) {
|
||||
int ecur = ptrs[i];
|
||||
float curx = edges[ecur+CURX];
|
||||
int cross = ((int) curx) << 1;
|
||||
edges[ecur+CURX] = curx + edges[ecur+SLOPE];
|
||||
if (edges[ecur+OR] > 0) {
|
||||
cross |= 1;
|
||||
}
|
||||
|
||||
crossings = Helpers.widenArray(crossings, 0, ehi-elo+qhi-qlo+chi-clo);
|
||||
|
||||
// Now every edge between lo and hi crosses nextY. Compute it's
|
||||
// crossing and put it in the crossings array.
|
||||
for (int i = elo; i < ehi; i++) {
|
||||
int ptr = edgePtrs[i];
|
||||
addCrossing(nextY, (int)edges[ptr+CURX], edges[ptr+OR], crossingIdx);
|
||||
edgeGoToNextY(ptr);
|
||||
crossingIdx++;
|
||||
int j = i;
|
||||
while (--j >= 0) {
|
||||
int jcross = xings[j];
|
||||
if (jcross <= cross) {
|
||||
break;
|
||||
}
|
||||
for (int i = qlo; i < qhi; i++) {
|
||||
int ptr = quadPtrs[i];
|
||||
addCrossing(nextY, (int)quads[ptr+CURX], quads[ptr+OR], crossingIdx);
|
||||
quadGoToNextY(ptr);
|
||||
crossingIdx++;
|
||||
xings[j+1] = jcross;
|
||||
ptrs[j+1] = ptrs[j];
|
||||
}
|
||||
for (int i = clo; i < chi; i++) {
|
||||
int ptr = curvePtrs[i];
|
||||
addCrossing(nextY, (int)curves[ptr+CURX], curves[ptr+OR], crossingIdx);
|
||||
curveGoToNextY(ptr);
|
||||
crossingIdx++;
|
||||
xings[j+1] = cross;
|
||||
ptrs[j+1] = ecur;
|
||||
}
|
||||
|
||||
nextY++;
|
||||
// Expand active lists to include new edges.
|
||||
for (; ehi < numEdges && edges[edgePtrs[ehi]+YMIN] <= nextY; ehi++) {
|
||||
edgeSetCurY(edgePtrs[ehi], nextY);
|
||||
}
|
||||
for (; qhi < numQuads && quads[quadPtrs[qhi]+YMIN] <= nextY; qhi++) {
|
||||
quadSetCurY(quadPtrs[qhi], nextY);
|
||||
}
|
||||
for (; chi < numCurves && curves[curvePtrs[chi]+YMIN] <= nextY; chi++) {
|
||||
curveSetCurY(curvePtrs[chi], nextY);
|
||||
}
|
||||
Arrays.sort(crossings, 0, crossingIdx);
|
||||
return crossingIdx;
|
||||
return count;
|
||||
}
|
||||
|
||||
private boolean hasNext() {
|
||||
@ -157,51 +120,7 @@ public class Renderer implements PathConsumer2D {
|
||||
private int curY() {
|
||||
return nextY - 1;
|
||||
}
|
||||
|
||||
private void addCrossing(int y, int x, float or, int idx) {
|
||||
x <<= 1;
|
||||
crossings[idx] = ((or > 0) ? (x | 0x1) : x);
|
||||
}
|
||||
}
|
||||
// quicksort implementation for sorting the edge indices ("pointers")
|
||||
// by increasing y0. first, last are indices into the "pointer" array
|
||||
// It sorts the pointer array from first (inclusive) to last (inclusive)
|
||||
private static void qsort(final float[] data, final int[] ptrs,
|
||||
final int fieldForCmp, int first, int last)
|
||||
{
|
||||
if (last > first) {
|
||||
int p = partition(data, ptrs, fieldForCmp, first, last);
|
||||
if (first < p - 1) {
|
||||
qsort(data, ptrs, fieldForCmp, first, p - 1);
|
||||
}
|
||||
if (p < last) {
|
||||
qsort(data, ptrs, fieldForCmp, p, last);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// i, j are indices into edgePtrs.
|
||||
private static int partition(final float[] data, final int[] ptrs,
|
||||
final int fieldForCmp, int i, int j)
|
||||
{
|
||||
int pivotValFieldForCmp = ptrs[i]+fieldForCmp;
|
||||
while (i <= j) {
|
||||
// edges[edgePtrs[i]+1] is equivalent to (*(edgePtrs[i])).y0 in C
|
||||
while (data[ptrs[i]+fieldForCmp] < data[pivotValFieldForCmp])
|
||||
i++;
|
||||
while (data[ptrs[j]+fieldForCmp] > data[pivotValFieldForCmp])
|
||||
j--;
|
||||
if (i <= j) {
|
||||
int tmp = ptrs[i];
|
||||
ptrs[i] = ptrs[j];
|
||||
ptrs[j] = tmp;
|
||||
i++;
|
||||
j--;
|
||||
}
|
||||
}
|
||||
return i;
|
||||
}
|
||||
//============================================================================
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -209,186 +128,100 @@ public class Renderer implements PathConsumer2D {
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// TODO(maybe): very tempting to use fixed point here. A lot of opportunities
|
||||
// for shifts and just removing certain operations altogether.
|
||||
// TODO: it might be worth it to make an EdgeList class. It would probably
|
||||
// clean things up a bit and not impact performance much.
|
||||
|
||||
// common to all types of input path segments.
|
||||
private static final int YMIN = 0;
|
||||
private static final int YMAX = 1;
|
||||
private static final int CURX = 2;
|
||||
// this and OR are meant to be indeces into "int" fields, but arrays must
|
||||
private static final int YMAX = 0;
|
||||
private static final int CURX = 1;
|
||||
// NEXT and OR are meant to be indices into "int" fields, but arrays must
|
||||
// be homogenous, so every field is a float. However floats can represent
|
||||
// exactly up to 26 bit ints, so we're ok.
|
||||
private static final int CURY = 3;
|
||||
private static final int OR = 4;
|
||||
|
||||
// for straight lines only:
|
||||
private static final int SLOPE = 5;
|
||||
|
||||
// for quads and cubics:
|
||||
private static final int X0 = 5;
|
||||
private static final int Y0 = 6;
|
||||
private static final int XL = 7;
|
||||
private static final int COUNT = 8;
|
||||
private static final int CURSLOPE = 9;
|
||||
private static final int DX = 10;
|
||||
private static final int DY = 11;
|
||||
private static final int DDX = 12;
|
||||
private static final int DDY = 13;
|
||||
|
||||
// for cubics only
|
||||
private static final int DDDX = 14;
|
||||
private static final int DDDY = 15;
|
||||
private static final int OR = 2;
|
||||
private static final int SLOPE = 3;
|
||||
private static final int NEXT = 4;
|
||||
|
||||
private float edgeMinY = Float.POSITIVE_INFINITY;
|
||||
private float edgeMaxY = Float.NEGATIVE_INFINITY;
|
||||
private float edgeMinX = Float.POSITIVE_INFINITY;
|
||||
private float edgeMaxX = Float.NEGATIVE_INFINITY;
|
||||
|
||||
private static final int SIZEOF_EDGE = 6;
|
||||
private static final int SIZEOF_EDGE = 5;
|
||||
// don't just set NULL to -1, because we want NULL+NEXT to be negative.
|
||||
private static final int NULL = -SIZEOF_EDGE;
|
||||
private float[] edges = null;
|
||||
private int[] edgeBuckets = null;
|
||||
private int[] edgeBucketCounts = null; // 2*newedges + (1 if pruning needed)
|
||||
private int numEdges;
|
||||
// these are static because we need them to be usable from ScanlineIterator
|
||||
private void edgeSetCurY(final int idx, int y) {
|
||||
edges[idx+CURX] += (y - edges[idx+CURY]) * edges[idx+SLOPE];
|
||||
edges[idx+CURY] = y;
|
||||
}
|
||||
private void edgeGoToNextY(final int idx) {
|
||||
edges[idx+CURY] += 1;
|
||||
edges[idx+CURX] += edges[idx+SLOPE];
|
||||
}
|
||||
|
||||
|
||||
private static final int SIZEOF_QUAD = 14;
|
||||
private float[] quads = null;
|
||||
private int numQuads;
|
||||
// This function should be called exactly once, to set the first scanline
|
||||
// of the curve. Before it is called, the curve should think its first
|
||||
// scanline is CEIL(YMIN).
|
||||
private void quadSetCurY(final int idx, final int y) {
|
||||
assert y < quads[idx+YMAX];
|
||||
assert (quads[idx+CURY] > y);
|
||||
assert (quads[idx+CURY] == Math.ceil(quads[idx+CURY]));
|
||||
|
||||
while (quads[idx+CURY] < ((float)y)) {
|
||||
quadGoToNextY(idx);
|
||||
}
|
||||
}
|
||||
private void quadGoToNextY(final int idx) {
|
||||
quads[idx+CURY] += 1;
|
||||
// this will get overriden if the while executes.
|
||||
quads[idx+CURX] += quads[idx+CURSLOPE];
|
||||
int count = (int)quads[idx+COUNT];
|
||||
// this loop should never execute more than once because our
|
||||
// curve is monotonic in Y. Still we put it in because you can
|
||||
// never be too sure when dealing with floating point.
|
||||
while(quads[idx+CURY] >= quads[idx+Y0] && count > 0) {
|
||||
float x0 = quads[idx+X0], y0 = quads[idx+Y0];
|
||||
count = executeQuadAFDIteration(idx);
|
||||
float x1 = quads[idx+X0], y1 = quads[idx+Y0];
|
||||
// our quads are monotonic, so this shouldn't happen, but
|
||||
// it is conceivable that for very flat quads with different
|
||||
// y values at their endpoints AFD might give us a horizontal
|
||||
// segment.
|
||||
if (y1 == y0) {
|
||||
continue;
|
||||
}
|
||||
quads[idx+CURSLOPE] = (x1 - x0) / (y1 - y0);
|
||||
quads[idx+CURX] = x0 + (quads[idx+CURY] - y0) * quads[idx+CURSLOPE];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private static final int SIZEOF_CURVE = 16;
|
||||
private float[] curves = null;
|
||||
private int numCurves;
|
||||
private void curveSetCurY(final int idx, final int y) {
|
||||
assert y < curves[idx+YMAX];
|
||||
assert (curves[idx+CURY] > y);
|
||||
assert (curves[idx+CURY] == Math.ceil(curves[idx+CURY]));
|
||||
|
||||
while (curves[idx+CURY] < ((float)y)) {
|
||||
curveGoToNextY(idx);
|
||||
}
|
||||
}
|
||||
private void curveGoToNextY(final int idx) {
|
||||
curves[idx+CURY] += 1;
|
||||
// this will get overriden if the while executes.
|
||||
curves[idx+CURX] += curves[idx+CURSLOPE];
|
||||
int count = (int)curves[idx+COUNT];
|
||||
// this loop should never execute more than once because our
|
||||
// curve is monotonic in Y. Still we put it in because you can
|
||||
// never be too sure when dealing with floating point.
|
||||
while(curves[idx+CURY] >= curves[idx+Y0] && count > 0) {
|
||||
float x0 = curves[idx+X0], y0 = curves[idx+Y0];
|
||||
count = executeCurveAFDIteration(idx);
|
||||
float x1 = curves[idx+X0], y1 = curves[idx+Y0];
|
||||
// our curves are monotonic, so this shouldn't happen, but
|
||||
// it is conceivable that for very flat curves with different
|
||||
// y values at their endpoints AFD might give us a horizontal
|
||||
// segment.
|
||||
if (y1 == y0) {
|
||||
continue;
|
||||
}
|
||||
curves[idx+CURSLOPE] = (x1 - x0) / (y1 - y0);
|
||||
curves[idx+CURX] = x0 + (curves[idx+CURY] - y0) * curves[idx+CURSLOPE];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private static final float DEC_BND = 20f;
|
||||
private static final float INC_BND = 8f;
|
||||
|
||||
// each bucket is a linked list. this method adds eptr to the
|
||||
// start "bucket"th linked list.
|
||||
private void addEdgeToBucket(final int eptr, final int bucket) {
|
||||
edges[eptr+NEXT] = edgeBuckets[bucket];
|
||||
edgeBuckets[bucket] = eptr;
|
||||
edgeBucketCounts[bucket] += 2;
|
||||
}
|
||||
|
||||
// Flattens using adaptive forward differencing. This only carries out
|
||||
// one iteration of the AFD loop. All it does is update AFD variables (i.e.
|
||||
// X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
|
||||
private int executeQuadAFDIteration(int idx) {
|
||||
int count = (int)quads[idx+COUNT];
|
||||
float ddx = quads[idx+DDX];
|
||||
float ddy = quads[idx+DDY];
|
||||
float dx = quads[idx+DX];
|
||||
float dy = quads[idx+DY];
|
||||
|
||||
while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) {
|
||||
ddx = ddx / 4;
|
||||
ddy = ddy / 4;
|
||||
dx = (dx - ddx) / 2;
|
||||
dy = (dy - ddy) / 2;
|
||||
private void quadBreakIntoLinesAndAdd(float x0, float y0,
|
||||
final Curve c,
|
||||
final float x2, final float y2) {
|
||||
final float QUAD_DEC_BND = 32;
|
||||
final int countlg = 4;
|
||||
int count = 1 << countlg;
|
||||
int countsq = count * count;
|
||||
float maxDD = Math.max(c.dbx / countsq, c.dby / countsq);
|
||||
while (maxDD > QUAD_DEC_BND) {
|
||||
maxDD /= 4;
|
||||
count <<= 1;
|
||||
}
|
||||
// can only do this on even "count" values, because we must divide count by 2
|
||||
while (count % 2 == 0 && Math.abs(dx) <= INC_BND && Math.abs(dy) <= INC_BND) {
|
||||
dx = 2 * dx + ddx;
|
||||
dy = 2 * dy + ddy;
|
||||
ddx = 4 * ddx;
|
||||
ddy = 4 * ddy;
|
||||
count >>= 1;
|
||||
}
|
||||
count--;
|
||||
if (count > 0) {
|
||||
quads[idx+X0] += dx;
|
||||
dx += ddx;
|
||||
quads[idx+Y0] += dy;
|
||||
dy += ddy;
|
||||
} else {
|
||||
quads[idx+X0] = quads[idx+XL];
|
||||
quads[idx+Y0] = quads[idx+YMAX];
|
||||
}
|
||||
quads[idx+COUNT] = count;
|
||||
quads[idx+DDX] = ddx;
|
||||
quads[idx+DDY] = ddy;
|
||||
quads[idx+DX] = dx;
|
||||
quads[idx+DY] = dy;
|
||||
return count;
|
||||
}
|
||||
private int executeCurveAFDIteration(int idx) {
|
||||
int count = (int)curves[idx+COUNT];
|
||||
float ddx = curves[idx+DDX];
|
||||
float ddy = curves[idx+DDY];
|
||||
float dx = curves[idx+DX];
|
||||
float dy = curves[idx+DY];
|
||||
float dddx = curves[idx+DDDX];
|
||||
float dddy = curves[idx+DDDY];
|
||||
|
||||
countsq = count * count;
|
||||
final float ddx = c.dbx / countsq;
|
||||
final float ddy = c.dby / countsq;
|
||||
float dx = c.bx / countsq + c.cx / count;
|
||||
float dy = c.by / countsq + c.cy / count;
|
||||
|
||||
while (count-- > 1) {
|
||||
float x1 = x0 + dx;
|
||||
dx += ddx;
|
||||
float y1 = y0 + dy;
|
||||
dy += ddy;
|
||||
addLine(x0, y0, x1, y1);
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
}
|
||||
addLine(x0, y0, x2, y2);
|
||||
}
|
||||
|
||||
// x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
|
||||
// using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
|
||||
// numerical errors, and our callers already have the exact values.
|
||||
// Another alternative would be to pass all the control points, and call c.set
|
||||
// here, but then too many numbers are passed around.
|
||||
private void curveBreakIntoLinesAndAdd(float x0, float y0,
|
||||
final Curve c,
|
||||
final float x3, final float y3) {
|
||||
final int countlg = 3;
|
||||
int count = 1 << countlg;
|
||||
|
||||
// the dx and dy refer to forward differencing variables, not the last
|
||||
// coefficients of the "points" polynomial
|
||||
float dddx, dddy, ddx, ddy, dx, dy;
|
||||
dddx = 2f * c.dax / (1 << (3 * countlg));
|
||||
dddy = 2f * c.day / (1 << (3 * countlg));
|
||||
|
||||
ddx = dddx + c.dbx / (1 << (2 * countlg));
|
||||
ddy = dddy + c.dby / (1 << (2 * countlg));
|
||||
dx = c.ax / (1 << (3 * countlg)) + c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
|
||||
dy = c.ay / (1 << (3 * countlg)) + c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
|
||||
|
||||
// we use x0, y0 to walk the line
|
||||
float x1 = x0, y1 = y0;
|
||||
while (count > 0) {
|
||||
while (Math.abs(ddx) > DEC_BND || Math.abs(ddy) > DEC_BND) {
|
||||
dddx /= 8;
|
||||
dddy /= 8;
|
||||
@ -410,163 +243,76 @@ public class Renderer implements PathConsumer2D {
|
||||
}
|
||||
count--;
|
||||
if (count > 0) {
|
||||
curves[idx+X0] += dx;
|
||||
x1 += dx;
|
||||
dx += ddx;
|
||||
ddx += dddx;
|
||||
curves[idx+Y0] += dy;
|
||||
y1 += dy;
|
||||
dy += ddy;
|
||||
ddy += dddy;
|
||||
} else {
|
||||
curves[idx+X0] = curves[idx+XL];
|
||||
curves[idx+Y0] = curves[idx+YMAX];
|
||||
x1 = x3;
|
||||
y1 = y3;
|
||||
}
|
||||
curves[idx+COUNT] = count;
|
||||
curves[idx+DDDX] = dddx;
|
||||
curves[idx+DDDY] = dddy;
|
||||
curves[idx+DDX] = ddx;
|
||||
curves[idx+DDY] = ddy;
|
||||
curves[idx+DX] = dx;
|
||||
curves[idx+DY] = dy;
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
private void initLine(final int idx, float[] pts, int or) {
|
||||
edges[idx+SLOPE] = (pts[2] - pts[0]) / (pts[3] - pts[1]);
|
||||
edges[idx+CURX] = pts[0] + (edges[idx+CURY] - pts[1]) * edges[idx+SLOPE];
|
||||
}
|
||||
|
||||
private void initQuad(final int idx, float[] points, int or) {
|
||||
final int countlg = 3;
|
||||
final int count = 1 << countlg;
|
||||
|
||||
// the dx and dy refer to forward differencing variables, not the last
|
||||
// coefficients of the "points" polynomial
|
||||
final float ddx, ddy, dx, dy;
|
||||
c.set(points, 6);
|
||||
|
||||
ddx = c.dbx / (1 << (2 * countlg));
|
||||
ddy = c.dby / (1 << (2 * countlg));
|
||||
dx = c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
|
||||
dy = c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
|
||||
|
||||
quads[idx+DDX] = ddx;
|
||||
quads[idx+DDY] = ddy;
|
||||
quads[idx+DX] = dx;
|
||||
quads[idx+DY] = dy;
|
||||
quads[idx+COUNT] = count;
|
||||
quads[idx+XL] = points[4];
|
||||
quads[idx+X0] = points[0];
|
||||
quads[idx+Y0] = points[1];
|
||||
executeQuadAFDIteration(idx);
|
||||
float x1 = quads[idx+X0], y1 = quads[idx+Y0];
|
||||
quads[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]);
|
||||
quads[idx+CURX] = points[0] + (quads[idx+CURY] - points[1])*quads[idx+CURSLOPE];
|
||||
}
|
||||
|
||||
private void initCurve(final int idx, float[] points, int or) {
|
||||
final int countlg = 3;
|
||||
final int count = 1 << countlg;
|
||||
|
||||
// the dx and dy refer to forward differencing variables, not the last
|
||||
// coefficients of the "points" polynomial
|
||||
final float dddx, dddy, ddx, ddy, dx, dy;
|
||||
c.set(points, 8);
|
||||
dddx = 2f * c.dax / (1 << (3 * countlg));
|
||||
dddy = 2f * c.day / (1 << (3 * countlg));
|
||||
|
||||
ddx = dddx + c.dbx / (1 << (2 * countlg));
|
||||
ddy = dddy + c.dby / (1 << (2 * countlg));
|
||||
dx = c.ax / (1 << (3 * countlg)) + c.bx / (1 << (2 * countlg)) + c.cx / (1 << countlg);
|
||||
dy = c.ay / (1 << (3 * countlg)) + c.by / (1 << (2 * countlg)) + c.cy / (1 << countlg);
|
||||
|
||||
curves[idx+DDDX] = dddx;
|
||||
curves[idx+DDDY] = dddy;
|
||||
curves[idx+DDX] = ddx;
|
||||
curves[idx+DDY] = ddy;
|
||||
curves[idx+DX] = dx;
|
||||
curves[idx+DY] = dy;
|
||||
curves[idx+COUNT] = count;
|
||||
curves[idx+XL] = points[6];
|
||||
curves[idx+X0] = points[0];
|
||||
curves[idx+Y0] = points[1];
|
||||
executeCurveAFDIteration(idx);
|
||||
float x1 = curves[idx+X0], y1 = curves[idx+Y0];
|
||||
curves[idx+CURSLOPE] = (x1 - points[0]) / (y1 - points[1]);
|
||||
curves[idx+CURX] = points[0] + (curves[idx+CURY] - points[1])*curves[idx+CURSLOPE];
|
||||
}
|
||||
|
||||
private void addPathSegment(float[] pts, final int type, final int or) {
|
||||
int idx;
|
||||
float[] addTo;
|
||||
switch (type) {
|
||||
case 4:
|
||||
idx = numEdges * SIZEOF_EDGE;
|
||||
addTo = edges = Helpers.widenArray(edges, numEdges*SIZEOF_EDGE, SIZEOF_EDGE);
|
||||
numEdges++;
|
||||
break;
|
||||
case 6:
|
||||
idx = numQuads * SIZEOF_QUAD;
|
||||
addTo = quads = Helpers.widenArray(quads, numQuads*SIZEOF_QUAD, SIZEOF_QUAD);
|
||||
numQuads++;
|
||||
break;
|
||||
case 8:
|
||||
idx = numCurves * SIZEOF_CURVE;
|
||||
addTo = curves = Helpers.widenArray(curves, numCurves*SIZEOF_CURVE, SIZEOF_CURVE);
|
||||
numCurves++;
|
||||
break;
|
||||
default:
|
||||
throw new InternalError();
|
||||
}
|
||||
// set the common fields, except CURX, for which we must know the kind
|
||||
// of curve. NOTE: this must be done before the type specific fields
|
||||
// are initialized, because those depend on the common ones.
|
||||
addTo[idx+YMIN] = pts[1];
|
||||
addTo[idx+YMAX] = pts[type-1];
|
||||
addTo[idx+OR] = or;
|
||||
addTo[idx+CURY] = (float)Math.ceil(pts[1]);
|
||||
switch (type) {
|
||||
case 4:
|
||||
initLine(idx, pts, or);
|
||||
break;
|
||||
case 6:
|
||||
initQuad(idx, pts, or);
|
||||
break;
|
||||
case 8:
|
||||
initCurve(idx, pts, or);
|
||||
break;
|
||||
default:
|
||||
throw new InternalError();
|
||||
addLine(x0, y0, x1, y1);
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
}
|
||||
}
|
||||
|
||||
// precondition: the curve in pts must be monotonic and increasing in y.
|
||||
private void somethingTo(float[] pts, final int type, final int or) {
|
||||
// NOTE: it's very important that we check for or >= 0 below (as
|
||||
// opposed to or == 1, or or > 0, or anything else). That's
|
||||
// because if we check for or==1, when the curve being added
|
||||
// is a horizontal line, or will be 0 so or==1 will be false and
|
||||
// x0 and y0 will be updated to pts[0] and pts[1] instead of pts[type-2]
|
||||
// and pts[type-1], which is the correct thing to do.
|
||||
this.x0 = or >= 0 ? pts[type - 2] : pts[0];
|
||||
this.y0 = or >= 0 ? pts[type - 1] : pts[1];
|
||||
|
||||
float minY = pts[1], maxY = pts[type - 1];
|
||||
if (Math.ceil(minY) >= Math.ceil(maxY) ||
|
||||
Math.ceil(minY) >= boundsMaxY || maxY < boundsMinY)
|
||||
{
|
||||
// Preconditions: y2 > y1 and the curve must cross some scanline
|
||||
// i.e.: y1 <= y < y2 for some y such that boundsMinY <= y < boundsMaxY
|
||||
private void addLine(float x1, float y1, float x2, float y2) {
|
||||
float or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
|
||||
if (y2 < y1) {
|
||||
or = y2; // no need to declare a temp variable. We have or.
|
||||
y2 = y1;
|
||||
y1 = or;
|
||||
or = x2;
|
||||
x2 = x1;
|
||||
x1 = or;
|
||||
or = 0;
|
||||
}
|
||||
final int firstCrossing = Math.max((int) Math.ceil(y1), boundsMinY);
|
||||
final int lastCrossing = Math.min((int)Math.ceil(y2), boundsMaxY);
|
||||
if (firstCrossing >= lastCrossing) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (minY < edgeMinY) { edgeMinY = minY; }
|
||||
if (maxY > edgeMaxY) { edgeMaxY = maxY; }
|
||||
if (y1 < edgeMinY) { edgeMinY = y1; }
|
||||
if (y2 > edgeMaxY) { edgeMaxY = y2; }
|
||||
|
||||
int minXidx = (pts[0] < pts[type-2] ? 0 : type - 2);
|
||||
float minX = pts[minXidx];
|
||||
float maxX = pts[type - 2 - minXidx];
|
||||
if (minX < edgeMinX) { edgeMinX = minX; }
|
||||
if (maxX > edgeMaxX) { edgeMaxX = maxX; }
|
||||
addPathSegment(pts, type, or);
|
||||
final float slope = (x2 - x1) / (y2 - y1);
|
||||
|
||||
if (slope > 0) { // <==> x1 < x2
|
||||
if (x1 < edgeMinX) { edgeMinX = x1; }
|
||||
if (x2 > edgeMaxX) { edgeMaxX = x2; }
|
||||
} else {
|
||||
if (x2 < edgeMinX) { edgeMinX = x2; }
|
||||
if (x1 > edgeMaxX) { edgeMaxX = x1; }
|
||||
}
|
||||
|
||||
final int ptr = numEdges * SIZEOF_EDGE;
|
||||
edges = Helpers.widenArray(edges, ptr, SIZEOF_EDGE);
|
||||
numEdges++;
|
||||
edges[ptr+OR] = or;
|
||||
edges[ptr+CURX] = x1 + (firstCrossing - y1) * slope;
|
||||
edges[ptr+SLOPE] = slope;
|
||||
edges[ptr+YMAX] = y2;
|
||||
final int bucketIdx = firstCrossing - boundsMinY;
|
||||
addEdgeToBucket(ptr, bucketIdx);
|
||||
if (lastCrossing < boundsMaxY) {
|
||||
edgeBucketCounts[lastCrossing - boundsMinY] |= 1;
|
||||
}
|
||||
}
|
||||
|
||||
// preconditions: should not be called before the last line has been added
|
||||
// to the edge list (even though it will return a correct answer at that
|
||||
// point in time, it's not meant to be used that way).
|
||||
private int getFirstScanLineCrossing() {
|
||||
return Math.max(boundsMinY, (int)Math.ceil(edgeMinY));
|
||||
}
|
||||
private int getScanLineCrossingEnd() {
|
||||
return Math.min(boundsMaxY, (int)Math.ceil(edgeMaxY));
|
||||
}
|
||||
|
||||
// END EDGE LIST
|
||||
@ -619,6 +365,10 @@ public class Renderer implements PathConsumer2D {
|
||||
this.boundsMinY = pix_boundsY * SUBPIXEL_POSITIONS_Y;
|
||||
this.boundsMaxX = (pix_boundsX + pix_boundsWidth) * SUBPIXEL_POSITIONS_X;
|
||||
this.boundsMaxY = (pix_boundsY + pix_boundsHeight) * SUBPIXEL_POSITIONS_Y;
|
||||
|
||||
edgeBuckets = new int[boundsMaxY - boundsMinY];
|
||||
java.util.Arrays.fill(edgeBuckets, NULL);
|
||||
edgeBucketCounts = new int[edgeBuckets.length];
|
||||
}
|
||||
|
||||
private float tosubpixx(float pix_x) {
|
||||
@ -636,74 +386,34 @@ public class Renderer implements PathConsumer2D {
|
||||
this.x0 = tosubpixx(pix_x0);
|
||||
}
|
||||
|
||||
public void lineJoin() { /* do nothing */ }
|
||||
|
||||
private final float[][] pts = new float[2][8];
|
||||
private final float[] ts = new float[4];
|
||||
|
||||
private static void invertPolyPoints(float[] pts, int off, int type) {
|
||||
for (int i = off, j = off + type - 2; i < j; i += 2, j -= 2) {
|
||||
float tmp = pts[i];
|
||||
pts[i] = pts[j];
|
||||
pts[j] = tmp;
|
||||
tmp = pts[i+1];
|
||||
pts[i+1] = pts[j+1];
|
||||
pts[j+1] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
// return orientation before making the curve upright.
|
||||
private static int makeMonotonicCurveUpright(float[] pts, int off, int type) {
|
||||
float y0 = pts[off + 1];
|
||||
float y1 = pts[off + type - 1];
|
||||
if (y0 > y1) {
|
||||
invertPolyPoints(pts, off, type);
|
||||
return -1;
|
||||
} else if (y0 < y1) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
public void lineTo(float pix_x1, float pix_y1) {
|
||||
pts[0][0] = x0; pts[0][1] = y0;
|
||||
pts[0][2] = tosubpixx(pix_x1); pts[0][3] = tosubpixy(pix_y1);
|
||||
int or = makeMonotonicCurveUpright(pts[0], 0, 4);
|
||||
somethingTo(pts[0], 4, or);
|
||||
float x1 = tosubpixx(pix_x1);
|
||||
float y1 = tosubpixy(pix_y1);
|
||||
addLine(x0, y0, x1, y1);
|
||||
x0 = x1;
|
||||
y0 = y1;
|
||||
}
|
||||
|
||||
Curve c = new Curve();
|
||||
private void curveOrQuadTo(int type) {
|
||||
c.set(pts[0], type);
|
||||
int numTs = c.dxRoots(ts, 0);
|
||||
numTs += c.dyRoots(ts, numTs);
|
||||
numTs = Helpers.filterOutNotInAB(ts, 0, numTs, 0, 1);
|
||||
Helpers.isort(ts, 0, numTs);
|
||||
|
||||
Iterator<float[]> it = Curve.breakPtsAtTs(pts, type, ts, numTs);
|
||||
while(it.hasNext()) {
|
||||
float[] curCurve = it.next();
|
||||
int or = makeMonotonicCurveUpright(curCurve, 0, type);
|
||||
somethingTo(curCurve, type, or);
|
||||
}
|
||||
}
|
||||
|
||||
@Override public void curveTo(float x1, float y1,
|
||||
float x2, float y2,
|
||||
float x3, float y3)
|
||||
{
|
||||
pts[0][0] = x0; pts[0][1] = y0;
|
||||
pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1);
|
||||
pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2);
|
||||
pts[0][6] = tosubpixx(x3); pts[0][7] = tosubpixy(y3);
|
||||
curveOrQuadTo(8);
|
||||
final float xe = tosubpixx(x3);
|
||||
final float ye = tosubpixy(y3);
|
||||
c.set(x0, y0, tosubpixx(x1), tosubpixy(y1), tosubpixx(x2), tosubpixy(y2), xe, ye);
|
||||
curveBreakIntoLinesAndAdd(x0, y0, c, xe, ye);
|
||||
x0 = xe;
|
||||
y0 = ye;
|
||||
}
|
||||
|
||||
@Override public void quadTo(float x1, float y1, float x2, float y2) {
|
||||
pts[0][0] = x0; pts[0][1] = y0;
|
||||
pts[0][2] = tosubpixx(x1); pts[0][3] = tosubpixy(y1);
|
||||
pts[0][4] = tosubpixx(x2); pts[0][5] = tosubpixy(y2);
|
||||
curveOrQuadTo(6);
|
||||
final float xe = tosubpixx(x2);
|
||||
final float ye = tosubpixy(y2);
|
||||
c.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
|
||||
quadBreakIntoLinesAndAdd(x0, y0, c, xe, ye);
|
||||
x0 = xe;
|
||||
y0 = ye;
|
||||
}
|
||||
|
||||
public void closePath() {
|
||||
@ -728,9 +438,9 @@ public class Renderer implements PathConsumer2D {
|
||||
// 0x1 if EVEN_ODD, all bits if NON_ZERO
|
||||
int mask = (windingRule == WIND_EVEN_ODD) ? 0x1 : ~0x0;
|
||||
|
||||
// add 1 to better deal with the last pixel in a pixel row.
|
||||
int width = pix_bboxx1 - pix_bboxx0 + 1;
|
||||
int[] alpha = new int[width+1];
|
||||
// add 2 to better deal with the last pixel in a pixel row.
|
||||
int width = pix_bboxx1 - pix_bboxx0;
|
||||
int[] alpha = new int[width+2];
|
||||
|
||||
int bboxx0 = pix_bboxx0 << SUBPIXEL_LG_POSITIONS_X;
|
||||
int bboxx1 = pix_bboxx1 << SUBPIXEL_LG_POSITIONS_X;
|
||||
@ -766,7 +476,8 @@ public class Renderer implements PathConsumer2D {
|
||||
for (int i = 0; i < numCrossings; i++) {
|
||||
int curxo = crossings[i];
|
||||
int curx = curxo >> 1;
|
||||
int crorientation = ((curxo & 0x1) == 0x1) ? 1 : -1;
|
||||
// to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
|
||||
int crorientation = ((curxo & 0x1) << 1) -1;
|
||||
if ((sum & mask) != 0) {
|
||||
int x0 = Math.max(prev, bboxx0);
|
||||
int x1 = Math.min(curx, bboxx1);
|
||||
@ -811,26 +522,26 @@ public class Renderer implements PathConsumer2D {
|
||||
}
|
||||
|
||||
public void endRendering() {
|
||||
final int bminx = boundsMinX >> SUBPIXEL_LG_POSITIONS_X;
|
||||
final int bmaxx = boundsMaxX >> SUBPIXEL_LG_POSITIONS_X;
|
||||
final int bminy = boundsMinY >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
final int bmaxy = boundsMaxY >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
final int eminx = ((int)Math.floor(edgeMinX)) >> SUBPIXEL_LG_POSITIONS_X;
|
||||
final int emaxx = ((int)Math.ceil(edgeMaxX)) >> SUBPIXEL_LG_POSITIONS_X;
|
||||
final int eminy = ((int)Math.floor(edgeMinY)) >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
final int emaxy = ((int)Math.ceil(edgeMaxY)) >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
int spminX = Math.max((int)Math.ceil(edgeMinX), boundsMinX);
|
||||
int spmaxX = Math.min((int)Math.ceil(edgeMaxX), boundsMaxX);
|
||||
int spminY = Math.max((int)Math.ceil(edgeMinY), boundsMinY);
|
||||
int spmaxY = Math.min((int)Math.ceil(edgeMaxY), boundsMaxY);
|
||||
|
||||
final int minX = Math.max(bminx, eminx);
|
||||
final int maxX = Math.min(bmaxx, emaxx);
|
||||
final int minY = Math.max(bminy, eminy);
|
||||
final int maxY = Math.min(bmaxy, emaxy);
|
||||
if (minX > maxX || minY > maxY) {
|
||||
this.cache = new PiscesCache(bminx, bminy, bmaxx, bmaxy);
|
||||
int pminX = spminX >> SUBPIXEL_LG_POSITIONS_X;
|
||||
int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
|
||||
int pminY = spminY >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
|
||||
|
||||
if (pminX > pmaxX || pminY > pmaxY) {
|
||||
this.cache = new PiscesCache(boundsMinX >> SUBPIXEL_LG_POSITIONS_X,
|
||||
boundsMinY >> SUBPIXEL_LG_POSITIONS_Y,
|
||||
boundsMaxX >> SUBPIXEL_LG_POSITIONS_X,
|
||||
boundsMaxY >> SUBPIXEL_LG_POSITIONS_Y);
|
||||
return;
|
||||
}
|
||||
|
||||
this.cache = new PiscesCache(minX, minY, maxX, maxY);
|
||||
_endRendering(minX, minY, maxX, maxY);
|
||||
this.cache = new PiscesCache(pminX, pminY, pmaxX, pmaxY);
|
||||
_endRendering(pminX, pminY, pmaxX, pmaxY);
|
||||
}
|
||||
|
||||
public PiscesCache getCache() {
|
||||
|
@ -33,7 +33,7 @@ import sun.awt.geom.PathConsumer2D;
|
||||
// TODO: some of the arithmetic here is too verbose and prone to hard to
|
||||
// debug typos. We should consider making a small Point/Vector class that
|
||||
// has methods like plus(Point), minus(Point), dot(Point), cross(Point)and such
|
||||
public class Stroker implements PathConsumer2D {
|
||||
final class Stroker implements PathConsumer2D {
|
||||
|
||||
private static final int MOVE_TO = 0;
|
||||
private static final int DRAWING_OP_TO = 1; // ie. curve, line, or quad
|
||||
@ -130,7 +130,7 @@ public class Stroker implements PathConsumer2D {
|
||||
private static void computeOffset(final float lx, final float ly,
|
||||
final float w, final float[] m)
|
||||
{
|
||||
final float len = (float)Math.hypot(lx, ly);
|
||||
final float len = (float)Math.sqrt(lx*lx + ly*ly);
|
||||
if (len == 0) {
|
||||
m[0] = m[1] = 0;
|
||||
} else {
|
||||
@ -758,7 +758,7 @@ public class Stroker implements PathConsumer2D {
|
||||
// This is where the curve to be processed is put. We give it
|
||||
// enough room to store 2 curves: one for the current subdivision, the
|
||||
// other for the rest of the curve.
|
||||
private float[][] middle = new float[2][8];
|
||||
private float[] middle = new float[2*8];
|
||||
private float[] lp = new float[8];
|
||||
private float[] rp = new float[8];
|
||||
private static final int MAX_N_CURVES = 11;
|
||||
@ -766,55 +766,55 @@ public class Stroker implements PathConsumer2D {
|
||||
|
||||
private void somethingTo(final int type) {
|
||||
// need these so we can update the state at the end of this method
|
||||
final float xf = middle[0][type-2], yf = middle[0][type-1];
|
||||
float dxs = middle[0][2] - middle[0][0];
|
||||
float dys = middle[0][3] - middle[0][1];
|
||||
float dxf = middle[0][type - 2] - middle[0][type - 4];
|
||||
float dyf = middle[0][type - 1] - middle[0][type - 3];
|
||||
final float xf = middle[type-2], yf = middle[type-1];
|
||||
float dxs = middle[2] - middle[0];
|
||||
float dys = middle[3] - middle[1];
|
||||
float dxf = middle[type - 2] - middle[type - 4];
|
||||
float dyf = middle[type - 1] - middle[type - 3];
|
||||
switch(type) {
|
||||
case 6:
|
||||
if ((dxs == 0f && dys == 0f) ||
|
||||
(dxf == 0f && dyf == 0f)) {
|
||||
dxs = dxf = middle[0][4] - middle[0][0];
|
||||
dys = dyf = middle[0][5] - middle[0][1];
|
||||
dxs = dxf = middle[4] - middle[0];
|
||||
dys = dyf = middle[5] - middle[1];
|
||||
}
|
||||
break;
|
||||
case 8:
|
||||
boolean p1eqp2 = (dxs == 0f && dys == 0f);
|
||||
boolean p3eqp4 = (dxf == 0f && dyf == 0f);
|
||||
if (p1eqp2) {
|
||||
dxs = middle[0][4] - middle[0][0];
|
||||
dys = middle[0][5] - middle[0][1];
|
||||
dxs = middle[4] - middle[0];
|
||||
dys = middle[5] - middle[1];
|
||||
if (dxs == 0f && dys == 0f) {
|
||||
dxs = middle[0][6] - middle[0][0];
|
||||
dys = middle[0][7] - middle[0][1];
|
||||
dxs = middle[6] - middle[0];
|
||||
dys = middle[7] - middle[1];
|
||||
}
|
||||
}
|
||||
if (p3eqp4) {
|
||||
dxf = middle[0][6] - middle[0][2];
|
||||
dyf = middle[0][7] - middle[0][3];
|
||||
dxf = middle[6] - middle[2];
|
||||
dyf = middle[7] - middle[3];
|
||||
if (dxf == 0f && dyf == 0f) {
|
||||
dxf = middle[0][6] - middle[0][0];
|
||||
dyf = middle[0][7] - middle[0][1];
|
||||
dxf = middle[6] - middle[0];
|
||||
dyf = middle[7] - middle[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (dxs == 0f && dys == 0f) {
|
||||
// this happens iff the "curve" is just a point
|
||||
lineTo(middle[0][0], middle[0][1]);
|
||||
lineTo(middle[0], middle[1]);
|
||||
return;
|
||||
}
|
||||
// if these vectors are too small, normalize them, to avoid future
|
||||
// precision problems.
|
||||
if (Math.abs(dxs) < 0.1f && Math.abs(dys) < 0.1f) {
|
||||
double len = Math.hypot(dxs, dys);
|
||||
dxs = (float)(dxs / len);
|
||||
dys = (float)(dys / len);
|
||||
float len = (float)Math.sqrt(dxs*dxs + dys*dys);
|
||||
dxs /= len;
|
||||
dys /= len;
|
||||
}
|
||||
if (Math.abs(dxf) < 0.1f && Math.abs(dyf) < 0.1f) {
|
||||
double len = Math.hypot(dxf, dyf);
|
||||
dxf = (float)(dxf / len);
|
||||
dyf = (float)(dyf / len);
|
||||
float len = (float)Math.sqrt(dxf*dxf + dyf*dyf);
|
||||
dxf /= len;
|
||||
dyf /= len;
|
||||
}
|
||||
|
||||
computeOffset(dxs, dys, lineWidth2, offset[0]);
|
||||
@ -822,20 +822,20 @@ public class Stroker implements PathConsumer2D {
|
||||
final float my = offset[0][1];
|
||||
drawJoin(cdx, cdy, cx0, cy0, dxs, dys, cmx, cmy, mx, my);
|
||||
|
||||
int nSplits = findSubdivPoints(middle[0], subdivTs, type,lineWidth2);
|
||||
int nSplits = findSubdivPoints(middle, subdivTs, type, lineWidth2);
|
||||
|
||||
int kind = 0;
|
||||
Iterator<float[]> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
|
||||
Iterator<Integer> it = Curve.breakPtsAtTs(middle, type, subdivTs, nSplits);
|
||||
while(it.hasNext()) {
|
||||
float[] curCurve = it.next();
|
||||
int curCurveOff = it.next();
|
||||
|
||||
kind = 0;
|
||||
switch (type) {
|
||||
case 8:
|
||||
kind = computeOffsetCubic(curCurve, 0, lp, rp);
|
||||
kind = computeOffsetCubic(middle, curCurveOff, lp, rp);
|
||||
break;
|
||||
case 6:
|
||||
kind = computeOffsetQuad(curCurve, 0, lp, rp);
|
||||
kind = computeOffsetQuad(middle, curCurveOff, lp, rp);
|
||||
break;
|
||||
}
|
||||
if (kind != 0) {
|
||||
@ -871,8 +871,7 @@ public class Stroker implements PathConsumer2D {
|
||||
// to get good offset curves a distance of w away from the middle curve.
|
||||
// Stores the points in ts, and returns how many of them there were.
|
||||
private static Curve c = new Curve();
|
||||
private static int findSubdivPoints(float[] pts, float[] ts,
|
||||
final int type, final float w)
|
||||
private static int findSubdivPoints(float[] pts, float[] ts, final int type, final float w)
|
||||
{
|
||||
final float x12 = pts[2] - pts[0];
|
||||
final float y12 = pts[3] - pts[1];
|
||||
@ -919,6 +918,7 @@ public class Stroker implements PathConsumer2D {
|
||||
// now we must subdivide at points where one of the offset curves will have
|
||||
// a cusp. This happens at ts where the radius of curvature is equal to w.
|
||||
ret += c.rootsOfROCMinusW(ts, ret, w, 0.0001f);
|
||||
|
||||
ret = Helpers.filterOutNotInAB(ts, 0, ret, 0.0001f, 0.9999f);
|
||||
Helpers.isort(ts, 0, ret);
|
||||
return ret;
|
||||
@ -928,10 +928,10 @@ public class Stroker implements PathConsumer2D {
|
||||
float x2, float y2,
|
||||
float x3, float y3)
|
||||
{
|
||||
middle[0][0] = cx0; middle[0][1] = cy0;
|
||||
middle[0][2] = x1; middle[0][3] = y1;
|
||||
middle[0][4] = x2; middle[0][5] = y2;
|
||||
middle[0][6] = x3; middle[0][7] = y3;
|
||||
middle[0] = cx0; middle[1] = cy0;
|
||||
middle[2] = x1; middle[3] = y1;
|
||||
middle[4] = x2; middle[5] = y2;
|
||||
middle[6] = x3; middle[7] = y3;
|
||||
somethingTo(8);
|
||||
}
|
||||
|
||||
@ -940,9 +940,9 @@ public class Stroker implements PathConsumer2D {
|
||||
}
|
||||
|
||||
@Override public void quadTo(float x1, float y1, float x2, float y2) {
|
||||
middle[0][0] = cx0; middle[0][1] = cy0;
|
||||
middle[0][2] = x1; middle[0][3] = y1;
|
||||
middle[0][4] = x2; middle[0][5] = y2;
|
||||
middle[0] = cx0; middle[1] = cy0;
|
||||
middle[2] = x1; middle[3] = y1;
|
||||
middle[4] = x2; middle[5] = y2;
|
||||
somethingTo(6);
|
||||
}
|
||||
|
||||
|
@ -28,7 +28,7 @@ package sun.java2d.pisces;
|
||||
import sun.awt.geom.PathConsumer2D;
|
||||
import java.awt.geom.AffineTransform;
|
||||
|
||||
public class TransformingPathConsumer2D {
|
||||
final class TransformingPathConsumer2D {
|
||||
public static PathConsumer2D
|
||||
transformConsumer(PathConsumer2D out,
|
||||
AffineTransform at)
|
||||
@ -49,18 +49,73 @@ public class TransformingPathConsumer2D {
|
||||
} else {
|
||||
return new TranslateFilter(out, Mxt, Myt);
|
||||
}
|
||||
} else {
|
||||
if (Mxt == 0f && Myt == 0f) {
|
||||
return new DeltaScaleFilter(out, Mxx, Myy);
|
||||
} else {
|
||||
return new ScaleFilter(out, Mxx, Myy, Mxt, Myt);
|
||||
}
|
||||
}
|
||||
} else if (Mxt == 0f && Myt == 0f) {
|
||||
return new DeltaTransformFilter(out, Mxx, Mxy, Myx, Myy);
|
||||
} else {
|
||||
return new TransformFilter(out, Mxx, Mxy, Mxt, Myx, Myy, Myt);
|
||||
}
|
||||
}
|
||||
|
||||
static class TranslateFilter implements PathConsumer2D {
|
||||
PathConsumer2D out;
|
||||
float tx;
|
||||
float ty;
|
||||
public static PathConsumer2D
|
||||
deltaTransformConsumer(PathConsumer2D out,
|
||||
AffineTransform at)
|
||||
{
|
||||
if (at == null) {
|
||||
return out;
|
||||
}
|
||||
float Mxx = (float) at.getScaleX();
|
||||
float Mxy = (float) at.getShearX();
|
||||
float Myx = (float) at.getShearY();
|
||||
float Myy = (float) at.getScaleY();
|
||||
if (Mxy == 0f && Myx == 0f) {
|
||||
if (Mxx == 1f && Myy == 1f) {
|
||||
return out;
|
||||
} else {
|
||||
return new DeltaScaleFilter(out, Mxx, Myy);
|
||||
}
|
||||
} else {
|
||||
return new DeltaTransformFilter(out, Mxx, Mxy, Myx, Myy);
|
||||
}
|
||||
}
|
||||
|
||||
public static PathConsumer2D
|
||||
inverseDeltaTransformConsumer(PathConsumer2D out,
|
||||
AffineTransform at)
|
||||
{
|
||||
if (at == null) {
|
||||
return out;
|
||||
}
|
||||
float Mxx = (float) at.getScaleX();
|
||||
float Mxy = (float) at.getShearX();
|
||||
float Myx = (float) at.getShearY();
|
||||
float Myy = (float) at.getScaleY();
|
||||
if (Mxy == 0f && Myx == 0f) {
|
||||
if (Mxx == 1f && Myy == 1f) {
|
||||
return out;
|
||||
} else {
|
||||
return new DeltaScaleFilter(out, 1.0f/Mxx, 1.0f/Myy);
|
||||
}
|
||||
} else {
|
||||
float det = Mxx * Myy - Mxy * Myx;
|
||||
return new DeltaTransformFilter(out,
|
||||
Myy / det,
|
||||
-Mxy / det,
|
||||
-Myx / det,
|
||||
Mxx / det);
|
||||
}
|
||||
}
|
||||
|
||||
static final class TranslateFilter implements PathConsumer2D {
|
||||
private final PathConsumer2D out;
|
||||
private final float tx;
|
||||
private final float ty;
|
||||
|
||||
TranslateFilter(PathConsumer2D out,
|
||||
float tx, float ty)
|
||||
@ -107,12 +162,12 @@ public class TransformingPathConsumer2D {
|
||||
}
|
||||
}
|
||||
|
||||
static class ScaleFilter implements PathConsumer2D {
|
||||
PathConsumer2D out;
|
||||
float sx;
|
||||
float sy;
|
||||
float tx;
|
||||
float ty;
|
||||
static final class ScaleFilter implements PathConsumer2D {
|
||||
private final PathConsumer2D out;
|
||||
private final float sx;
|
||||
private final float sy;
|
||||
private final float tx;
|
||||
private final float ty;
|
||||
|
||||
ScaleFilter(PathConsumer2D out,
|
||||
float sx, float sy, float tx, float ty)
|
||||
@ -161,14 +216,14 @@ public class TransformingPathConsumer2D {
|
||||
}
|
||||
}
|
||||
|
||||
static class TransformFilter implements PathConsumer2D {
|
||||
PathConsumer2D out;
|
||||
float Mxx;
|
||||
float Mxy;
|
||||
float Mxt;
|
||||
float Myx;
|
||||
float Myy;
|
||||
float Myt;
|
||||
static final class TransformFilter implements PathConsumer2D {
|
||||
private final PathConsumer2D out;
|
||||
private final float Mxx;
|
||||
private final float Mxy;
|
||||
private final float Mxt;
|
||||
private final float Myx;
|
||||
private final float Myy;
|
||||
private final float Myt;
|
||||
|
||||
TransformFilter(PathConsumer2D out,
|
||||
float Mxx, float Mxy, float Mxt,
|
||||
@ -226,4 +281,113 @@ public class TransformingPathConsumer2D {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static final class DeltaScaleFilter implements PathConsumer2D {
|
||||
private final float sx, sy;
|
||||
private final PathConsumer2D out;
|
||||
|
||||
public DeltaScaleFilter(PathConsumer2D out, float Mxx, float Myy) {
|
||||
sx = Mxx;
|
||||
sy = Myy;
|
||||
this.out = out;
|
||||
}
|
||||
|
||||
public void moveTo(float x0, float y0) {
|
||||
out.moveTo(x0 * sx, y0 * sy);
|
||||
}
|
||||
|
||||
public void lineTo(float x1, float y1) {
|
||||
out.lineTo(x1 * sx, y1 * sy);
|
||||
}
|
||||
|
||||
public void quadTo(float x1, float y1,
|
||||
float x2, float y2)
|
||||
{
|
||||
out.quadTo(x1 * sx, y1 * sy,
|
||||
x2 * sx, y2 * sy);
|
||||
}
|
||||
|
||||
public void curveTo(float x1, float y1,
|
||||
float x2, float y2,
|
||||
float x3, float y3)
|
||||
{
|
||||
out.curveTo(x1 * sx, y1 * sy,
|
||||
x2 * sx, y2 * sy,
|
||||
x3 * sx, y3 * sy);
|
||||
}
|
||||
|
||||
public void closePath() {
|
||||
out.closePath();
|
||||
}
|
||||
|
||||
public void pathDone() {
|
||||
out.pathDone();
|
||||
}
|
||||
|
||||
public long getNativeConsumer() {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
static final class DeltaTransformFilter implements PathConsumer2D {
|
||||
private PathConsumer2D out;
|
||||
private final float Mxx;
|
||||
private final float Mxy;
|
||||
private final float Myx;
|
||||
private final float Myy;
|
||||
|
||||
DeltaTransformFilter(PathConsumer2D out,
|
||||
float Mxx, float Mxy,
|
||||
float Myx, float Myy)
|
||||
{
|
||||
this.out = out;
|
||||
this.Mxx = Mxx;
|
||||
this.Mxy = Mxy;
|
||||
this.Myx = Myx;
|
||||
this.Myy = Myy;
|
||||
}
|
||||
|
||||
public void moveTo(float x0, float y0) {
|
||||
out.moveTo(x0 * Mxx + y0 * Mxy,
|
||||
x0 * Myx + y0 * Myy);
|
||||
}
|
||||
|
||||
public void lineTo(float x1, float y1) {
|
||||
out.lineTo(x1 * Mxx + y1 * Mxy,
|
||||
x1 * Myx + y1 * Myy);
|
||||
}
|
||||
|
||||
public void quadTo(float x1, float y1,
|
||||
float x2, float y2)
|
||||
{
|
||||
out.quadTo(x1 * Mxx + y1 * Mxy,
|
||||
x1 * Myx + y1 * Myy,
|
||||
x2 * Mxx + y2 * Mxy,
|
||||
x2 * Myx + y2 * Myy);
|
||||
}
|
||||
|
||||
public void curveTo(float x1, float y1,
|
||||
float x2, float y2,
|
||||
float x3, float y3)
|
||||
{
|
||||
out.curveTo(x1 * Mxx + y1 * Mxy,
|
||||
x1 * Myx + y1 * Myy,
|
||||
x2 * Mxx + y2 * Mxy,
|
||||
x2 * Myx + y2 * Myy,
|
||||
x3 * Mxx + y3 * Mxy,
|
||||
x3 * Myx + y3 * Myy);
|
||||
}
|
||||
|
||||
public void closePath() {
|
||||
out.closePath();
|
||||
}
|
||||
|
||||
public void pathDone() {
|
||||
out.pathDone();
|
||||
}
|
||||
|
||||
public long getNativeConsumer() {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user