This commit is contained in:
Rickard Bäckman 2013-08-22 18:37:14 +02:00
commit 4cb52fc49d
55 changed files with 1494 additions and 1177 deletions

View File

@ -247,7 +247,7 @@ ifeq ($(USE_CLANG), true)
# Not yet supported by clang in Xcode 4.6.2 # Not yet supported by clang in Xcode 4.6.2
# WARNINGS_ARE_ERRORS += -Wno-tautological-constant-out-of-range-compare # WARNINGS_ARE_ERRORS += -Wno-tautological-constant-out-of-range-compare
WARNINGS_ARE_ERRORS += -Wno-delete-non-virtual-dtor -Wno-deprecated -Wno-format -Wno-dynamic-class-memaccess WARNINGS_ARE_ERRORS += -Wno-delete-non-virtual-dtor -Wno-deprecated -Wno-format -Wno-dynamic-class-memaccess
WARNINGS_ARE_ERRORS += -Wno-return-type -Wno-empty-body WARNINGS_ARE_ERRORS += -Wno-empty-body
endif endif
WARNING_FLAGS = -Wpointer-arith -Wsign-compare -Wundef WARNING_FLAGS = -Wpointer-arith -Wsign-compare -Wundef

View File

@ -849,9 +849,9 @@ address InterpreterGenerator::generate_CRC32_update_entry() {
address entry = __ pc(); address entry = __ pc();
// rbx,: Method* // rbx,: Method*
// rsi: senderSP must preserved for slow path, set SP to it on fast path // r13: senderSP must preserved for slow path, set SP to it on fast path
// rdx: scratch // c_rarg0: scratch (rdi on non-Win64, rcx on Win64)
// rdi: scratch // c_rarg1: scratch (rsi on non-Win64, rdx on Win64)
Label slow_path; Label slow_path;
// If we need a safepoint check, generate full interpreter entry. // If we need a safepoint check, generate full interpreter entry.
@ -865,8 +865,8 @@ address InterpreterGenerator::generate_CRC32_update_entry() {
// Load parameters // Load parameters
const Register crc = rax; // crc const Register crc = rax; // crc
const Register val = rdx; // source java byte value const Register val = c_rarg0; // source java byte value
const Register tbl = rdi; // scratch const Register tbl = c_rarg1; // scratch
// Arguments are reversed on java expression stack // Arguments are reversed on java expression stack
__ movl(val, Address(rsp, wordSize)); // byte value __ movl(val, Address(rsp, wordSize)); // byte value
@ -880,7 +880,7 @@ address InterpreterGenerator::generate_CRC32_update_entry() {
// _areturn // _areturn
__ pop(rdi); // get return address __ pop(rdi); // get return address
__ mov(rsp, rsi); // set sp to sender sp __ mov(rsp, r13); // set sp to sender sp
__ jmp(rdi); __ jmp(rdi);
// generate a vanilla native entry as the slow path // generate a vanilla native entry as the slow path
@ -919,20 +919,24 @@ address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpret
const Register crc = c_rarg0; // crc const Register crc = c_rarg0; // crc
const Register buf = c_rarg1; // source java byte array address const Register buf = c_rarg1; // source java byte array address
const Register len = c_rarg2; // length const Register len = c_rarg2; // length
const Register off = len; // offset (never overlaps with 'len')
// Arguments are reversed on java expression stack // Arguments are reversed on java expression stack
__ movl(len, Address(rsp, wordSize)); // Length
// Calculate address of start element // Calculate address of start element
if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) {
__ movptr(buf, Address(rsp, 3*wordSize)); // long buf __ movptr(buf, Address(rsp, 3*wordSize)); // long buf
__ addptr(buf, Address(rsp, 2*wordSize)); // + offset __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
__ addq(buf, off); // + offset
__ movl(crc, Address(rsp, 5*wordSize)); // Initial CRC __ movl(crc, Address(rsp, 5*wordSize)); // Initial CRC
} else { } else {
__ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array __ movptr(buf, Address(rsp, 3*wordSize)); // byte[] array
__ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size __ addptr(buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size
__ addptr(buf, Address(rsp, 2*wordSize)); // + offset __ movl2ptr(off, Address(rsp, 2*wordSize)); // offset
__ addq(buf, off); // + offset
__ movl(crc, Address(rsp, 4*wordSize)); // Initial CRC __ movl(crc, Address(rsp, 4*wordSize)); // Initial CRC
} }
// Can now load 'len' since we're finished with 'off'
__ movl(len, Address(rsp, wordSize)); // Length
__ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32()), crc, buf, len);
// result in rax // result in rax

View File

@ -50,6 +50,7 @@ int AbstractAssembler::code_fill_byte() {
#ifdef ASSERT #ifdef ASSERT
bool AbstractAssembler::pd_check_instruction_mark() { bool AbstractAssembler::pd_check_instruction_mark() {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
#endif #endif
@ -73,6 +74,7 @@ void MacroAssembler::advance(int bytes) {
RegisterOrConstant MacroAssembler::delayed_value_impl( RegisterOrConstant MacroAssembler::delayed_value_impl(
intptr_t* delayed_value_addr, Register tmpl, int offset) { intptr_t* delayed_value_addr, Register tmpl, int offset) {
ShouldNotCallThis(); ShouldNotCallThis();
return RegisterOrConstant();
} }
void MacroAssembler::store_oop(jobject obj) { void MacroAssembler::store_oop(jobject obj) {

View File

@ -1008,6 +1008,7 @@ void BytecodeInterpreter::layout_interpreterState(interpreterState istate,
address CppInterpreter::return_entry(TosState state, int length) { address CppInterpreter::return_entry(TosState state, int length) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
address CppInterpreter::deopt_entry(TosState state, int length) { address CppInterpreter::deopt_entry(TosState state, int length) {

View File

@ -116,6 +116,7 @@ void frame::patch_pc(Thread* thread, address pc) {
bool frame::safe_for_sender(JavaThread *thread) { bool frame::safe_for_sender(JavaThread *thread) {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
void frame::pd_gc_epilog() { void frame::pd_gc_epilog() {
@ -123,6 +124,7 @@ void frame::pd_gc_epilog() {
bool frame::is_interpreted_frame_valid(JavaThread *thread) const { bool frame::is_interpreted_frame_valid(JavaThread *thread) const {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
BasicType frame::interpreter_frame_result(oop* oop_result, BasicType frame::interpreter_frame_result(oop* oop_result,
@ -184,9 +186,8 @@ BasicType frame::interpreter_frame_result(oop* oop_result,
int frame::frame_size(RegisterMap* map) const { int frame::frame_size(RegisterMap* map) const {
#ifdef PRODUCT #ifdef PRODUCT
ShouldNotCallThis(); ShouldNotCallThis();
#else
return 0; // make javaVFrame::print_value work
#endif // PRODUCT #endif // PRODUCT
return 0; // make javaVFrame::print_value work
} }
intptr_t* frame::interpreter_frame_tos_at(jint offset) const { intptr_t* frame::interpreter_frame_tos_at(jint offset) const {

View File

@ -36,7 +36,7 @@ inline frame::frame() {
_deopt_state = unknown; _deopt_state = unknown;
} }
inline address frame::sender_pc() const { ShouldNotCallThis(); } inline address frame::sender_pc() const { ShouldNotCallThis(); return NULL; }
inline frame::frame(ZeroFrame* zf, intptr_t* sp) { inline frame::frame(ZeroFrame* zf, intptr_t* sp) {
_zeroframe = zf; _zeroframe = zf;
@ -89,6 +89,7 @@ inline intptr_t* frame::real_fp() const {
inline intptr_t* frame::link() const { inline intptr_t* frame::link() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
#ifdef CC_INTERP #ifdef CC_INTERP
@ -151,14 +152,17 @@ inline void frame::set_saved_oop_result(RegisterMap* map, oop obj) {
inline oop frame::saved_oop_result(RegisterMap* map) const { inline oop frame::saved_oop_result(RegisterMap* map) const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
inline bool frame::is_older(intptr_t* id) const { inline bool frame::is_older(intptr_t* id) const {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
inline intptr_t* frame::entry_frame_argument_at(int offset) const { inline intptr_t* frame::entry_frame_argument_at(int offset) const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
inline intptr_t* frame::unextended_sp() const { inline intptr_t* frame::unextended_sp() const {

View File

@ -49,8 +49,10 @@ void InlineCacheBuffer::assemble_ic_buffer_code(address code_begin,
address InlineCacheBuffer::ic_buffer_entry_point(address code_begin) { address InlineCacheBuffer::ic_buffer_entry_point(address code_begin) {
// NB ic_stub_code_size() must return the size of the code we generate // NB ic_stub_code_size() must return the size of the code we generate
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
void* InlineCacheBuffer::ic_buffer_cached_value(address code_begin) { void* InlineCacheBuffer::ic_buffer_cached_value(address code_begin) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }

View File

@ -40,6 +40,7 @@ class InterpreterMacroAssembler : public MacroAssembler {
Register tmp, Register tmp,
int offset) { int offset) {
ShouldNotCallThis(); ShouldNotCallThis();
return RegisterOrConstant();
} }
}; };

View File

@ -64,6 +64,7 @@ address InterpreterGenerator::generate_math_entry(
return NULL; return NULL;
Unimplemented(); Unimplemented();
return NULL;
} }
address InterpreterGenerator::generate_abstract_entry() { address InterpreterGenerator::generate_abstract_entry() {

View File

@ -51,15 +51,18 @@ class NativeInstruction VALUE_OBJ_CLASS_SPEC {
public: public:
bool is_jump() { bool is_jump() {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
bool is_safepoint_poll() { bool is_safepoint_poll() {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
}; };
inline NativeInstruction* nativeInstruction_at(address address) { inline NativeInstruction* nativeInstruction_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
class NativeCall : public NativeInstruction { class NativeCall : public NativeInstruction {
@ -70,18 +73,22 @@ class NativeCall : public NativeInstruction {
address instruction_address() const { address instruction_address() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
address next_instruction_address() const { address next_instruction_address() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
address return_address() const { address return_address() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
address destination() const { address destination() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
void set_destination_mt_safe(address dest) { void set_destination_mt_safe(address dest) {
@ -98,25 +105,30 @@ class NativeCall : public NativeInstruction {
static bool is_call_before(address return_address) { static bool is_call_before(address return_address) {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
}; };
inline NativeCall* nativeCall_before(address return_address) { inline NativeCall* nativeCall_before(address return_address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
inline NativeCall* nativeCall_at(address address) { inline NativeCall* nativeCall_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
class NativeMovConstReg : public NativeInstruction { class NativeMovConstReg : public NativeInstruction {
public: public:
address next_instruction_address() const { address next_instruction_address() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
intptr_t data() const { intptr_t data() const {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }
void set_data(intptr_t x) { void set_data(intptr_t x) {
@ -126,12 +138,14 @@ class NativeMovConstReg : public NativeInstruction {
inline NativeMovConstReg* nativeMovConstReg_at(address address) { inline NativeMovConstReg* nativeMovConstReg_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
class NativeMovRegMem : public NativeInstruction { class NativeMovRegMem : public NativeInstruction {
public: public:
int offset() const { int offset() const {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }
void set_offset(intptr_t x) { void set_offset(intptr_t x) {
@ -145,6 +159,7 @@ class NativeMovRegMem : public NativeInstruction {
inline NativeMovRegMem* nativeMovRegMem_at(address address) { inline NativeMovRegMem* nativeMovRegMem_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
class NativeJump : public NativeInstruction { class NativeJump : public NativeInstruction {
@ -155,6 +170,7 @@ class NativeJump : public NativeInstruction {
address jump_destination() const { address jump_destination() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
void set_jump_destination(address dest) { void set_jump_destination(address dest) {
@ -172,12 +188,14 @@ class NativeJump : public NativeInstruction {
inline NativeJump* nativeJump_at(address address) { inline NativeJump* nativeJump_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
class NativeGeneralJump : public NativeInstruction { class NativeGeneralJump : public NativeInstruction {
public: public:
address jump_destination() const { address jump_destination() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
static void insert_unconditional(address code_pos, address entry) { static void insert_unconditional(address code_pos, address entry) {
@ -191,6 +209,7 @@ class NativeGeneralJump : public NativeInstruction {
inline NativeGeneralJump* nativeGeneralJump_at(address address) { inline NativeGeneralJump* nativeGeneralJump_at(address address) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
#endif // CPU_ZERO_VM_NATIVEINST_ZERO_HPP #endif // CPU_ZERO_VM_NATIVEINST_ZERO_HPP

View File

@ -32,8 +32,10 @@ const int ConcreteRegisterImpl::max_fpr =
const char* RegisterImpl::name() const { const char* RegisterImpl::name() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
const char* FloatRegisterImpl::name() const { const char* FloatRegisterImpl::name() const {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }

View File

@ -37,6 +37,7 @@ void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
address Relocation::pd_call_destination(address orig_addr) { address Relocation::pd_call_destination(address orig_addr) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
void Relocation::pd_set_call_destination(address x) { void Relocation::pd_set_call_destination(address x) {
@ -45,6 +46,7 @@ void Relocation::pd_set_call_destination(address x) {
address Relocation::pd_get_address_from_code() { address Relocation::pd_get_address_from_code() {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
address* Relocation::pd_address_in_code() { address* Relocation::pd_address_in_code() {

View File

@ -89,6 +89,7 @@ nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
ret_type); ret_type);
#else #else
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
#endif // SHARK #endif // SHARK
} }
@ -99,6 +100,7 @@ int Deoptimization::last_frame_adjust(int callee_parameters,
uint SharedRuntime::out_preserve_stack_slots() { uint SharedRuntime::out_preserve_stack_slots() {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }
JRT_LEAF(void, zero_stub()) JRT_LEAF(void, zero_stub())
@ -135,4 +137,5 @@ int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
VMRegPair *regs, VMRegPair *regs,
int total_args_passed) { int total_args_passed) {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }

View File

@ -39,16 +39,20 @@
VtableStub* VtableStubs::create_vtable_stub(int vtable_index) { VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
VtableStub* VtableStubs::create_itable_stub(int vtable_index) { VtableStub* VtableStubs::create_itable_stub(int vtable_index) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
int VtableStub::pd_code_size_limit(bool is_vtable_stub) { int VtableStub::pd_code_size_limit(bool is_vtable_stub) {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }
int VtableStub::pd_code_alignment() { int VtableStub::pd_code_alignment() {
ShouldNotCallThis(); ShouldNotCallThis();
return 0;
} }

View File

@ -715,6 +715,7 @@ JVM_handle_bsd_signal(int sig,
err.report_and_die(); err.report_and_die();
ShouldNotReachHere(); ShouldNotReachHere();
return false;
} }
// From solaris_i486.s ported to bsd_i486.s // From solaris_i486.s ported to bsd_i486.s

View File

@ -66,6 +66,7 @@ address os::current_stack_pointer() {
frame os::get_sender_for_C_frame(frame* fr) { frame os::get_sender_for_C_frame(frame* fr) {
ShouldNotCallThis(); ShouldNotCallThis();
return frame();
} }
frame os::current_frame() { frame os::current_frame() {
@ -103,16 +104,19 @@ void os::initialize_thread(Thread* thr) {
address os::Bsd::ucontext_get_pc(ucontext_t* uc) { address os::Bsd::ucontext_get_pc(ucontext_t* uc) {
ShouldNotCallThis(); ShouldNotCallThis();
return NULL;
} }
ExtendedPC os::fetch_frame_from_context(void* ucVoid, ExtendedPC os::fetch_frame_from_context(void* ucVoid,
intptr_t** ret_sp, intptr_t** ret_sp,
intptr_t** ret_fp) { intptr_t** ret_fp) {
ShouldNotCallThis(); ShouldNotCallThis();
return ExtendedPC();
} }
frame os::fetch_frame_from_context(void* ucVoid) { frame os::fetch_frame_from_context(void* ucVoid) {
ShouldNotCallThis(); ShouldNotCallThis();
return frame();
} }
extern "C" JNIEXPORT int extern "C" JNIEXPORT int
@ -240,6 +244,7 @@ JVM_handle_bsd_signal(int sig,
sprintf(buf, fmt, sig, info->si_addr); sprintf(buf, fmt, sig, info->si_addr);
fatal(buf); fatal(buf);
return false;
} }
void os::Bsd::init_thread_fpu_state(void) { void os::Bsd::init_thread_fpu_state(void) {
@ -373,17 +378,7 @@ void os::print_register_info(outputStream *st, void *context) {
extern "C" { extern "C" {
int SpinPause() { int SpinPause() {
} return 1;
int SafeFetch32(int *adr, int errValue) {
int value = errValue;
value = *adr;
return value;
}
intptr_t SafeFetchN(intptr_t *adr, intptr_t errValue) {
intptr_t value = errValue;
value = *adr;
return value;
} }
void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) { void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) {

View File

@ -110,6 +110,7 @@
void* ucontext, void* ucontext,
bool isInJava) { bool isInJava) {
ShouldNotCallThis(); ShouldNotCallThis();
return false;
} }
// These routines are only used on cpu architectures that // These routines are only used on cpu architectures that

View File

@ -747,6 +747,7 @@ void Method::set_not_compilable(int comp_level, bool report, const char* reason)
set_not_c2_compilable(); set_not_c2_compilable();
} }
CompilationPolicy::policy()->disable_compilation(this); CompilationPolicy::policy()->disable_compilation(this);
assert(!CompilationPolicy::can_be_compiled(this, comp_level), "sanity check");
} }
bool Method::is_not_osr_compilable(int comp_level) const { bool Method::is_not_osr_compilable(int comp_level) const {
@ -773,6 +774,7 @@ void Method::set_not_osr_compilable(int comp_level, bool report, const char* rea
set_not_c2_osr_compilable(); set_not_c2_osr_compilable();
} }
CompilationPolicy::policy()->disable_compilation(this); CompilationPolicy::policy()->disable_compilation(this);
assert(!CompilationPolicy::can_be_osr_compiled(this, comp_level), "sanity check");
} }
// Revert to using the interpreter and clear out the nmethod // Revert to using the interpreter and clear out the nmethod

View File

@ -35,10 +35,6 @@
#include "opto/rootnode.hpp" #include "opto/rootnode.hpp"
#include "utilities/copy.hpp" #include "utilities/copy.hpp"
// Optimization - Graph Style
//-----------------------------------------------------------------------------
void Block_Array::grow( uint i ) { void Block_Array::grow( uint i ) {
assert(i >= Max(), "must be an overflow"); assert(i >= Max(), "must be an overflow");
debug_only(_limit = i+1); debug_only(_limit = i+1);
@ -54,7 +50,6 @@ void Block_Array::grow( uint i ) {
Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) ); Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
} }
//=============================================================================
void Block_List::remove(uint i) { void Block_List::remove(uint i) {
assert(i < _cnt, "index out of bounds"); assert(i < _cnt, "index out of bounds");
Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*))); Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
@ -76,8 +71,6 @@ void Block_List::print() {
} }
#endif #endif
//=============================================================================
uint Block::code_alignment() { uint Block::code_alignment() {
// Check for Root block // Check for Root block
if (_pre_order == 0) return CodeEntryAlignment; if (_pre_order == 0) return CodeEntryAlignment;
@ -113,7 +106,6 @@ uint Block::compute_loop_alignment() {
return unit_sz; // no particular alignment return unit_sz; // no particular alignment
} }
//-----------------------------------------------------------------------------
// Compute the size of first 'inst_cnt' instructions in this block. // Compute the size of first 'inst_cnt' instructions in this block.
// Return the number of instructions left to compute if the block has // Return the number of instructions left to compute if the block has
// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size // less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
@ -138,7 +130,6 @@ uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
return inst_cnt; return inst_cnt;
} }
//-----------------------------------------------------------------------------
uint Block::find_node( const Node *n ) const { uint Block::find_node( const Node *n ) const {
for( uint i = 0; i < _nodes.size(); i++ ) { for( uint i = 0; i < _nodes.size(); i++ ) {
if( _nodes[i] == n ) if( _nodes[i] == n )
@ -153,7 +144,6 @@ void Block::find_remove( const Node *n ) {
_nodes.remove(find_node(n)); _nodes.remove(find_node(n));
} }
//------------------------------is_Empty---------------------------------------
// Return empty status of a block. Empty blocks contain only the head, other // Return empty status of a block. Empty blocks contain only the head, other
// ideal nodes, and an optional trailing goto. // ideal nodes, and an optional trailing goto.
int Block::is_Empty() const { int Block::is_Empty() const {
@ -192,7 +182,6 @@ int Block::is_Empty() const {
return not_empty; return not_empty;
} }
//------------------------------has_uncommon_code------------------------------
// Return true if the block's code implies that it is likely to be // Return true if the block's code implies that it is likely to be
// executed infrequently. Check to see if the block ends in a Halt or // executed infrequently. Check to see if the block ends in a Halt or
// a low probability call. // a low probability call.
@ -218,7 +207,6 @@ bool Block::has_uncommon_code() const {
return op == Op_Halt; return op == Op_Halt;
} }
//------------------------------is_uncommon------------------------------------
// True if block is low enough frequency or guarded by a test which // True if block is low enough frequency or guarded by a test which
// mostly does not go here. // mostly does not go here.
bool Block::is_uncommon(PhaseCFG* cfg) const { bool Block::is_uncommon(PhaseCFG* cfg) const {
@ -271,7 +259,6 @@ bool Block::is_uncommon(PhaseCFG* cfg) const {
return false; return false;
} }
//------------------------------dump-------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void Block::dump_bidx(const Block* orig, outputStream* st) const { void Block::dump_bidx(const Block* orig, outputStream* st) const {
if (_pre_order) st->print("B%d",_pre_order); if (_pre_order) st->print("B%d",_pre_order);
@ -364,13 +351,12 @@ void Block::dump(const PhaseCFG* cfg) const {
} }
#endif #endif
//=============================================================================
//------------------------------PhaseCFG---------------------------------------
PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher) PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
: Phase(CFG) : Phase(CFG)
, _block_arena(arena) , _block_arena(arena)
, _node_to_block_mapping(arena)
, _root(root) , _root(root)
, _matcher(matcher)
, _node_to_block_mapping(arena)
, _node_latency(NULL) , _node_latency(NULL)
#ifndef PRODUCT #ifndef PRODUCT
, _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining")) , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
@ -390,11 +376,10 @@ PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
_goto->set_req(0,_goto); _goto->set_req(0,_goto);
// Build the CFG in Reverse Post Order // Build the CFG in Reverse Post Order
_num_blocks = build_cfg(); _number_of_blocks = build_cfg();
_broot = get_block_for_node(_root); _root_block = get_block_for_node(_root);
} }
//------------------------------build_cfg--------------------------------------
// Build a proper looking CFG. Make every block begin with either a StartNode // Build a proper looking CFG. Make every block begin with either a StartNode
// or a RegionNode. Make every block end with either a Goto, If or Return. // or a RegionNode. Make every block end with either a Goto, If or Return.
// The RootNode both starts and ends it's own block. Do this with a recursive // The RootNode both starts and ends it's own block. Do this with a recursive
@ -496,13 +481,12 @@ uint PhaseCFG::build_cfg() {
return sum; return sum;
} }
//------------------------------insert_goto_at---------------------------------
// Inserts a goto & corresponding basic block between // Inserts a goto & corresponding basic block between
// block[block_no] and its succ_no'th successor block // block[block_no] and its succ_no'th successor block
void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) { void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
// get block with block_no // get block with block_no
assert(block_no < _num_blocks, "illegal block number"); assert(block_no < number_of_blocks(), "illegal block number");
Block* in = _blocks[block_no]; Block* in = get_block(block_no);
// get successor block succ_no // get successor block succ_no
assert(succ_no < in->_num_succs, "illegal successor number"); assert(succ_no < in->_num_succs, "illegal successor number");
Block* out = in->_succs[succ_no]; Block* out = in->_succs[succ_no];
@ -537,11 +521,9 @@ void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
// Set the frequency of the new block // Set the frequency of the new block
block->_freq = freq; block->_freq = freq;
// add new basic block to basic block list // add new basic block to basic block list
_blocks.insert(block_no + 1, block); add_block_at(block_no + 1, block);
_num_blocks++;
} }
//------------------------------no_flip_branch---------------------------------
// Does this block end in a multiway branch that cannot have the default case // Does this block end in a multiway branch that cannot have the default case
// flipped for another case? // flipped for another case?
static bool no_flip_branch( Block *b ) { static bool no_flip_branch( Block *b ) {
@ -560,7 +542,6 @@ static bool no_flip_branch( Block *b ) {
return false; return false;
} }
//------------------------------convert_NeverBranch_to_Goto--------------------
// Check for NeverBranch at block end. This needs to become a GOTO to the // Check for NeverBranch at block end. This needs to become a GOTO to the
// true target. NeverBranch are treated as a conditional branch that always // true target. NeverBranch are treated as a conditional branch that always
// goes the same direction for most of the optimizer and are used to give a // goes the same direction for most of the optimizer and are used to give a
@ -598,7 +579,6 @@ void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
dead->_nodes[k]->del_req(j); dead->_nodes[k]->del_req(j);
} }
//------------------------------move_to_next-----------------------------------
// Helper function to move block bx to the slot following b_index. Return // Helper function to move block bx to the slot following b_index. Return
// true if the move is successful, otherwise false // true if the move is successful, otherwise false
bool PhaseCFG::move_to_next(Block* bx, uint b_index) { bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
@ -606,20 +586,22 @@ bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
// Return false if bx is already scheduled. // Return false if bx is already scheduled.
uint bx_index = bx->_pre_order; uint bx_index = bx->_pre_order;
if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) { if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
return false; return false;
} }
// Find the current index of block bx on the block list // Find the current index of block bx on the block list
bx_index = b_index + 1; bx_index = b_index + 1;
while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++; while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
assert(_blocks[bx_index] == bx, "block not found"); bx_index++;
}
assert(get_block(bx_index) == bx, "block not found");
// If the previous block conditionally falls into bx, return false, // If the previous block conditionally falls into bx, return false,
// because moving bx will create an extra jump. // because moving bx will create an extra jump.
for(uint k = 1; k < bx->num_preds(); k++ ) { for(uint k = 1; k < bx->num_preds(); k++ ) {
Block* pred = get_block_for_node(bx->pred(k)); Block* pred = get_block_for_node(bx->pred(k));
if (pred == _blocks[bx_index-1]) { if (pred == get_block(bx_index - 1)) {
if (pred->_num_succs != 1) { if (pred->_num_succs != 1) {
return false; return false;
} }
@ -632,7 +614,6 @@ bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
return true; return true;
} }
//------------------------------move_to_end------------------------------------
// Move empty and uncommon blocks to the end. // Move empty and uncommon blocks to the end.
void PhaseCFG::move_to_end(Block *b, uint i) { void PhaseCFG::move_to_end(Block *b, uint i) {
int e = b->is_Empty(); int e = b->is_Empty();
@ -650,31 +631,31 @@ void PhaseCFG::move_to_end(Block *b, uint i) {
_blocks.push(b); _blocks.push(b);
} }
//---------------------------set_loop_alignment--------------------------------
// Set loop alignment for every block // Set loop alignment for every block
void PhaseCFG::set_loop_alignment() { void PhaseCFG::set_loop_alignment() {
uint last = _num_blocks; uint last = number_of_blocks();
assert( _blocks[0] == _broot, "" ); assert(get_block(0) == get_root_block(), "");
for (uint i = 1; i < last; i++) { for (uint i = 1; i < last; i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
if (b->head()->is_Loop()) { if (block->head()->is_Loop()) {
b->set_loop_alignment(b); block->set_loop_alignment(block);
} }
} }
} }
//-----------------------------remove_empty------------------------------------
// Make empty basic blocks to be "connector" blocks, Move uncommon blocks // Make empty basic blocks to be "connector" blocks, Move uncommon blocks
// to the end. // to the end.
void PhaseCFG::remove_empty() { void PhaseCFG::remove_empty_blocks() {
// Move uncommon blocks to the end // Move uncommon blocks to the end
uint last = _num_blocks; uint last = number_of_blocks();
assert( _blocks[0] == _broot, "" ); assert(get_block(0) == get_root_block(), "");
for (uint i = 1; i < last; i++) { for (uint i = 1; i < last; i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
if (b->is_connector()) break; if (block->is_connector()) {
break;
}
// Check for NeverBranch at block end. This needs to become a GOTO to the // Check for NeverBranch at block end. This needs to become a GOTO to the
// true target. NeverBranch are treated as a conditional branch that // true target. NeverBranch are treated as a conditional branch that
@ -682,108 +663,111 @@ void PhaseCFG::remove_empty() {
// to give a fake exit path to infinite loops. At this late stage they // to give a fake exit path to infinite loops. At this late stage they
// need to turn into Goto's so that when you enter the infinite loop you // need to turn into Goto's so that when you enter the infinite loop you
// indeed hang. // indeed hang.
if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch ) if (block->_nodes[block->end_idx()]->Opcode() == Op_NeverBranch) {
convert_NeverBranch_to_Goto(b); convert_NeverBranch_to_Goto(block);
}
// Look for uncommon blocks and move to end. // Look for uncommon blocks and move to end.
if (!C->do_freq_based_layout()) { if (!C->do_freq_based_layout()) {
if (b->is_uncommon(this)) { if (block->is_uncommon(this)) {
move_to_end(b, i); move_to_end(block, i);
last--; // No longer check for being uncommon! last--; // No longer check for being uncommon!
if( no_flip_branch(b) ) { // Fall-thru case must follow? if (no_flip_branch(block)) { // Fall-thru case must follow?
b = _blocks[i]; // Find the fall-thru block // Find the fall-thru block
move_to_end(b, i); block = get_block(i);
move_to_end(block, i);
last--; last--;
} }
i--; // backup block counter post-increment // backup block counter post-increment
i--;
} }
} }
} }
// Move empty blocks to the end // Move empty blocks to the end
last = _num_blocks; last = number_of_blocks();
for (uint i = 1; i < last; i++) { for (uint i = 1; i < last; i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
if (b->is_Empty() != Block::not_empty) { if (block->is_Empty() != Block::not_empty) {
move_to_end(b, i); move_to_end(block, i);
last--; last--;
i--; i--;
} }
} // End of for all blocks } // End of for all blocks
} }
//-----------------------------fixup_flow--------------------------------------
// Fix up the final control flow for basic blocks. // Fix up the final control flow for basic blocks.
void PhaseCFG::fixup_flow() { void PhaseCFG::fixup_flow() {
// Fixup final control flow for the blocks. Remove jump-to-next // Fixup final control flow for the blocks. Remove jump-to-next
// block. If neither arm of a IF follows the conditional branch, we // block. If neither arm of a IF follows the conditional branch, we
// have to add a second jump after the conditional. We place the // have to add a second jump after the conditional. We place the
// TRUE branch target in succs[0] for both GOTOs and IFs. // TRUE branch target in succs[0] for both GOTOs and IFs.
for (uint i=0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
b->_pre_order = i; // turn pre-order into block-index block->_pre_order = i; // turn pre-order into block-index
// Connector blocks need no further processing. // Connector blocks need no further processing.
if (b->is_connector()) { if (block->is_connector()) {
assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(), assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
"All connector blocks should sink to the end");
continue; continue;
} }
assert(b->is_Empty() != Block::completely_empty, assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
"Empty blocks should be connectors");
Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL; Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
Block *bs0 = b->non_connector_successor(0); Block* bs0 = block->non_connector_successor(0);
// Check for multi-way branches where I cannot negate the test to // Check for multi-way branches where I cannot negate the test to
// exchange the true and false targets. // exchange the true and false targets.
if( no_flip_branch( b ) ) { if (no_flip_branch(block)) {
// Find fall through case - if must fall into its target // Find fall through case - if must fall into its target
int branch_idx = b->_nodes.size() - b->_num_succs; int branch_idx = block->_nodes.size() - block->_num_succs;
for (uint j2 = 0; j2 < b->_num_succs; j2++) { for (uint j2 = 0; j2 < block->_num_succs; j2++) {
const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj(); const ProjNode* p = block->_nodes[branch_idx + j2]->as_Proj();
if (p->_con == 0) { if (p->_con == 0) {
// successor j2 is fall through case // successor j2 is fall through case
if (b->non_connector_successor(j2) != bnext) { if (block->non_connector_successor(j2) != bnext) {
// but it is not the next block => insert a goto // but it is not the next block => insert a goto
insert_goto_at(i, j2); insert_goto_at(i, j2);
} }
// Put taken branch in slot 0 // Put taken branch in slot 0
if( j2 == 0 && b->_num_succs == 2) { if (j2 == 0 && block->_num_succs == 2) {
// Flip targets in succs map // Flip targets in succs map
Block *tbs0 = b->_succs[0]; Block *tbs0 = block->_succs[0];
Block *tbs1 = b->_succs[1]; Block *tbs1 = block->_succs[1];
b->_succs.map( 0, tbs1 ); block->_succs.map(0, tbs1);
b->_succs.map( 1, tbs0 ); block->_succs.map(1, tbs0);
} }
break; break;
} }
} }
// Remove all CatchProjs
for (uint j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
} else if (b->_num_succs == 1) { // Remove all CatchProjs
for (uint j = 0; j < block->_num_succs; j++) {
block->_nodes.pop();
}
} else if (block->_num_succs == 1) {
// Block ends in a Goto? // Block ends in a Goto?
if (bnext == bs0) { if (bnext == bs0) {
// We fall into next block; remove the Goto // We fall into next block; remove the Goto
b->_nodes.pop(); block->_nodes.pop();
} }
} else if( b->_num_succs == 2 ) { // Block ends in a If? } else if(block->_num_succs == 2) { // Block ends in a If?
// Get opcode of 1st projection (matches _succs[0]) // Get opcode of 1st projection (matches _succs[0])
// Note: Since this basic block has 2 exits, the last 2 nodes must // Note: Since this basic block has 2 exits, the last 2 nodes must
// be projections (in any order), the 3rd last node must be // be projections (in any order), the 3rd last node must be
// the IfNode (we have excluded other 2-way exits such as // the IfNode (we have excluded other 2-way exits such as
// CatchNodes already). // CatchNodes already).
MachNode *iff = b->_nodes[b->_nodes.size()-3]->as_Mach(); MachNode* iff = block->_nodes[block->_nodes.size() - 3]->as_Mach();
ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj(); ProjNode* proj0 = block->_nodes[block->_nodes.size() - 2]->as_Proj();
ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj(); ProjNode* proj1 = block->_nodes[block->_nodes.size() - 1]->as_Proj();
// Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1]. // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0"); assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1"); assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
Block *bs1 = b->non_connector_successor(1); Block* bs1 = block->non_connector_successor(1);
// Check for neither successor block following the current // Check for neither successor block following the current
// block ending in a conditional. If so, move one of the // block ending in a conditional. If so, move one of the
@ -826,12 +810,14 @@ void PhaseCFG::fixup_flow() {
// succs[1]. // succs[1].
if (bnext == bs0) { if (bnext == bs0) {
// Fall-thru case in succs[0], so flip targets in succs map // Fall-thru case in succs[0], so flip targets in succs map
Block *tbs0 = b->_succs[0]; Block* tbs0 = block->_succs[0];
Block *tbs1 = b->_succs[1]; Block* tbs1 = block->_succs[1];
b->_succs.map( 0, tbs1 ); block->_succs.map(0, tbs1);
b->_succs.map( 1, tbs0 ); block->_succs.map(1, tbs0);
// Flip projection for each target // Flip projection for each target
{ ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; } ProjNode* tmp = proj0;
proj0 = proj1;
proj1 = tmp;
} else if(bnext != bs1) { } else if(bnext != bs1) {
// Need a double-branch // Need a double-branch
@ -847,8 +833,8 @@ void PhaseCFG::fixup_flow() {
iff->as_MachIf()->negate(); iff->as_MachIf()->negate();
} }
b->_nodes.pop(); // Remove IfFalse & IfTrue projections block->_nodes.pop(); // Remove IfFalse & IfTrue projections
b->_nodes.pop(); block->_nodes.pop();
} else { } else {
// Multi-exit block, e.g. a switch statement // Multi-exit block, e.g. a switch statement
@ -858,7 +844,6 @@ void PhaseCFG::fixup_flow() {
} }
//------------------------------dump-------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const { void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
const Node *x = end->is_block_proj(); const Node *x = end->is_block_proj();
@ -884,10 +869,11 @@ void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited ) const {
} }
void PhaseCFG::dump( ) const { void PhaseCFG::dump( ) const {
tty->print("\n--- CFG --- %d BBs\n",_num_blocks); tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
if (_blocks.size()) { // Did we do basic-block layout? if (_blocks.size()) { // Did we do basic-block layout?
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
_blocks[i]->dump(this); const Block* block = get_block(i);
block->dump(this);
} }
} else { // Else do it with a DFS } else { // Else do it with a DFS
VectorSet visited(_block_arena); VectorSet visited(_block_arena);
@ -896,9 +882,10 @@ void PhaseCFG::dump( ) const {
} }
void PhaseCFG::dump_headers() { void PhaseCFG::dump_headers() {
for( uint i = 0; i < _num_blocks; i++ ) { for (uint i = 0; i < number_of_blocks(); i++) {
if (_blocks[i]) { Block* block = get_block(i);
_blocks[i]->dump_head(this); if (block != NULL) {
block->dump_head(this);
} }
} }
} }
@ -906,17 +893,15 @@ void PhaseCFG::dump_headers() {
void PhaseCFG::verify() const { void PhaseCFG::verify() const {
#ifdef ASSERT #ifdef ASSERT
// Verify sane CFG // Verify sane CFG
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
uint cnt = b->_nodes.size(); uint cnt = block->_nodes.size();
uint j; uint j;
for (j = 0; j < cnt; j++) { for (j = 0; j < cnt; j++) {
Node *n = b->_nodes[j]; Node *n = block->_nodes[j];
assert(get_block_for_node(n) == b, ""); assert(get_block_for_node(n) == block, "");
if (j >= 1 && n->is_Mach() && if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
n->as_Mach()->ideal_Opcode() == Op_CreateEx) { assert(j == 1 || block->_nodes[j-1]->is_Phi(), "CreateEx must be first instruction in block");
assert(j == 1 || b->_nodes[j-1]->is_Phi(),
"CreateEx must be first instruction in block");
} }
for (uint k = 0; k < n->req(); k++) { for (uint k = 0; k < n->req(); k++) {
Node *def = n->in(k); Node *def = n->in(k);
@ -926,8 +911,7 @@ void PhaseCFG::verify( ) const {
// Uses must follow their definition if they are at the same block. // Uses must follow their definition if they are at the same block.
// Mostly done to check that MachSpillCopy nodes are placed correctly // Mostly done to check that MachSpillCopy nodes are placed correctly
// when CreateEx node is moved in build_ifg_physical(). // when CreateEx node is moved in build_ifg_physical().
if (get_block_for_node(def) == b && if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
!(b->head()->is_Loop() && n->is_Phi()) &&
// See (+++) comment in reg_split.cpp // See (+++) comment in reg_split.cpp
!(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) { !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
bool is_loop = false; bool is_loop = false;
@ -939,29 +923,29 @@ void PhaseCFG::verify( ) const {
} }
} }
} }
assert(is_loop || b->find_node(def) < j, "uses must follow definitions"); assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
} }
} }
} }
} }
j = b->end_idx(); j = block->end_idx();
Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj(); Node* bp = (Node*)block->_nodes[block->_nodes.size() - 1]->is_block_proj();
assert(bp, "last instruction must be a block proj"); assert(bp, "last instruction must be a block proj");
assert( bp == b->_nodes[j], "wrong number of successors for this block" ); assert(bp == block->_nodes[j], "wrong number of successors for this block");
if (bp->is_Catch()) { if (bp->is_Catch()) {
while (b->_nodes[--j]->is_MachProj()) ; while (block->_nodes[--j]->is_MachProj()) {
assert(b->_nodes[j]->is_MachCall(), "CatchProj must follow call"); ;
}
assert(block->_nodes[j]->is_MachCall(), "CatchProj must follow call");
} else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) { } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
assert(b->_num_succs == 2, "Conditional branch must have two targets"); assert(block->_num_succs == 2, "Conditional branch must have two targets");
} }
} }
#endif #endif
} }
#endif #endif
//=============================================================================
//------------------------------UnionFind--------------------------------------
UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) { UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
Copy::zero_to_bytes( _indices, sizeof(uint)*max ); Copy::zero_to_bytes( _indices, sizeof(uint)*max );
} }
@ -986,7 +970,6 @@ void UnionFind::reset( uint max ) {
for( uint i=0; i<max; i++ ) map(i,i); for( uint i=0; i<max; i++ ) map(i,i);
} }
//------------------------------Find_compress----------------------------------
// Straight out of Tarjan's union-find algorithm // Straight out of Tarjan's union-find algorithm
uint UnionFind::Find_compress( uint idx ) { uint UnionFind::Find_compress( uint idx ) {
uint cur = idx; uint cur = idx;
@ -1006,7 +989,6 @@ uint UnionFind::Find_compress( uint idx ) {
return idx; return idx;
} }
//------------------------------Find_const-------------------------------------
// Like Find above, but no path compress, so bad asymptotic behavior // Like Find above, but no path compress, so bad asymptotic behavior
uint UnionFind::Find_const( uint idx ) const { uint UnionFind::Find_const( uint idx ) const {
if( idx == 0 ) return idx; // Ignore the zero idx if( idx == 0 ) return idx; // Ignore the zero idx
@ -1021,7 +1003,6 @@ uint UnionFind::Find_const( uint idx ) const {
return next; return next;
} }
//------------------------------Union------------------------------------------
// union 2 sets together. // union 2 sets together.
void UnionFind::Union( uint idx1, uint idx2 ) { void UnionFind::Union( uint idx1, uint idx2 ) {
uint src = Find(idx1); uint src = Find(idx1);
@ -1070,9 +1051,6 @@ void CFGEdge::dump( ) const {
} }
#endif #endif
//=============================================================================
//------------------------------edge_order-------------------------------------
// Comparison function for edges // Comparison function for edges
static int edge_order(CFGEdge **e0, CFGEdge **e1) { static int edge_order(CFGEdge **e0, CFGEdge **e1) {
float freq0 = (*e0)->freq(); float freq0 = (*e0)->freq();
@ -1087,7 +1065,6 @@ static int edge_order(CFGEdge **e0, CFGEdge **e1) {
return dist1 - dist0; return dist1 - dist0;
} }
//------------------------------trace_frequency_order--------------------------
// Comparison function for edges // Comparison function for edges
extern "C" int trace_frequency_order(const void *p0, const void *p1) { extern "C" int trace_frequency_order(const void *p0, const void *p1) {
Trace *tr0 = *(Trace **) p0; Trace *tr0 = *(Trace **) p0;
@ -1113,17 +1090,15 @@ extern "C" int trace_frequency_order(const void *p0, const void *p1) {
return diff; return diff;
} }
//------------------------------find_edges-------------------------------------
// Find edges of interest, i.e, those which can fall through. Presumes that // Find edges of interest, i.e, those which can fall through. Presumes that
// edges which don't fall through are of low frequency and can be generally // edges which don't fall through are of low frequency and can be generally
// ignored. Initialize the list of traces. // ignored. Initialize the list of traces.
void PhaseBlockLayout::find_edges() void PhaseBlockLayout::find_edges() {
{
// Walk the blocks, creating edges and Traces // Walk the blocks, creating edges and Traces
uint i; uint i;
Trace *tr = NULL; Trace *tr = NULL;
for (i = 0; i < _cfg._num_blocks; i++) { for (i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* b = _cfg.get_block(i);
tr = new Trace(b, next, prev); tr = new Trace(b, next, prev);
traces[tr->id()] = tr; traces[tr->id()] = tr;
@ -1147,7 +1122,7 @@ void PhaseBlockLayout::find_edges()
if (n->num_preds() != 1) break; if (n->num_preds() != 1) break;
i++; i++;
assert(n = _cfg._blocks[i], "expecting next block"); assert(n = _cfg.get_block(i), "expecting next block");
tr->append(n); tr->append(n);
uf->map(n->_pre_order, tr->id()); uf->map(n->_pre_order, tr->id());
traces[n->_pre_order] = NULL; traces[n->_pre_order] = NULL;
@ -1171,8 +1146,8 @@ void PhaseBlockLayout::find_edges()
} }
// Group connector blocks into one trace // Group connector blocks into one trace
for (i++; i < _cfg._num_blocks; i++) { for (i++; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block *b = _cfg.get_block(i);
assert(b->is_connector(), "connector blocks at the end"); assert(b->is_connector(), "connector blocks at the end");
tr->append(b); tr->append(b);
uf->map(b->_pre_order, tr->id()); uf->map(b->_pre_order, tr->id());
@ -1180,10 +1155,8 @@ void PhaseBlockLayout::find_edges()
} }
} }
//------------------------------union_traces----------------------------------
// Union two traces together in uf, and null out the trace in the list // Union two traces together in uf, and null out the trace in the list
void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
{
uint old_id = old_trace->id(); uint old_id = old_trace->id();
uint updated_id = updated_trace->id(); uint updated_id = updated_trace->id();
@ -1207,10 +1180,8 @@ void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace)
traces[hi_id] = NULL; traces[hi_id] = NULL;
} }
//------------------------------grow_traces-------------------------------------
// Append traces together via the most frequently executed edges // Append traces together via the most frequently executed edges
void PhaseBlockLayout::grow_traces() void PhaseBlockLayout::grow_traces() {
{
// Order the edges, and drive the growth of Traces via the most // Order the edges, and drive the growth of Traces via the most
// frequently executed edges. // frequently executed edges.
edges->sort(edge_order); edges->sort(edge_order);
@ -1252,11 +1223,9 @@ void PhaseBlockLayout::grow_traces()
} }
} }
//------------------------------merge_traces-----------------------------------
// Embed one trace into another, if the fork or join points are sufficiently // Embed one trace into another, if the fork or join points are sufficiently
// balanced. // balanced.
void PhaseBlockLayout::merge_traces(bool fall_thru_only) void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
{
// Walk the edge list a another time, looking at unprocessed edges. // Walk the edge list a another time, looking at unprocessed edges.
// Fold in diamonds // Fold in diamonds
for (int i = 0; i < edges->length(); i++) { for (int i = 0; i < edges->length(); i++) {
@ -1310,7 +1279,7 @@ void PhaseBlockLayout::merge_traces(bool fall_thru_only)
src_trace->insert_after(src_block, targ_trace); src_trace->insert_after(src_block, targ_trace);
union_traces(src_trace, targ_trace); union_traces(src_trace, targ_trace);
} else if (src_at_tail) { } else if (src_at_tail) {
if (src_trace != trace(_cfg._broot)) { if (src_trace != trace(_cfg.get_root_block())) {
e->set_state(CFGEdge::connected); e->set_state(CFGEdge::connected);
targ_trace->insert_before(targ_block, src_trace); targ_trace->insert_before(targ_block, src_trace);
union_traces(targ_trace, src_trace); union_traces(targ_trace, src_trace);
@ -1319,7 +1288,7 @@ void PhaseBlockLayout::merge_traces(bool fall_thru_only)
} else if (e->state() == CFGEdge::open) { } else if (e->state() == CFGEdge::open) {
// Append traces, even without a fall-thru connection. // Append traces, even without a fall-thru connection.
// But leave root entry at the beginning of the block list. // But leave root entry at the beginning of the block list.
if (targ_trace != trace(_cfg._broot)) { if (targ_trace != trace(_cfg.get_root_block())) {
e->set_state(CFGEdge::connected); e->set_state(CFGEdge::connected);
src_trace->append(targ_trace); src_trace->append(targ_trace);
union_traces(src_trace, targ_trace); union_traces(src_trace, targ_trace);
@ -1328,11 +1297,9 @@ void PhaseBlockLayout::merge_traces(bool fall_thru_only)
} }
} }
//----------------------------reorder_traces-----------------------------------
// Order the sequence of the traces in some desirable way, and fixup the // Order the sequence of the traces in some desirable way, and fixup the
// jumps at the end of each block. // jumps at the end of each block.
void PhaseBlockLayout::reorder_traces(int count) void PhaseBlockLayout::reorder_traces(int count) {
{
ResourceArea *area = Thread::current()->resource_area(); ResourceArea *area = Thread::current()->resource_area();
Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count); Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
Block_List worklist; Block_List worklist;
@ -1347,15 +1314,14 @@ void PhaseBlockLayout::reorder_traces(int count)
} }
// The entry block should be first on the new trace list. // The entry block should be first on the new trace list.
Trace *tr = trace(_cfg._broot); Trace *tr = trace(_cfg.get_root_block());
assert(tr == new_traces[0], "entry trace misplaced"); assert(tr == new_traces[0], "entry trace misplaced");
// Sort the new trace list by frequency // Sort the new trace list by frequency
qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order); qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
// Patch up the successor blocks // Patch up the successor blocks
_cfg._blocks.reset(); _cfg.clear_blocks();
_cfg._num_blocks = 0;
for (int i = 0; i < new_count; i++) { for (int i = 0; i < new_count; i++) {
Trace *tr = new_traces[i]; Trace *tr = new_traces[i];
if (tr != NULL) { if (tr != NULL) {
@ -1364,17 +1330,15 @@ void PhaseBlockLayout::reorder_traces(int count)
} }
} }
//------------------------------PhaseBlockLayout-------------------------------
// Order basic blocks based on frequency // Order basic blocks based on frequency
PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) : PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
Phase(BlockLayout), : Phase(BlockLayout)
_cfg(cfg) , _cfg(cfg) {
{
ResourceMark rm; ResourceMark rm;
ResourceArea *area = Thread::current()->resource_area(); ResourceArea *area = Thread::current()->resource_area();
// List of traces // List of traces
int size = _cfg._num_blocks + 1; int size = _cfg.number_of_blocks() + 1;
traces = NEW_ARENA_ARRAY(area, Trace *, size); traces = NEW_ARENA_ARRAY(area, Trace *, size);
memset(traces, 0, size*sizeof(Trace*)); memset(traces, 0, size*sizeof(Trace*));
next = NEW_ARENA_ARRAY(area, Block *, size); next = NEW_ARENA_ARRAY(area, Block *, size);
@ -1407,11 +1371,10 @@ PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg) :
// Re-order all the remaining traces by frequency // Re-order all the remaining traces by frequency
reorder_traces(size); reorder_traces(size);
assert(_cfg._num_blocks >= (uint) (size - 1), "number of blocks can not shrink"); assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
} }
//------------------------------backedge---------------------------------------
// Edge e completes a loop in a trace. If the target block is head of the // Edge e completes a loop in a trace. If the target block is head of the
// loop, rotate the loop block so that the loop ends in a conditional branch. // loop, rotate the loop block so that the loop ends in a conditional branch.
bool Trace::backedge(CFGEdge *e) { bool Trace::backedge(CFGEdge *e) {
@ -1463,14 +1426,12 @@ bool Trace::backedge(CFGEdge *e) {
return loop_rotated; return loop_rotated;
} }
//------------------------------fixup_blocks-----------------------------------
// push blocks onto the CFG list // push blocks onto the CFG list
// ensure that blocks have the correct two-way branch sense // ensure that blocks have the correct two-way branch sense
void Trace::fixup_blocks(PhaseCFG &cfg) { void Trace::fixup_blocks(PhaseCFG &cfg) {
Block *last = last_block(); Block *last = last_block();
for (Block *b = first_block(); b != NULL; b = next(b)) { for (Block *b = first_block(); b != NULL; b = next(b)) {
cfg._blocks.push(b); cfg.add_block(b);
cfg._num_blocks++;
if (!b->is_connector()) { if (!b->is_connector()) {
int nfallthru = b->num_fall_throughs(); int nfallthru = b->num_fall_throughs();
if (b != last) { if (b != last) {

View File

@ -348,20 +348,77 @@ class Block : public CFGElement {
class PhaseCFG : public Phase { class PhaseCFG : public Phase {
friend class VMStructs; friend class VMStructs;
private: private:
// Root of whole program
RootNode* _root;
// The block containing the root node
Block* _root_block;
// List of basic blocks that are created during CFG creation
Block_List _blocks;
// Count of basic blocks
uint _number_of_blocks;
// Arena for the blocks to be stored in // Arena for the blocks to be stored in
Arena* _block_arena; Arena* _block_arena;
// The matcher for this compilation
Matcher& _matcher;
// Map nodes to owning basic block // Map nodes to owning basic block
Block_Array _node_to_block_mapping; Block_Array _node_to_block_mapping;
// Loop from the root
CFGLoop* _root_loop;
// Outmost loop frequency
float _outer_loop_frequency;
// Per node latency estimation, valid only during GCM
GrowableArray<uint>* _node_latency;
// Build a proper looking cfg. Return count of basic blocks // Build a proper looking cfg. Return count of basic blocks
uint build_cfg(); uint build_cfg();
// Perform DFS search. // Build the dominator tree so that we know where we can move instructions
void build_dominator_tree();
// Estimate block frequencies based on IfNode probabilities, so that we know where we want to move instructions
void estimate_block_frequency();
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
// Move nodes to ensure correctness from GVN and also try to move nodes out of loops.
void global_code_motion();
// Schedule Nodes early in their basic blocks.
bool schedule_early(VectorSet &visited, Node_List &roots);
// For each node, find the latest block it can be scheduled into
// and then select the cheapest block between the latest and earliest
// block to place the node.
void schedule_late(VectorSet &visited, Node_List &stack);
// Compute the (backwards) latency of a node from a single use
int latency_from_use(Node *n, const Node *def, Node *use);
// Compute the (backwards) latency of a node from the uses of this instruction
void partial_latency_of_defs(Node *n);
// Compute the instruction global latency with a backwards walk
void compute_latencies_backwards(VectorSet &visited, Node_List &stack);
// Pick a block between early and late that is a cheaper alternative
// to late. Helper for schedule_late.
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
// Perform a Depth First Search (DFS).
// Setup 'vertex' as DFS to vertex mapping. // Setup 'vertex' as DFS to vertex mapping.
// Setup 'semi' as vertex to DFS mapping. // Setup 'semi' as vertex to DFS mapping.
// Set 'parent' to DFS parent. // Set 'parent' to DFS parent.
uint DFS( Tarjan *tarjan ); uint do_DFS(Tarjan* tarjan, uint rpo_counter);
// Helper function to insert a node into a block // Helper function to insert a node into a block
void schedule_node_into_block( Node *n, Block *b ); void schedule_node_into_block( Node *n, Block *b );
@ -372,6 +429,7 @@ class PhaseCFG : public Phase {
void schedule_pinned_nodes( VectorSet &visited ); void schedule_pinned_nodes( VectorSet &visited );
// I'll need a few machine-specific GotoNodes. Clone from this one. // I'll need a few machine-specific GotoNodes. Clone from this one.
// Used when building the CFG and creating end nodes for blocks.
MachNode* _goto; MachNode* _goto;
Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false); Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
@ -380,17 +438,77 @@ class PhaseCFG : public Phase {
insert_anti_dependences(LCA, load, true); insert_anti_dependences(LCA, load, true);
} }
bool move_to_next(Block* bx, uint b_index);
void move_to_end(Block* bx, uint b_index);
void insert_goto_at(uint block_no, uint succ_no);
// Check for NeverBranch at block end. This needs to become a GOTO to the
// true target. NeverBranch are treated as a conditional branch that always
// goes the same direction for most of the optimizer and are used to give a
// fake exit path to infinite loops. At this late stage they need to turn
// into Goto's so that when you enter the infinite loop you indeed hang.
void convert_NeverBranch_to_Goto(Block *b);
CFGLoop* create_loop_tree();
#ifndef PRODUCT
bool _trace_opto_pipelining; // tracing flag
#endif
public: public:
PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher); PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher);
uint _num_blocks; // Count of basic blocks void set_latency_for_node(Node* node, int latency) {
Block_List _blocks; // List of basic blocks _node_latency->at_put_grow(node->_idx, latency);
RootNode *_root; // Root of whole program }
Block *_broot; // Basic block of root
uint _rpo_ctr;
CFGLoop* _root_loop;
float _outer_loop_freq; // Outmost loop frequency
uint get_latency_for_node(Node* node) {
return _node_latency->at_grow(node->_idx);
}
// Get the outer most frequency
float get_outer_loop_frequency() const {
return _outer_loop_frequency;
}
// Get the root node of the CFG
RootNode* get_root_node() const {
return _root;
}
// Get the block of the root node
Block* get_root_block() const {
return _root_block;
}
// Add a block at a position and moves the later ones one step
void add_block_at(uint pos, Block* block) {
_blocks.insert(pos, block);
_number_of_blocks++;
}
// Adds a block to the top of the block list
void add_block(Block* block) {
_blocks.push(block);
_number_of_blocks++;
}
// Clear the list of blocks
void clear_blocks() {
_blocks.reset();
_number_of_blocks = 0;
}
// Get the block at position pos in _blocks
Block* get_block(uint pos) const {
return _blocks[pos];
}
// Number of blocks
uint number_of_blocks() const {
return _number_of_blocks;
}
// set which block this node should reside in // set which block this node should reside in
void map_node_to_block(const Node* node, Block* block) { void map_node_to_block(const Node* node, Block* block) {
@ -412,71 +530,25 @@ class PhaseCFG : public Phase {
return (_node_to_block_mapping.lookup(node->_idx) != NULL); return (_node_to_block_mapping.lookup(node->_idx) != NULL);
} }
// Per node latency estimation, valid only during GCM
GrowableArray<uint> *_node_latency;
#ifndef PRODUCT
bool _trace_opto_pipelining; // tracing flag
#endif
#ifdef ASSERT #ifdef ASSERT
Unique_Node_List _raw_oops; Unique_Node_List _raw_oops;
#endif #endif
// Build dominators // Do global code motion by first building dominator tree and estimate block frequency
void Dominators(); // Returns true on success
bool do_global_code_motion();
// Estimate block frequencies based on IfNode probabilities
void Estimate_Block_Frequency();
// Global Code Motion. See Click's PLDI95 paper. Place Nodes in specific
// basic blocks; i.e. _node_to_block_mapping now maps _idx for all Nodes to some Block.
void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
// Compute the (backwards) latency of a node from the uses // Compute the (backwards) latency of a node from the uses
void latency_from_uses(Node *n); void latency_from_uses(Node *n);
// Compute the (backwards) latency of a node from a single use
int latency_from_use(Node *n, const Node *def, Node *use);
// Compute the (backwards) latency of a node from the uses of this instruction
void partial_latency_of_defs(Node *n);
// Schedule Nodes early in their basic blocks.
bool schedule_early(VectorSet &visited, Node_List &roots);
// For each node, find the latest block it can be scheduled into
// and then select the cheapest block between the latest and earliest
// block to place the node.
void schedule_late(VectorSet &visited, Node_List &stack);
// Pick a block between early and late that is a cheaper alternative
// to late. Helper for schedule_late.
Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
// Compute the instruction global latency with a backwards walk
void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
// Set loop alignment // Set loop alignment
void set_loop_alignment(); void set_loop_alignment();
// Remove empty basic blocks // Remove empty basic blocks
void remove_empty(); void remove_empty_blocks();
void fixup_flow(); void fixup_flow();
bool move_to_next(Block* bx, uint b_index);
void move_to_end(Block* bx, uint b_index);
void insert_goto_at(uint block_no, uint succ_no);
// Check for NeverBranch at block end. This needs to become a GOTO to the // Insert a node into a block at index and map the node to the block
// true target. NeverBranch are treated as a conditional branch that always
// goes the same direction for most of the optimizer and are used to give a
// fake exit path to infinite loops. At this late stage they need to turn
// into Goto's so that when you enter the infinite loop you indeed hang.
void convert_NeverBranch_to_Goto(Block *b);
CFGLoop* create_loop_tree();
// Insert a node into a block, and update the _bbs
void insert(Block *b, uint idx, Node *n) { void insert(Block *b, uint idx, Node *n) {
b->_nodes.insert( idx, n ); b->_nodes.insert( idx, n );
map_node_to_block(n, b); map_node_to_block(n, b);

View File

@ -87,7 +87,6 @@
// OptoReg::Bad for not-callee-saved. // OptoReg::Bad for not-callee-saved.
//------------------------------OopFlow----------------------------------------
// Structure to pass around // Structure to pass around
struct OopFlow : public ResourceObj { struct OopFlow : public ResourceObj {
short *_callees; // Array mapping register to callee-saved short *_callees; // Array mapping register to callee-saved
@ -119,7 +118,6 @@ struct OopFlow : public ResourceObj {
OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ); OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
}; };
//------------------------------compute_reach----------------------------------
// Given reaching-defs for this block start, compute it for this block end // Given reaching-defs for this block start, compute it for this block end
void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) { void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
@ -177,7 +175,6 @@ void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehas
} }
} }
//------------------------------merge------------------------------------------
// Merge the given flow into the 'this' flow // Merge the given flow into the 'this' flow
void OopFlow::merge( OopFlow *flow, int max_reg ) { void OopFlow::merge( OopFlow *flow, int max_reg ) {
assert( _b == NULL, "merging into a happy flow" ); assert( _b == NULL, "merging into a happy flow" );
@ -197,14 +194,12 @@ void OopFlow::merge( OopFlow *flow, int max_reg ) {
} }
//------------------------------clone------------------------------------------
void OopFlow::clone( OopFlow *flow, int max_size ) { void OopFlow::clone( OopFlow *flow, int max_size ) {
_b = flow->_b; _b = flow->_b;
memcpy( _callees, flow->_callees, sizeof(short)*max_size); memcpy( _callees, flow->_callees, sizeof(short)*max_size);
memcpy( _defs , flow->_defs , sizeof(Node*)*max_size); memcpy( _defs , flow->_defs , sizeof(Node*)*max_size);
} }
//------------------------------make-------------------------------------------
OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) { OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
short *callees = NEW_ARENA_ARRAY(A,short,max_size+1); short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1); Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1);
@ -215,7 +210,6 @@ OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
return flow; return flow;
} }
//------------------------------bit twiddlers----------------------------------
static int get_live_bit( int *live, int reg ) { static int get_live_bit( int *live, int reg ) {
return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); } return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); }
static void set_live_bit( int *live, int reg ) { static void set_live_bit( int *live, int reg ) {
@ -223,7 +217,6 @@ static void set_live_bit( int *live, int reg ) {
static void clr_live_bit( int *live, int reg ) { static void clr_live_bit( int *live, int reg ) {
live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); } live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
//------------------------------build_oop_map----------------------------------
// Build an oopmap from the current flow info // Build an oopmap from the current flow info
OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) { OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
int framesize = regalloc->_framesize; int framesize = regalloc->_framesize;
@ -412,19 +405,18 @@ OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, i
return omap; return omap;
} }
//------------------------------do_liveness------------------------------------
// Compute backwards liveness on registers // Compute backwards liveness on registers
static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) { static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
int *live = NEW_ARENA_ARRAY(A, int, (cfg->_num_blocks+1) * max_reg_ints); int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
int *tmp_live = &live[cfg->_num_blocks * max_reg_ints]; int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
Node *root = cfg->C->root(); Node* root = cfg->get_root_node();
// On CISC platforms, get the node representing the stack pointer that regalloc // On CISC platforms, get the node representing the stack pointer that regalloc
// used for spills // used for spills
Node *fp = NodeSentinel; Node *fp = NodeSentinel;
if (UseCISCSpill && root->req() > 1) { if (UseCISCSpill && root->req() > 1) {
fp = root->in(1)->in(TypeFunc::FramePtr); fp = root->in(1)->in(TypeFunc::FramePtr);
} }
memset( live, 0, cfg->_num_blocks * (max_reg_ints<<LogBytesPerInt) ); memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
// Push preds onto worklist // Push preds onto worklist
for (uint i = 1; i < root->req(); i++) { for (uint i = 1; i < root->req(); i++) {
Block* block = cfg->get_block_for_node(root->in(i)); Block* block = cfg->get_block_for_node(root->in(i));
@ -549,29 +541,32 @@ static void do_liveness( PhaseRegAlloc *regalloc, PhaseCFG *cfg, Block_List *wor
// Scan for any missing safepoints. Happens to infinite loops // Scan for any missing safepoints. Happens to infinite loops
// ala ZKM.jar // ala ZKM.jar
uint i; uint i;
for( i=1; i<cfg->_num_blocks; i++ ) { for (i = 1; i < cfg->number_of_blocks(); i++) {
Block *b = cfg->_blocks[i]; Block* block = cfg->get_block(i);
uint j; uint j;
for( j=1; j<b->_nodes.size(); j++ ) for (j = 1; j < block->_nodes.size(); j++) {
if( b->_nodes[j]->jvms() && if (block->_nodes[j]->jvms() && (*safehash)[block->_nodes[j]] == NULL) {
(*safehash)[b->_nodes[j]] == NULL )
break; break;
if( j<b->_nodes.size() ) break;
} }
if( i == cfg->_num_blocks ) }
if (j < block->_nodes.size()) {
break;
}
}
if (i == cfg->number_of_blocks()) {
break; // Got 'em all break; // Got 'em all
}
#ifndef PRODUCT #ifndef PRODUCT
if( PrintOpto && Verbose ) if( PrintOpto && Verbose )
tty->print_cr("retripping live calc"); tty->print_cr("retripping live calc");
#endif #endif
// Force the issue (expensively): recheck everybody // Force the issue (expensively): recheck everybody
for( i=1; i<cfg->_num_blocks; i++ ) for (i = 1; i < cfg->number_of_blocks(); i++) {
worklist->push(cfg->_blocks[i]); worklist->push(cfg->get_block(i));
}
}
} }
}
//------------------------------BuildOopMaps-----------------------------------
// Collect GC mask info - where are all the OOPs? // Collect GC mask info - where are all the OOPs?
void Compile::BuildOopMaps() { void Compile::BuildOopMaps() {
NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); ) NOT_PRODUCT( TracePhase t3("bldOopMaps", &_t_buildOopMaps, TimeCompiler); )
@ -592,12 +587,12 @@ void Compile::BuildOopMaps() {
OopFlow *free_list = NULL; // Free, unused OopFlow *free_list = NULL; // Free, unused
// Array mapping blocks to completed oopflows // Array mapping blocks to completed oopflows
OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->_num_blocks); OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, _cfg->number_of_blocks());
memset( flows, 0, _cfg->_num_blocks*sizeof(OopFlow*) ); memset( flows, 0, _cfg->number_of_blocks() * sizeof(OopFlow*) );
// Do the first block 'by hand' to prime the worklist // Do the first block 'by hand' to prime the worklist
Block *entry = _cfg->_blocks[1]; Block *entry = _cfg->get_block(1);
OopFlow *rootflow = OopFlow::make(A,max_reg,this); OopFlow *rootflow = OopFlow::make(A,max_reg,this);
// Initialize to 'bottom' (not 'top') // Initialize to 'bottom' (not 'top')
memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) ); memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
@ -623,7 +618,9 @@ void Compile::BuildOopMaps() {
Block *b = worklist.pop(); Block *b = worklist.pop();
// Ignore root block // Ignore root block
if( b == _cfg->_broot ) continue; if (b == _cfg->get_root_block()) {
continue;
}
// Block is already done? Happens if block has several predecessors, // Block is already done? Happens if block has several predecessors,
// he can get on the worklist more than once. // he can get on the worklist more than once.
if( flows[b->_pre_order] ) continue; if( flows[b->_pre_order] ) continue;

View File

@ -40,8 +40,6 @@
#include "opto/opcodes.hpp" #include "opto/opcodes.hpp"
#include "opto/rootnode.hpp" #include "opto/rootnode.hpp"
//=============================================================================
#ifndef PRODUCT #ifndef PRODUCT
void LRG::dump() const { void LRG::dump() const {
ttyLocker ttyl; ttyLocker ttyl;
@ -94,7 +92,6 @@ void LRG::dump( ) const {
} }
#endif #endif
//------------------------------score------------------------------------------
// Compute score from cost and area. Low score is best to spill. // Compute score from cost and area. Low score is best to spill.
static double raw_score( double cost, double area ) { static double raw_score( double cost, double area ) {
return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
@ -125,7 +122,6 @@ double LRG::score() const {
return score; return score;
} }
//------------------------------LRG_List---------------------------------------
LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) { LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
memset( _lidxs, 0, sizeof(uint)*max ); memset( _lidxs, 0, sizeof(uint)*max );
} }
@ -211,7 +207,6 @@ uint LiveRangeMap::find_const(uint lrg) const {
return next; return next;
} }
//------------------------------Chaitin----------------------------------------
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher) PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
: PhaseRegAlloc(unique, cfg, matcher, : PhaseRegAlloc(unique, cfg, matcher,
#ifndef PRODUCT #ifndef PRODUCT
@ -232,31 +227,31 @@ PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
{ {
NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); ) NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
_high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq); _high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency());
// Build a list of basic blocks, sorted by frequency // Build a list of basic blocks, sorted by frequency
_blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
// Experiment with sorting strategies to speed compilation // Experiment with sorting strategies to speed compilation
double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
Block **buckets[NUMBUCKS]; // Array of buckets Block **buckets[NUMBUCKS]; // Array of buckets
uint buckcnt[NUMBUCKS]; // Array of bucket counters uint buckcnt[NUMBUCKS]; // Array of bucket counters
double buckval[NUMBUCKS]; // Array of bucket value cutoffs double buckval[NUMBUCKS]; // Array of bucket value cutoffs
for (uint i = 0; i < NUMBUCKS; i++) { for (uint i = 0; i < NUMBUCKS; i++) {
buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg._num_blocks); buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks());
buckcnt[i] = 0; buckcnt[i] = 0;
// Bump by three orders of magnitude each time // Bump by three orders of magnitude each time
cutoff *= 0.001; cutoff *= 0.001;
buckval[i] = cutoff; buckval[i] = cutoff;
for (uint j = 0; j < _cfg._num_blocks; j++) { for (uint j = 0; j < _cfg.number_of_blocks(); j++) {
buckets[i][j] = NULL; buckets[i][j] = NULL;
} }
} }
// Sort blocks into buckets // Sort blocks into buckets
for (uint i = 0; i < _cfg._num_blocks; i++) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
for (uint j = 0; j < NUMBUCKS; j++) { for (uint j = 0; j < NUMBUCKS; j++) {
if ((j == NUMBUCKS - 1) || (_cfg._blocks[i]->_freq > buckval[j])) { if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) {
// Assign block to end of list for appropriate bucket // Assign block to end of list for appropriate bucket
buckets[j][buckcnt[j]++] = _cfg._blocks[i]; buckets[j][buckcnt[j]++] = _cfg.get_block(i);
break; // kick out of inner loop break; // kick out of inner loop
} }
} }
@ -269,10 +264,9 @@ PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
} }
} }
assert(blkcnt == _cfg._num_blocks, "Block array not totally filled"); assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled");
} }
//------------------------------Union------------------------------------------
// union 2 sets together. // union 2 sets together.
void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) { void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
uint src = _lrg_map.find(src_n); uint src = _lrg_map.find(src_n);
@ -285,7 +279,6 @@ void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) {
_lrg_map.uf_map(dst, src); _lrg_map.uf_map(dst, src);
} }
//------------------------------new_lrg----------------------------------------
void PhaseChaitin::new_lrg(const Node *x, uint lrg) { void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
// Make the Node->LRG mapping // Make the Node->LRG mapping
_lrg_map.extend(x->_idx,lrg); _lrg_map.extend(x->_idx,lrg);
@ -294,24 +287,28 @@ void PhaseChaitin::new_lrg(const Node *x, uint lrg) {
} }
bool PhaseChaitin::clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id) { int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) {
Block* bcon = _cfg.get_block_for_node(con); assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections");
uint cindex = bcon->find_node(con); DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); )
Node *con_next = bcon->_nodes[cindex+1]; int found_projs = 0;
if (con_next->in(0) != con || !con_next->is_MachProj()) { uint cnt = orig->outcnt();
return false; // No MachProj's follow for (uint i = 0; i < cnt; i++) {
} Node* proj = orig->raw_out(i);
if (proj->is_MachProj()) {
// Copy kills after the cloned constant assert(proj->outcnt() == 0, "only kill projections are expected here");
Node *kills = con_next->clone(); assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections");
found_projs++;
// Copy kill projections after the cloned node
Node* kills = proj->clone();
kills->set_req(0, copy); kills->set_req(0, copy);
b->_nodes.insert(idx, kills); b->_nodes.insert(idx++, kills);
_cfg.map_node_to_block(kills, b); _cfg.map_node_to_block(kills, b);
new_lrg(kills, max_lrg_id); new_lrg(kills, max_lrg_id++);
return true; }
}
return found_projs;
} }
//------------------------------compact----------------------------------------
// Renumber the live ranges to compact them. Makes the IFG smaller. // Renumber the live ranges to compact them. Makes the IFG smaller.
void PhaseChaitin::compact() { void PhaseChaitin::compact() {
// Current the _uf_map contains a series of short chains which are headed // Current the _uf_map contains a series of short chains which are headed
@ -677,20 +674,19 @@ void PhaseChaitin::Register_Allocate() {
C->set_indexSet_arena(NULL); // ResourceArea is at end of scope C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
} }
//------------------------------de_ssa-----------------------------------------
void PhaseChaitin::de_ssa() { void PhaseChaitin::de_ssa() {
// Set initial Names for all Nodes. Most Nodes get the virtual register // Set initial Names for all Nodes. Most Nodes get the virtual register
// number. A few get the ZERO live range number. These do not // number. A few get the ZERO live range number. These do not
// get allocated, but instead rely on correct scheduling to ensure that // get allocated, but instead rely on correct scheduling to ensure that
// only one instance is simultaneously live at a time. // only one instance is simultaneously live at a time.
uint lr_counter = 1; uint lr_counter = 1;
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
uint cnt = b->_nodes.size(); uint cnt = block->_nodes.size();
// Handle all the normal Nodes in the block // Handle all the normal Nodes in the block
for( uint j = 0; j < cnt; j++ ) { for( uint j = 0; j < cnt; j++ ) {
Node *n = b->_nodes[j]; Node *n = block->_nodes[j];
// Pre-color to the zero live range, or pick virtual register // Pre-color to the zero live range, or pick virtual register
const RegMask &rm = n->out_RegMask(); const RegMask &rm = n->out_RegMask();
_lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0); _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0);
@ -701,24 +697,25 @@ void PhaseChaitin::de_ssa() {
} }
//------------------------------gather_lrg_masks-------------------------------
// Gather LiveRanGe information, including register masks. Modification of // Gather LiveRanGe information, including register masks. Modification of
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce. // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
// Nail down the frame pointer live range // Nail down the frame pointer live range
uint fp_lrg = _lrg_map.live_range_id(_cfg._root->in(1)->in(TypeFunc::FramePtr)); uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr));
lrgs(fp_lrg)._cost += 1e12; // Cost is infinite lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
// For all blocks // For all blocks
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
// For all instructions // For all instructions
for( uint j = 1; j < b->_nodes.size(); j++ ) { for (uint j = 1; j < block->_nodes.size(); j++) {
Node *n = b->_nodes[j]; Node* n = block->_nodes[j];
uint input_edge_start =1; // Skip control most nodes uint input_edge_start =1; // Skip control most nodes
if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base(); if (n->is_Mach()) {
input_edge_start = n->as_Mach()->oper_input_base();
}
uint idx = n->is_Copy(); uint idx = n->is_Copy();
// Get virtual register number, same as LiveRanGe index // Get virtual register number, same as LiveRanGe index
@ -737,17 +734,19 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
// Check for float-vs-int live range (used in register-pressure // Check for float-vs-int live range (used in register-pressure
// calculations) // calculations)
const Type *n_type = n->bottom_type(); const Type *n_type = n->bottom_type();
if (n_type->is_floatingpoint()) if (n_type->is_floatingpoint()) {
lrg._is_float = 1; lrg._is_float = 1;
}
// Check for twice prior spilling. Once prior spilling might have // Check for twice prior spilling. Once prior spilling might have
// spilled 'soft', 2nd prior spill should have spilled 'hard' and // spilled 'soft', 2nd prior spill should have spilled 'hard' and
// further spilling is unlikely to make progress. // further spilling is unlikely to make progress.
if (_spilled_once.test(n->_idx)) { if (_spilled_once.test(n->_idx)) {
lrg._was_spilled1 = 1; lrg._was_spilled1 = 1;
if( _spilled_twice.test(n->_idx) ) if (_spilled_twice.test(n->_idx)) {
lrg._was_spilled2 = 1; lrg._was_spilled2 = 1;
} }
}
#ifndef PRODUCT #ifndef PRODUCT
if (trace_spilling() && lrg._def != NULL) { if (trace_spilling() && lrg._def != NULL) {
@ -783,12 +782,14 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
// Check for bound register masks // Check for bound register masks
const RegMask &lrgmask = lrg.mask(); const RegMask &lrgmask = lrg.mask();
if (lrgmask.is_bound(ireg)) if (lrgmask.is_bound(ireg)) {
lrg._is_bound = 1; lrg._is_bound = 1;
}
// Check for maximum frequency value // Check for maximum frequency value
if (lrg._maxfreq < b->_freq) if (lrg._maxfreq < block->_freq) {
lrg._maxfreq = b->_freq; lrg._maxfreq = block->_freq;
}
// Check for oop-iness, or long/double // Check for oop-iness, or long/double
// Check for multi-kill projection // Check for multi-kill projection
@ -962,7 +963,7 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
// AggressiveCoalesce. This effectively pre-virtual-splits // AggressiveCoalesce. This effectively pre-virtual-splits
// around uncommon uses of common defs. // around uncommon uses of common defs.
const RegMask &rm = n->in_RegMask(k); const RegMask &rm = n->in_RegMask(k);
if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * b->_freq) { if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) {
// Since we are BEFORE aggressive coalesce, leave the register // Since we are BEFORE aggressive coalesce, leave the register
// mask untrimmed by the call. This encourages more coalescing. // mask untrimmed by the call. This encourages more coalescing.
// Later, AFTER aggressive, this live range will have to spill // Later, AFTER aggressive, this live range will have to spill
@ -1006,8 +1007,9 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
} }
// Check for maximum frequency value // Check for maximum frequency value
if( lrg._maxfreq < b->_freq ) if (lrg._maxfreq < block->_freq) {
lrg._maxfreq = b->_freq; lrg._maxfreq = block->_freq;
}
} // End for all allocated inputs } // End for all allocated inputs
} // end for all instructions } // end for all instructions
@ -1029,7 +1031,6 @@ void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
} }
} }
//------------------------------set_was_low------------------------------------
// Set the was-lo-degree bit. Conservative coalescing should not change the // Set the was-lo-degree bit. Conservative coalescing should not change the
// colorability of the graph. If any live range was of low-degree before // colorability of the graph. If any live range was of low-degree before
// coalescing, it should Simplify. This call sets the was-lo-degree bit. // coalescing, it should Simplify. This call sets the was-lo-degree bit.
@ -1066,7 +1067,6 @@ void PhaseChaitin::set_was_low() {
#define REGISTER_CONSTRAINED 16 #define REGISTER_CONSTRAINED 16
//------------------------------cache_lrg_info---------------------------------
// Compute cost/area ratio, in case we spill. Build the lo-degree list. // Compute cost/area ratio, in case we spill. Build the lo-degree list.
void PhaseChaitin::cache_lrg_info( ) { void PhaseChaitin::cache_lrg_info( ) {
@ -1100,7 +1100,6 @@ void PhaseChaitin::cache_lrg_info( ) {
} }
} }
//------------------------------Pre-Simplify-----------------------------------
// Simplify the IFG by removing LRGs of low degree that have NO copies // Simplify the IFG by removing LRGs of low degree that have NO copies
void PhaseChaitin::Pre_Simplify( ) { void PhaseChaitin::Pre_Simplify( ) {
@ -1151,7 +1150,6 @@ void PhaseChaitin::Pre_Simplify( ) {
// No more lo-degree no-copy live ranges to simplify // No more lo-degree no-copy live ranges to simplify
} }
//------------------------------Simplify---------------------------------------
// Simplify the IFG by removing LRGs of low degree. // Simplify the IFG by removing LRGs of low degree.
void PhaseChaitin::Simplify( ) { void PhaseChaitin::Simplify( ) {
@ -1288,7 +1286,6 @@ void PhaseChaitin::Simplify( ) {
} }
//------------------------------is_legal_reg-----------------------------------
// Is 'reg' register legal for 'lrg'? // Is 'reg' register legal for 'lrg'?
static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) { static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) && if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) &&
@ -1315,7 +1312,6 @@ static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) {
return false; return false;
} }
//------------------------------bias_color-------------------------------------
// Choose a color using the biasing heuristic // Choose a color using the biasing heuristic
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
@ -1377,7 +1373,6 @@ OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
return OptoReg::add( reg, chunk ); return OptoReg::add( reg, chunk );
} }
//------------------------------choose_color-----------------------------------
// Choose a color in the current chunk // Choose a color in the current chunk
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
@ -1399,7 +1394,6 @@ OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
return lrg.mask().find_last_elem(); return lrg.mask().find_last_elem();
} }
//------------------------------Select-----------------------------------------
// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
// in reverse order of removal. As long as nothing of hi-degree was yanked, // in reverse order of removal. As long as nothing of hi-degree was yanked,
// everything going back is guaranteed a color. Select that color. If some // everything going back is guaranteed a color. Select that color. If some
@ -1574,8 +1568,6 @@ uint PhaseChaitin::Select( ) {
return spill_reg-LRG::SPILL_REG; // Return number of spills return spill_reg-LRG::SPILL_REG; // Return number of spills
} }
//------------------------------copy_was_spilled-------------------------------
// Copy 'was_spilled'-edness from the source Node to the dst Node. // Copy 'was_spilled'-edness from the source Node to the dst Node.
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) { void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
if( _spilled_once.test(src->_idx) ) { if( _spilled_once.test(src->_idx) ) {
@ -1588,14 +1580,12 @@ void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
} }
} }
//------------------------------set_was_spilled--------------------------------
// Set the 'spilled_once' or 'spilled_twice' flag on a node. // Set the 'spilled_once' or 'spilled_twice' flag on a node.
void PhaseChaitin::set_was_spilled( Node *n ) { void PhaseChaitin::set_was_spilled( Node *n ) {
if( _spilled_once.test_set(n->_idx) ) if( _spilled_once.test_set(n->_idx) )
_spilled_twice.set(n->_idx); _spilled_twice.set(n->_idx);
} }
//------------------------------fixup_spills-----------------------------------
// Convert Ideal spill instructions into proper FramePtr + offset Loads and // Convert Ideal spill instructions into proper FramePtr + offset Loads and
// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
void PhaseChaitin::fixup_spills() { void PhaseChaitin::fixup_spills() {
@ -1605,16 +1595,16 @@ void PhaseChaitin::fixup_spills() {
NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); ) NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
// Grab the Frame Pointer // Grab the Frame Pointer
Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr); Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr);
// For all blocks // For all blocks
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
// For all instructions in block // For all instructions in block
uint last_inst = b->end_idx(); uint last_inst = block->end_idx();
for (uint j = 1; j <= last_inst; j++) { for (uint j = 1; j <= last_inst; j++) {
Node *n = b->_nodes[j]; Node* n = block->_nodes[j];
// Dead instruction??? // Dead instruction???
assert( n->outcnt() != 0 ||// Nothing dead after post alloc assert( n->outcnt() != 0 ||// Nothing dead after post alloc
@ -1651,7 +1641,7 @@ void PhaseChaitin::fixup_spills() {
assert( cisc->oper_input_base() == 2, "Only adding one edge"); assert( cisc->oper_input_base() == 2, "Only adding one edge");
cisc->ins_req(1,src); // Requires a memory edge cisc->ins_req(1,src); // Requires a memory edge
} }
b->_nodes.map(j,cisc); // Insert into basic block block->_nodes.map(j,cisc); // Insert into basic block
n->subsume_by(cisc, C); // Correct graph n->subsume_by(cisc, C); // Correct graph
// //
++_used_cisc_instructions; ++_used_cisc_instructions;
@ -1677,7 +1667,6 @@ void PhaseChaitin::fixup_spills() {
} // End of for all blocks } // End of for all blocks
} }
//------------------------------find_base_for_derived--------------------------
// Helper to stretch above; recursively discover the base Node for a // Helper to stretch above; recursively discover the base Node for a
// given derived Node. Easy for AddP-related machine nodes, but needs // given derived Node. Easy for AddP-related machine nodes, but needs
// to be recursive for derived Phis. // to be recursive for derived Phis.
@ -1707,7 +1696,7 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
// Initialize it once and make it shared: // Initialize it once and make it shared:
// set control to _root and place it into Start block // set control to _root and place it into Start block
// (where top() node is placed). // (where top() node is placed).
base->init_req(0, _cfg._root); base->init_req(0, _cfg.get_root_node());
Block *startb = _cfg.get_block_for_node(C->top()); Block *startb = _cfg.get_block_for_node(C->top());
startb->_nodes.insert(startb->find_node(C->top()), base ); startb->_nodes.insert(startb->find_node(C->top()), base );
_cfg.map_node_to_block(base, startb); _cfg.map_node_to_block(base, startb);
@ -1716,7 +1705,7 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
if (_lrg_map.live_range_id(base) == 0) { if (_lrg_map.live_range_id(base) == 0) {
new_lrg(base, maxlrg++); new_lrg(base, maxlrg++);
} }
assert(base->in(0) == _cfg._root && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared"); assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared");
derived_base_map[derived->_idx] = base; derived_base_map[derived->_idx] = base;
return base; return base;
} }
@ -1779,8 +1768,6 @@ Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derive
return base; return base;
} }
//------------------------------stretch_base_pointer_live_ranges---------------
// At each Safepoint, insert extra debug edges for each pair of derived value/ // At each Safepoint, insert extra debug edges for each pair of derived value/
// base pointer that is live across the Safepoint for oopmap building. The // base pointer that is live across the Safepoint for oopmap building. The
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
@ -1792,14 +1779,14 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
// For all blocks in RPO do... // For all blocks in RPO do...
for( uint i=0; i<_cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
// Note use of deep-copy constructor. I cannot hammer the original // Note use of deep-copy constructor. I cannot hammer the original
// liveout bits, because they are needed by the following coalesce pass. // liveout bits, because they are needed by the following coalesce pass.
IndexSet liveout(_live->live(b)); IndexSet liveout(_live->live(block));
for( uint j = b->end_idx() + 1; j > 1; j-- ) { for (uint j = block->end_idx() + 1; j > 1; j--) {
Node *n = b->_nodes[j-1]; Node* n = block->_nodes[j - 1];
// Pre-split compares of loop-phis. Loop-phis form a cycle we would // Pre-split compares of loop-phis. Loop-phis form a cycle we would
// like to see in the same register. Compare uses the loop-phi and so // like to see in the same register. Compare uses the loop-phi and so
@ -1814,7 +1801,7 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
Node *phi = n->in(1); Node *phi = n->in(1);
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
Block *phi_block = _cfg.get_block_for_node(phi); Block *phi_block = _cfg.get_block_for_node(phi);
if (_cfg.get_block_for_node(phi_block->pred(2)) == b) { if (_cfg.get_block_for_node(phi_block->pred(2)) == block) {
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask ); Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
insert_proj( phi_block, 1, spill, maxlrg++ ); insert_proj( phi_block, 1, spill, maxlrg++ );
@ -1868,7 +1855,7 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or
!liveout.member(_lrg_map.live_range_id(base))) && // not live) AND !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND
(_lrg_map.live_range_id(base) > 0) && // not a constant (_lrg_map.live_range_id(base) > 0) && // not a constant
_cfg.get_block_for_node(base) != b) { // base not def'd in blk) _cfg.get_block_for_node(base) != block) { // base not def'd in blk)
// Base pointer is not currently live. Since I stretched // Base pointer is not currently live. Since I stretched
// the base pointer to here and it crosses basic-block // the base pointer to here and it crosses basic-block
// boundaries, the global live info is now incorrect. // boundaries, the global live info is now incorrect.
@ -1903,15 +1890,12 @@ bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) {
return must_recompute_live != 0; return must_recompute_live != 0;
} }
//------------------------------add_reference----------------------------------
// Extend the node to LRG mapping // Extend the node to LRG mapping
void PhaseChaitin::add_reference(const Node *node, const Node *old_node) { void PhaseChaitin::add_reference(const Node *node, const Node *old_node) {
_lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node)); _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node));
} }
//------------------------------dump-------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void PhaseChaitin::dump(const Node *n) const { void PhaseChaitin::dump(const Node *n) const {
uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0; uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0;
@ -2017,8 +2001,9 @@ void PhaseChaitin::dump() const {
_matcher._new_SP, _framesize ); _matcher._new_SP, _framesize );
// For all blocks // For all blocks
for( uint i = 0; i < _cfg._num_blocks; i++ ) for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
dump(_cfg._blocks[i]); dump(_cfg.get_block(i));
}
// End of per-block dump // End of per-block dump
tty->print("\n"); tty->print("\n");
@ -2059,7 +2044,6 @@ void PhaseChaitin::dump() const {
tty->print_cr(""); tty->print_cr("");
} }
//------------------------------dump_degree_lists------------------------------
void PhaseChaitin::dump_degree_lists() const { void PhaseChaitin::dump_degree_lists() const {
// Dump lo-degree list // Dump lo-degree list
tty->print("Lo degree: "); tty->print("Lo degree: ");
@ -2080,7 +2064,6 @@ void PhaseChaitin::dump_degree_lists() const {
tty->print_cr(""); tty->print_cr("");
} }
//------------------------------dump_simplified--------------------------------
void PhaseChaitin::dump_simplified() const { void PhaseChaitin::dump_simplified() const {
tty->print("Simplified: "); tty->print("Simplified: ");
for( uint i = _simplified; i; i = lrgs(i)._next ) for( uint i = _simplified; i; i = lrgs(i)._next )
@ -2099,7 +2082,6 @@ static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
return buf+strlen(buf); return buf+strlen(buf);
} }
//------------------------------dump_register----------------------------------
// Dump a register name into a buffer. Be intelligent if we get called // Dump a register name into a buffer. Be intelligent if we get called
// before allocation is complete. // before allocation is complete.
char *PhaseChaitin::dump_register( const Node *n, char *buf ) const { char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
@ -2133,7 +2115,6 @@ char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
return buf+strlen(buf); return buf+strlen(buf);
} }
//----------------------dump_for_spill_split_recycle--------------------------
void PhaseChaitin::dump_for_spill_split_recycle() const { void PhaseChaitin::dump_for_spill_split_recycle() const {
if( WizardMode && (PrintCompilation || PrintOpto) ) { if( WizardMode && (PrintCompilation || PrintOpto) ) {
// Display which live ranges need to be split and the allocator's state // Display which live ranges need to be split and the allocator's state
@ -2149,7 +2130,6 @@ void PhaseChaitin::dump_for_spill_split_recycle() const {
} }
} }
//------------------------------dump_frame------------------------------------
void PhaseChaitin::dump_frame() const { void PhaseChaitin::dump_frame() const {
const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
const TypeTuple *domain = C->tf()->domain(); const TypeTuple *domain = C->tf()->domain();
@ -2255,17 +2235,16 @@ void PhaseChaitin::dump_frame() const {
tty->print_cr("#"); tty->print_cr("#");
} }
//------------------------------dump_bb----------------------------------------
void PhaseChaitin::dump_bb( uint pre_order ) const { void PhaseChaitin::dump_bb( uint pre_order ) const {
tty->print_cr("---dump of B%d---",pre_order); tty->print_cr("---dump of B%d---",pre_order);
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
if( b->_pre_order == pre_order ) if (block->_pre_order == pre_order) {
dump(b); dump(block);
}
} }
} }
//------------------------------dump_lrg---------------------------------------
void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const { void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
tty->print_cr("---dump of L%d---",lidx); tty->print_cr("---dump of L%d---",lidx);
@ -2287,17 +2266,17 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
tty->cr(); tty->cr();
} }
// For all blocks // For all blocks
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
int dump_once = 0; int dump_once = 0;
// For all instructions // For all instructions
for( uint j = 0; j < b->_nodes.size(); j++ ) { for( uint j = 0; j < block->_nodes.size(); j++ ) {
Node *n = b->_nodes[j]; Node *n = block->_nodes[j];
if (_lrg_map.find_const(n) == lidx) { if (_lrg_map.find_const(n) == lidx) {
if (!dump_once++) { if (!dump_once++) {
tty->cr(); tty->cr();
b->dump_head(&_cfg); block->dump_head(&_cfg);
} }
dump(n); dump(n);
continue; continue;
@ -2312,7 +2291,7 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
if (_lrg_map.find_const(m) == lidx) { if (_lrg_map.find_const(m) == lidx) {
if (!dump_once++) { if (!dump_once++) {
tty->cr(); tty->cr();
b->dump_head(&_cfg); block->dump_head(&_cfg);
} }
dump(n); dump(n);
} }
@ -2324,7 +2303,6 @@ void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
} }
#endif // not PRODUCT #endif // not PRODUCT
//------------------------------print_chaitin_statistics-------------------------------
int PhaseChaitin::_final_loads = 0; int PhaseChaitin::_final_loads = 0;
int PhaseChaitin::_final_stores = 0; int PhaseChaitin::_final_stores = 0;
int PhaseChaitin::_final_memoves= 0; int PhaseChaitin::_final_memoves= 0;

View File

@ -412,33 +412,22 @@ class PhaseChaitin : public PhaseRegAlloc {
uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx ); uint split_DEF( Node *def, Block *b, int loc, uint max, Node **Reachblock, Node **debug_defs, GrowableArray<uint> splits, int slidx );
uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx ); uint split_USE( Node *def, Block *b, Node *use, uint useidx, uint max, bool def_down, bool cisc_sp, GrowableArray<uint> splits, int slidx );
bool clone_projs(Block *b, uint idx, Node *con, Node *copy, LiveRangeMap &lrg_map) {
bool found_projs = clone_projs_shared(b, idx, con, copy, lrg_map.max_lrg_id());
if(found_projs) {
uint max_lrg_id = lrg_map.max_lrg_id();
lrg_map.set_max_lrg_id(max_lrg_id + 1);
}
return found_projs;
}
//------------------------------clone_projs------------------------------------ //------------------------------clone_projs------------------------------------
// After cloning some rematerialized instruction, clone any MachProj's that // After cloning some rematerialized instruction, clone any MachProj's that
// follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants // follow it. Example: Intel zero is XOR, kills flags. Sparc FP constants
// use G3 as an address temp. // use G3 as an address temp.
bool clone_projs(Block *b, uint idx, Node *con, Node *copy, uint &max_lrg_id) { int clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id);
bool found_projs = clone_projs_shared(b, idx, con, copy, max_lrg_id);
if(found_projs) { int clone_projs(Block* b, uint idx, Node* orig, Node* copy, LiveRangeMap& lrg_map) {
max_lrg_id++; uint max_lrg_id = lrg_map.max_lrg_id();
int found_projs = clone_projs(b, idx, orig, copy, max_lrg_id);
if (found_projs > 0) {
// max_lrg_id is updated during call above
lrg_map.set_max_lrg_id(max_lrg_id);
} }
return found_projs; return found_projs;
} }
bool clone_projs_shared(Block *b, uint idx, Node *con, Node *copy, uint max_lrg_id);
Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits, Node *split_Rematerialize(Node *def, Block *b, uint insidx, uint &maxlrg, GrowableArray<uint> splits,
int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru); int slidx, uint *lrg2reach, Node **Reachblock, bool walkThru);
// True if lidx is used before any real register is def'd in the block // True if lidx is used before any real register is def'd in the block

View File

@ -34,8 +34,6 @@
#include "opto/matcher.hpp" #include "opto/matcher.hpp"
#include "opto/regmask.hpp" #include "opto/regmask.hpp"
//=============================================================================
//------------------------------Dump-------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void PhaseCoalesce::dump(Node *n) const { void PhaseCoalesce::dump(Node *n) const {
// Being a const function means I cannot use 'Find' // Being a const function means I cannot use 'Find'
@ -43,12 +41,11 @@ void PhaseCoalesce::dump(Node *n) const {
tty->print("L%d/N%d ",r,n->_idx); tty->print("L%d/N%d ",r,n->_idx);
} }
//------------------------------dump-------------------------------------------
void PhaseCoalesce::dump() const { void PhaseCoalesce::dump() const {
// I know I have a block layout now, so I can print blocks in a loop // I know I have a block layout now, so I can print blocks in a loop
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
uint j; uint j;
Block *b = _phc._cfg._blocks[i]; Block* b = _phc._cfg.get_block(i);
// Print a nice block header // Print a nice block header
tty->print("B%d: ",b->_pre_order); tty->print("B%d: ",b->_pre_order);
for( j=1; j<b->num_preds(); j++ ) for( j=1; j<b->num_preds(); j++ )
@ -85,7 +82,6 @@ void PhaseCoalesce::dump() const {
} }
#endif #endif
//------------------------------combine_these_two------------------------------
// Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1. // Combine the live ranges def'd by these 2 Nodes. N2 is an input to N1.
void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) { void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
uint lr1 = _phc._lrg_map.find(n1); uint lr1 = _phc._lrg_map.find(n1);
@ -127,18 +123,15 @@ void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
} }
} }
//------------------------------coalesce_driver--------------------------------
// Copy coalescing // Copy coalescing
void PhaseCoalesce::coalesce_driver() { void PhaseCoalesce::coalesce_driver() {
verify(); verify();
// Coalesce from high frequency to low // Coalesce from high frequency to low
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
coalesce(_phc._blks[i]); coalesce(_phc._blks[i]);
}
} }
//------------------------------insert_copy_with_overlap-----------------------
// I am inserting copies to come out of SSA form. In the general case, I am // I am inserting copies to come out of SSA form. In the general case, I am
// doing a parallel renaming. I'm in the Named world now, so I can't do a // doing a parallel renaming. I'm in the Named world now, so I can't do a
// general parallel renaming. All the copies now use "names" (live-ranges) // general parallel renaming. All the copies now use "names" (live-ranges)
@ -216,7 +209,6 @@ void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, ui
b->_nodes.insert(last_use_idx+1,copy); b->_nodes.insert(last_use_idx+1,copy);
} }
//------------------------------insert_copies----------------------------------
void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) { void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
// We do LRGs compressing and fix a liveout data only here since the other // We do LRGs compressing and fix a liveout data only here since the other
// place in Split() is guarded by the assert which we never hit. // place in Split() is guarded by the assert which we never hit.
@ -225,8 +217,8 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) { for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
uint compressed_lrg = _phc._lrg_map.find(lrg); uint compressed_lrg = _phc._lrg_map.find(lrg);
if (lrg != compressed_lrg) { if (lrg != compressed_lrg) {
for (uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++) { for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]); IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
if (liveout->member(lrg)) { if (liveout->member(lrg)) {
liveout->remove(lrg); liveout->remove(lrg);
liveout->insert(compressed_lrg); liveout->insert(compressed_lrg);
@ -239,10 +231,10 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
// Nodes with index less than '_unique' are original, non-virtual Nodes. // Nodes with index less than '_unique' are original, non-virtual Nodes.
_unique = C->unique(); _unique = C->unique();
for( uint i=0; i<_phc._cfg._num_blocks; i++ ) { for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce"); C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
if (C->failing()) return; if (C->failing()) return;
Block *b = _phc._cfg._blocks[i]; Block *b = _phc._cfg.get_block(i);
uint cnt = b->num_preds(); // Number of inputs to the Phi uint cnt = b->num_preds(); // Number of inputs to the Phi
for( uint l = 1; l<b->_nodes.size(); l++ ) { for( uint l = 1; l<b->_nodes.size(); l++ ) {
@ -330,9 +322,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
copy = m->clone(); copy = m->clone();
// Insert the copy in the basic block, just before us // Insert the copy in the basic block, just before us
b->_nodes.insert(l++, copy); b->_nodes.insert(l++, copy);
if(_phc.clone_projs(b, l, m, copy, _phc._lrg_map)) { l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
l++;
}
} else { } else {
const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()]; const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
copy = new (C) MachSpillCopyNode(m, *rm, *rm); copy = new (C) MachSpillCopyNode(m, *rm, *rm);
@ -403,8 +393,7 @@ void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
} // End of for all blocks } // End of for all blocks
} }
//=============================================================================
//------------------------------coalesce---------------------------------------
// Aggressive (but pessimistic) copy coalescing of a single block // Aggressive (but pessimistic) copy coalescing of a single block
// The following coalesce pass represents a single round of aggressive // The following coalesce pass represents a single round of aggressive
@ -464,20 +453,16 @@ void PhaseAggressiveCoalesce::coalesce( Block *b ) {
} // End of for all instructions in block } // End of for all instructions in block
} }
//=============================================================================
//------------------------------PhaseConservativeCoalesce----------------------
PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) { PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
_ulr.initialize(_phc._lrg_map.max_lrg_id()); _ulr.initialize(_phc._lrg_map.max_lrg_id());
} }
//------------------------------verify-----------------------------------------
void PhaseConservativeCoalesce::verify() { void PhaseConservativeCoalesce::verify() {
#ifdef ASSERT #ifdef ASSERT
_phc.set_was_low(); _phc.set_was_low();
#endif #endif
} }
//------------------------------union_helper-----------------------------------
void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) { void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
// Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the // Join live ranges. Merge larger into smaller. Union lr2 into lr1 in the
// union-find tree // union-find tree
@ -520,7 +505,6 @@ void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, ui
} }
} }
//------------------------------compute_separating_interferences---------------
// Factored code from copy_copy that computes extra interferences from // Factored code from copy_copy that computes extra interferences from
// lengthening a live range by double-coalescing. // lengthening a live range by double-coalescing.
uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) { uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
@ -586,7 +570,6 @@ uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy,
return reg_degree; return reg_degree;
} }
//------------------------------update_ifg-------------------------------------
void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) { void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
// Some original neighbors of lr1 might have gone away // Some original neighbors of lr1 might have gone away
// because the constrained register mask prevented them. // because the constrained register mask prevented them.
@ -616,7 +599,6 @@ void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1,
lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) ); lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
} }
//------------------------------record_bias------------------------------------
static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) { static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
// Tag copy bias here // Tag copy bias here
if( !ifg->lrgs(lr1)._copy_bias ) if( !ifg->lrgs(lr1)._copy_bias )
@ -625,7 +607,6 @@ static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
ifg->lrgs(lr2)._copy_bias = lr1; ifg->lrgs(lr2)._copy_bias = lr1;
} }
//------------------------------copy_copy--------------------------------------
// See if I can coalesce a series of multiple copies together. I need the // See if I can coalesce a series of multiple copies together. I need the
// final dest copy and the original src copy. They can be the same Node. // final dest copy and the original src copy. They can be the same Node.
// Compute the compatible register masks. // Compute the compatible register masks.
@ -785,7 +766,6 @@ bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block
return true; return true;
} }
//------------------------------coalesce---------------------------------------
// Conservative (but pessimistic) copy coalescing of a single block // Conservative (but pessimistic) copy coalescing of a single block
void PhaseConservativeCoalesce::coalesce( Block *b ) { void PhaseConservativeCoalesce::coalesce( Block *b ) {
// Bail out on infrequent blocks // Bail out on infrequent blocks

View File

@ -2136,7 +2136,9 @@ void Compile::Optimize() {
//------------------------------Code_Gen--------------------------------------- //------------------------------Code_Gen---------------------------------------
// Given a graph, generate code for it // Given a graph, generate code for it
void Compile::Code_Gen() { void Compile::Code_Gen() {
if (failing()) return; if (failing()) {
return;
}
// Perform instruction selection. You might think we could reclaim Matcher // Perform instruction selection. You might think we could reclaim Matcher
// memory PDQ, but actually the Matcher is used in generating spill code. // memory PDQ, but actually the Matcher is used in generating spill code.
@ -2148,12 +2150,11 @@ void Compile::Code_Gen() {
// nodes. Mapping is only valid at the root of each matched subtree. // nodes. Mapping is only valid at the root of each matched subtree.
NOT_PRODUCT( verify_graph_edges(); ) NOT_PRODUCT( verify_graph_edges(); )
Node_List proj_list; Matcher matcher;
Matcher m(proj_list); _matcher = &matcher;
_matcher = &m;
{ {
TracePhase t2("matcher", &_t_matcher, true); TracePhase t2("matcher", &_t_matcher, true);
m.match(); matcher.match();
} }
// In debug mode can dump m._nodes.dump() for mapping of ideal to machine // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
// nodes. Mapping is only valid at the root of each matched subtree. // nodes. Mapping is only valid at the root of each matched subtree.
@ -2161,31 +2162,26 @@ void Compile::Code_Gen() {
// If you have too many nodes, or if matching has failed, bail out // If you have too many nodes, or if matching has failed, bail out
check_node_count(0, "out of nodes matching instructions"); check_node_count(0, "out of nodes matching instructions");
if (failing()) return; if (failing()) {
return;
}
// Build a proper-looking CFG // Build a proper-looking CFG
PhaseCFG cfg(node_arena(), root(), m); PhaseCFG cfg(node_arena(), root(), matcher);
_cfg = &cfg; _cfg = &cfg;
{ {
NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); ) NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
cfg.Dominators(); bool success = cfg.do_global_code_motion();
if (failing()) return; if (!success) {
return;
NOT_PRODUCT( verify_graph_edges(); ) }
cfg.Estimate_Block_Frequency();
cfg.GlobalCodeMotion(m,unique(),proj_list);
if (failing()) return;
print_method(PHASE_GLOBAL_CODE_MOTION, 2); print_method(PHASE_GLOBAL_CODE_MOTION, 2);
NOT_PRODUCT( verify_graph_edges(); ) NOT_PRODUCT( verify_graph_edges(); )
debug_only( cfg.verify(); ) debug_only( cfg.verify(); )
} }
NOT_PRODUCT( verify_graph_edges(); )
PhaseChaitin regalloc(unique(), cfg, m); PhaseChaitin regalloc(unique(), cfg, matcher);
_regalloc = &regalloc; _regalloc = &regalloc;
{ {
TracePhase t2("regalloc", &_t_registerAllocation, true); TracePhase t2("regalloc", &_t_registerAllocation, true);
@ -2206,7 +2202,7 @@ void Compile::Code_Gen() {
// can now safely remove it. // can now safely remove it.
{ {
NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); ) NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
cfg.remove_empty(); cfg.remove_empty_blocks();
if (do_freq_based_layout()) { if (do_freq_based_layout()) {
PhaseBlockLayout layout(cfg); PhaseBlockLayout layout(cfg);
} else { } else {
@ -2253,38 +2249,50 @@ void Compile::dump_asm(int *pcs, uint pc_limit) {
_regalloc->dump_frame(); _regalloc->dump_frame();
Node *n = NULL; Node *n = NULL;
for( uint i=0; i<_cfg->_num_blocks; i++ ) { for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
if (VMThread::should_terminate()) { cut_short = true; break; } if (VMThread::should_terminate()) {
Block *b = _cfg->_blocks[i]; cut_short = true;
if (b->is_connector() && !Verbose) continue; break;
n = b->_nodes[0]; }
if (pcs && n->_idx < pc_limit) Block* block = _cfg->get_block(i);
if (block->is_connector() && !Verbose) {
continue;
}
n = block->_nodes[0];
if (pcs && n->_idx < pc_limit) {
tty->print("%3.3x ", pcs[n->_idx]); tty->print("%3.3x ", pcs[n->_idx]);
else } else {
tty->print(" "); tty->print(" ");
b->dump_head(_cfg); }
if (b->is_connector()) { block->dump_head(_cfg);
if (block->is_connector()) {
tty->print_cr(" # Empty connector block"); tty->print_cr(" # Empty connector block");
} else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
tty->print_cr(" # Block is sole successor of call"); tty->print_cr(" # Block is sole successor of call");
} }
// For all instructions // For all instructions
Node *delay = NULL; Node *delay = NULL;
for( uint j = 0; j<b->_nodes.size(); j++ ) { for (uint j = 0; j < block->_nodes.size(); j++) {
if (VMThread::should_terminate()) { cut_short = true; break; } if (VMThread::should_terminate()) {
n = b->_nodes[j]; cut_short = true;
break;
}
n = block->_nodes[j];
if (valid_bundle_info(n)) { if (valid_bundle_info(n)) {
Bundle* bundle = node_bundling(n); Bundle* bundle = node_bundling(n);
if (bundle->used_in_unconditional_delay()) { if (bundle->used_in_unconditional_delay()) {
delay = n; delay = n;
continue; continue;
} }
if (bundle->starts_bundle()) if (bundle->starts_bundle()) {
starts_bundle = '+'; starts_bundle = '+';
} }
}
if (WizardMode) n->dump(); if (WizardMode) {
n->dump();
}
if( !n->is_Region() && // Dont print in the Assembly if( !n->is_Region() && // Dont print in the Assembly
!n->is_Phi() && // a few noisely useless nodes !n->is_Phi() && // a few noisely useless nodes

View File

@ -32,9 +32,6 @@
// Portions of code courtesy of Clifford Click // Portions of code courtesy of Clifford Click
// Optimization - Graph Style
//------------------------------Tarjan-----------------------------------------
// A data structure that holds all the information needed to find dominators. // A data structure that holds all the information needed to find dominators.
struct Tarjan { struct Tarjan {
Block *_block; // Basic block for this info Block *_block; // Basic block for this info
@ -60,23 +57,21 @@ struct Tarjan {
}; };
//------------------------------Dominator--------------------------------------
// Compute the dominator tree of the CFG. The CFG must already have been // Compute the dominator tree of the CFG. The CFG must already have been
// constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm. // constructed. This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
void PhaseCFG::Dominators( ) { void PhaseCFG::build_dominator_tree() {
// Pre-grow the blocks array, prior to the ResourceMark kicking in // Pre-grow the blocks array, prior to the ResourceMark kicking in
_blocks.map(_num_blocks,0); _blocks.map(number_of_blocks(), 0);
ResourceMark rm; ResourceMark rm;
// Setup mappings from my Graph to Tarjan's stuff and back // Setup mappings from my Graph to Tarjan's stuff and back
// Note: Tarjan uses 1-based arrays // Note: Tarjan uses 1-based arrays
Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1); Tarjan* tarjan = NEW_RESOURCE_ARRAY(Tarjan, number_of_blocks() + 1);
// Tarjan's algorithm, almost verbatim: // Tarjan's algorithm, almost verbatim:
// Step 1: // Step 1:
_rpo_ctr = _num_blocks; uint dfsnum = do_DFS(tarjan, number_of_blocks());
uint dfsnum = DFS( tarjan ); if (dfsnum - 1 != number_of_blocks()) { // Check for unreachable loops!
if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
// If the returned dfsnum does not match the number of blocks, then we // If the returned dfsnum does not match the number of blocks, then we
// must have some unreachable loops. These can be made at any time by // must have some unreachable loops. These can be made at any time by
// IterGVN. They are cleaned up by CCP or the loop opts, but the last // IterGVN. They are cleaned up by CCP or the loop opts, but the last
@ -93,14 +88,13 @@ void PhaseCFG::Dominators( ) {
C->record_method_not_compilable("unreachable loop"); C->record_method_not_compilable("unreachable loop");
return; return;
} }
_blocks._cnt = _num_blocks; _blocks._cnt = number_of_blocks();
// Tarjan is using 1-based arrays, so these are some initialize flags // Tarjan is using 1-based arrays, so these are some initialize flags
tarjan[0]._size = tarjan[0]._semi = 0; tarjan[0]._size = tarjan[0]._semi = 0;
tarjan[0]._label = &tarjan[0]; tarjan[0]._label = &tarjan[0];
uint i; for (uint i = number_of_blocks(); i >= 2; i--) { // For all vertices in DFS order
for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
Tarjan *w = &tarjan[i]; // Get vertex from DFS Tarjan *w = &tarjan[i]; // Get vertex from DFS
// Step 2: // Step 2:
@ -130,19 +124,19 @@ void PhaseCFG::Dominators( ) {
} }
// Step 4: // Step 4:
for( i=2; i <= _num_blocks; i++ ) { for (uint i = 2; i <= number_of_blocks(); i++) {
Tarjan *w = &tarjan[i]; Tarjan *w = &tarjan[i];
if( w->_dom != &tarjan[w->_semi] ) if( w->_dom != &tarjan[w->_semi] )
w->_dom = w->_dom->_dom; w->_dom = w->_dom->_dom;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
} }
// No immediate dominator for the root // No immediate dominator for the root
Tarjan *w = &tarjan[_broot->_pre_order]; Tarjan *w = &tarjan[get_root_block()->_pre_order];
w->_dom = NULL; w->_dom = NULL;
w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later w->_dom_next = w->_dom_child = NULL; // Initialize for building tree later
// Convert the dominator tree array into my kind of graph // Convert the dominator tree array into my kind of graph
for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices for(uint i = 1; i <= number_of_blocks(); i++){ // For all Tarjan vertices
Tarjan *t = &tarjan[i]; // Handy access Tarjan *t = &tarjan[i]; // Handy access
Tarjan *tdom = t->_dom; // Handy access to immediate dominator Tarjan *tdom = t->_dom; // Handy access to immediate dominator
if( tdom ) { // Root has no immediate dominator if( tdom ) { // Root has no immediate dominator
@ -152,11 +146,10 @@ void PhaseCFG::Dominators( ) {
} else } else
t->_block->_idom = NULL; // Root t->_block->_idom = NULL; // Root
} }
w->setdepth( _num_blocks+1 ); // Set depth in dominator tree w->setdepth(number_of_blocks() + 1); // Set depth in dominator tree
} }
//----------------------------Block_Stack--------------------------------------
class Block_Stack { class Block_Stack {
private: private:
struct Block_Descr { struct Block_Descr {
@ -214,7 +207,6 @@ class Block_Stack {
} }
}; };
//-------------------------most_frequent_successor-----------------------------
// Find the index into the b->succs[] array of the most frequent successor. // Find the index into the b->succs[] array of the most frequent successor.
uint Block_Stack::most_frequent_successor( Block *b ) { uint Block_Stack::most_frequent_successor( Block *b ) {
uint freq_idx = 0; uint freq_idx = 0;
@ -258,40 +250,38 @@ uint Block_Stack::most_frequent_successor( Block *b ) {
return freq_idx; return freq_idx;
} }
//------------------------------DFS--------------------------------------------
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
uint PhaseCFG::DFS( Tarjan *tarjan ) { uint PhaseCFG::do_DFS(Tarjan *tarjan, uint rpo_counter) {
Block *b = _broot; Block* root_block = get_root_block();
uint pre_order = 1; uint pre_order = 1;
// Allocate stack of size _num_blocks+1 to avoid frequent realloc // Allocate stack of size number_of_blocks() + 1 to avoid frequent realloc
Block_Stack bstack(tarjan, _num_blocks+1); Block_Stack bstack(tarjan, number_of_blocks() + 1);
// Push on stack the state for the first block // Push on stack the state for the first block
bstack.push(pre_order, b); bstack.push(pre_order, root_block);
++pre_order; ++pre_order;
while (bstack.is_nonempty()) { while (bstack.is_nonempty()) {
if (!bstack.last_successor()) { if (!bstack.last_successor()) {
// Walk over all successors in pre-order (DFS). // Walk over all successors in pre-order (DFS).
Block *s = bstack.next_successor(); Block* next_block = bstack.next_successor();
if (s->_pre_order == 0) { // Check for no-pre-order, not-visited if (next_block->_pre_order == 0) { // Check for no-pre-order, not-visited
// Push on stack the state of successor // Push on stack the state of successor
bstack.push(pre_order, s); bstack.push(pre_order, next_block);
++pre_order; ++pre_order;
} }
} }
else { else {
// Build a reverse post-order in the CFG _blocks array // Build a reverse post-order in the CFG _blocks array
Block *stack_top = bstack.pop(); Block *stack_top = bstack.pop();
stack_top->_rpo = --_rpo_ctr; stack_top->_rpo = --rpo_counter;
_blocks.map(stack_top->_rpo, stack_top); _blocks.map(stack_top->_rpo, stack_top);
} }
} }
return pre_order; return pre_order;
} }
//------------------------------COMPRESS---------------------------------------
void Tarjan::COMPRESS() void Tarjan::COMPRESS()
{ {
assert( _ancestor != 0, "" ); assert( _ancestor != 0, "" );
@ -303,14 +293,12 @@ void Tarjan::COMPRESS()
} }
} }
//------------------------------EVAL-------------------------------------------
Tarjan *Tarjan::EVAL() { Tarjan *Tarjan::EVAL() {
if( !_ancestor ) return _label; if( !_ancestor ) return _label;
COMPRESS(); COMPRESS();
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
} }
//------------------------------LINK-------------------------------------------
void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) { void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
Tarjan *s = w; Tarjan *s = w;
while( w->_label->_semi < s->_child->_label->_semi ) { while( w->_label->_semi < s->_child->_label->_semi ) {
@ -333,7 +321,6 @@ void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
} }
} }
//------------------------------setdepth---------------------------------------
void Tarjan::setdepth( uint stack_size ) { void Tarjan::setdepth( uint stack_size ) {
Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size); Tarjan **top = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
Tarjan **next = top; Tarjan **next = top;
@ -362,8 +349,7 @@ void Tarjan::setdepth( uint stack_size ) {
} while (last < top); } while (last < top);
} }
//*********************** DOMINATORS ON THE SEA OF NODES*********************** // Compute dominators on the Sea of Nodes form
//------------------------------NTarjan----------------------------------------
// A data structure that holds all the information needed to find dominators. // A data structure that holds all the information needed to find dominators.
struct NTarjan { struct NTarjan {
Node *_control; // Control node associated with this info Node *_control; // Control node associated with this info
@ -396,7 +382,6 @@ struct NTarjan {
#endif #endif
}; };
//------------------------------Dominator--------------------------------------
// Compute the dominator tree of the sea of nodes. This version walks all CFG // Compute the dominator tree of the sea of nodes. This version walks all CFG
// nodes (using the is_CFG() call) and places them in a dominator tree. Thus, // nodes (using the is_CFG() call) and places them in a dominator tree. Thus,
// it needs a count of the CFG nodes for the mapping table. This is the // it needs a count of the CFG nodes for the mapping table. This is the
@ -517,7 +502,6 @@ void PhaseIdealLoop::Dominators() {
} }
} }
//------------------------------DFS--------------------------------------------
// Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup // Perform DFS search. Setup 'vertex' as DFS to vertex mapping. Setup
// 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent. // 'semi' as vertex to DFS mapping. Set 'parent' to DFS parent.
int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) { int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
@ -560,7 +544,6 @@ int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uin
return dfsnum; return dfsnum;
} }
//------------------------------COMPRESS---------------------------------------
void NTarjan::COMPRESS() void NTarjan::COMPRESS()
{ {
assert( _ancestor != 0, "" ); assert( _ancestor != 0, "" );
@ -572,14 +555,12 @@ void NTarjan::COMPRESS()
} }
} }
//------------------------------EVAL-------------------------------------------
NTarjan *NTarjan::EVAL() { NTarjan *NTarjan::EVAL() {
if( !_ancestor ) return _label; if( !_ancestor ) return _label;
COMPRESS(); COMPRESS();
return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label; return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
} }
//------------------------------LINK-------------------------------------------
void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) { void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
NTarjan *s = w; NTarjan *s = w;
while( w->_label->_semi < s->_child->_label->_semi ) { while( w->_label->_semi < s->_child->_label->_semi ) {
@ -602,7 +583,6 @@ void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
} }
} }
//------------------------------setdepth---------------------------------------
void NTarjan::setdepth( uint stack_size, uint *dom_depth ) { void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size); NTarjan **top = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
NTarjan **next = top; NTarjan **next = top;
@ -631,7 +611,6 @@ void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
} while (last < top); } while (last < top);
} }
//------------------------------dump-------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void NTarjan::dump(int offset) const { void NTarjan::dump(int offset) const {
// Dump the data from this node // Dump the data from this node

View File

@ -126,22 +126,25 @@ void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
GrowableArray <Node *> spstack(C->unique() + 8); GrowableArray <Node *> spstack(C->unique() + 8);
spstack.push(_root); spstack.push(_root);
while (spstack.is_nonempty()) { while (spstack.is_nonempty()) {
Node *n = spstack.pop(); Node* node = spstack.pop();
if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
if( n->pinned() && !has_block(n)) { // Pinned? Nail it down! if (node->pinned() && !has_block(node)) { // Pinned? Nail it down!
assert( n->in(0), "pinned Node must have Control" ); assert(node->in(0), "pinned Node must have Control");
// Before setting block replace block_proj control edge // Before setting block replace block_proj control edge
replace_block_proj_ctrl(n); replace_block_proj_ctrl(node);
Node *input = n->in(0); Node* input = node->in(0);
while (!input->is_block_start()) { while (!input->is_block_start()) {
input = input->in(0); input = input->in(0);
} }
Block *b = get_block_for_node(input); // Basic block of controlling input Block* block = get_block_for_node(input); // Basic block of controlling input
schedule_node_into_block(n, b); schedule_node_into_block(node, block);
}
// process all inputs that are non NULL
for (int i = node->req() - 1; i >= 0; --i) {
if (node->in(i) != NULL) {
spstack.push(node->in(i));
} }
for( int i = n->req() - 1; i >= 0; --i ) { // For all inputs
if( n->in(i) != NULL )
spstack.push(n->in(i));
} }
} }
} }
@ -205,32 +208,29 @@ static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
// which all their inputs occur. // which all their inputs occur.
bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) { bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
// Allocate stack with enough space to avoid frequent realloc // Allocate stack with enough space to avoid frequent realloc
Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats Node_Stack nstack(roots.Size() + 8);
// roots.push(_root); _root will be processed among C->top() inputs // _root will be processed among C->top() inputs
roots.push(C->top()); roots.push(C->top());
visited.set(C->top()->_idx); visited.set(C->top()->_idx);
while (roots.size() != 0) { while (roots.size() != 0) {
// Use local variables nstack_top_n & nstack_top_i to cache values // Use local variables nstack_top_n & nstack_top_i to cache values
// on stack's top. // on stack's top.
Node *nstack_top_n = roots.pop(); Node* parent_node = roots.pop();
uint nstack_top_i = 0; uint input_index = 0;
//while_nstack_nonempty:
while (true) {
// Get parent node and next input's index from stack's top.
Node *n = nstack_top_n;
uint i = nstack_top_i;
if (i == 0) { while (true) {
if (input_index == 0) {
// Fixup some control. Constants without control get attached // Fixup some control. Constants without control get attached
// to root and nodes that use is_block_proj() nodes should be attached // to root and nodes that use is_block_proj() nodes should be attached
// to the region that starts their block. // to the region that starts their block.
const Node *in0 = n->in(0); const Node* control_input = parent_node->in(0);
if (in0 != NULL) { // Control-dependent? if (control_input != NULL) {
replace_block_proj_ctrl(n); replace_block_proj_ctrl(parent_node);
} else { // n->in(0) == NULL } else {
if (n->req() == 1) { // This guy is a constant with NO inputs? // Is a constant with NO inputs?
n->set_req(0, _root); if (parent_node->req() == 1) {
parent_node->set_req(0, _root);
} }
} }
} }
@ -239,37 +239,47 @@ bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
// input is already in a block we quit following inputs (to avoid // input is already in a block we quit following inputs (to avoid
// cycles). Instead we put that Node on a worklist to be handled // cycles). Instead we put that Node on a worklist to be handled
// later (since IT'S inputs may not have a block yet). // later (since IT'S inputs may not have a block yet).
bool done = true; // Assume all n's inputs will be processed
while (i < n->len()) { // For all inputs // Assume all n's inputs will be processed
Node *in = n->in(i); // Get input bool done = true;
++i;
if (in == NULL) continue; // Ignore NULL, missing inputs while (input_index < parent_node->len()) {
Node* in = parent_node->in(input_index++);
if (in == NULL) {
continue;
}
int is_visited = visited.test_set(in->_idx); int is_visited = visited.test_set(in->_idx);
if (!has_block(in)) { // Missing block selection? if (!has_block(in)) {
if (is_visited) { if (is_visited) {
// assert( !visited.test(in->_idx), "did not schedule early" );
return false; return false;
} }
nstack.push(n, i); // Save parent node and next input's index. // Save parent node and next input's index.
nstack_top_n = in; // Process current input now. nstack.push(parent_node, input_index);
nstack_top_i = 0; // Process current input now.
done = false; // Not all n's inputs processed. parent_node = in;
break; // continue while_nstack_nonempty; input_index = 0;
} else if (!is_visited) { // Input not yet visited? // Not all n's inputs processed.
roots.push(in); // Visit this guy later, using worklist done = false;
break;
} else if (!is_visited) {
// Visit this guy later, using worklist
roots.push(in);
} }
} }
if (done) { if (done) {
// All of n's inputs have been processed, complete post-processing. // All of n's inputs have been processed, complete post-processing.
// Some instructions are pinned into a block. These include Region, // Some instructions are pinned into a block. These include Region,
// Phi, Start, Return, and other control-dependent instructions and // Phi, Start, Return, and other control-dependent instructions and
// any projections which depend on them. // any projections which depend on them.
if (!n->pinned()) { if (!parent_node->pinned()) {
// Set earliest legal block. // Set earliest legal block.
map_node_to_block(n, find_deepest_input(n, this)); Block* earliest_block = find_deepest_input(parent_node, this);
map_node_to_block(parent_node, earliest_block);
} else { } else {
assert(get_block_for_node(n) == get_block_for_node(n->in(0)), "Pinned Node should be at the same block as its control edge"); assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
} }
if (nstack.is_empty()) { if (nstack.is_empty()) {
@ -278,12 +288,12 @@ bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
break; break;
} }
// Get saved parent node and next input's index. // Get saved parent node and next input's index.
nstack_top_n = nstack.node(); parent_node = nstack.node();
nstack_top_i = nstack.index(); input_index = nstack.index();
nstack.pop(); nstack.pop();
} // if (done) }
} // while (true) }
} // while (roots.size() != 0) }
return true; return true;
} }
@ -847,7 +857,7 @@ Node *Node_Backward_Iterator::next() {
//------------------------------ComputeLatenciesBackwards---------------------- //------------------------------ComputeLatenciesBackwards----------------------
// Compute the latency of all the instructions. // Compute the latency of all the instructions.
void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) { void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_List &stack) {
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) if (trace_opto_pipelining())
tty->print("\n#---- ComputeLatenciesBackwards ----\n"); tty->print("\n#---- ComputeLatenciesBackwards ----\n");
@ -870,31 +880,34 @@ void PhaseCFG::partial_latency_of_defs(Node *n) {
// Set the latency for this instruction // Set the latency for this instruction
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print("# latency_to_inputs: node_latency[%d] = %d for node", tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
n->_idx, _node_latency->at_grow(n->_idx));
dump(); dump();
} }
#endif #endif
if (n->is_Proj()) if (n->is_Proj()) {
n = n->in(0); n = n->in(0);
}
if (n->is_Root()) if (n->is_Root()) {
return; return;
}
uint nlen = n->len(); uint nlen = n->len();
uint use_latency = _node_latency->at_grow(n->_idx); uint use_latency = get_latency_for_node(n);
uint use_pre_order = get_block_for_node(n)->_pre_order; uint use_pre_order = get_block_for_node(n)->_pre_order;
for (uint j = 0; j < nlen; j++) { for (uint j = 0; j < nlen; j++) {
Node *def = n->in(j); Node *def = n->in(j);
if (!def || def == n) if (!def || def == n) {
continue; continue;
}
// Walk backwards thru projections // Walk backwards thru projections
if (def->is_Proj()) if (def->is_Proj()) {
def = def->in(0); def = def->in(0);
}
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
@ -907,22 +920,20 @@ void PhaseCFG::partial_latency_of_defs(Node *n) {
Block *def_block = get_block_for_node(def); Block *def_block = get_block_for_node(def);
uint def_pre_order = def_block ? def_block->_pre_order : 0; uint def_pre_order = def_block ? def_block->_pre_order : 0;
if ( (use_pre_order < def_pre_order) || if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
(use_pre_order == def_pre_order && n->is_Phi()) )
continue; continue;
}
uint delta_latency = n->latency(j); uint delta_latency = n->latency(j);
uint current_latency = delta_latency + use_latency; uint current_latency = delta_latency + use_latency;
if (_node_latency->at_grow(def->_idx) < current_latency) { if (get_latency_for_node(def) < current_latency) {
_node_latency->at_put_grow(def->_idx, current_latency); set_latency_for_node(def, current_latency);
} }
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
use_latency, j, delta_latency, current_latency, def->_idx,
_node_latency->at_grow(def->_idx));
} }
#endif #endif
} }
@ -957,7 +968,7 @@ int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
return 0; return 0;
uint nlen = use->len(); uint nlen = use->len();
uint nl = _node_latency->at_grow(use->_idx); uint nl = get_latency_for_node(use);
for ( uint j=0; j<nlen; j++ ) { for ( uint j=0; j<nlen; j++ ) {
if (use->in(j) == n) { if (use->in(j) == n) {
@ -992,8 +1003,7 @@ void PhaseCFG::latency_from_uses(Node *n) {
// Set the latency for this instruction // Set the latency for this instruction
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print("# latency_from_outputs: node_latency[%d] = %d for node", tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
n->_idx, _node_latency->at_grow(n->_idx));
dump(); dump();
} }
#endif #endif
@ -1006,7 +1016,7 @@ void PhaseCFG::latency_from_uses(Node *n) {
if (latency < l) latency = l; if (latency < l) latency = l;
} }
_node_latency->at_put_grow(n->_idx, latency); set_latency_for_node(n, latency);
} }
//------------------------------hoist_to_cheaper_block------------------------- //------------------------------hoist_to_cheaper_block-------------------------
@ -1016,9 +1026,9 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
const double delta = 1+PROB_UNLIKELY_MAG(4); const double delta = 1+PROB_UNLIKELY_MAG(4);
Block* least = LCA; Block* least = LCA;
double least_freq = least->_freq; double least_freq = least->_freq;
uint target = _node_latency->at_grow(self->_idx); uint target = get_latency_for_node(self);
uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx); uint start_latency = get_latency_for_node(LCA->_nodes[0]);
uint end_latency = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx); uint end_latency = get_latency_for_node(LCA->_nodes[LCA->end_idx()]);
bool in_latency = (target <= start_latency); bool in_latency = (target <= start_latency);
const Block* root_block = get_block_for_node(_root); const Block* root_block = get_block_for_node(_root);
@ -1035,8 +1045,7 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print("# Find cheaper block for latency %d: ", tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
_node_latency->at_grow(self->_idx));
self->dump(); self->dump();
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g", tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
LCA->_pre_order, LCA->_pre_order,
@ -1065,9 +1074,9 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
if (mach && LCA == root_block) if (mach && LCA == root_block)
break; break;
uint start_lat = _node_latency->at_grow(LCA->_nodes[0]->_idx); uint start_lat = get_latency_for_node(LCA->_nodes[0]);
uint end_idx = LCA->end_idx(); uint end_idx = LCA->end_idx();
uint end_lat = _node_latency->at_grow(LCA->_nodes[end_idx]->_idx); uint end_lat = get_latency_for_node(LCA->_nodes[end_idx]);
double LCA_freq = LCA->_freq; double LCA_freq = LCA->_freq;
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
@ -1109,7 +1118,7 @@ Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency); tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
} }
#endif #endif
_node_latency->at_put_grow(self->_idx, end_latency); set_latency_for_node(self, end_latency);
partial_latency_of_defs(self); partial_latency_of_defs(self);
} }
@ -1255,7 +1264,7 @@ void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
} // end ScheduleLate } // end ScheduleLate
//------------------------------GlobalCodeMotion------------------------------- //------------------------------GlobalCodeMotion-------------------------------
void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) { void PhaseCFG::global_code_motion() {
ResourceMark rm; ResourceMark rm;
#ifndef PRODUCT #ifndef PRODUCT
@ -1265,21 +1274,22 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
#endif #endif
// Initialize the node to block mapping for things on the proj_list // Initialize the node to block mapping for things on the proj_list
for (uint i = 0; i < proj_list.size(); i++) { for (uint i = 0; i < _matcher.number_of_projections(); i++) {
unmap_node_from_block(proj_list[i]); unmap_node_from_block(_matcher.get_projection(i));
} }
// Set the basic block for Nodes pinned into blocks // Set the basic block for Nodes pinned into blocks
Arena *a = Thread::current()->resource_area(); Arena* arena = Thread::current()->resource_area();
VectorSet visited(a); VectorSet visited(arena);
schedule_pinned_nodes(visited); schedule_pinned_nodes(visited);
// Find the earliest Block any instruction can be placed in. Some // Find the earliest Block any instruction can be placed in. Some
// instructions are pinned into Blocks. Unpinned instructions can // instructions are pinned into Blocks. Unpinned instructions can
// appear in last block in which all their inputs occur. // appear in last block in which all their inputs occur.
visited.Clear(); visited.Clear();
Node_List stack(a); Node_List stack(arena);
stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list // Pre-grow the list
stack.map((C->unique() >> 1) + 16, NULL);
if (!schedule_early(visited, stack)) { if (!schedule_early(visited, stack)) {
// Bailout without retry // Bailout without retry
C->record_method_not_compilable("early schedule failed"); C->record_method_not_compilable("early schedule failed");
@ -1287,15 +1297,13 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
} }
// Build Def-Use edges. // Build Def-Use edges.
proj_list.push(_root); // Add real root as another root
proj_list.pop();
// Compute the latency information (via backwards walk) for all the // Compute the latency information (via backwards walk) for all the
// instructions in the graph // instructions in the graph
_node_latency = new GrowableArray<uint>(); // resource_area allocation _node_latency = new GrowableArray<uint>(); // resource_area allocation
if( C->do_scheduling() ) if (C->do_scheduling()) {
ComputeLatenciesBackwards(visited, stack); compute_latencies_backwards(visited, stack);
}
// Now schedule all codes as LATE as possible. This is the LCA in the // Now schedule all codes as LATE as possible. This is the LCA in the
// dominator tree of all USES of a value. Pick the block with the least // dominator tree of all USES of a value. Pick the block with the least
@ -1308,8 +1316,6 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
return; return;
} }
unique = C->unique();
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print("\n---- Detect implicit null checks ----\n"); tty->print("\n---- Detect implicit null checks ----\n");
@ -1332,10 +1338,11 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
// By reversing the loop direction we get a very minor gain on mpegaudio. // By reversing the loop direction we get a very minor gain on mpegaudio.
// Feel free to revert to a forward loop for clarity. // Feel free to revert to a forward loop for clarity.
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) { // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) { for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
Node *proj = matcher._null_check_tests[i ]; Node* proj = _matcher._null_check_tests[i];
Node *val = matcher._null_check_tests[i+1]; Node* val = _matcher._null_check_tests[i + 1];
get_block_for_node(proj)->implicit_null_check(this, proj, val, allowed_reasons); Block* block = get_block_for_node(proj);
block->implicit_null_check(this, proj, val, allowed_reasons);
// The implicit_null_check will only perform the transformation // The implicit_null_check will only perform the transformation
// if the null branch is truly uncommon, *and* it leads to an // if the null branch is truly uncommon, *and* it leads to an
// uncommon trap. Combined with the too_many_traps guards // uncommon trap. Combined with the too_many_traps guards
@ -1352,11 +1359,11 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
// Schedule locally. Right now a simple topological sort. // Schedule locally. Right now a simple topological sort.
// Later, do a real latency aware scheduler. // Later, do a real latency aware scheduler.
uint max_idx = C->unique(); GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
GrowableArray<int> ready_cnt(max_idx, max_idx, -1);
visited.Clear(); visited.Clear();
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) { Block* block = get_block(i);
if (!block->schedule_local(this, _matcher, ready_cnt, visited)) {
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
C->record_method_not_compilable("local schedule failed"); C->record_method_not_compilable("local schedule failed");
} }
@ -1366,15 +1373,17 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
// If we inserted any instructions between a Call and his CatchNode, // If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch. // clone the instructions on all paths below the Catch.
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
_blocks[i]->call_catch_cleanup(this, C); Block* block = get_block(i);
block->call_catch_cleanup(this, C);
} }
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_pipelining()) { if (trace_opto_pipelining()) {
tty->print("\n---- After GlobalCodeMotion ----\n"); tty->print("\n---- After GlobalCodeMotion ----\n");
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
_blocks[i]->dump(); Block* block = get_block(i);
block->dump();
} }
} }
#endif #endif
@ -1382,10 +1391,29 @@ void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_
_node_latency = (GrowableArray<uint> *)0xdeadbeef; _node_latency = (GrowableArray<uint> *)0xdeadbeef;
} }
bool PhaseCFG::do_global_code_motion() {
build_dominator_tree();
if (C->failing()) {
return false;
}
NOT_PRODUCT( C->verify_graph_edges(); )
estimate_block_frequency();
global_code_motion();
if (C->failing()) {
return false;
}
return true;
}
//------------------------------Estimate_Block_Frequency----------------------- //------------------------------Estimate_Block_Frequency-----------------------
// Estimate block frequencies based on IfNode probabilities. // Estimate block frequencies based on IfNode probabilities.
void PhaseCFG::Estimate_Block_Frequency() { void PhaseCFG::estimate_block_frequency() {
// Force conditional branches leading to uncommon traps to be unlikely, // Force conditional branches leading to uncommon traps to be unlikely,
// not because we get to the uncommon_trap with less relative frequency, // not because we get to the uncommon_trap with less relative frequency,
@ -1393,7 +1421,7 @@ void PhaseCFG::Estimate_Block_Frequency() {
// there once. // there once.
if (C->do_freq_based_layout()) { if (C->do_freq_based_layout()) {
Block_List worklist; Block_List worklist;
Block* root_blk = _blocks[0]; Block* root_blk = get_block(0);
for (uint i = 1; i < root_blk->num_preds(); i++) { for (uint i = 1; i < root_blk->num_preds(); i++) {
Block *pb = get_block_for_node(root_blk->pred(i)); Block *pb = get_block_for_node(root_blk->pred(i));
if (pb->has_uncommon_code()) { if (pb->has_uncommon_code()) {
@ -1402,7 +1430,9 @@ void PhaseCFG::Estimate_Block_Frequency() {
} }
while (worklist.size() > 0) { while (worklist.size() > 0) {
Block* uct = worklist.pop(); Block* uct = worklist.pop();
if (uct == _broot) continue; if (uct == get_root_block()) {
continue;
}
for (uint i = 1; i < uct->num_preds(); i++) { for (uint i = 1; i < uct->num_preds(); i++) {
Block *pb = get_block_for_node(uct->pred(i)); Block *pb = get_block_for_node(uct->pred(i));
if (pb->_num_succs == 1) { if (pb->_num_succs == 1) {
@ -1426,12 +1456,12 @@ void PhaseCFG::Estimate_Block_Frequency() {
_root_loop->scale_freq(); _root_loop->scale_freq();
// Save outmost loop frequency for LRG frequency threshold // Save outmost loop frequency for LRG frequency threshold
_outer_loop_freq = _root_loop->outer_loop_freq(); _outer_loop_frequency = _root_loop->outer_loop_freq();
// force paths ending at uncommon traps to be infrequent // force paths ending at uncommon traps to be infrequent
if (!C->do_freq_based_layout()) { if (!C->do_freq_based_layout()) {
Block_List worklist; Block_List worklist;
Block* root_blk = _blocks[0]; Block* root_blk = get_block(0);
for (uint i = 1; i < root_blk->num_preds(); i++) { for (uint i = 1; i < root_blk->num_preds(); i++) {
Block *pb = get_block_for_node(root_blk->pred(i)); Block *pb = get_block_for_node(root_blk->pred(i));
if (pb->has_uncommon_code()) { if (pb->has_uncommon_code()) {
@ -1451,8 +1481,8 @@ void PhaseCFG::Estimate_Block_Frequency() {
} }
#ifdef ASSERT #ifdef ASSERT
for (uint i = 0; i < _num_blocks; i++ ) { for (uint i = 0; i < number_of_blocks(); i++) {
Block *b = _blocks[i]; Block* b = get_block(i);
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency"); assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
} }
#endif #endif
@ -1476,16 +1506,16 @@ void PhaseCFG::Estimate_Block_Frequency() {
CFGLoop* PhaseCFG::create_loop_tree() { CFGLoop* PhaseCFG::create_loop_tree() {
#ifdef ASSERT #ifdef ASSERT
assert( _blocks[0] == _broot, "" ); assert(get_block(0) == get_root_block(), "first block should be root block");
for (uint i = 0; i < _num_blocks; i++ ) { for (uint i = 0; i < number_of_blocks(); i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
// Check that _loop field are clear...we could clear them if not. // Check that _loop field are clear...we could clear them if not.
assert(b->_loop == NULL, "clear _loop expected"); assert(block->_loop == NULL, "clear _loop expected");
// Sanity check that the RPO numbering is reflected in the _blocks array. // Sanity check that the RPO numbering is reflected in the _blocks array.
// It doesn't have to be for the loop tree to be built, but if it is not, // It doesn't have to be for the loop tree to be built, but if it is not,
// then the blocks have been reordered since dom graph building...which // then the blocks have been reordered since dom graph building...which
// may question the RPO numbering // may question the RPO numbering
assert(b->_rpo == i, "unexpected reverse post order number"); assert(block->_rpo == i, "unexpected reverse post order number");
} }
#endif #endif
@ -1495,11 +1525,11 @@ CFGLoop* PhaseCFG::create_loop_tree() {
Block_List worklist; Block_List worklist;
// Assign blocks to loops // Assign blocks to loops
for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
Block *b = _blocks[i]; Block* block = get_block(i);
if (b->head()->is_Loop()) { if (block->head()->is_Loop()) {
Block* loop_head = b; Block* loop_head = block;
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors"); assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl); Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
Block* tail = get_block_for_node(tail_n); Block* tail = get_block_for_node(tail_n);
@ -1533,23 +1563,23 @@ CFGLoop* PhaseCFG::create_loop_tree() {
// Create a member list for each loop consisting // Create a member list for each loop consisting
// of both blocks and (immediate child) loops. // of both blocks and (immediate child) loops.
for (uint i = 0; i < _num_blocks; i++) { for (uint i = 0; i < number_of_blocks(); i++) {
Block *b = _blocks[i]; Block* block = get_block(i);
CFGLoop* lp = b->_loop; CFGLoop* lp = block->_loop;
if (lp == NULL) { if (lp == NULL) {
// Not assigned to a loop. Add it to the method's pseudo loop. // Not assigned to a loop. Add it to the method's pseudo loop.
b->_loop = root_loop; block->_loop = root_loop;
lp = root_loop; lp = root_loop;
} }
if (lp == root_loop || b != lp->head()) { // loop heads are already members if (lp == root_loop || block != lp->head()) { // loop heads are already members
lp->add_member(b); lp->add_member(block);
} }
if (lp != root_loop) { if (lp != root_loop) {
if (lp->parent() == NULL) { if (lp->parent() == NULL) {
// Not a nested loop. Make it a child of the method's pseudo loop. // Not a nested loop. Make it a child of the method's pseudo loop.
root_loop->add_nested_loop(lp); root_loop->add_nested_loop(lp);
} }
if (b == lp->head()) { if (block == lp->head()) {
// Add nested loop to member list of parent loop. // Add nested loop to member list of parent loop.
lp->parent()->add_member(lp); lp->parent()->add_member(lp);
} }

View File

@ -416,7 +416,7 @@ void IdealGraphPrinter::visit_node(Node *n, bool edges, VectorSet* temp_set) {
if (C->cfg() != NULL) { if (C->cfg() != NULL) {
Block* block = C->cfg()->get_block_for_node(node); Block* block = C->cfg()->get_block_for_node(node);
if (block == NULL) { if (block == NULL) {
print_prop("block", C->cfg()->_blocks[0]->_pre_order); print_prop("block", C->cfg()->get_block(0)->_pre_order);
} else { } else {
print_prop("block", block->_pre_order); print_prop("block", block->_pre_order);
} }
@ -637,10 +637,10 @@ void IdealGraphPrinter::walk_nodes(Node *start, bool edges, VectorSet* temp_set)
if (C->cfg() != NULL) { if (C->cfg() != NULL) {
// once we have a CFG there are some nodes that aren't really // once we have a CFG there are some nodes that aren't really
// reachable but are in the CFG so add them here. // reachable but are in the CFG so add them here.
for (uint i = 0; i < C->cfg()->_blocks.size(); i++) { for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
Block *b = C->cfg()->_blocks[i]; Block* block = C->cfg()->get_block(i);
for (uint s = 0; s < b->_nodes.size(); s++) { for (uint s = 0; s < block->_nodes.size(); s++) {
nodeStack.push(b->_nodes[s]); nodeStack.push(block->_nodes[s]);
} }
} }
} }
@ -698,24 +698,24 @@ void IdealGraphPrinter::print(Compile* compile, const char *name, Node *node, in
tail(EDGES_ELEMENT); tail(EDGES_ELEMENT);
if (C->cfg() != NULL) { if (C->cfg() != NULL) {
head(CONTROL_FLOW_ELEMENT); head(CONTROL_FLOW_ELEMENT);
for (uint i = 0; i < C->cfg()->_blocks.size(); i++) { for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
Block *b = C->cfg()->_blocks[i]; Block* block = C->cfg()->get_block(i);
begin_head(BLOCK_ELEMENT); begin_head(BLOCK_ELEMENT);
print_attr(BLOCK_NAME_PROPERTY, b->_pre_order); print_attr(BLOCK_NAME_PROPERTY, block->_pre_order);
end_head(); end_head();
head(SUCCESSORS_ELEMENT); head(SUCCESSORS_ELEMENT);
for (uint s = 0; s < b->_num_succs; s++) { for (uint s = 0; s < block->_num_succs; s++) {
begin_elem(SUCCESSOR_ELEMENT); begin_elem(SUCCESSOR_ELEMENT);
print_attr(BLOCK_NAME_PROPERTY, b->_succs[s]->_pre_order); print_attr(BLOCK_NAME_PROPERTY, block->_succs[s]->_pre_order);
end_elem(); end_elem();
} }
tail(SUCCESSORS_ELEMENT); tail(SUCCESSORS_ELEMENT);
head(NODES_ELEMENT); head(NODES_ELEMENT);
for (uint s = 0; s < b->_nodes.size(); s++) { for (uint s = 0; s < block->_nodes.size(); s++) {
begin_elem(NODE_ELEMENT); begin_elem(NODE_ELEMENT);
print_attr(NODE_ID_PROPERTY, get_node_id(b->_nodes[s])); print_attr(NODE_ID_PROPERTY, get_node_id(block->_nodes[s]));
end_elem(); end_elem();
} }
tail(NODES_ELEMENT); tail(NODES_ELEMENT);

View File

@ -37,12 +37,9 @@
#include "opto/memnode.hpp" #include "opto/memnode.hpp"
#include "opto/opcodes.hpp" #include "opto/opcodes.hpp"
//=============================================================================
//------------------------------IFG--------------------------------------------
PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) { PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
} }
//------------------------------init-------------------------------------------
void PhaseIFG::init( uint maxlrg ) { void PhaseIFG::init( uint maxlrg ) {
_maxlrg = maxlrg; _maxlrg = maxlrg;
_yanked = new (_arena) VectorSet(_arena); _yanked = new (_arena) VectorSet(_arena);
@ -59,7 +56,6 @@ void PhaseIFG::init( uint maxlrg ) {
} }
} }
//------------------------------add--------------------------------------------
// Add edge between vertices a & b. These are sorted (triangular matrix), // Add edge between vertices a & b. These are sorted (triangular matrix),
// then the smaller number is inserted in the larger numbered array. // then the smaller number is inserted in the larger numbered array.
int PhaseIFG::add_edge( uint a, uint b ) { int PhaseIFG::add_edge( uint a, uint b ) {
@ -71,7 +67,6 @@ int PhaseIFG::add_edge( uint a, uint b ) {
return _adjs[a].insert( b ); return _adjs[a].insert( b );
} }
//------------------------------add_vector-------------------------------------
// Add an edge between 'a' and everything in the vector. // Add an edge between 'a' and everything in the vector.
void PhaseIFG::add_vector( uint a, IndexSet *vec ) { void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
// IFG is triangular, so do the inserts where 'a' < 'b'. // IFG is triangular, so do the inserts where 'a' < 'b'.
@ -86,7 +81,6 @@ void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
} }
} }
//------------------------------test-------------------------------------------
// Is there an edge between a and b? // Is there an edge between a and b?
int PhaseIFG::test_edge( uint a, uint b ) const { int PhaseIFG::test_edge( uint a, uint b ) const {
// Sort a and b, so that a is larger // Sort a and b, so that a is larger
@ -95,7 +89,6 @@ int PhaseIFG::test_edge( uint a, uint b ) const {
return _adjs[a].member(b); return _adjs[a].member(b);
} }
//------------------------------SquareUp---------------------------------------
// Convert triangular matrix to square matrix // Convert triangular matrix to square matrix
void PhaseIFG::SquareUp() { void PhaseIFG::SquareUp() {
assert( !_is_square, "only on triangular" ); assert( !_is_square, "only on triangular" );
@ -111,7 +104,6 @@ void PhaseIFG::SquareUp() {
_is_square = true; _is_square = true;
} }
//------------------------------Compute_Effective_Degree-----------------------
// Compute effective degree in bulk // Compute effective degree in bulk
void PhaseIFG::Compute_Effective_Degree() { void PhaseIFG::Compute_Effective_Degree() {
assert( _is_square, "only on square" ); assert( _is_square, "only on square" );
@ -120,7 +112,6 @@ void PhaseIFG::Compute_Effective_Degree() {
lrgs(i).set_degree(effective_degree(i)); lrgs(i).set_degree(effective_degree(i));
} }
//------------------------------test_edge_sq-----------------------------------
int PhaseIFG::test_edge_sq( uint a, uint b ) const { int PhaseIFG::test_edge_sq( uint a, uint b ) const {
assert( _is_square, "only on square" ); assert( _is_square, "only on square" );
// Swap, so that 'a' has the lesser count. Then binary search is on // Swap, so that 'a' has the lesser count. Then binary search is on
@ -130,7 +121,6 @@ int PhaseIFG::test_edge_sq( uint a, uint b ) const {
return _adjs[a].member(b); return _adjs[a].member(b);
} }
//------------------------------Union------------------------------------------
// Union edges of B into A // Union edges of B into A
void PhaseIFG::Union( uint a, uint b ) { void PhaseIFG::Union( uint a, uint b ) {
assert( _is_square, "only on square" ); assert( _is_square, "only on square" );
@ -146,7 +136,6 @@ void PhaseIFG::Union( uint a, uint b ) {
} }
} }
//------------------------------remove_node------------------------------------
// Yank a Node and all connected edges from the IFG. Return a // Yank a Node and all connected edges from the IFG. Return a
// list of neighbors (edges) yanked. // list of neighbors (edges) yanked.
IndexSet *PhaseIFG::remove_node( uint a ) { IndexSet *PhaseIFG::remove_node( uint a ) {
@ -165,7 +154,6 @@ IndexSet *PhaseIFG::remove_node( uint a ) {
return neighbors(a); return neighbors(a);
} }
//------------------------------re_insert--------------------------------------
// Re-insert a yanked Node. // Re-insert a yanked Node.
void PhaseIFG::re_insert( uint a ) { void PhaseIFG::re_insert( uint a ) {
assert( _is_square, "only on square" ); assert( _is_square, "only on square" );
@ -180,7 +168,6 @@ void PhaseIFG::re_insert( uint a ) {
} }
} }
//------------------------------compute_degree---------------------------------
// Compute the degree between 2 live ranges. If both live ranges are // Compute the degree between 2 live ranges. If both live ranges are
// aligned-adjacent powers-of-2 then we use the MAX size. If either is // aligned-adjacent powers-of-2 then we use the MAX size. If either is
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
@ -196,7 +183,6 @@ int LRG::compute_degree( LRG &l ) const {
return tmp; return tmp;
} }
//------------------------------effective_degree-------------------------------
// Compute effective degree for this live range. If both live ranges are // Compute effective degree for this live range. If both live ranges are
// aligned-adjacent powers-of-2 then we use the MAX size. If either is // aligned-adjacent powers-of-2 then we use the MAX size. If either is
// mis-aligned (or for Fat-Projections, not-adjacent) then we have to // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
@ -221,7 +207,6 @@ int PhaseIFG::effective_degree( uint lidx ) const {
#ifndef PRODUCT #ifndef PRODUCT
//------------------------------dump-------------------------------------------
void PhaseIFG::dump() const { void PhaseIFG::dump() const {
tty->print_cr("-- Interference Graph --%s--", tty->print_cr("-- Interference Graph --%s--",
_is_square ? "square" : "triangular" ); _is_square ? "square" : "triangular" );
@ -260,7 +245,6 @@ void PhaseIFG::dump() const {
tty->print("\n"); tty->print("\n");
} }
//------------------------------stats------------------------------------------
void PhaseIFG::stats() const { void PhaseIFG::stats() const {
ResourceMark rm; ResourceMark rm;
int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2); int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
@ -276,7 +260,6 @@ void PhaseIFG::stats() const {
tty->print_cr(""); tty->print_cr("");
} }
//------------------------------verify-----------------------------------------
void PhaseIFG::verify( const PhaseChaitin *pc ) const { void PhaseIFG::verify( const PhaseChaitin *pc ) const {
// IFG is square, sorted and no need for Find // IFG is square, sorted and no need for Find
for( uint i = 0; i < _maxlrg; i++ ) { for( uint i = 0; i < _maxlrg; i++ ) {
@ -298,7 +281,6 @@ void PhaseIFG::verify( const PhaseChaitin *pc ) const {
} }
#endif #endif
//------------------------------interfere_with_live----------------------------
// Interfere this register with everything currently live. Use the RegMasks // Interfere this register with everything currently live. Use the RegMasks
// to trim the set of possible interferences. Return a count of register-only // to trim the set of possible interferences. Return a count of register-only
// interferences as an estimate of register pressure. // interferences as an estimate of register pressure.
@ -315,7 +297,6 @@ void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
_ifg->add_edge( r, l ); _ifg->add_edge( r, l );
} }
//------------------------------build_ifg_virtual------------------------------
// Actually build the interference graph. Uses virtual registers only, no // Actually build the interference graph. Uses virtual registers only, no
// physical register masks. This allows me to be very aggressive when // physical register masks. This allows me to be very aggressive when
// coalescing copies. Some of this aggressiveness will have to be undone // coalescing copies. Some of this aggressiveness will have to be undone
@ -325,9 +306,9 @@ void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
void PhaseChaitin::build_ifg_virtual( ) { void PhaseChaitin::build_ifg_virtual( ) {
// For all blocks (in any order) do... // For all blocks (in any order) do...
for( uint i=0; i<_cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
IndexSet *liveout = _live->live(b); IndexSet* liveout = _live->live(block);
// The IFG is built by a single reverse pass over each basic block. // The IFG is built by a single reverse pass over each basic block.
// Starting with the known live-out set, we remove things that get // Starting with the known live-out set, we remove things that get
@ -337,8 +318,8 @@ void PhaseChaitin::build_ifg_virtual( ) {
// The defined value interferes with everything currently live. The // The defined value interferes with everything currently live. The
// value is then removed from the live-ness set and it's inputs are // value is then removed from the live-ness set and it's inputs are
// added to the live-ness set. // added to the live-ness set.
for( uint j = b->end_idx() + 1; j > 1; j-- ) { for (uint j = block->end_idx() + 1; j > 1; j--) {
Node *n = b->_nodes[j-1]; Node* n = block->_nodes[j - 1];
// Get value being defined // Get value being defined
uint r = _lrg_map.live_range_id(n); uint r = _lrg_map.live_range_id(n);
@ -408,7 +389,6 @@ void PhaseChaitin::build_ifg_virtual( ) {
} // End of forall blocks } // End of forall blocks
} }
//------------------------------count_int_pressure-----------------------------
uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) { uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
IndexSetIterator elements(liveout); IndexSetIterator elements(liveout);
uint lidx; uint lidx;
@ -424,7 +404,6 @@ uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
return cnt; return cnt;
} }
//------------------------------count_float_pressure---------------------------
uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) { uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
IndexSetIterator elements(liveout); IndexSetIterator elements(liveout);
uint lidx; uint lidx;
@ -438,7 +417,6 @@ uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
return cnt; return cnt;
} }
//------------------------------lower_pressure---------------------------------
// Adjust register pressure down by 1. Capture last hi-to-low transition, // Adjust register pressure down by 1. Capture last hi-to-low transition,
static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) { static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
if (lrg->mask().is_UP() && lrg->mask_size()) { if (lrg->mask().is_UP() && lrg->mask_size()) {
@ -460,40 +438,41 @@ static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint
} }
} }
//------------------------------build_ifg_physical-----------------------------
// Build the interference graph using physical registers when available. // Build the interference graph using physical registers when available.
// That is, if 2 live ranges are simultaneously alive but in their acceptable // That is, if 2 live ranges are simultaneously alive but in their acceptable
// register sets do not overlap, then they do not interfere. // register sets do not overlap, then they do not interfere.
uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) { uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); ) NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
uint spill_reg = LRG::SPILL_REG;
uint must_spill = 0; uint must_spill = 0;
// For all blocks (in any order) do... // For all blocks (in any order) do...
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
// Clone (rather than smash in place) the liveout info, so it is alive // Clone (rather than smash in place) the liveout info, so it is alive
// for the "collect_gc_info" phase later. // for the "collect_gc_info" phase later.
IndexSet liveout(_live->live(b)); IndexSet liveout(_live->live(block));
uint last_inst = b->end_idx(); uint last_inst = block->end_idx();
// Compute first nonphi node index // Compute first nonphi node index
uint first_inst; uint first_inst;
for( first_inst = 1; first_inst < last_inst; first_inst++ ) for (first_inst = 1; first_inst < last_inst; first_inst++) {
if( !b->_nodes[first_inst]->is_Phi() ) if (!block->_nodes[first_inst]->is_Phi()) {
break; break;
}
}
// Spills could be inserted before CreateEx node which should be // Spills could be inserted before CreateEx node which should be
// first instruction in block after Phis. Move CreateEx up. // first instruction in block after Phis. Move CreateEx up.
for (uint insidx = first_inst; insidx < last_inst; insidx++) { for (uint insidx = first_inst; insidx < last_inst; insidx++) {
Node *ex = b->_nodes[insidx]; Node *ex = block->_nodes[insidx];
if( ex->is_SpillCopy() ) continue; if (ex->is_SpillCopy()) {
if( insidx > first_inst && ex->is_Mach() && continue;
ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) { }
if (insidx > first_inst && ex->is_Mach() && ex->as_Mach()->ideal_Opcode() == Op_CreateEx) {
// If the CreateEx isn't above all the MachSpillCopies // If the CreateEx isn't above all the MachSpillCopies
// then move it to the top. // then move it to the top.
b->_nodes.remove(insidx); block->_nodes.remove(insidx);
b->_nodes.insert(first_inst, ex); block->_nodes.insert(first_inst, ex);
} }
// Stop once a CreateEx or any other node is found // Stop once a CreateEx or any other node is found
break; break;
@ -503,12 +482,12 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
uint pressure[2], hrp_index[2]; uint pressure[2], hrp_index[2];
pressure[0] = pressure[1] = 0; pressure[0] = pressure[1] = 0;
hrp_index[0] = hrp_index[1] = last_inst+1; hrp_index[0] = hrp_index[1] = last_inst+1;
b->_reg_pressure = b->_freg_pressure = 0; block->_reg_pressure = block->_freg_pressure = 0;
// Liveout things are presumed live for the whole block. We accumulate // Liveout things are presumed live for the whole block. We accumulate
// 'area' accordingly. If they get killed in the block, we'll subtract // 'area' accordingly. If they get killed in the block, we'll subtract
// the unused part of the block from the area. // the unused part of the block from the area.
int inst_count = last_inst - first_inst; int inst_count = last_inst - first_inst;
double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count); double cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
assert(!(cost < 0.0), "negative spill cost" ); assert(!(cost < 0.0), "negative spill cost" );
IndexSetIterator elements(&liveout); IndexSetIterator elements(&liveout);
uint lidx; uint lidx;
@ -519,13 +498,15 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if (lrg.mask().is_UP() && lrg.mask_size()) { if (lrg.mask().is_UP() && lrg.mask_size()) {
if (lrg._is_float || lrg._is_vector) { // Count float pressure if (lrg._is_float || lrg._is_vector) { // Count float pressure
pressure[1] += lrg.reg_pressure(); pressure[1] += lrg.reg_pressure();
if( pressure[1] > b->_freg_pressure ) if (pressure[1] > block->_freg_pressure) {
b->_freg_pressure = pressure[1]; block->_freg_pressure = pressure[1];
}
// Count int pressure, but do not count the SP, flags // Count int pressure, but do not count the SP, flags
} else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) { } else if(lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI])) {
pressure[0] += lrg.reg_pressure(); pressure[0] += lrg.reg_pressure();
if( pressure[0] > b->_reg_pressure ) if (pressure[0] > block->_reg_pressure) {
b->_reg_pressure = pressure[0]; block->_reg_pressure = pressure[0];
}
} }
} }
} }
@ -542,7 +523,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// to the live-ness set. // to the live-ness set.
uint j; uint j;
for (j = last_inst + 1; j > 1; j--) { for (j = last_inst + 1; j > 1; j--) {
Node *n = b->_nodes[j - 1]; Node* n = block->_nodes[j - 1];
// Get value being defined // Get value being defined
uint r = _lrg_map.live_range_id(n); uint r = _lrg_map.live_range_id(n);
@ -551,7 +532,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if(r) { if(r) {
// A DEF normally costs block frequency; rematerialized values are // A DEF normally costs block frequency; rematerialized values are
// removed from the DEF sight, so LOWER costs here. // removed from the DEF sight, so LOWER costs here.
lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq; lrgs(r)._cost += n->rematerialize() ? 0 : block->_freq;
// If it is not live, then this instruction is dead. Probably caused // If it is not live, then this instruction is dead. Probably caused
// by spilling and rematerialization. Who cares why, yank this baby. // by spilling and rematerialization. Who cares why, yank this baby.
@ -560,7 +541,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if( !n->is_Proj() || if( !n->is_Proj() ||
// Could also be a flags-projection of a dead ADD or such. // Could also be a flags-projection of a dead ADD or such.
(_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) { (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
b->_nodes.remove(j - 1); block->_nodes.remove(j - 1);
if (lrgs(r)._def == n) { if (lrgs(r)._def == n) {
lrgs(r)._def = 0; lrgs(r)._def = 0;
} }
@ -580,20 +561,20 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
RegMask itmp = lrgs(r).mask(); RegMask itmp = lrgs(r).mask();
itmp.AND(*Matcher::idealreg2regmask[Op_RegI]); itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
int iregs = itmp.Size(); int iregs = itmp.Size();
if( pressure[0]+iregs > b->_reg_pressure ) if (pressure[0]+iregs > block->_reg_pressure) {
b->_reg_pressure = pressure[0]+iregs; block->_reg_pressure = pressure[0] + iregs;
if( pressure[0] <= (uint)INTPRESSURE && }
pressure[0]+iregs > (uint)INTPRESSURE ) { if (pressure[0] <= (uint)INTPRESSURE && pressure[0] + iregs > (uint)INTPRESSURE) {
hrp_index[0] = j - 1; hrp_index[0] = j - 1;
} }
// Count the float-only registers // Count the float-only registers
RegMask ftmp = lrgs(r).mask(); RegMask ftmp = lrgs(r).mask();
ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]); ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
int fregs = ftmp.Size(); int fregs = ftmp.Size();
if( pressure[1]+fregs > b->_freg_pressure ) if (pressure[1] + fregs > block->_freg_pressure) {
b->_freg_pressure = pressure[1]+fregs; block->_freg_pressure = pressure[1] + fregs;
if( pressure[1] <= (uint)FLOATPRESSURE && }
pressure[1]+fregs > (uint)FLOATPRESSURE ) { if(pressure[1] <= (uint)FLOATPRESSURE && pressure[1]+fregs > (uint)FLOATPRESSURE) {
hrp_index[1] = j - 1; hrp_index[1] = j - 1;
} }
} }
@ -607,7 +588,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if( n->is_SpillCopy() if( n->is_SpillCopy()
&& lrgs(r).is_singledef() // MultiDef live range can still split && lrgs(r).is_singledef() // MultiDef live range can still split
&& n->outcnt() == 1 // and use must be in this block && n->outcnt() == 1 // and use must be in this block
&& _cfg.get_block_for_node(n->unique_out()) == b ) { && _cfg.get_block_for_node(n->unique_out()) == block) {
// All single-use MachSpillCopy(s) that immediately precede their // All single-use MachSpillCopy(s) that immediately precede their
// use must color early. If a longer live range steals their // use must color early. If a longer live range steals their
// color, the spill copy will split and may push another spill copy // color, the spill copy will split and may push another spill copy
@ -617,13 +598,15 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// //
Node *single_use = n->unique_out(); Node *single_use = n->unique_out();
assert( b->find_node(single_use) >= j, "Use must be later in block"); assert(block->find_node(single_use) >= j, "Use must be later in block");
// Use can be earlier in block if it is a Phi, but then I should be a MultiDef // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
// Find first non SpillCopy 'm' that follows the current instruction // Find first non SpillCopy 'm' that follows the current instruction
// (j - 1) is index for current instruction 'n' // (j - 1) is index for current instruction 'n'
Node *m = n; Node *m = n;
for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; } for (uint i = j; i <= last_inst && m->is_SpillCopy(); ++i) {
m = block->_nodes[i];
}
if (m == single_use) { if (m == single_use) {
lrgs(r)._area = 0.0; lrgs(r)._area = 0.0;
} }
@ -633,7 +616,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if( liveout.remove(r) ) { if( liveout.remove(r) ) {
// Adjust register pressure. // Adjust register pressure.
// Capture last hi-to-lo pressure transition // Capture last hi-to-lo pressure transition
lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index ); lower_pressure(&lrgs(r), j - 1, block, pressure, hrp_index);
assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" );
} }
@ -646,7 +629,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if (liveout.remove(x)) { if (liveout.remove(x)) {
lrgs(x)._area -= cost; lrgs(x)._area -= cost;
// Adjust register pressure. // Adjust register pressure.
lower_pressure(&lrgs(x), j-1, b, pressure, hrp_index); lower_pressure(&lrgs(x), j - 1, block, pressure, hrp_index);
assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[0] == count_int_pressure (&liveout), "" );
assert( pressure[1] == count_float_pressure(&liveout), "" ); assert( pressure[1] == count_float_pressure(&liveout), "" );
} }
@ -718,7 +701,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// Area remaining in the block // Area remaining in the block
inst_count--; inst_count--;
cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count); cost = (inst_count <= 0) ? 0.0 : block->_freq * double(inst_count);
// Make all inputs live // Make all inputs live
if( !n->is_Phi() ) { // Phi function uses come from prior block if( !n->is_Phi() ) { // Phi function uses come from prior block
@ -743,7 +726,7 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if (k < debug_start) { if (k < debug_start) {
// A USE costs twice block frequency (once for the Load, once // A USE costs twice block frequency (once for the Load, once
// for a Load-delay). Rematerialized uses only cost once. // for a Load-delay). Rematerialized uses only cost once.
lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq)); lrg._cost += (def->rematerialize() ? block->_freq : (block->_freq + block->_freq));
} }
// It is live now // It is live now
if (liveout.insert(x)) { if (liveout.insert(x)) {
@ -753,12 +736,14 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
if (lrg.mask().is_UP() && lrg.mask_size()) { if (lrg.mask().is_UP() && lrg.mask_size()) {
if (lrg._is_float || lrg._is_vector) { if (lrg._is_float || lrg._is_vector) {
pressure[1] += lrg.reg_pressure(); pressure[1] += lrg.reg_pressure();
if( pressure[1] > b->_freg_pressure ) if (pressure[1] > block->_freg_pressure) {
b->_freg_pressure = pressure[1]; block->_freg_pressure = pressure[1];
}
} else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) { } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
pressure[0] += lrg.reg_pressure(); pressure[0] += lrg.reg_pressure();
if( pressure[0] > b->_reg_pressure ) if (pressure[0] > block->_reg_pressure) {
b->_reg_pressure = pressure[0]; block->_reg_pressure = pressure[0];
}
} }
} }
assert( pressure[0] == count_int_pressure (&liveout), "" ); assert( pressure[0] == count_int_pressure (&liveout), "" );
@ -774,43 +759,46 @@ uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
// the whole block is high pressure. // the whole block is high pressure.
if (pressure[0] > (uint)INTPRESSURE) { if (pressure[0] > (uint)INTPRESSURE) {
hrp_index[0] = 0; hrp_index[0] = 0;
if( pressure[0] > b->_reg_pressure ) if (pressure[0] > block->_reg_pressure) {
b->_reg_pressure = pressure[0]; block->_reg_pressure = pressure[0];
}
} }
if (pressure[1] > (uint)FLOATPRESSURE) { if (pressure[1] > (uint)FLOATPRESSURE) {
hrp_index[1] = 0; hrp_index[1] = 0;
if( pressure[1] > b->_freg_pressure ) if (pressure[1] > block->_freg_pressure) {
b->_freg_pressure = pressure[1]; block->_freg_pressure = pressure[1];
}
} }
// Compute high pressure indice; avoid landing in the middle of projnodes // Compute high pressure indice; avoid landing in the middle of projnodes
j = hrp_index[0]; j = hrp_index[0];
if( j < b->_nodes.size() && j < b->end_idx()+1 ) { if (j < block->_nodes.size() && j < block->end_idx() + 1) {
Node *cur = b->_nodes[j]; Node* cur = block->_nodes[j];
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) { while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--; j--;
cur = b->_nodes[j]; cur = block->_nodes[j];
} }
} }
b->_ihrp_index = j; block->_ihrp_index = j;
j = hrp_index[1]; j = hrp_index[1];
if( j < b->_nodes.size() && j < b->end_idx()+1 ) { if (j < block->_nodes.size() && j < block->end_idx() + 1) {
Node *cur = b->_nodes[j]; Node* cur = block->_nodes[j];
while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) { while (cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch()) {
j--; j--;
cur = b->_nodes[j]; cur = block->_nodes[j];
} }
} }
b->_fhrp_index = j; block->_fhrp_index = j;
#ifndef PRODUCT #ifndef PRODUCT
// Gather Register Pressure Statistics // Gather Register Pressure Statistics
if( PrintOptoStatistics ) { if( PrintOptoStatistics ) {
if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE ) if (block->_reg_pressure > (uint)INTPRESSURE || block->_freg_pressure > (uint)FLOATPRESSURE) {
_high_pressure++; _high_pressure++;
else } else {
_low_pressure++; _low_pressure++;
} }
}
#endif #endif
} // End of for all blocks } // End of for all blocks

View File

@ -501,7 +501,7 @@ Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &read
n_choice = 1; n_choice = 1;
} }
uint n_latency = cfg->_node_latency->at_grow(n->_idx); uint n_latency = cfg->get_latency_for_node(n);
uint n_score = n->req(); // Many inputs get high score to break ties uint n_score = n->req(); // Many inputs get high score to break ties
// Keep best latency found // Keep best latency found
@ -797,7 +797,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
Node *n = _nodes[j]; Node *n = _nodes[j];
int idx = n->_idx; int idx = n->_idx;
tty->print("# ready cnt:%3d ", ready_cnt.at(idx)); tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
tty->print("latency:%3d ", cfg->_node_latency->at_grow(idx)); tty->print("latency:%3d ", cfg->get_latency_for_node(n));
tty->print("%4d: %s\n", idx, n->Name()); tty->print("%4d: %s\n", idx, n->Name());
} }
} }
@ -825,7 +825,7 @@ bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &
#ifndef PRODUCT #ifndef PRODUCT
if (cfg->trace_opto_pipelining()) { if (cfg->trace_opto_pipelining()) {
tty->print("# select %d: %s", n->_idx, n->Name()); tty->print("# select %d: %s", n->_idx, n->Name());
tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx)); tty->print(", latency:%d", cfg->get_latency_for_node(n));
n->dump(); n->dump();
if (Verbose) { if (Verbose) {
tty->print("# ready list:"); tty->print("# ready list:");

View File

@ -213,6 +213,7 @@ class LibraryCallKit : public GraphKit {
void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar); void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile); bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static); bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
static bool klass_needs_init_guard(Node* kls);
bool inline_unsafe_allocate(); bool inline_unsafe_allocate();
bool inline_unsafe_copyMemory(); bool inline_unsafe_copyMemory();
bool inline_native_currentThread(); bool inline_native_currentThread();
@ -2892,8 +2893,21 @@ bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
} }
} }
bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
if (!kls->is_Con()) {
return true;
}
const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
if (klsptr == NULL) {
return true;
}
ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
// don't need a guard for a klass that is already initialized
return !ik->is_initialized();
}
//----------------------------inline_unsafe_allocate--------------------------- //----------------------------inline_unsafe_allocate---------------------------
// public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls); // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
bool LibraryCallKit::inline_unsafe_allocate() { bool LibraryCallKit::inline_unsafe_allocate() {
if (callee()->is_static()) return false; // caller must have the capability! if (callee()->is_static()) return false; // caller must have the capability!
@ -2905,6 +2919,8 @@ bool LibraryCallKit::inline_unsafe_allocate() {
kls = null_check(kls); kls = null_check(kls);
if (stopped()) return true; // argument was like int.class if (stopped()) return true; // argument was like int.class
Node* test = NULL;
if (LibraryCallKit::klass_needs_init_guard(kls)) {
// Note: The argument might still be an illegal value like // Note: The argument might still be an illegal value like
// Serializable.class or Object[].class. The runtime will handle it. // Serializable.class or Object[].class. The runtime will handle it.
// But we must make an explicit check for initialization. // But we must make an explicit check for initialization.
@ -2913,8 +2929,9 @@ bool LibraryCallKit::inline_unsafe_allocate() {
// can generate code to load it as unsigned byte. // can generate code to load it as unsigned byte.
Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN); Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
Node* bits = intcon(InstanceKlass::fully_initialized); Node* bits = intcon(InstanceKlass::fully_initialized);
Node* test = _gvn.transform(new (C) SubINode(inst, bits)); test = _gvn.transform(new (C) SubINode(inst, bits));
// The 'test' is non-zero if we need to take a slow path. // The 'test' is non-zero if we need to take a slow path.
}
Node* obj = new_instance(kls, test); Node* obj = new_instance(kls, test);
set_result(obj); set_result(obj);

View File

@ -30,9 +30,6 @@
#include "opto/machnode.hpp" #include "opto/machnode.hpp"
//=============================================================================
//------------------------------PhaseLive--------------------------------------
// Compute live-in/live-out. We use a totally incremental algorithm. The LIVE // Compute live-in/live-out. We use a totally incremental algorithm. The LIVE
// problem is monotonic. The steady-state solution looks like this: pull a // problem is monotonic. The steady-state solution looks like this: pull a
// block from the worklist. It has a set of delta's - values which are newly // block from the worklist. It has a set of delta's - values which are newly
@ -53,9 +50,9 @@ void PhaseLive::compute(uint maxlrg) {
// Init the sparse live arrays. This data is live on exit from here! // Init the sparse live arrays. This data is live on exit from here!
// The _live info is the live-out info. // The _live info is the live-out info.
_live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*_cfg._num_blocks); _live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet) * _cfg.number_of_blocks());
uint i; uint i;
for( i=0; i<_cfg._num_blocks; i++ ) { for (i = 0; i < _cfg.number_of_blocks(); i++) {
_live[i].initialize(_maxlrg); _live[i].initialize(_maxlrg);
} }
@ -65,14 +62,14 @@ void PhaseLive::compute(uint maxlrg) {
// Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT // Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT
// Array of values defined locally in blocks // Array of values defined locally in blocks
_defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg._num_blocks); _defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg.number_of_blocks());
for( i=0; i<_cfg._num_blocks; i++ ) { for (i = 0; i < _cfg.number_of_blocks(); i++) {
_defs[i].initialize(_maxlrg); _defs[i].initialize(_maxlrg);
} }
// Array of delta-set pointers, indexed by block pre_order-1. // Array of delta-set pointers, indexed by block pre_order-1.
_deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg._num_blocks); _deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg.number_of_blocks());
memset( _deltas, 0, sizeof(IndexSet*)* _cfg._num_blocks); memset( _deltas, 0, sizeof(IndexSet*)* _cfg.number_of_blocks());
_free_IndexSet = NULL; _free_IndexSet = NULL;
@ -80,18 +77,19 @@ void PhaseLive::compute(uint maxlrg) {
VectorSet first_pass(Thread::current()->resource_area()); VectorSet first_pass(Thread::current()->resource_area());
// Outer loop: must compute local live-in sets and push into predecessors. // Outer loop: must compute local live-in sets and push into predecessors.
uint iters = _cfg._num_blocks; // stat counters for (uint j = _cfg.number_of_blocks(); j > 0; j--) {
for( uint j=_cfg._num_blocks; j>0; j-- ) { Block* block = _cfg.get_block(j - 1);
Block *b = _cfg._blocks[j-1];
// Compute the local live-in set. Start with any new live-out bits. // Compute the local live-in set. Start with any new live-out bits.
IndexSet *use = getset( b ); IndexSet* use = getset(block);
IndexSet *def = &_defs[b->_pre_order-1]; IndexSet* def = &_defs[block->_pre_order-1];
DEBUG_ONLY(IndexSet *def_outside = getfreeset();) DEBUG_ONLY(IndexSet *def_outside = getfreeset();)
uint i; uint i;
for( i=b->_nodes.size(); i>1; i-- ) { for (i = block->_nodes.size(); i > 1; i--) {
Node *n = b->_nodes[i-1]; Node* n = block->_nodes[i-1];
if( n->is_Phi() ) break; if (n->is_Phi()) {
break;
}
uint r = _names[n->_idx]; uint r = _names[n->_idx];
assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block"); assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block");
@ -101,7 +99,7 @@ void PhaseLive::compute(uint maxlrg) {
for (uint k = 1; k < cnt; k++) { for (uint k = 1; k < cnt; k++) {
Node *nk = n->in(k); Node *nk = n->in(k);
uint nkidx = nk->_idx; uint nkidx = nk->_idx;
if (_cfg.get_block_for_node(nk) != b) { if (_cfg.get_block_for_node(nk) != block) {
uint u = _names[nkidx]; uint u = _names[nkidx];
use->insert(u); use->insert(u);
DEBUG_ONLY(def_outside->insert(u);) DEBUG_ONLY(def_outside->insert(u);)
@ -114,40 +112,37 @@ void PhaseLive::compute(uint maxlrg) {
#endif #endif
// Remove anything defined by Phis and the block start instruction // Remove anything defined by Phis and the block start instruction
for (uint k = i; k > 0; k--) { for (uint k = i; k > 0; k--) {
uint r = _names[b->_nodes[k-1]->_idx]; uint r = _names[block->_nodes[k - 1]->_idx];
def->insert(r); def->insert(r);
use->remove(r); use->remove(r);
} }
// Push these live-in things to predecessors // Push these live-in things to predecessors
for( uint l=1; l<b->num_preds(); l++ ) { for (uint l = 1; l < block->num_preds(); l++) {
Block *p = _cfg.get_block_for_node(b->pred(l)); Block* p = _cfg.get_block_for_node(block->pred(l));
add_liveout(p, use, first_pass); add_liveout(p, use, first_pass);
// PhiNode uses go in the live-out set of prior blocks. // PhiNode uses go in the live-out set of prior blocks.
for( uint k=i; k>0; k-- ) for (uint k = i; k > 0; k--) {
add_liveout( p, _names[b->_nodes[k-1]->in(l)->_idx], first_pass ); add_liveout(p, _names[block->_nodes[k-1]->in(l)->_idx], first_pass);
} }
freeset( b ); }
first_pass.set(b->_pre_order); freeset(block);
first_pass.set(block->_pre_order);
// Inner loop: blocks that picked up new live-out values to be propagated // Inner loop: blocks that picked up new live-out values to be propagated
while (_worklist->size()) { while (_worklist->size()) {
// !!!!! Block* block = _worklist->pop();
// #ifdef ASSERT IndexSet *delta = getset(block);
iters++;
// #endif
Block *b = _worklist->pop();
IndexSet *delta = getset(b);
assert( delta->count(), "missing delta set" ); assert( delta->count(), "missing delta set" );
// Add new-live-in to predecessors live-out sets // Add new-live-in to predecessors live-out sets
for (uint l = 1; l < b->num_preds(); l++) { for (uint l = 1; l < block->num_preds(); l++) {
Block* block = _cfg.get_block_for_node(b->pred(l)); Block* predecessor = _cfg.get_block_for_node(block->pred(l));
add_liveout(block, delta, first_pass); add_liveout(predecessor, delta, first_pass);
} }
freeset(b); freeset(block);
} // End of while-worklist-not-empty } // End of while-worklist-not-empty
} // End of for-all-blocks-outer-loop } // End of for-all-blocks-outer-loop
@ -155,7 +150,7 @@ void PhaseLive::compute(uint maxlrg) {
// We explicitly clear all of the IndexSets which we are about to release. // We explicitly clear all of the IndexSets which we are about to release.
// This allows us to recycle their internal memory into IndexSet's free list. // This allows us to recycle their internal memory into IndexSet's free list.
for( i=0; i<_cfg._num_blocks; i++ ) { for (i = 0; i < _cfg.number_of_blocks(); i++) {
_defs[i].clear(); _defs[i].clear();
if (_deltas[i]) { if (_deltas[i]) {
// Is this always true? // Is this always true?
@ -171,13 +166,11 @@ void PhaseLive::compute(uint maxlrg) {
} }
//------------------------------stats------------------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void PhaseLive::stats(uint iters) const { void PhaseLive::stats(uint iters) const {
} }
#endif #endif
//------------------------------getset-----------------------------------------
// Get an IndexSet for a block. Return existing one, if any. Make a new // Get an IndexSet for a block. Return existing one, if any. Make a new
// empty one if a prior one does not exist. // empty one if a prior one does not exist.
IndexSet *PhaseLive::getset( Block *p ) { IndexSet *PhaseLive::getset( Block *p ) {
@ -188,7 +181,6 @@ IndexSet *PhaseLive::getset( Block *p ) {
return delta; // Return set of new live-out items return delta; // Return set of new live-out items
} }
//------------------------------getfreeset-------------------------------------
// Pull from free list, or allocate. Internal allocation on the returned set // Pull from free list, or allocate. Internal allocation on the returned set
// is always from thread local storage. // is always from thread local storage.
IndexSet *PhaseLive::getfreeset( ) { IndexSet *PhaseLive::getfreeset( ) {
@ -207,7 +199,6 @@ IndexSet *PhaseLive::getfreeset( ) {
return f; return f;
} }
//------------------------------freeset----------------------------------------
// Free an IndexSet from a block. // Free an IndexSet from a block.
void PhaseLive::freeset( const Block *p ) { void PhaseLive::freeset( const Block *p ) {
IndexSet *f = _deltas[p->_pre_order-1]; IndexSet *f = _deltas[p->_pre_order-1];
@ -216,7 +207,6 @@ void PhaseLive::freeset( const Block *p ) {
_deltas[p->_pre_order-1] = NULL; _deltas[p->_pre_order-1] = NULL;
} }
//------------------------------add_liveout------------------------------------
// Add a live-out value to a given blocks live-out set. If it is new, then // Add a live-out value to a given blocks live-out set. If it is new, then
// also add it to the delta set and stick the block on the worklist. // also add it to the delta set and stick the block on the worklist.
void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) { void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) {
@ -233,8 +223,6 @@ void PhaseLive::add_liveout( Block *p, uint r, VectorSet &first_pass ) {
} }
} }
//------------------------------add_liveout------------------------------------
// Add a vector of live-out values to a given blocks live-out set. // Add a vector of live-out values to a given blocks live-out set.
void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) { void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) {
IndexSet *live = &_live[p->_pre_order-1]; IndexSet *live = &_live[p->_pre_order-1];
@ -262,7 +250,6 @@ void PhaseLive::add_liveout( Block *p, IndexSet *lo, VectorSet &first_pass ) {
} }
#ifndef PRODUCT #ifndef PRODUCT
//------------------------------dump-------------------------------------------
// Dump the live-out set for a block // Dump the live-out set for a block
void PhaseLive::dump( const Block *b ) const { void PhaseLive::dump( const Block *b ) const {
tty->print("Block %d: ",b->_pre_order); tty->print("Block %d: ",b->_pre_order);
@ -275,16 +262,17 @@ void PhaseLive::dump( const Block *b ) const {
tty->print("\n"); tty->print("\n");
} }
//------------------------------verify_base_ptrs-------------------------------
// Verify that base pointers and derived pointers are still sane. // Verify that base pointers and derived pointers are still sane.
void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const { void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
#ifdef ASSERT #ifdef ASSERT
Unique_Node_List worklist(a); Unique_Node_List worklist(a);
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
for( uint j = b->end_idx() + 1; j > 1; j-- ) { for (uint j = block->end_idx() + 1; j > 1; j--) {
Node *n = b->_nodes[j-1]; Node* n = block->_nodes[j-1];
if( n->is_Phi() ) break; if (n->is_Phi()) {
break;
}
// Found a safepoint? // Found a safepoint?
if (n->is_MachSafePoint()) { if (n->is_MachSafePoint()) {
MachSafePointNode *sfpt = n->as_MachSafePoint(); MachSafePointNode *sfpt = n->as_MachSafePoint();
@ -358,7 +346,6 @@ void PhaseChaitin::verify_base_ptrs( ResourceArea *a ) const {
#endif #endif
} }
//------------------------------verify-------------------------------------
// Verify that graphs and base pointers are still sane. // Verify that graphs and base pointers are still sane.
void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const { void PhaseChaitin::verify( ResourceArea *a, bool verify_ifg ) const {
#ifdef ASSERT #ifdef ASSERT

View File

@ -67,8 +67,8 @@ const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
const uint Matcher::_end_rematerialize = _END_REMATERIALIZE; const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
//---------------------------Matcher------------------------------------------- //---------------------------Matcher-------------------------------------------
Matcher::Matcher( Node_List &proj_list ) : Matcher::Matcher()
PhaseTransform( Phase::Ins_Select ), : PhaseTransform( Phase::Ins_Select ),
#ifdef ASSERT #ifdef ASSERT
_old2new_map(C->comp_arena()), _old2new_map(C->comp_arena()),
_new2old_map(C->comp_arena()), _new2old_map(C->comp_arena()),
@ -78,7 +78,7 @@ Matcher::Matcher( Node_List &proj_list ) :
_swallowed(swallowed), _swallowed(swallowed),
_begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE), _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
_end_inst_chain_rule(_END_INST_CHAIN_RULE), _end_inst_chain_rule(_END_INST_CHAIN_RULE),
_must_clone(must_clone), _proj_list(proj_list), _must_clone(must_clone),
_register_save_policy(register_save_policy), _register_save_policy(register_save_policy),
_c_reg_save_policy(c_reg_save_policy), _c_reg_save_policy(c_reg_save_policy),
_register_save_type(register_save_type), _register_save_type(register_save_type),
@ -1304,8 +1304,9 @@ MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++) for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
proj->_rout.Insert(OptoReg::Name(i)); proj->_rout.Insert(OptoReg::Name(i));
} }
if( proj->_rout.is_NotEmpty() ) if (proj->_rout.is_NotEmpty()) {
_proj_list.push(proj); push_projection(proj);
}
} }
// Transfer the safepoint information from the call to the mcall // Transfer the safepoint information from the call to the mcall
// Move the JVMState list // Move the JVMState list
@ -1685,13 +1686,14 @@ MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
} }
// If the _leaf is an AddP, insert the base edge // If the _leaf is an AddP, insert the base edge
if( leaf->is_AddP() ) if (leaf->is_AddP()) {
mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base)); mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
}
uint num_proj = _proj_list.size(); uint number_of_projections_prior = number_of_projections();
// Perform any 1-to-many expansions required // Perform any 1-to-many expansions required
MachNode *ex = mach->Expand(s,_proj_list, mem); MachNode *ex = mach->Expand(s, _projection_list, mem);
if (ex != mach) { if (ex != mach) {
assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match"); assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
if( ex->in(1)->is_Con() ) if( ex->in(1)->is_Con() )
@ -1713,7 +1715,7 @@ MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
// generated belatedly during spill code generation. // generated belatedly during spill code generation.
if (_allocation_started) { if (_allocation_started) {
guarantee(ex == mach, "no expand rules during spill generation"); guarantee(ex == mach, "no expand rules during spill generation");
guarantee(_proj_list.size() == num_proj, "no allocation during spill generation"); guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
} }
if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) { if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {

View File

@ -88,7 +88,7 @@ class Matcher : public PhaseTransform {
Node *transform( Node *dummy ); Node *transform( Node *dummy );
Node_List &_proj_list; // For Machine nodes killing many values Node_List _projection_list; // For Machine nodes killing many values
Node_Array _shared_nodes; Node_Array _shared_nodes;
@ -183,10 +183,30 @@ public:
void collect_null_checks( Node *proj, Node *orig_proj ); void collect_null_checks( Node *proj, Node *orig_proj );
void validate_null_checks( ); void validate_null_checks( );
Matcher( Node_List &proj_list ); Matcher();
// Get a projection node at position pos
Node* get_projection(uint pos) {
return _projection_list[pos];
}
// Push a projection node onto the projection list
void push_projection(Node* node) {
_projection_list.push(node);
}
Node* pop_projection() {
return _projection_list.pop();
}
// Number of nodes in the projection list
uint number_of_projections() const {
return _projection_list.size();
}
// Select instructions for entire method // Select instructions for entire method
void match(); void match();
// Helper for match // Helper for match
OptoReg::Name warp_incoming_stk_arg( VMReg reg ); OptoReg::Name warp_incoming_stk_arg( VMReg reg );

View File

@ -54,11 +54,10 @@ extern uint size_deopt_handler();
extern int emit_exception_handler(CodeBuffer &cbuf); extern int emit_exception_handler(CodeBuffer &cbuf);
extern int emit_deopt_handler(CodeBuffer &cbuf); extern int emit_deopt_handler(CodeBuffer &cbuf);
//------------------------------Output-----------------------------------------
// Convert Nodes to instruction bits and pass off to the VM // Convert Nodes to instruction bits and pass off to the VM
void Compile::Output() { void Compile::Output() {
// RootNode goes // RootNode goes
assert( _cfg->_broot->_nodes.size() == 0, "" ); assert( _cfg->get_root_block()->_nodes.size() == 0, "" );
// The number of new nodes (mostly MachNop) is proportional to // The number of new nodes (mostly MachNop) is proportional to
// the number of java calls and inner loops which are aligned. // the number of java calls and inner loops which are aligned.
@ -68,8 +67,8 @@ void Compile::Output() {
return; return;
} }
// Make sure I can find the Start Node // Make sure I can find the Start Node
Block *entry = _cfg->_blocks[1]; Block *entry = _cfg->get_block(1);
Block *broot = _cfg->_broot; Block *broot = _cfg->get_root_block();
const StartNode *start = entry->_nodes[0]->as_Start(); const StartNode *start = entry->_nodes[0]->as_Start();
@ -109,40 +108,44 @@ void Compile::Output() {
} }
// Insert epilogs before every return // Insert epilogs before every return
for( uint i=0; i<_cfg->_num_blocks; i++ ) { for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point? if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
Node *m = b->end(); Node* m = block->end();
if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); MachEpilogNode* epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
b->add_inst( epilog ); block->add_inst(epilog);
_cfg->map_node_to_block(epilog, b); _cfg->map_node_to_block(epilog, block);
} }
} }
} }
# ifdef ENABLE_ZAP_DEAD_LOCALS # ifdef ENABLE_ZAP_DEAD_LOCALS
if ( ZapDeadCompiledLocals ) Insert_zap_nodes(); if (ZapDeadCompiledLocals) {
Insert_zap_nodes();
}
# endif # endif
uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1); uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
blk_starts[0] = 0; blk_starts[0] = 0;
// Initialize code buffer and process short branches. // Initialize code buffer and process short branches.
CodeBuffer* cb = init_buffer(blk_starts); CodeBuffer* cb = init_buffer(blk_starts);
if (cb == NULL || failing()) return; if (cb == NULL || failing()) {
return;
}
ScheduleAndBundle(); ScheduleAndBundle();
#ifndef PRODUCT #ifndef PRODUCT
if (trace_opto_output()) { if (trace_opto_output()) {
tty->print("\n---- After ScheduleAndBundle ----\n"); tty->print("\n---- After ScheduleAndBundle ----\n");
for (uint i = 0; i < _cfg->_num_blocks; i++) { for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
tty->print("\nBB#%03d:\n", i); tty->print("\nBB#%03d:\n", i);
Block *bb = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
for (uint j = 0; j < bb->_nodes.size(); j++) { for (uint j = 0; j < block->_nodes.size(); j++) {
Node *n = bb->_nodes[j]; Node* n = block->_nodes[j];
OptoReg::Name reg = _regalloc->get_reg_first(n); OptoReg::Name reg = _regalloc->get_reg_first(n);
tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
n->dump(); n->dump();
@ -151,11 +154,15 @@ void Compile::Output() {
} }
#endif #endif
if (failing()) return; if (failing()) {
return;
}
BuildOopMaps(); BuildOopMaps();
if (failing()) return; if (failing()) {
return;
}
fill_buffer(cb, blk_starts); fill_buffer(cb, blk_starts);
} }
@ -217,8 +224,8 @@ void Compile::Insert_zap_nodes() {
return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
// Insert call to zap runtime stub before every node with an oop map // Insert call to zap runtime stub before every node with an oop map
for( uint i=0; i<_cfg->_num_blocks; i++ ) { for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
Block *b = _cfg->_blocks[i]; Block *b = _cfg->get_block(i);
for ( uint j = 0; j < b->_nodes.size(); ++j ) { for ( uint j = 0; j < b->_nodes.size(); ++j ) {
Node *n = b->_nodes[j]; Node *n = b->_nodes[j];
@ -275,7 +282,6 @@ Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
return _matcher->match_sfpt(ideal_node); return _matcher->match_sfpt(ideal_node);
} }
//------------------------------is_node_getting_a_safepoint--------------------
bool Compile::is_node_getting_a_safepoint( Node* n) { bool Compile::is_node_getting_a_safepoint( Node* n) {
// This code duplicates the logic prior to the call of add_safepoint // This code duplicates the logic prior to the call of add_safepoint
// below in this file. // below in this file.
@ -285,7 +291,6 @@ bool Compile::is_node_getting_a_safepoint( Node* n) {
# endif // ENABLE_ZAP_DEAD_LOCALS # endif // ENABLE_ZAP_DEAD_LOCALS
//------------------------------compute_loop_first_inst_sizes------------------
// Compute the size of first NumberOfLoopInstrToAlign instructions at the top // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
// of a loop. When aligning a loop we need to provide enough instructions // of a loop. When aligning a loop we need to provide enough instructions
// in cpu's fetch buffer to feed decoders. The loop alignment could be // in cpu's fetch buffer to feed decoders. The loop alignment could be
@ -303,41 +308,38 @@ void Compile::compute_loop_first_inst_sizes() {
// is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
// equal to 11 bytes which is the largest address NOP instruction. // equal to 11 bytes which is the largest address NOP instruction.
if (MaxLoopPad < OptoLoopAlignment - 1) { if (MaxLoopPad < OptoLoopAlignment - 1) {
uint last_block = _cfg->_num_blocks-1; uint last_block = _cfg->number_of_blocks() - 1;
for (uint i = 1; i <= last_block; i++) { for (uint i = 1; i <= last_block; i++) {
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
// Check the first loop's block which requires an alignment. // Check the first loop's block which requires an alignment.
if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) { if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
uint sum_size = 0; uint sum_size = 0;
uint inst_cnt = NumberOfLoopInstrToAlign; uint inst_cnt = NumberOfLoopInstrToAlign;
inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc); inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
// Check subsequent fallthrough blocks if the loop's first // Check subsequent fallthrough blocks if the loop's first
// block(s) does not have enough instructions. // block(s) does not have enough instructions.
Block *nb = b; Block *nb = block;
while(inst_cnt > 0 && while(inst_cnt > 0 &&
i < last_block && i < last_block &&
!_cfg->_blocks[i+1]->has_loop_alignment() && !_cfg->get_block(i + 1)->has_loop_alignment() &&
!nb->has_successor(b) ) { !nb->has_successor(block)) {
i++; i++;
nb = _cfg->_blocks[i]; nb = _cfg->get_block(i);
inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc); inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
} // while( inst_cnt > 0 && i < last_block ) } // while( inst_cnt > 0 && i < last_block )
b->set_first_inst_size(sum_size); block->set_first_inst_size(sum_size);
} // f( b->head()->is_Loop() ) } // f( b->head()->is_Loop() )
} // for( i <= last_block ) } // for( i <= last_block )
} // if( MaxLoopPad < OptoLoopAlignment-1 ) } // if( MaxLoopPad < OptoLoopAlignment-1 )
} }
//----------------------shorten_branches---------------------------------------
// The architecture description provides short branch variants for some long // The architecture description provides short branch variants for some long
// branch instructions. Replace eligible long branches with short branches. // branch instructions. Replace eligible long branches with short branches.
void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) { void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
// ------------------
// Compute size of each block, method size, and relocation information size // Compute size of each block, method size, and relocation information size
uint nblocks = _cfg->_num_blocks; uint nblocks = _cfg->number_of_blocks();
uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
@ -364,7 +366,7 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
uint last_avoid_back_to_back_adr = max_uint; uint last_avoid_back_to_back_adr = max_uint;
uint nop_size = (new (this) MachNopNode())->size(_regalloc); uint nop_size = (new (this) MachNopNode())->size(_regalloc);
for (uint i = 0; i < nblocks; i++) { // For all blocks for (uint i = 0; i < nblocks; i++) { // For all blocks
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
// During short branch replacement, we store the relative (to blk_starts) // During short branch replacement, we store the relative (to blk_starts)
// offset of jump in jmp_offset, rather than the absolute offset of jump. // offset of jump in jmp_offset, rather than the absolute offset of jump.
@ -377,10 +379,10 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
DEBUG_ONLY( jmp_rule[i] = 0; ) DEBUG_ONLY( jmp_rule[i] = 0; )
// Sum all instruction sizes to compute block size // Sum all instruction sizes to compute block size
uint last_inst = b->_nodes.size(); uint last_inst = block->_nodes.size();
uint blk_size = 0; uint blk_size = 0;
for (uint j = 0; j < last_inst; j++) { for (uint j = 0; j < last_inst; j++) {
Node* nj = b->_nodes[j]; Node* nj = block->_nodes[j];
// Handle machine instruction nodes // Handle machine instruction nodes
if (nj->is_Mach()) { if (nj->is_Mach()) {
MachNode *mach = nj->as_Mach(); MachNode *mach = nj->as_Mach();
@ -442,7 +444,7 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
// instructions. Since we cannot know our future alignment, // instructions. Since we cannot know our future alignment,
// assume the worst. // assume the worst.
if (i < nblocks - 1) { if (i < nblocks - 1) {
Block *nb = _cfg->_blocks[i+1]; Block* nb = _cfg->get_block(i + 1);
int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
if (max_loop_pad > 0) { if (max_loop_pad > 0) {
assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
@ -473,26 +475,26 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
has_short_branch_candidate = false; has_short_branch_candidate = false;
int adjust_block_start = 0; int adjust_block_start = 0;
for (uint i = 0; i < nblocks; i++) { for (uint i = 0; i < nblocks; i++) {
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
int idx = jmp_nidx[i]; int idx = jmp_nidx[i];
MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach(); MachNode* mach = (idx == -1) ? NULL: block->_nodes[idx]->as_Mach();
if (mach != NULL && mach->may_be_short_branch()) { if (mach != NULL && mach->may_be_short_branch()) {
#ifdef ASSERT #ifdef ASSERT
assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
int j; int j;
// Find the branch; ignore trailing NOPs. // Find the branch; ignore trailing NOPs.
for (j = b->_nodes.size()-1; j>=0; j--) { for (j = block->_nodes.size()-1; j>=0; j--) {
Node* n = b->_nodes[j]; Node* n = block->_nodes[j];
if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
break; break;
} }
assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity"); assert(j >= 0 && j == idx && block->_nodes[j] == (Node*)mach, "sanity");
#endif #endif
int br_size = jmp_size[i]; int br_size = jmp_size[i];
int br_offs = blk_starts[i] + jmp_offset[i]; int br_offs = blk_starts[i] + jmp_offset[i];
// This requires the TRUE branch target be in succs[0] // This requires the TRUE branch target be in succs[0]
uint bnum = b->non_connector_successor(0)->_pre_order; uint bnum = block->non_connector_successor(0)->_pre_order;
int offset = blk_starts[bnum] - br_offs; int offset = blk_starts[bnum] - br_offs;
if (bnum > i) { // adjust following block's offset if (bnum > i) { // adjust following block's offset
offset -= adjust_block_start; offset -= adjust_block_start;
@ -520,7 +522,7 @@ void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size
diff -= nop_size; diff -= nop_size;
} }
adjust_block_start += diff; adjust_block_start += diff;
b->_nodes.map(idx, replacement); block->_nodes.map(idx, replacement);
mach->subsume_by(replacement, C); mach->subsume_by(replacement, C);
mach = replacement; mach = replacement;
progress = true; progress = true;
@ -1083,8 +1085,8 @@ CodeBuffer* Compile::init_buffer(uint* blk_starts) {
if (has_mach_constant_base_node()) { if (has_mach_constant_base_node()) {
// Fill the constant table. // Fill the constant table.
// Note: This must happen before shorten_branches. // Note: This must happen before shorten_branches.
for (uint i = 0; i < _cfg->_num_blocks; i++) { for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
Block* b = _cfg->_blocks[i]; Block* b = _cfg->get_block(i);
for (uint j = 0; j < b->_nodes.size(); j++) { for (uint j = 0; j < b->_nodes.size(); j++) {
Node* n = b->_nodes[j]; Node* n = b->_nodes[j];
@ -1170,7 +1172,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// !!!!! This preserves old handling of oopmaps for now // !!!!! This preserves old handling of oopmaps for now
debug_info()->set_oopmaps(_oop_map_set); debug_info()->set_oopmaps(_oop_map_set);
uint nblocks = _cfg->_num_blocks; uint nblocks = _cfg->number_of_blocks();
// Count and start of implicit null check instructions // Count and start of implicit null check instructions
uint inct_cnt = 0; uint inct_cnt = 0;
uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
@ -1219,20 +1221,20 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
Node *delay_slot = NULL; Node *delay_slot = NULL;
for (uint i = 0; i < nblocks; i++) { for (uint i = 0; i < nblocks; i++) {
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
Node* head = block->head();
Node *head = b->head();
// If this block needs to start aligned (i.e, can be reached other // If this block needs to start aligned (i.e, can be reached other
// than by falling-thru from the previous block), then force the // than by falling-thru from the previous block), then force the
// start of a new bundle. // start of a new bundle.
if (Pipeline::requires_bundling() && starts_bundle(head)) if (Pipeline::requires_bundling() && starts_bundle(head)) {
cb->flush_bundle(true); cb->flush_bundle(true);
}
#ifdef ASSERT #ifdef ASSERT
if (!b->is_connector()) { if (!block->is_connector()) {
stringStream st; stringStream st;
b->dump_head(_cfg, &st); block->dump_head(_cfg, &st);
MacroAssembler(cb).block_comment(st.as_string()); MacroAssembler(cb).block_comment(st.as_string());
} }
jmp_target[i] = 0; jmp_target[i] = 0;
@ -1243,16 +1245,16 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
int blk_offset = current_offset; int blk_offset = current_offset;
// Define the label at the beginning of the basic block // Define the label at the beginning of the basic block
MacroAssembler(cb).bind(blk_labels[b->_pre_order]); MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
uint last_inst = b->_nodes.size(); uint last_inst = block->_nodes.size();
// Emit block normally, except for last instruction. // Emit block normally, except for last instruction.
// Emit means "dump code bits into code buffer". // Emit means "dump code bits into code buffer".
for (uint j = 0; j<last_inst; j++) { for (uint j = 0; j<last_inst; j++) {
// Get the node // Get the node
Node* n = b->_nodes[j]; Node* n = block->_nodes[j];
// See if delay slots are supported // See if delay slots are supported
if (valid_bundle_info(n) && if (valid_bundle_info(n) &&
@ -1306,9 +1308,9 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
int nops_cnt = padding / nop_size; int nops_cnt = padding / nop_size;
MachNode *nop = new (this) MachNopNode(nops_cnt); MachNode *nop = new (this) MachNopNode(nops_cnt);
b->_nodes.insert(j++, nop); block->_nodes.insert(j++, nop);
last_inst++; last_inst++;
_cfg->map_node_to_block(nop, b); _cfg->map_node_to_block(nop, block);
nop->emit(*cb, _regalloc); nop->emit(*cb, _regalloc);
cb->flush_bundle(true); cb->flush_bundle(true);
current_offset = cb->insts_size(); current_offset = cb->insts_size();
@ -1322,7 +1324,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
mcall->method_set((intptr_t)mcall->entry_point()); mcall->method_set((intptr_t)mcall->entry_point());
// Save the return address // Save the return address
call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset(); call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
if (mcall->is_MachCallLeaf()) { if (mcall->is_MachCallLeaf()) {
is_mcall = false; is_mcall = false;
@ -1359,7 +1361,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// If this is a branch, then fill in the label with the target BB's label // If this is a branch, then fill in the label with the target BB's label
else if (mach->is_MachBranch()) { else if (mach->is_MachBranch()) {
// This requires the TRUE branch target be in succs[0] // This requires the TRUE branch target be in succs[0]
uint block_num = b->non_connector_successor(0)->_pre_order; uint block_num = block->non_connector_successor(0)->_pre_order;
// Try to replace long branch if delay slot is not used, // Try to replace long branch if delay slot is not used,
// it is mostly for back branches since forward branch's // it is mostly for back branches since forward branch's
@ -1392,8 +1394,8 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// Insert padding between avoid_back_to_back branches. // Insert padding between avoid_back_to_back branches.
if (needs_padding && replacement->avoid_back_to_back()) { if (needs_padding && replacement->avoid_back_to_back()) {
MachNode *nop = new (this) MachNopNode(); MachNode *nop = new (this) MachNopNode();
b->_nodes.insert(j++, nop); block->_nodes.insert(j++, nop);
_cfg->map_node_to_block(nop, b); _cfg->map_node_to_block(nop, block);
last_inst++; last_inst++;
nop->emit(*cb, _regalloc); nop->emit(*cb, _regalloc);
cb->flush_bundle(true); cb->flush_bundle(true);
@ -1405,7 +1407,7 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
jmp_size[i] = new_size; jmp_size[i] = new_size;
jmp_rule[i] = mach->rule(); jmp_rule[i] = mach->rule();
#endif #endif
b->_nodes.map(j, replacement); block->_nodes.map(j, replacement);
mach->subsume_by(replacement, C); mach->subsume_by(replacement, C);
n = replacement; n = replacement;
mach = replacement; mach = replacement;
@ -1413,8 +1415,8 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
} }
mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
} else if (mach->ideal_Opcode() == Op_Jump) { } else if (mach->ideal_Opcode() == Op_Jump) {
for (uint h = 0; h < b->_num_succs; h++) { for (uint h = 0; h < block->_num_succs; h++) {
Block* succs_block = b->_succs[h]; Block* succs_block = block->_succs[h];
for (uint j = 1; j < succs_block->num_preds(); j++) { for (uint j = 1; j < succs_block->num_preds(); j++) {
Node* jpn = succs_block->pred(j); Node* jpn = succs_block->pred(j);
if (jpn->is_JumpProj() && jpn->in(0) == mach) { if (jpn->is_JumpProj() && jpn->in(0) == mach) {
@ -1425,7 +1427,6 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
} }
} }
} }
#ifdef ASSERT #ifdef ASSERT
// Check that oop-store precedes the card-mark // Check that oop-store precedes the card-mark
else if (mach->ideal_Opcode() == Op_StoreCM) { else if (mach->ideal_Opcode() == Op_StoreCM) {
@ -1437,7 +1438,9 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
count++; count++;
uint i4; uint i4;
for (i4 = 0; i4 < last_inst; ++i4) { for (i4 = 0; i4 < last_inst; ++i4) {
if( b->_nodes[i4] == oop_store ) break; if (block->_nodes[i4] == oop_store) {
break;
}
} }
// Note: This test can provide a false failure if other precedence // Note: This test can provide a false failure if other precedence
// edges have been added to the storeCMNode. // edges have been added to the storeCMNode.
@ -1446,7 +1449,6 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
assert(count > 0, "storeCM expects at least one precedence edge"); assert(count > 0, "storeCM expects at least one precedence edge");
} }
#endif #endif
else if (!n->is_Proj()) { else if (!n->is_Proj()) {
// Remember the beginning of the previous instruction, in case // Remember the beginning of the previous instruction, in case
// it's followed by a flag-kill and a null-check. Happens on // it's followed by a flag-kill and a null-check. Happens on
@ -1542,12 +1544,12 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
// If the next block is the top of a loop, pad this block out to align // If the next block is the top of a loop, pad this block out to align
// the loop top a little. Helps prevent pipe stalls at loop back branches. // the loop top a little. Helps prevent pipe stalls at loop back branches.
if (i < nblocks-1) { if (i < nblocks-1) {
Block *nb = _cfg->_blocks[i+1]; Block *nb = _cfg->get_block(i + 1);
int padding = nb->alignment_padding(current_offset); int padding = nb->alignment_padding(current_offset);
if( padding > 0 ) { if( padding > 0 ) {
MachNode *nop = new (this) MachNopNode(padding / nop_size); MachNode *nop = new (this) MachNopNode(padding / nop_size);
b->_nodes.insert( b->_nodes.size(), nop ); block->_nodes.insert(block->_nodes.size(), nop);
_cfg->map_node_to_block(nop, b); _cfg->map_node_to_block(nop, block);
nop->emit(*cb, _regalloc); nop->emit(*cb, _regalloc);
current_offset = cb->insts_size(); current_offset = cb->insts_size();
} }
@ -1587,8 +1589,6 @@ void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
} }
#endif #endif
// ------------------
#ifndef PRODUCT #ifndef PRODUCT
// Information on the size of the method, without the extraneous code // Information on the size of the method, without the extraneous code
Scheduling::increment_method_size(cb->insts_size()); Scheduling::increment_method_size(cb->insts_size());
@ -1649,40 +1649,43 @@ void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_start
_inc_table.set_size(cnt); _inc_table.set_size(cnt);
uint inct_cnt = 0; uint inct_cnt = 0;
for( uint i=0; i<_cfg->_num_blocks; i++ ) { for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
Block *b = _cfg->_blocks[i]; Block* block = _cfg->get_block(i);
Node *n = NULL; Node *n = NULL;
int j; int j;
// Find the branch; ignore trailing NOPs. // Find the branch; ignore trailing NOPs.
for( j = b->_nodes.size()-1; j>=0; j-- ) { for (j = block->_nodes.size() - 1; j >= 0; j--) {
n = b->_nodes[j]; n = block->_nodes[j];
if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con ) if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
break; break;
} }
}
// If we didn't find anything, continue // If we didn't find anything, continue
if( j < 0 ) continue; if (j < 0) {
continue;
}
// Compute ExceptionHandlerTable subtable entry and add it // Compute ExceptionHandlerTable subtable entry and add it
// (skip empty blocks) // (skip empty blocks)
if (n->is_Catch()) { if (n->is_Catch()) {
// Get the offset of the return from the call // Get the offset of the return from the call
uint call_return = call_returns[b->_pre_order]; uint call_return = call_returns[block->_pre_order];
#ifdef ASSERT #ifdef ASSERT
assert( call_return > 0, "no call seen for this basic block" ); assert( call_return > 0, "no call seen for this basic block" );
while( b->_nodes[--j]->is_MachProj() ) ; while (block->_nodes[--j]->is_MachProj()) ;
assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" ); assert(block->_nodes[j]->is_MachCall(), "CatchProj must follow call");
#endif #endif
// last instruction is a CatchNode, find it's CatchProjNodes // last instruction is a CatchNode, find it's CatchProjNodes
int nof_succs = b->_num_succs; int nof_succs = block->_num_succs;
// allocate space // allocate space
GrowableArray<intptr_t> handler_bcis(nof_succs); GrowableArray<intptr_t> handler_bcis(nof_succs);
GrowableArray<intptr_t> handler_pcos(nof_succs); GrowableArray<intptr_t> handler_pcos(nof_succs);
// iterate through all successors // iterate through all successors
for (int j = 0; j < nof_succs; j++) { for (int j = 0; j < nof_succs; j++) {
Block* s = b->_succs[j]; Block* s = block->_succs[j];
bool found_p = false; bool found_p = false;
for (uint k = 1; k < s->num_preds(); k++) { for (uint k = 1; k < s->num_preds(); k++) {
Node* pk = s->pred(k); Node* pk = s->pred(k);
@ -1692,7 +1695,7 @@ void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_start
// add the corresponding handler bci & pco information // add the corresponding handler bci & pco information
if (p->_con != CatchProjNode::fall_through_index) { if (p->_con != CatchProjNode::fall_through_index) {
// p leads to an exception handler (and is not fall through) // p leads to an exception handler (and is not fall through)
assert(s == _cfg->_blocks[s->_pre_order],"bad numbering"); assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
// no duplicates, please // no duplicates, please
if (!handler_bcis.contains(p->handler_bci())) { if (!handler_bcis.contains(p->handler_bci())) {
uint block_num = s->non_connector()->_pre_order; uint block_num = s->non_connector()->_pre_order;
@ -1714,7 +1717,7 @@ void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_start
// Handle implicit null exception table updates // Handle implicit null exception table updates
if (n->is_MachNullCheck()) { if (n->is_MachNullCheck()) {
uint block_num = b->non_connector_successor(0)->_pre_order; uint block_num = block->non_connector_successor(0)->_pre_order;
_inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
continue; continue;
} }
@ -1774,14 +1777,12 @@ Scheduling::Scheduling(Arena *arena, Compile &compile)
memset(_current_latency, 0, node_max * sizeof(unsigned short)); memset(_current_latency, 0, node_max * sizeof(unsigned short));
// Clear the bundling information // Clear the bundling information
memcpy(_bundle_use_elements, memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
Pipeline_Use::elaborated_elements,
sizeof(Pipeline_Use::elaborated_elements));
// Get the last node // Get the last node
Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1]; Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
_next_node = bb->_nodes[bb->_nodes.size()-1]; _next_node = block->_nodes[block->_nodes.size() - 1];
} }
#ifndef PRODUCT #ifndef PRODUCT
@ -1831,7 +1832,6 @@ void Scheduling::step_and_clear() {
sizeof(Pipeline_Use::elaborated_elements)); sizeof(Pipeline_Use::elaborated_elements));
} }
//------------------------------ScheduleAndBundle------------------------------
// Perform instruction scheduling and bundling over the sequence of // Perform instruction scheduling and bundling over the sequence of
// instructions in backwards order. // instructions in backwards order.
void Compile::ScheduleAndBundle() { void Compile::ScheduleAndBundle() {
@ -1858,7 +1858,6 @@ void Compile::ScheduleAndBundle() {
scheduling.DoScheduling(); scheduling.DoScheduling();
} }
//------------------------------ComputeLocalLatenciesForward-------------------
// Compute the latency of all the instructions. This is fairly simple, // Compute the latency of all the instructions. This is fairly simple,
// because we already have a legal ordering. Walk over the instructions // because we already have a legal ordering. Walk over the instructions
// from first to last, and compute the latency of the instruction based // from first to last, and compute the latency of the instruction based
@ -2028,7 +2027,6 @@ Node * Scheduling::ChooseNodeToBundle() {
return _available[0]; return _available[0];
} }
//------------------------------AddNodeToAvailableList-------------------------
void Scheduling::AddNodeToAvailableList(Node *n) { void Scheduling::AddNodeToAvailableList(Node *n) {
assert( !n->is_Proj(), "projections never directly made available" ); assert( !n->is_Proj(), "projections never directly made available" );
#ifndef PRODUCT #ifndef PRODUCT
@ -2074,7 +2072,6 @@ void Scheduling::AddNodeToAvailableList(Node *n) {
#endif #endif
} }
//------------------------------DecrementUseCounts-----------------------------
void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
for ( uint i=0; i < n->len(); i++ ) { for ( uint i=0; i < n->len(); i++ ) {
Node *def = n->in(i); Node *def = n->in(i);
@ -2097,7 +2094,6 @@ void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
} }
} }
//------------------------------AddNodeToBundle--------------------------------
void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
#ifndef PRODUCT #ifndef PRODUCT
if (_cfg->C->trace_opto_output()) { if (_cfg->C->trace_opto_output()) {
@ -2312,7 +2308,6 @@ void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
DecrementUseCounts(n,bb); DecrementUseCounts(n,bb);
} }
//------------------------------ComputeUseCount--------------------------------
// This method sets the use count within a basic block. We will ignore all // This method sets the use count within a basic block. We will ignore all
// uses outside the current basic block. As we are doing a backwards walk, // uses outside the current basic block. As we are doing a backwards walk,
// any node we reach that has a use count of 0 may be scheduled. This also // any node we reach that has a use count of 0 may be scheduled. This also
@ -2397,20 +2392,22 @@ void Scheduling::DoScheduling() {
Block *bb; Block *bb;
// Walk over all the basic blocks in reverse order // Walk over all the basic blocks in reverse order
for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) { for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
bb = _cfg->_blocks[i]; bb = _cfg->get_block(i);
#ifndef PRODUCT #ifndef PRODUCT
if (_cfg->C->trace_opto_output()) { if (_cfg->C->trace_opto_output()) {
tty->print("# Schedule BB#%03d (initial)\n", i); tty->print("# Schedule BB#%03d (initial)\n", i);
for (uint j = 0; j < bb->_nodes.size(); j++) for (uint j = 0; j < bb->_nodes.size(); j++) {
bb->_nodes[j]->dump(); bb->_nodes[j]->dump();
} }
}
#endif #endif
// On the head node, skip processing // On the head node, skip processing
if( bb == _cfg->_broot ) if (bb == _cfg->get_root_block()) {
continue; continue;
}
// Skip empty, connector blocks // Skip empty, connector blocks
if (bb->is_connector()) if (bb->is_connector())
@ -2547,7 +2544,6 @@ void Scheduling::DoScheduling() {
} // end DoScheduling } // end DoScheduling
//------------------------------verify_good_schedule---------------------------
// Verify that no live-range used in the block is killed in the block by a // Verify that no live-range used in the block is killed in the block by a
// wrong DEF. This doesn't verify live-ranges that span blocks. // wrong DEF. This doesn't verify live-ranges that span blocks.
@ -2560,7 +2556,6 @@ static bool edge_from_to( Node *from, Node *to ) {
} }
#ifdef ASSERT #ifdef ASSERT
//------------------------------verify_do_def----------------------------------
void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
// Check for bad kills // Check for bad kills
if( OptoReg::is_valid(def) ) { // Ignore stores & control flow if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
@ -2576,7 +2571,6 @@ void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
} }
} }
//------------------------------verify_good_schedule---------------------------
void Scheduling::verify_good_schedule( Block *b, const char *msg ) { void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
// Zap to something reasonable for the verify code // Zap to something reasonable for the verify code
@ -2636,7 +2630,6 @@ static void add_prec_edge_from_to( Node *from, Node *to ) {
from->add_prec(to); from->add_prec(to);
} }
//------------------------------anti_do_def------------------------------------
void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
return; return;
@ -2706,7 +2699,6 @@ void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is
add_prec_edge_from_to(kill,pinch); add_prec_edge_from_to(kill,pinch);
} }
//------------------------------anti_do_use------------------------------------
void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
return; return;
@ -2727,7 +2719,6 @@ void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
} }
} }
//------------------------------ComputeRegisterAntidependences-----------------
// We insert antidependences between the reads and following write of // We insert antidependences between the reads and following write of
// allocated registers to prevent illegal code motion. Hopefully, the // allocated registers to prevent illegal code motion. Hopefully, the
// number of added references should be fairly small, especially as we // number of added references should be fairly small, especially as we
@ -2861,8 +2852,6 @@ void Scheduling::ComputeRegisterAntidependencies(Block *b) {
} }
} }
//------------------------------garbage_collect_pinch_nodes-------------------------------
// Garbage collect pinch nodes for reuse by other blocks. // Garbage collect pinch nodes for reuse by other blocks.
// //
// The block scheduler's insertion of anti-dependence // The block scheduler's insertion of anti-dependence
@ -2937,7 +2926,6 @@ void Scheduling::cleanup_pinch( Node *pinch ) {
pinch->set_req(0, NULL); pinch->set_req(0, NULL);
} }
//------------------------------print_statistics-------------------------------
#ifndef PRODUCT #ifndef PRODUCT
void Scheduling::dump_available() const { void Scheduling::dump_available() const {

View File

@ -1643,8 +1643,8 @@ void PhasePeephole::do_transform() {
bool method_name_not_printed = true; bool method_name_not_printed = true;
// Examine each basic block // Examine each basic block
for( uint block_number = 1; block_number < _cfg._num_blocks; ++block_number ) { for (uint block_number = 1; block_number < _cfg.number_of_blocks(); ++block_number) {
Block *block = _cfg._blocks[block_number]; Block* block = _cfg.get_block(block_number);
bool block_not_printed = true; bool block_not_printed = true;
// and each instruction within a block // and each instruction within a block

View File

@ -405,49 +405,52 @@ void PhaseChaitin::post_allocate_copy_removal() {
// Need a mapping from basic block Node_Lists. We need a Node_List to // Need a mapping from basic block Node_Lists. We need a Node_List to
// map from register number to value-producing Node. // map from register number to value-producing Node.
Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); Node_List **blk2value = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
memset( blk2value, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); memset(blk2value, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));
// Need a mapping from basic block Node_Lists. We need a Node_List to // Need a mapping from basic block Node_Lists. We need a Node_List to
// map from register number to register-defining Node. // map from register number to register-defining Node.
Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg._num_blocks+1); Node_List **blk2regnd = NEW_RESOURCE_ARRAY( Node_List *, _cfg.number_of_blocks() + 1);
memset( blk2regnd, 0, sizeof(Node_List*)*(_cfg._num_blocks+1) ); memset(blk2regnd, 0, sizeof(Node_List*) * (_cfg.number_of_blocks() + 1));
// We keep unused Node_Lists on a free_list to avoid wasting // We keep unused Node_Lists on a free_list to avoid wasting
// memory. // memory.
GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16); GrowableArray<Node_List*> free_list = GrowableArray<Node_List*>(16);
// For all blocks // For all blocks
for( uint i = 0; i < _cfg._num_blocks; i++ ) { for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
uint j; uint j;
Block *b = _cfg._blocks[i]; Block* block = _cfg.get_block(i);
// Count of Phis in block // Count of Phis in block
uint phi_dex; uint phi_dex;
for( phi_dex = 1; phi_dex < b->_nodes.size(); phi_dex++ ) { for (phi_dex = 1; phi_dex < block->_nodes.size(); phi_dex++) {
Node *phi = b->_nodes[phi_dex]; Node* phi = block->_nodes[phi_dex];
if( !phi->is_Phi() ) if (!phi->is_Phi()) {
break; break;
} }
}
// If any predecessor has not been visited, we do not know the state // If any predecessor has not been visited, we do not know the state
// of registers at the start. Check for this, while updating copies // of registers at the start. Check for this, while updating copies
// along Phi input edges // along Phi input edges
bool missing_some_inputs = false; bool missing_some_inputs = false;
Block *freed = NULL; Block *freed = NULL;
for( j = 1; j < b->num_preds(); j++ ) { for (j = 1; j < block->num_preds(); j++) {
Block *pb = _cfg.get_block_for_node(b->pred(j)); Block* pb = _cfg.get_block_for_node(block->pred(j));
// Remove copies along phi edges // Remove copies along phi edges
for( uint k=1; k<phi_dex; k++ ) for (uint k = 1; k < phi_dex; k++) {
elide_copy( b->_nodes[k], j, b, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false ); elide_copy(block->_nodes[k], j, block, *blk2value[pb->_pre_order], *blk2regnd[pb->_pre_order], false);
}
if (blk2value[pb->_pre_order]) { // Have a mapping on this edge? if (blk2value[pb->_pre_order]) { // Have a mapping on this edge?
// See if this predecessor's mappings have been used by everybody // See if this predecessor's mappings have been used by everybody
// who wants them. If so, free 'em. // who wants them. If so, free 'em.
uint k; uint k;
for (k = 0; k < pb->_num_succs; k++) { for (k = 0; k < pb->_num_succs; k++) {
Block* pbsucc = pb->_succs[k]; Block* pbsucc = pb->_succs[k];
if( !blk2value[pbsucc->_pre_order] && pbsucc != b ) if (!blk2value[pbsucc->_pre_order] && pbsucc != block) {
break; // Found a future user break; // Found a future user
} }
}
if (k >= pb->_num_succs) { // No more uses, free! if (k >= pb->_num_succs) { // No more uses, free!
freed = pb; // Record last block freed freed = pb; // Record last block freed
free_list.push(blk2value[pb->_pre_order]); free_list.push(blk2value[pb->_pre_order]);
@ -467,8 +470,8 @@ void PhaseChaitin::post_allocate_copy_removal() {
value.map(_max_reg,NULL); value.map(_max_reg,NULL);
regnd.map(_max_reg,NULL); regnd.map(_max_reg,NULL);
// Set mappings as OUR mappings // Set mappings as OUR mappings
blk2value[b->_pre_order] = &value; blk2value[block->_pre_order] = &value;
blk2regnd[b->_pre_order] = &regnd; blk2regnd[block->_pre_order] = &regnd;
// Initialize value & regnd for this block // Initialize value & regnd for this block
if (missing_some_inputs) { if (missing_some_inputs) {
@ -480,7 +483,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
} else { } else {
if( !freed ) { // Didn't get a freebie prior block if( !freed ) { // Didn't get a freebie prior block
// Must clone some data // Must clone some data
freed = _cfg.get_block_for_node(b->pred(1)); freed = _cfg.get_block_for_node(block->pred(1));
Node_List &f_value = *blk2value[freed->_pre_order]; Node_List &f_value = *blk2value[freed->_pre_order];
Node_List &f_regnd = *blk2regnd[freed->_pre_order]; Node_List &f_regnd = *blk2regnd[freed->_pre_order];
for( uint k = 0; k < (uint)_max_reg; k++ ) { for( uint k = 0; k < (uint)_max_reg; k++ ) {
@ -489,9 +492,11 @@ void PhaseChaitin::post_allocate_copy_removal() {
} }
} }
// Merge all inputs together, setting to NULL any conflicts. // Merge all inputs together, setting to NULL any conflicts.
for( j = 1; j < b->num_preds(); j++ ) { for (j = 1; j < block->num_preds(); j++) {
Block *pb = _cfg.get_block_for_node(b->pred(j)); Block* pb = _cfg.get_block_for_node(block->pred(j));
if( pb == freed ) continue; // Did self already via freelist if (pb == freed) {
continue; // Did self already via freelist
}
Node_List &p_regnd = *blk2regnd[pb->_pre_order]; Node_List &p_regnd = *blk2regnd[pb->_pre_order];
for( uint k = 0; k < (uint)_max_reg; k++ ) { for( uint k = 0; k < (uint)_max_reg; k++ ) {
if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs? if( regnd[k] != p_regnd[k] ) { // Conflict on reaching defs?
@ -505,7 +510,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
// For all Phi's // For all Phi's
for (j = 1; j < phi_dex; j++) { for (j = 1; j < phi_dex; j++) {
uint k; uint k;
Node *phi = b->_nodes[j]; Node *phi = block->_nodes[j];
uint pidx = _lrg_map.live_range_id(phi); uint pidx = _lrg_map.live_range_id(phi);
OptoReg::Name preg = lrgs(_lrg_map.live_range_id(phi)).reg(); OptoReg::Name preg = lrgs(_lrg_map.live_range_id(phi)).reg();
@ -517,7 +522,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input u = u ? NodeSentinel : x; // Capture unique input, or NodeSentinel for 2nd input
} }
if (u != NodeSentinel) { // Junk Phi. Remove if (u != NodeSentinel) { // Junk Phi. Remove
b->_nodes.remove(j--); block->_nodes.remove(j--);
phi_dex--; phi_dex--;
_cfg.unmap_node_from_block(phi); _cfg.unmap_node_from_block(phi);
phi->replace_by(u); phi->replace_by(u);
@ -547,13 +552,13 @@ void PhaseChaitin::post_allocate_copy_removal() {
} }
// For all remaining instructions // For all remaining instructions
for( j = phi_dex; j < b->_nodes.size(); j++ ) { for (j = phi_dex; j < block->_nodes.size(); j++) {
Node *n = b->_nodes[j]; Node* n = block->_nodes[j];
if(n->outcnt() == 0 && // Dead? if(n->outcnt() == 0 && // Dead?
n != C->top() && // (ignore TOP, it has no du info) n != C->top() && // (ignore TOP, it has no du info)
!n->is_Proj() ) { // fat-proj kills !n->is_Proj() ) { // fat-proj kills
j -= yank_if_dead(n,b,&value,&regnd); j -= yank_if_dead(n, block, &value, &regnd);
continue; continue;
} }
@ -598,8 +603,9 @@ void PhaseChaitin::post_allocate_copy_removal() {
const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0; const uint two_adr = n->is_Mach() ? n->as_Mach()->two_adr() : 0;
// Remove copies along input edges // Remove copies along input edges
for( k = 1; k < n->req(); k++ ) for (k = 1; k < n->req(); k++) {
j -= elide_copy( n, k, b, value, regnd, two_adr!=k ); j -= elide_copy(n, k, block, value, regnd, two_adr != k);
}
// Unallocated Nodes define no registers // Unallocated Nodes define no registers
uint lidx = _lrg_map.live_range_id(n); uint lidx = _lrg_map.live_range_id(n);
@ -630,8 +636,8 @@ void PhaseChaitin::post_allocate_copy_removal() {
// then 'n' is a useless copy. Do not update the register->node // then 'n' is a useless copy. Do not update the register->node
// mapping so 'n' will go dead. // mapping so 'n' will go dead.
if( value[nreg] != val ) { if( value[nreg] != val ) {
if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, OptoReg::Bad)) { if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, OptoReg::Bad)) {
j -= replace_and_yank_if_dead(n, nreg, b, value, regnd); j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} else { } else {
// Update the mapping: record new Node defined by the register // Update the mapping: record new Node defined by the register
regnd.map(nreg,n); regnd.map(nreg,n);
@ -641,7 +647,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
} }
} else if( !may_be_copy_of_callee(n) ) { } else if( !may_be_copy_of_callee(n) ) {
assert(n->is_Copy(), ""); assert(n->is_Copy(), "");
j -= replace_and_yank_if_dead(n, nreg, b, value, regnd); j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} }
} else if (RegMask::is_vector(n_ideal_reg)) { } else if (RegMask::is_vector(n_ideal_reg)) {
// If Node 'n' does not change the value mapped by the register, // If Node 'n' does not change the value mapped by the register,
@ -660,7 +666,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
} }
} else if (n->is_Copy()) { } else if (n->is_Copy()) {
// Note: vector can't be constant and can't be copy of calee. // Note: vector can't be constant and can't be copy of calee.
j -= replace_and_yank_if_dead(n, nreg, b, value, regnd); j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} }
} else { } else {
// If the value occupies a register pair, record same info // If the value occupies a register pair, record same info
@ -675,8 +681,8 @@ void PhaseChaitin::post_allocate_copy_removal() {
nreg_lo = tmp.find_first_elem(); nreg_lo = tmp.find_first_elem();
} }
if (value[nreg] != val || value[nreg_lo] != val) { if (value[nreg] != val || value[nreg_lo] != val) {
if (eliminate_copy_of_constant(val, n, b, value, regnd, nreg, nreg_lo)) { if (eliminate_copy_of_constant(val, n, block, value, regnd, nreg, nreg_lo)) {
j -= replace_and_yank_if_dead(n, nreg, b, value, regnd); j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} else { } else {
regnd.map(nreg , n ); regnd.map(nreg , n );
regnd.map(nreg_lo, n ); regnd.map(nreg_lo, n );
@ -685,7 +691,7 @@ void PhaseChaitin::post_allocate_copy_removal() {
} }
} else if (!may_be_copy_of_callee(n)) { } else if (!may_be_copy_of_callee(n)) {
assert(n->is_Copy(), ""); assert(n->is_Copy(), "");
j -= replace_and_yank_if_dead(n, nreg, b, value, regnd); j -= replace_and_yank_if_dead(n, nreg, block, value, regnd);
} }
} }

View File

@ -397,10 +397,15 @@ Node *PhaseChaitin::split_Rematerialize( Node *def, Block *b, uint insidx, uint
#endif #endif
// See if the cloned def kills any flags, and copy those kills as well // See if the cloned def kills any flags, and copy those kills as well
uint i = insidx+1; uint i = insidx+1;
if( clone_projs( b, i, def, spill, maxlrg) ) { int found_projs = clone_projs( b, i, def, spill, maxlrg);
if (found_projs > 0) {
// Adjust the point where we go hi-pressure // Adjust the point where we go hi-pressure
if( i <= b->_ihrp_index ) b->_ihrp_index++; if (i <= b->_ihrp_index) {
if( i <= b->_fhrp_index ) b->_fhrp_index++; b->_ihrp_index += found_projs;
}
if (i <= b->_fhrp_index) {
b->_fhrp_index += found_projs;
}
} }
return spill; return spill;
@ -529,13 +534,13 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// a Def is UP or DOWN. UP means that it should get a register (ie - // a Def is UP or DOWN. UP means that it should get a register (ie -
// it is always in LRP regions), and DOWN means that it is probably // it is always in LRP regions), and DOWN means that it is probably
// on the stack (ie - it crosses HRP regions). // on the stack (ie - it crosses HRP regions).
Node ***Reaches = NEW_SPLIT_ARRAY( Node**, _cfg._num_blocks+1 ); Node ***Reaches = NEW_SPLIT_ARRAY( Node**, _cfg.number_of_blocks() + 1);
bool **UP = NEW_SPLIT_ARRAY( bool*, _cfg._num_blocks+1 ); bool **UP = NEW_SPLIT_ARRAY( bool*, _cfg.number_of_blocks() + 1);
Node **debug_defs = NEW_SPLIT_ARRAY( Node*, spill_cnt ); Node **debug_defs = NEW_SPLIT_ARRAY( Node*, spill_cnt );
VectorSet **UP_entry= NEW_SPLIT_ARRAY( VectorSet*, spill_cnt ); VectorSet **UP_entry= NEW_SPLIT_ARRAY( VectorSet*, spill_cnt );
// Initialize Reaches & UP // Initialize Reaches & UP
for( bidx = 0; bidx < _cfg._num_blocks+1; bidx++ ) { for (bidx = 0; bidx < _cfg.number_of_blocks() + 1; bidx++) {
Reaches[bidx] = NEW_SPLIT_ARRAY( Node*, spill_cnt ); Reaches[bidx] = NEW_SPLIT_ARRAY( Node*, spill_cnt );
UP[bidx] = NEW_SPLIT_ARRAY( bool, spill_cnt ); UP[bidx] = NEW_SPLIT_ARRAY( bool, spill_cnt );
Node **Reachblock = Reaches[bidx]; Node **Reachblock = Reaches[bidx];
@ -555,13 +560,13 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
//----------PASS 1---------- //----------PASS 1----------
//----------Propagation & Node Insertion Code---------- //----------Propagation & Node Insertion Code----------
// Walk the Blocks in RPO for DEF & USE info // Walk the Blocks in RPO for DEF & USE info
for( bidx = 0; bidx < _cfg._num_blocks; bidx++ ) { for( bidx = 0; bidx < _cfg.number_of_blocks(); bidx++ ) {
if (C->check_node_count(spill_cnt, out_of_nodes)) { if (C->check_node_count(spill_cnt, out_of_nodes)) {
return 0; return 0;
} }
b = _cfg._blocks[bidx]; b = _cfg.get_block(bidx);
// Reaches & UP arrays for this block // Reaches & UP arrays for this block
Reachblock = Reaches[b->_pre_order]; Reachblock = Reaches[b->_pre_order];
UPblock = UP[b->_pre_order]; UPblock = UP[b->_pre_order];
@ -1394,8 +1399,8 @@ uint PhaseChaitin::Split(uint maxlrg, ResourceArea* split_arena) {
// DEBUG // DEBUG
#ifdef ASSERT #ifdef ASSERT
// Validate all live range index assignments // Validate all live range index assignments
for (bidx = 0; bidx < _cfg._num_blocks; bidx++) { for (bidx = 0; bidx < _cfg.number_of_blocks(); bidx++) {
b = _cfg._blocks[bidx]; b = _cfg.get_block(bidx);
for (insidx = 0; insidx <= b->end_idx(); insidx++) { for (insidx = 0; insidx <= b->end_idx(); insidx++) {
Node *n = b->_nodes[insidx]; Node *n = b->_nodes[insidx];
uint defidx = _lrg_map.find(n); uint defidx = _lrg_map.find(n);

View File

@ -196,12 +196,22 @@ WB_ENTRY(void, WB_DeoptimizeAll(JNIEnv* env, jobject o))
VMThread::execute(&op); VMThread::execute(&op);
WB_END WB_END
WB_ENTRY(jint, WB_DeoptimizeMethod(JNIEnv* env, jobject o, jobject method)) WB_ENTRY(jint, WB_DeoptimizeMethod(JNIEnv* env, jobject o, jobject method, jboolean is_osr))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
MutexLockerEx mu(Compile_lock); MutexLockerEx mu(Compile_lock);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
int result = 0; int result = 0;
nmethod* code = mh->code(); nmethod* code;
if (is_osr) {
int bci = InvocationEntryBci;
while ((code = mh->lookup_osr_nmethod_for(bci, CompLevel_none, false)) != NULL) {
code->mark_for_deoptimization();
++result;
bci = code->osr_entry_bci() + 1;
}
} else {
code = mh->code();
}
if (code != NULL) { if (code != NULL) {
code->mark_for_deoptimization(); code->mark_for_deoptimization();
++result; ++result;
@ -214,22 +224,26 @@ WB_ENTRY(jint, WB_DeoptimizeMethod(JNIEnv* env, jobject o, jobject method))
return result; return result;
WB_END WB_END
WB_ENTRY(jboolean, WB_IsMethodCompiled(JNIEnv* env, jobject o, jobject method)) WB_ENTRY(jboolean, WB_IsMethodCompiled(JNIEnv* env, jobject o, jobject method, jboolean is_osr))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
MutexLockerEx mu(Compile_lock); MutexLockerEx mu(Compile_lock);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
nmethod* code = mh->code(); nmethod* code = is_osr ? mh->lookup_osr_nmethod_for(InvocationEntryBci, CompLevel_none, false) : mh->code();
if (code == NULL) { if (code == NULL) {
return JNI_FALSE; return JNI_FALSE;
} }
return (code->is_alive() && !code->is_marked_for_deoptimization()); return (code->is_alive() && !code->is_marked_for_deoptimization());
WB_END WB_END
WB_ENTRY(jboolean, WB_IsMethodCompilable(JNIEnv* env, jobject o, jobject method, jint comp_level)) WB_ENTRY(jboolean, WB_IsMethodCompilable(JNIEnv* env, jobject o, jobject method, jint comp_level, jboolean is_osr))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
MutexLockerEx mu(Compile_lock); MutexLockerEx mu(Compile_lock);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
if (is_osr) {
return CompilationPolicy::can_be_osr_compiled(mh, comp_level);
} else {
return CompilationPolicy::can_be_compiled(mh, comp_level); return CompilationPolicy::can_be_compiled(mh, comp_level);
}
WB_END WB_END
WB_ENTRY(jboolean, WB_IsMethodQueuedForCompilation(JNIEnv* env, jobject o, jobject method)) WB_ENTRY(jboolean, WB_IsMethodQueuedForCompilation(JNIEnv* env, jobject o, jobject method))
@ -239,18 +253,28 @@ WB_ENTRY(jboolean, WB_IsMethodQueuedForCompilation(JNIEnv* env, jobject o, jobje
return mh->queued_for_compilation(); return mh->queued_for_compilation();
WB_END WB_END
WB_ENTRY(jint, WB_GetMethodCompilationLevel(JNIEnv* env, jobject o, jobject method)) WB_ENTRY(jint, WB_GetMethodCompilationLevel(JNIEnv* env, jobject o, jobject method, jboolean is_osr))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
nmethod* code = mh->code(); nmethod* code = is_osr ? mh->lookup_osr_nmethod_for(InvocationEntryBci, CompLevel_none, false) : mh->code();
return (code != NULL ? code->comp_level() : CompLevel_none); return (code != NULL ? code->comp_level() : CompLevel_none);
WB_END WB_END
WB_ENTRY(void, WB_MakeMethodNotCompilable(JNIEnv* env, jobject o, jobject method, jint comp_level, jboolean is_osr))
WB_ENTRY(void, WB_MakeMethodNotCompilable(JNIEnv* env, jobject o, jobject method, jint comp_level))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
if (is_osr) {
mh->set_not_osr_compilable(comp_level, true /* report */, "WhiteBox");
} else {
mh->set_not_compilable(comp_level, true /* report */, "WhiteBox"); mh->set_not_compilable(comp_level, true /* report */, "WhiteBox");
}
WB_END
WB_ENTRY(jint, WB_GetMethodEntryBci(JNIEnv* env, jobject o, jobject method))
jmethodID jmid = reflected_method_to_jmid(thread, env, method);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
nmethod* code = mh->lookup_osr_nmethod_for(InvocationEntryBci, CompLevel_none, false);
return (code != NULL && code->is_osr_method() ? code->osr_entry_bci() : InvocationEntryBci);
WB_END WB_END
WB_ENTRY(jboolean, WB_TestSetDontInlineMethod(JNIEnv* env, jobject o, jobject method, jboolean value)) WB_ENTRY(jboolean, WB_TestSetDontInlineMethod(JNIEnv* env, jobject o, jobject method, jboolean value))
@ -261,12 +285,15 @@ WB_ENTRY(jboolean, WB_TestSetDontInlineMethod(JNIEnv* env, jobject o, jobject me
return result; return result;
WB_END WB_END
WB_ENTRY(jint, WB_GetCompileQueuesSize(JNIEnv* env, jobject o)) WB_ENTRY(jint, WB_GetCompileQueueSize(JNIEnv* env, jobject o, jint comp_level))
if (comp_level == CompLevel_any) {
return CompileBroker::queue_size(CompLevel_full_optimization) /* C2 */ + return CompileBroker::queue_size(CompLevel_full_optimization) /* C2 */ +
CompileBroker::queue_size(CompLevel_full_profile) /* C1 */; CompileBroker::queue_size(CompLevel_full_profile) /* C1 */;
} else {
return CompileBroker::queue_size(comp_level);
}
WB_END WB_END
WB_ENTRY(jboolean, WB_TestSetForceInlineMethod(JNIEnv* env, jobject o, jobject method, jboolean value)) WB_ENTRY(jboolean, WB_TestSetForceInlineMethod(JNIEnv* env, jobject o, jobject method, jboolean value))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
@ -275,10 +302,10 @@ WB_ENTRY(jboolean, WB_TestSetForceInlineMethod(JNIEnv* env, jobject o, jobject m
return result; return result;
WB_END WB_END
WB_ENTRY(jboolean, WB_EnqueueMethodForCompilation(JNIEnv* env, jobject o, jobject method, jint comp_level)) WB_ENTRY(jboolean, WB_EnqueueMethodForCompilation(JNIEnv* env, jobject o, jobject method, jint comp_level, jint bci))
jmethodID jmid = reflected_method_to_jmid(thread, env, method); jmethodID jmid = reflected_method_to_jmid(thread, env, method);
methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid)); methodHandle mh(THREAD, Method::checked_resolve_jmethod_id(jmid));
nmethod* nm = CompileBroker::compile_method(mh, InvocationEntryBci, comp_level, mh, mh->invocation_count(), "WhiteBox", THREAD); nmethod* nm = CompileBroker::compile_method(mh, bci, comp_level, mh, mh->invocation_count(), "WhiteBox", THREAD);
MutexLockerEx mu(Compile_lock); MutexLockerEx mu(Compile_lock);
return (mh->queued_for_compilation() || nm != NULL); return (mh->queued_for_compilation() || nm != NULL);
WB_END WB_END
@ -324,7 +351,6 @@ WB_ENTRY(jboolean, WB_IsInStringTable(JNIEnv* env, jobject o, jstring javaString
return (StringTable::lookup(name, len) != NULL); return (StringTable::lookup(name, len) != NULL);
WB_END WB_END
WB_ENTRY(void, WB_FullGC(JNIEnv* env, jobject o)) WB_ENTRY(void, WB_FullGC(JNIEnv* env, jobject o))
Universe::heap()->collector_policy()->set_should_clear_all_soft_refs(true); Universe::heap()->collector_policy()->set_should_clear_all_soft_refs(true);
Universe::heap()->collect(GCCause::_last_ditch_collection); Universe::heap()->collect(GCCause::_last_ditch_collection);
@ -423,31 +449,32 @@ static JNINativeMethod methods[] = {
{CC"NMTWaitForDataMerge", CC"()Z", (void*)&WB_NMTWaitForDataMerge}, {CC"NMTWaitForDataMerge", CC"()Z", (void*)&WB_NMTWaitForDataMerge},
#endif // INCLUDE_NMT #endif // INCLUDE_NMT
{CC"deoptimizeAll", CC"()V", (void*)&WB_DeoptimizeAll }, {CC"deoptimizeAll", CC"()V", (void*)&WB_DeoptimizeAll },
{CC"deoptimizeMethod", CC"(Ljava/lang/reflect/Executable;)I", {CC"deoptimizeMethod", CC"(Ljava/lang/reflect/Executable;Z)I",
(void*)&WB_DeoptimizeMethod }, (void*)&WB_DeoptimizeMethod },
{CC"isMethodCompiled", CC"(Ljava/lang/reflect/Executable;)Z", {CC"isMethodCompiled", CC"(Ljava/lang/reflect/Executable;Z)Z",
(void*)&WB_IsMethodCompiled }, (void*)&WB_IsMethodCompiled },
{CC"isMethodCompilable", CC"(Ljava/lang/reflect/Executable;I)Z", {CC"isMethodCompilable", CC"(Ljava/lang/reflect/Executable;IZ)Z",
(void*)&WB_IsMethodCompilable}, (void*)&WB_IsMethodCompilable},
{CC"isMethodQueuedForCompilation", {CC"isMethodQueuedForCompilation",
CC"(Ljava/lang/reflect/Executable;)Z", (void*)&WB_IsMethodQueuedForCompilation}, CC"(Ljava/lang/reflect/Executable;)Z", (void*)&WB_IsMethodQueuedForCompilation},
{CC"makeMethodNotCompilable", {CC"makeMethodNotCompilable",
CC"(Ljava/lang/reflect/Executable;I)V", (void*)&WB_MakeMethodNotCompilable}, CC"(Ljava/lang/reflect/Executable;IZ)V", (void*)&WB_MakeMethodNotCompilable},
{CC"testSetDontInlineMethod", {CC"testSetDontInlineMethod",
CC"(Ljava/lang/reflect/Executable;Z)Z", (void*)&WB_TestSetDontInlineMethod}, CC"(Ljava/lang/reflect/Executable;Z)Z", (void*)&WB_TestSetDontInlineMethod},
{CC"getMethodCompilationLevel", {CC"getMethodCompilationLevel",
CC"(Ljava/lang/reflect/Executable;)I", (void*)&WB_GetMethodCompilationLevel}, CC"(Ljava/lang/reflect/Executable;Z)I", (void*)&WB_GetMethodCompilationLevel},
{CC"getCompileQueuesSize", {CC"getMethodEntryBci",
CC"()I", (void*)&WB_GetCompileQueuesSize}, CC"(Ljava/lang/reflect/Executable;)I", (void*)&WB_GetMethodEntryBci},
{CC"getCompileQueueSize",
CC"(I)I", (void*)&WB_GetCompileQueueSize},
{CC"testSetForceInlineMethod", {CC"testSetForceInlineMethod",
CC"(Ljava/lang/reflect/Executable;Z)Z", (void*)&WB_TestSetForceInlineMethod}, CC"(Ljava/lang/reflect/Executable;Z)Z", (void*)&WB_TestSetForceInlineMethod},
{CC"enqueueMethodForCompilation", {CC"enqueueMethodForCompilation",
CC"(Ljava/lang/reflect/Executable;I)Z", (void*)&WB_EnqueueMethodForCompilation}, CC"(Ljava/lang/reflect/Executable;II)Z", (void*)&WB_EnqueueMethodForCompilation},
{CC"clearMethodState", {CC"clearMethodState",
CC"(Ljava/lang/reflect/Executable;)V", (void*)&WB_ClearMethodState}, CC"(Ljava/lang/reflect/Executable;)V", (void*)&WB_ClearMethodState},
{CC"isInStringTable", CC"(Ljava/lang/String;)Z", (void*)&WB_IsInStringTable }, {CC"isInStringTable", CC"(Ljava/lang/String;)Z", (void*)&WB_IsInStringTable },
{CC"fullGC", CC"()V", (void*)&WB_FullGC }, {CC"fullGC", CC"()V", (void*)&WB_FullGC },
{CC"readReservedMemory", CC"()V", (void*)&WB_ReadReservedMemory }, {CC"readReservedMemory", CC"()V", (void*)&WB_ReadReservedMemory },
}; };

View File

@ -138,6 +138,23 @@ bool CompilationPolicy::can_be_compiled(methodHandle m, int comp_level) {
return false; return false;
} }
// Returns true if m is allowed to be osr compiled
bool CompilationPolicy::can_be_osr_compiled(methodHandle m, int comp_level) {
bool result = false;
if (comp_level == CompLevel_all) {
if (TieredCompilation) {
// enough to be osr compilable at any level for tiered
result = !m->is_not_osr_compilable(CompLevel_simple) || !m->is_not_osr_compilable(CompLevel_full_optimization);
} else {
// must be osr compilable at available level for non-tiered
result = !m->is_not_osr_compilable(CompLevel_highest_tier);
}
} else if (is_compile(comp_level)) {
result = !m->is_not_osr_compilable(comp_level);
}
return (result && can_be_compiled(m, comp_level));
}
bool CompilationPolicy::is_compilation_enabled() { bool CompilationPolicy::is_compilation_enabled() {
// NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler // NOTE: CompileBroker::should_compile_new_jobs() checks for UseCompiler
return !delay_compilation_during_startup() && CompileBroker::should_compile_new_jobs(); return !delay_compilation_during_startup() && CompileBroker::should_compile_new_jobs();
@ -458,7 +475,7 @@ void SimpleCompPolicy::method_back_branch_event(methodHandle m, int bci, JavaThr
const int hot_count = m->backedge_count(); const int hot_count = m->backedge_count();
const char* comment = "backedge_count"; const char* comment = "backedge_count";
if (is_compilation_enabled() && !m->is_not_osr_compilable(comp_level) && can_be_compiled(m, comp_level)) { if (is_compilation_enabled() && can_be_osr_compiled(m, comp_level)) {
CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread); CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));) NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));)
} }
@ -514,7 +531,7 @@ void StackWalkCompPolicy::method_back_branch_event(methodHandle m, int bci, Java
const int hot_count = m->backedge_count(); const int hot_count = m->backedge_count();
const char* comment = "backedge_count"; const char* comment = "backedge_count";
if (is_compilation_enabled() && !m->is_not_osr_compilable(comp_level) && can_be_compiled(m, comp_level)) { if (is_compilation_enabled() && can_be_osr_compiled(m, comp_level)) {
CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread); CompileBroker::compile_method(m, bci, comp_level, m, hot_count, comment, thread);
NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));) NOT_PRODUCT(trace_osr_completion(m->lookup_osr_nmethod_for(bci, comp_level, true));)
} }

View File

@ -52,6 +52,8 @@ public:
static bool must_be_compiled(methodHandle m, int comp_level = CompLevel_all); static bool must_be_compiled(methodHandle m, int comp_level = CompLevel_all);
// m is allowed to be compiled // m is allowed to be compiled
static bool can_be_compiled(methodHandle m, int comp_level = CompLevel_all); static bool can_be_compiled(methodHandle m, int comp_level = CompLevel_all);
// m is allowed to be osr compiled
static bool can_be_osr_compiled(methodHandle m, int comp_level = CompLevel_all);
static bool is_compilation_enabled(); static bool is_compilation_enabled();
static void set_policy(CompilationPolicy* policy) { _policy = policy; } static void set_policy(CompilationPolicy* policy) { _policy = policy; }
static CompilationPolicy* policy() { return _policy; } static CompilationPolicy* policy() { return _policy; }

View File

@ -23,6 +23,7 @@
*/ */
#include "precompiled.hpp" #include "precompiled.hpp"
#include "compiler/abstractCompiler.hpp"
#include "compiler/disassembler.hpp" #include "compiler/disassembler.hpp"
#include "gc_interface/collectedHeap.inline.hpp" #include "gc_interface/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp" #include "interpreter/interpreter.hpp"
@ -559,7 +560,7 @@ void frame::print_value_on(outputStream* st, JavaThread *thread) const {
st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp()); st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp());
if (sp() != NULL) if (sp() != NULL)
st->print(", fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), pc()); st->print(", fp=" INTPTR_FORMAT ", real_fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), real_fp(), pc());
if (StubRoutines::contains(pc())) { if (StubRoutines::contains(pc())) {
st->print_cr(")"); st->print_cr(")");
@ -720,11 +721,14 @@ void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose
} else if (_cb->is_buffer_blob()) { } else if (_cb->is_buffer_blob()) {
st->print("v ~BufferBlob::%s", ((BufferBlob *)_cb)->name()); st->print("v ~BufferBlob::%s", ((BufferBlob *)_cb)->name());
} else if (_cb->is_nmethod()) { } else if (_cb->is_nmethod()) {
Method* m = ((nmethod *)_cb)->method(); nmethod* nm = (nmethod*)_cb;
Method* m = nm->method();
if (m != NULL) { if (m != NULL) {
m->name_and_sig_as_C_string(buf, buflen); m->name_and_sig_as_C_string(buf, buflen);
st->print("J %s @ " PTR_FORMAT " [" PTR_FORMAT "+" SIZE_FORMAT "]", st->print("J %d%s %s %s (%d bytes) @ " PTR_FORMAT " [" PTR_FORMAT "+0x%x]",
buf, _pc, _cb->code_begin(), _pc - _cb->code_begin()); nm->compile_id(), (nm->is_osr_method() ? "%" : ""),
((nm->compiler() != NULL) ? nm->compiler()->name() : ""),
buf, m->code_size(), _pc, _cb->code_begin(), _pc - _cb->code_begin());
} else { } else {
st->print("J " PTR_FORMAT, pc()); st->print("J " PTR_FORMAT, pc());
} }

View File

@ -1096,10 +1096,10 @@ typedef BinaryTreeDictionary<Metablock, FreeList> MetablockTreeDictionary;
\ \
c2_nonstatic_field(MachCallRuntimeNode, _name, const char*) \ c2_nonstatic_field(MachCallRuntimeNode, _name, const char*) \
\ \
c2_nonstatic_field(PhaseCFG, _num_blocks, uint) \ c2_nonstatic_field(PhaseCFG, _number_of_blocks, uint) \
c2_nonstatic_field(PhaseCFG, _blocks, Block_List) \ c2_nonstatic_field(PhaseCFG, _blocks, Block_List) \
c2_nonstatic_field(PhaseCFG, _node_to_block_mapping, Block_Array) \ c2_nonstatic_field(PhaseCFG, _node_to_block_mapping, Block_Array) \
c2_nonstatic_field(PhaseCFG, _broot, Block*) \ c2_nonstatic_field(PhaseCFG, _root_block, Block*) \
\ \
c2_nonstatic_field(PhaseRegAlloc, _node_regs, OptoRegPair*) \ c2_nonstatic_field(PhaseRegAlloc, _node_regs, OptoRegPair*) \
c2_nonstatic_field(PhaseRegAlloc, _node_regs_max_index, uint) \ c2_nonstatic_field(PhaseRegAlloc, _node_regs_max_index, uint) \

View File

@ -586,6 +586,13 @@ void VMError::report(outputStream* st) {
while (count++ < StackPrintLimit) { while (count++ < StackPrintLimit) {
fr.print_on_error(st, buf, sizeof(buf)); fr.print_on_error(st, buf, sizeof(buf));
st->cr(); st->cr();
// Compiled code may use EBP register on x86 so it looks like
// non-walkable C frame. Use frame.sender() for java frames.
if (_thread && _thread->is_Java_thread() && fr.is_java_frame()) {
RegisterMap map((JavaThread*)_thread, false); // No update
fr = fr.sender(&map);
continue;
}
if (os::is_first_C_frame(&fr)) break; if (os::is_first_C_frame(&fr)) break;
fr = os::get_sender_for_C_frame(&fr); fr = os::get_sender_for_C_frame(&fr);
} }

View File

@ -89,7 +89,10 @@ negative_test() {
# $1 - initial error_code # $1 - initial error_code
common_tests() { common_tests() {
positive_test $1 "COMMON :: THE SAME FLAGS" positive_test $1 "COMMON :: THE SAME FLAGS"
if [ $tiered_available -eq 1 ]
then
positive_test `expr $1 + 1` "COMMON :: TIERED" -XX:+TieredCompilation positive_test `expr $1 + 1` "COMMON :: TIERED" -XX:+TieredCompilation
fi
} }
# $1 - initial error_code # $1 - initial error_code
@ -115,9 +118,12 @@ client_tests() {
then then
negative_test $1 "SERVER :: NON-TIERED" -XX:-TieredCompilation \ negative_test $1 "SERVER :: NON-TIERED" -XX:-TieredCompilation \
-server -server
if [ $tiered_available -eq 1 ]
then
positive_test `expr $1 + 1` "SERVER :: TIERED" -XX:+TieredCompilation \ positive_test `expr $1 + 1` "SERVER :: TIERED" -XX:+TieredCompilation \
-server -server
fi fi
fi
nontiered_tests `expr $1 + 2` $client_level nontiered_tests `expr $1 + 2` $client_level
} }
@ -167,6 +173,9 @@ client_available=`${JAVA} ${TESTVMOPTS} -client -Xinternalversion 2>&1 | \
grep -c Client` grep -c Client`
server_available=`${JAVA} ${TESTVMOPTS} -server -Xinternalversion 2>&1 | \ server_available=`${JAVA} ${TESTVMOPTS} -server -Xinternalversion 2>&1 | \
grep -c Server` grep -c Server`
tiered_available=`${JAVA} ${TESTVMOPTS} -XX:+TieredCompilation -XX:+PrintFlagsFinal -version | \
grep TieredCompilation | \
grep -c true`
is_tiered=`${JAVA} ${TESTVMOPTS} -XX:+PrintFlagsFinal -version | \ is_tiered=`${JAVA} ${TESTVMOPTS} -XX:+PrintFlagsFinal -version | \
grep TieredCompilation | \ grep TieredCompilation | \
grep -c true` grep -c true`
@ -177,6 +186,7 @@ server_level=4
echo "client_available=$client_available" echo "client_available=$client_available"
echo "server_available=$server_available" echo "server_available=$server_available"
echo "tiered_available=$tiered_available"
echo "is_tiered=$is_tiered" echo "is_tiered=$is_tiered"
# crash vm in compiler thread with generation replay data and 'small' dump-file # crash vm in compiler thread with generation replay data and 'small' dump-file

View File

@ -23,6 +23,7 @@
/* /*
* @test ClearMethodStateTest * @test ClearMethodStateTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build ClearMethodStateTest * @build ClearMethodStateTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox
@ -59,16 +60,19 @@ public class ClearMethodStateTest extends CompilerWhiteBoxTest {
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
checkCompiled(); checkCompiled();
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
WHITE_BOX.deoptimizeMethod(method); deoptimize();
checkNotCompiled(); checkNotCompiled();
if (testCase.isOsr) {
// part test isn't applicable for OSR test case
return;
}
if (!TIERED_COMPILATION) { if (!TIERED_COMPILATION) {
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
compile(COMPILE_THRESHOLD); compile(COMPILE_THRESHOLD);
checkCompiled(); checkCompiled();
WHITE_BOX.deoptimizeMethod(method); deoptimize();
checkNotCompiled(); checkNotCompiled();
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);

View File

@ -44,8 +44,14 @@ public abstract class CompilerWhiteBoxTest {
protected static int COMP_LEVEL_ANY = -1; protected static int COMP_LEVEL_ANY = -1;
/** {@code CompLevel::CompLevel_simple} -- C1 */ /** {@code CompLevel::CompLevel_simple} -- C1 */
protected static int COMP_LEVEL_SIMPLE = 1; protected static int COMP_LEVEL_SIMPLE = 1;
/** {@code CompLevel::CompLevel_limited_profile} -- C1, invocation &amp; backedge counters */
protected static int COMP_LEVEL_LIMITED_PROFILE = 2;
/** {@code CompLevel::CompLevel_full_profile} -- C1, invocation &amp; backedge counters + mdo */
protected static int COMP_LEVEL_FULL_PROFILE = 3;
/** {@code CompLevel::CompLevel_full_optimization} -- C2 or Shark */ /** {@code CompLevel::CompLevel_full_optimization} -- C2 or Shark */
protected static int COMP_LEVEL_FULL_OPTIMIZATION = 4; protected static int COMP_LEVEL_FULL_OPTIMIZATION = 4;
/** Maximal value for CompLeveL */
protected static int COMP_LEVEL_MAX = COMP_LEVEL_FULL_OPTIMIZATION;
/** Instance of WhiteBox */ /** Instance of WhiteBox */
protected static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox(); protected static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();
@ -64,6 +70,21 @@ public abstract class CompilerWhiteBoxTest {
/** Flag for verbose output, true if {@code -Dverbose} specified */ /** Flag for verbose output, true if {@code -Dverbose} specified */
protected static final boolean IS_VERBOSE protected static final boolean IS_VERBOSE
= System.getProperty("verbose") != null; = System.getProperty("verbose") != null;
/** count of invocation to triger compilation */
protected static final int THRESHOLD;
/** count of invocation to triger OSR compilation */
protected static final long BACKEDGE_THRESHOLD;
static {
if (TIERED_COMPILATION) {
THRESHOLD = 150000;
BACKEDGE_THRESHOLD = 0xFFFFFFFFL;
} else {
THRESHOLD = COMPILE_THRESHOLD;
BACKEDGE_THRESHOLD = COMPILE_THRESHOLD * Long.parseLong(getVMOption(
"OnStackReplacePercentage"));
}
}
/** /**
* Returns value of VM option. * Returns value of VM option.
@ -112,7 +133,7 @@ public abstract class CompilerWhiteBoxTest {
/** tested method */ /** tested method */
protected final Executable method; protected final Executable method;
private final Callable<Integer> callable; protected final TestCase testCase;
/** /**
* Constructor. * Constructor.
@ -123,7 +144,7 @@ public abstract class CompilerWhiteBoxTest {
Objects.requireNonNull(testCase); Objects.requireNonNull(testCase);
System.out.println("TEST CASE:" + testCase.name()); System.out.println("TEST CASE:" + testCase.name());
method = testCase.executable; method = testCase.executable;
callable = testCase.callable; this.testCase = testCase;
} }
/** /**
@ -169,12 +190,18 @@ public abstract class CompilerWhiteBoxTest {
if (WHITE_BOX.isMethodQueuedForCompilation(method)) { if (WHITE_BOX.isMethodQueuedForCompilation(method)) {
throw new RuntimeException(method + " must not be in queue"); throw new RuntimeException(method + " must not be in queue");
} }
if (WHITE_BOX.isMethodCompiled(method)) { if (WHITE_BOX.isMethodCompiled(method, false)) {
throw new RuntimeException(method + " must be not compiled"); throw new RuntimeException(method + " must be not compiled");
} }
if (WHITE_BOX.getMethodCompilationLevel(method) != 0) { if (WHITE_BOX.getMethodCompilationLevel(method, false) != 0) {
throw new RuntimeException(method + " comp_level must be == 0"); throw new RuntimeException(method + " comp_level must be == 0");
} }
if (WHITE_BOX.isMethodCompiled(method, true)) {
throw new RuntimeException(method + " must be not osr_compiled");
}
if (WHITE_BOX.getMethodCompilationLevel(method, true) != 0) {
throw new RuntimeException(method + " osr_comp_level must be == 0");
}
} }
/** /**
@ -192,14 +219,46 @@ public abstract class CompilerWhiteBoxTest {
method, System.currentTimeMillis() - start); method, System.currentTimeMillis() - start);
return; return;
} }
if (!WHITE_BOX.isMethodCompiled(method)) { if (!WHITE_BOX.isMethodCompiled(method, testCase.isOsr)) {
throw new RuntimeException(method + " must be compiled"); throw new RuntimeException(method + " must be "
+ (testCase.isOsr ? "osr_" : "") + "compiled");
} }
if (WHITE_BOX.getMethodCompilationLevel(method) == 0) { if (WHITE_BOX.getMethodCompilationLevel(method, testCase.isOsr) == 0) {
throw new RuntimeException(method + " comp_level must be != 0"); throw new RuntimeException(method
+ (testCase.isOsr ? " osr_" : " ")
+ "comp_level must be != 0");
} }
} }
protected final void deoptimize() {
WHITE_BOX.deoptimizeMethod(method, testCase.isOsr);
if (testCase.isOsr) {
WHITE_BOX.deoptimizeMethod(method, false);
}
}
protected final int getCompLevel() {
return WHITE_BOX.getMethodCompilationLevel(method, testCase.isOsr);
}
protected final boolean isCompilable() {
return WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY,
testCase.isOsr);
}
protected final boolean isCompilable(int compLevel) {
return WHITE_BOX.isMethodCompilable(method, compLevel, testCase.isOsr);
}
protected final void makeNotCompilable() {
WHITE_BOX.makeMethodNotCompilable(method, COMP_LEVEL_ANY,
testCase.isOsr);
}
protected final void makeNotCompilable(int compLevel) {
WHITE_BOX.makeMethodNotCompilable(method, compLevel, testCase.isOsr);
}
/** /**
* Waits for completion of background compilation of {@linkplain #method}. * Waits for completion of background compilation of {@linkplain #method}.
*/ */
@ -226,11 +285,17 @@ public abstract class CompilerWhiteBoxTest {
protected final void printInfo() { protected final void printInfo() {
System.out.printf("%n%s:%n", method); System.out.printf("%n%s:%n", method);
System.out.printf("\tcompilable:\t%b%n", System.out.printf("\tcompilable:\t%b%n",
WHITE_BOX.isMethodCompilable(method)); WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY, false));
System.out.printf("\tcompiled:\t%b%n", System.out.printf("\tcompiled:\t%b%n",
WHITE_BOX.isMethodCompiled(method)); WHITE_BOX.isMethodCompiled(method, false));
System.out.printf("\tcomp_level:\t%d%n", System.out.printf("\tcomp_level:\t%d%n",
WHITE_BOX.getMethodCompilationLevel(method)); WHITE_BOX.getMethodCompilationLevel(method, false));
System.out.printf("\tosr_compilable:\t%b%n",
WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY, true));
System.out.printf("\tosr_compiled:\t%b%n",
WHITE_BOX.isMethodCompiled(method, true));
System.out.printf("\tosr_comp_level:\t%d%n",
WHITE_BOX.getMethodCompilationLevel(method, true));
System.out.printf("\tin_queue:\t%b%n", System.out.printf("\tin_queue:\t%b%n",
WHITE_BOX.isMethodQueuedForCompilation(method)); WHITE_BOX.isMethodQueuedForCompilation(method));
System.out.printf("compile_queues_size:\t%d%n%n", System.out.printf("compile_queues_size:\t%d%n%n",
@ -244,18 +309,22 @@ public abstract class CompilerWhiteBoxTest {
/** /**
* Tries to trigger compilation of {@linkplain #method} by call * Tries to trigger compilation of {@linkplain #method} by call
* {@linkplain #callable} enough times. * {@linkplain #testCase.callable} enough times.
* *
* @return accumulated result * @return accumulated result
* @see #compile(int) * @see #compile(int)
*/ */
protected final int compile() { protected final int compile() {
return compile(Math.max(COMPILE_THRESHOLD, 150000)); if (testCase.isOsr) {
return compile(1);
} else {
return compile(THRESHOLD);
}
} }
/** /**
* Tries to trigger compilation of {@linkplain #method} by call * Tries to trigger compilation of {@linkplain #method} by call
* {@linkplain #callable} specified times. * {@linkplain #testCase.callable} specified times.
* *
* @param count invocation count * @param count invocation count
* @return accumulated result * @return accumulated result
@ -265,7 +334,7 @@ public abstract class CompilerWhiteBoxTest {
Integer tmp; Integer tmp;
for (int i = 0; i < count; ++i) { for (int i = 0; i < count; ++i) {
try { try {
tmp = callable.call(); tmp = testCase.callable.call();
} catch (Exception e) { } catch (Exception e) {
tmp = null; tmp = null;
} }
@ -283,23 +352,36 @@ public abstract class CompilerWhiteBoxTest {
*/ */
enum TestCase { enum TestCase {
/** constructor test case */ /** constructor test case */
CONSTRUCTOR_TEST(Helper.CONSTRUCTOR, Helper.CONSTRUCTOR_CALLABLE), CONSTRUCTOR_TEST(Helper.CONSTRUCTOR, Helper.CONSTRUCTOR_CALLABLE, false),
/** method test case */ /** method test case */
METOD_TEST(Helper.METHOD, Helper.METHOD_CALLABLE), METOD_TEST(Helper.METHOD, Helper.METHOD_CALLABLE, false),
/** static method test case */ /** static method test case */
STATIC_TEST(Helper.STATIC, Helper.STATIC_CALLABLE); STATIC_TEST(Helper.STATIC, Helper.STATIC_CALLABLE, false),
/** OSR constructor test case */
OSR_CONSTRUCTOR_TEST(Helper.OSR_CONSTRUCTOR,
Helper.OSR_CONSTRUCTOR_CALLABLE, true),
/** OSR method test case */
OSR_METOD_TEST(Helper.OSR_METHOD, Helper.OSR_METHOD_CALLABLE, true),
/** OSR static method test case */
OSR_STATIC_TEST(Helper.OSR_STATIC, Helper.OSR_STATIC_CALLABLE, true);
/** tested method */ /** tested method */
final Executable executable; final Executable executable;
/** object to invoke {@linkplain #executable} */ /** object to invoke {@linkplain #executable} */
final Callable<Integer> callable; final Callable<Integer> callable;
/** flag for OSR test case */
final boolean isOsr;
private TestCase(Executable executable, Callable<Integer> callable) { private TestCase(Executable executable, Callable<Integer> callable,
boolean isOsr) {
this.executable = executable; this.executable = executable;
this.callable = callable; this.callable = callable;
this.isOsr = isOsr;
} }
private static class Helper { private static class Helper {
private static final Callable<Integer> CONSTRUCTOR_CALLABLE private static final Callable<Integer> CONSTRUCTOR_CALLABLE
= new Callable<Integer>() { = new Callable<Integer>() {
@Override @Override
@ -326,9 +408,39 @@ enum TestCase {
} }
}; };
private static final Callable<Integer> OSR_CONSTRUCTOR_CALLABLE
= new Callable<Integer>() {
@Override
public Integer call() throws Exception {
return new Helper(null).hashCode();
}
};
private static final Callable<Integer> OSR_METHOD_CALLABLE
= new Callable<Integer>() {
private final Helper helper = new Helper();
@Override
public Integer call() throws Exception {
return helper.osrMethod();
}
};
private static final Callable<Integer> OSR_STATIC_CALLABLE
= new Callable<Integer>() {
@Override
public Integer call() throws Exception {
return osrStaticMethod();
}
};
private static final Constructor CONSTRUCTOR; private static final Constructor CONSTRUCTOR;
private static final Constructor OSR_CONSTRUCTOR;
private static final Method METHOD; private static final Method METHOD;
private static final Method STATIC; private static final Method STATIC;
private static final Method OSR_METHOD;
private static final Method OSR_STATIC;
static { static {
try { try {
@ -338,17 +450,26 @@ enum TestCase {
"exception on getting method Helper.<init>(int)", e); "exception on getting method Helper.<init>(int)", e);
} }
try { try {
METHOD = Helper.class.getDeclaredMethod("method"); OSR_CONSTRUCTOR = Helper.class.getDeclaredConstructor(
Object.class);
} catch (NoSuchMethodException | SecurityException e) { } catch (NoSuchMethodException | SecurityException e) {
throw new RuntimeException( throw new RuntimeException(
"exception on getting method Helper.method()", e); "exception on getting method Helper.<init>(Object)", e);
} }
METHOD = getMethod("method");
STATIC = getMethod("staticMethod");
OSR_METHOD = getMethod("osrMethod");
OSR_STATIC = getMethod("osrStaticMethod");
}
private static Method getMethod(String name) {
try { try {
STATIC = Helper.class.getDeclaredMethod("staticMethod"); return Helper.class.getDeclaredMethod(name);
} catch (NoSuchMethodException | SecurityException e) { } catch (NoSuchMethodException | SecurityException e) {
throw new RuntimeException( throw new RuntimeException(
"exception on getting method Helper.staticMethod()", e); "exception on getting method Helper." + name, e);
} }
} }
private static int staticMethod() { private static int staticMethod() {
@ -359,12 +480,39 @@ enum TestCase {
return 42; return 42;
} }
private static int osrStaticMethod() {
int result = 0;
for (long i = 0; i < CompilerWhiteBoxTest.BACKEDGE_THRESHOLD; ++i) {
result += staticMethod();
}
return result;
}
private int osrMethod() {
int result = 0;
for (long i = 0; i < CompilerWhiteBoxTest.BACKEDGE_THRESHOLD; ++i) {
result += method();
}
return result;
}
private final int x; private final int x;
// for method and OSR method test case
public Helper() { public Helper() {
x = 0; x = 0;
} }
// for OSR constructor test case
private Helper(Object o) {
int result = 0;
for (long i = 0; i < CompilerWhiteBoxTest.BACKEDGE_THRESHOLD; ++i) {
result += method();
}
x = result;
}
// for constructor test case
private Helper(int x) { private Helper(int x) {
this.x = x; this.x = x;
} }

View File

@ -23,6 +23,7 @@
/* /*
* @test DeoptimizeAllTest * @test DeoptimizeAllTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build DeoptimizeAllTest * @build DeoptimizeAllTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox

View File

@ -23,6 +23,7 @@
/* /*
* @test DeoptimizeMethodTest * @test DeoptimizeMethodTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build DeoptimizeMethodTest * @build DeoptimizeMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox
@ -54,7 +55,7 @@ public class DeoptimizeMethodTest extends CompilerWhiteBoxTest {
protected void test() throws Exception { protected void test() throws Exception {
compile(); compile();
checkCompiled(); checkCompiled();
WHITE_BOX.deoptimizeMethod(method); deoptimize();
checkNotCompiled(); checkNotCompiled();
} }
} }

View File

@ -23,10 +23,11 @@
/* /*
* @test EnqueueMethodForCompilationTest * @test EnqueueMethodForCompilationTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build EnqueueMethodForCompilationTest * @build EnqueueMethodForCompilationTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* EnqueueMethodForCompilationTest * @run main/othervm/timeout=600 -Xbootclasspath/a:. -Xmixed -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* EnqueueMethodForCompilationTest
* @summary testing of WB::enqueueMethodForCompilation() * @summary testing of WB::enqueueMethodForCompilation()
* @author igor.ignatyev@oracle.com * @author igor.ignatyev@oracle.com
*/ */
@ -50,7 +51,7 @@ public class EnqueueMethodForCompilationTest extends CompilerWhiteBoxTest {
// method can not be compiled on level 'none' // method can not be compiled on level 'none'
WHITE_BOX.enqueueMethodForCompilation(method, COMP_LEVEL_NONE); WHITE_BOX.enqueueMethodForCompilation(method, COMP_LEVEL_NONE);
if (WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_NONE)) { if (isCompilable(COMP_LEVEL_NONE)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is compilable at level COMP_LEVEL_NONE"); + " is compilable at level COMP_LEVEL_NONE");
} }
@ -60,27 +61,29 @@ public class EnqueueMethodForCompilationTest extends CompilerWhiteBoxTest {
WHITE_BOX.enqueueMethodForCompilation(method, COMP_LEVEL_ANY); WHITE_BOX.enqueueMethodForCompilation(method, COMP_LEVEL_ANY);
checkNotCompiled(); checkNotCompiled();
WHITE_BOX.enqueueMethodForCompilation(method, 5); // not existing comp level
if (!WHITE_BOX.isMethodCompilable(method, 5)) { WHITE_BOX.enqueueMethodForCompilation(method, 42);
checkNotCompiled();
compile();
checkCompiled();
} else {
checkCompiled();
}
int compLevel = WHITE_BOX.getMethodCompilationLevel(method);
WHITE_BOX.deoptimizeMethod(method);
checkNotCompiled();
WHITE_BOX.enqueueMethodForCompilation(method, compLevel);
checkCompiled();
WHITE_BOX.deoptimizeMethod(method);
checkNotCompiled(); checkNotCompiled();
compile(); compile();
checkCompiled(); checkCompiled();
WHITE_BOX.deoptimizeMethod(method);
int compLevel = getCompLevel();
int bci = WHITE_BOX.getMethodEntryBci(method);
System.out.println("bci = " + bci);
printInfo();
deoptimize();
printInfo();
checkNotCompiled();
printInfo();
WHITE_BOX.enqueueMethodForCompilation(method, compLevel, bci);
checkCompiled();
deoptimize();
checkNotCompiled();
compile();
checkCompiled();
deoptimize();
checkNotCompiled(); checkNotCompiled();
} }
} }

View File

@ -23,11 +23,11 @@
/* /*
* @test IsMethodCompilableTest * @test IsMethodCompilableTest
* @bug 8007270 * @bug 8007270 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build IsMethodCompilableTest * @build IsMethodCompilableTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm/timeout=600 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* IsMethodCompilableTest * @run main/othervm/timeout=2400 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* IsMethodCompilableTest
* @summary testing of WB::isMethodCompilable() * @summary testing of WB::isMethodCompilable()
* @author igor.ignatyev@oracle.com * @author igor.ignatyev@oracle.com
*/ */
@ -68,7 +68,7 @@ public class IsMethodCompilableTest extends CompilerWhiteBoxTest {
*/ */
@Override @Override
protected void test() throws Exception { protected void test() throws Exception {
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
throw new RuntimeException(method + " must be compilable"); throw new RuntimeException(method + " must be compilable");
} }
System.out.println("PerMethodRecompilationCutoff = " System.out.println("PerMethodRecompilationCutoff = "
@ -83,7 +83,8 @@ public class IsMethodCompilableTest extends CompilerWhiteBoxTest {
for (long i = 0L, n = PER_METHOD_RECOMPILATION_CUTOFF - 1; i < n; ++i) { for (long i = 0L, n = PER_METHOD_RECOMPILATION_CUTOFF - 1; i < n; ++i) {
compileAndDeoptimize(); compileAndDeoptimize();
} }
if (!WHITE_BOX.isMethodCompilable(method)) { if (!testCase.isOsr && !isCompilable()) {
// in osr test case count of deopt maybe more than iterations
throw new RuntimeException(method + " is not compilable after " throw new RuntimeException(method + " is not compilable after "
+ (PER_METHOD_RECOMPILATION_CUTOFF - 1) + " iterations"); + (PER_METHOD_RECOMPILATION_CUTOFF - 1) + " iterations");
} }
@ -92,15 +93,16 @@ public class IsMethodCompilableTest extends CompilerWhiteBoxTest {
// deoptimize 'PerMethodRecompilationCutoff' + 1 times // deoptimize 'PerMethodRecompilationCutoff' + 1 times
long i; long i;
for (i = 0L; i < PER_METHOD_RECOMPILATION_CUTOFF for (i = 0L; i < PER_METHOD_RECOMPILATION_CUTOFF
&& WHITE_BOX.isMethodCompilable(method); ++i) { && isCompilable(); ++i) {
compileAndDeoptimize(); compileAndDeoptimize();
} }
if (i != PER_METHOD_RECOMPILATION_CUTOFF) { if (!testCase.isOsr && i != PER_METHOD_RECOMPILATION_CUTOFF) {
// in osr test case count of deopt maybe more than iterations
throw new RuntimeException(method + " is not compilable after " throw new RuntimeException(method + " is not compilable after "
+ i + " iterations, but must only after " + i + " iterations, but must only after "
+ PER_METHOD_RECOMPILATION_CUTOFF); + PER_METHOD_RECOMPILATION_CUTOFF);
} }
if (WHITE_BOX.isMethodCompilable(method)) { if (isCompilable()) {
throw new RuntimeException(method + " is still compilable after " throw new RuntimeException(method + " is still compilable after "
+ PER_METHOD_RECOMPILATION_CUTOFF + " iterations"); + PER_METHOD_RECOMPILATION_CUTOFF + " iterations");
} }
@ -109,7 +111,7 @@ public class IsMethodCompilableTest extends CompilerWhiteBoxTest {
// WB.clearMethodState() must reset no-compilable flags // WB.clearMethodState() must reset no-compilable flags
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is not compilable after clearMethodState()"); + " is not compilable after clearMethodState()");
} }
@ -120,6 +122,6 @@ public class IsMethodCompilableTest extends CompilerWhiteBoxTest {
private void compileAndDeoptimize() throws Exception { private void compileAndDeoptimize() throws Exception {
compile(); compile();
waitBackgroundCompilation(); waitBackgroundCompilation();
WHITE_BOX.deoptimizeMethod(method); deoptimize();
} }
} }

View File

@ -23,16 +23,16 @@
/* /*
* @test MakeMethodNotCompilableTest * @test MakeMethodNotCompilableTest
* @bug 8012322 * @bug 8012322 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build MakeMethodNotCompilableTest * @build MakeMethodNotCompilableTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox
* @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* MakeMethodNotCompilableTest * @run main/othervm/timeout=2400 -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI -XX:CompileCommand=compileonly,TestCase$Helper::* MakeMethodNotCompilableTest
* @summary testing of WB::makeMethodNotCompilable() * @summary testing of WB::makeMethodNotCompilable()
* @author igor.ignatyev@oracle.com * @author igor.ignatyev@oracle.com
*/ */
public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest { public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
private int bci;
public static void main(String[] args) throws Exception { public static void main(String[] args) throws Exception {
if (args.length == 0) { if (args.length == 0) {
for (TestCase test : TestCase.values()) { for (TestCase test : TestCase.values()) {
@ -63,25 +63,27 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
@Override @Override
protected void test() throws Exception { protected void test() throws Exception {
checkNotCompiled(); checkNotCompiled();
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
throw new RuntimeException(method + " must be compilable"); throw new RuntimeException(method + " must be compilable");
} }
bci = getBci();
if (TIERED_COMPILATION) { if (TIERED_COMPILATION) {
final int tierLimit = TIERED_STOP_AT_LEVEL + 1; final int tierLimit = TIERED_STOP_AT_LEVEL + 1;
for (int testedTier = 1; testedTier < tierLimit; ++testedTier) { for (int testedTier = 1; testedTier < tierLimit; ++testedTier) {
testTier(testedTier); testTier(testedTier);
} }
for (int testedTier = 1; testedTier < tierLimit; ++testedTier) { for (int testedTier = 1; testedTier < tierLimit; ++testedTier) {
WHITE_BOX.makeMethodNotCompilable(method, testedTier); makeNotCompilable(testedTier);
if (WHITE_BOX.isMethodCompilable(method, testedTier)) { if (isCompilable(testedTier)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be not compilable at level" + testedTier); + " must be not compilable at level" + testedTier);
} }
WHITE_BOX.enqueueMethodForCompilation(method, testedTier); WHITE_BOX.enqueueMethodForCompilation(method, testedTier, bci);
checkNotCompiled(); checkNotCompiled();
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
System.out.println(method System.out.println(method
+ " is not compilable after level " + testedTier); + " is not compilable after level " + testedTier);
} }
@ -89,15 +91,20 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
} else { } else {
compile(); compile();
checkCompiled(); checkCompiled();
int compLevel = WHITE_BOX.getMethodCompilationLevel(method); int compLevel = getCompLevel();
WHITE_BOX.deoptimizeMethod(method); deoptimize();
WHITE_BOX.makeMethodNotCompilable(method, compLevel); makeNotCompilable(compLevel);
if (WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY)) { if (isCompilable(COMP_LEVEL_ANY)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be not compilable at CompLevel::CompLevel_any," + " must be not compilable at CompLevel::CompLevel_any,"
+ " after it is not compilable at " + compLevel); + " after it is not compilable at " + compLevel);
} }
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
if (!isCompilable()) {
throw new RuntimeException(method
+ " is not compilable after clearMethodState()");
}
// nocompilable at opposite level must make no sense // nocompilable at opposite level must make no sense
int oppositeLevel; int oppositeLevel;
@ -106,16 +113,16 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
} else { } else {
oppositeLevel = COMP_LEVEL_SIMPLE; oppositeLevel = COMP_LEVEL_SIMPLE;
} }
WHITE_BOX.makeMethodNotCompilable(method, oppositeLevel); makeNotCompilable(oppositeLevel);
if (!WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY)) { if (!isCompilable(COMP_LEVEL_ANY)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be compilable at CompLevel::CompLevel_any," + " must be compilable at CompLevel::CompLevel_any,"
+ " even it is not compilable at opposite level [" + " even it is not compilable at opposite level ["
+ compLevel + "]"); + compLevel + "]");
} }
if (!WHITE_BOX.isMethodCompilable(method, compLevel)) { if (!isCompilable(compLevel)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be compilable at level " + compLevel + " must be compilable at level " + compLevel
+ ", even it is not compilable at opposite level [" + ", even it is not compilable at opposite level ["
@ -126,24 +133,24 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
// clearing after tiered/non-tiered tests // clearing after tiered/non-tiered tests
// WB.clearMethodState() must reset no-compilable flags // WB.clearMethodState() must reset no-compilable flags
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is not compilable after clearMethodState()"); + " is not compilable after clearMethodState()");
} }
WHITE_BOX.makeMethodNotCompilable(method); makeNotCompilable();
if (WHITE_BOX.isMethodCompilable(method)) { if (isCompilable()) {
throw new RuntimeException(method + " must be not compilable"); throw new RuntimeException(method + " must be not compilable");
} }
compile(); compile();
checkNotCompiled(); checkNotCompiled();
if (WHITE_BOX.isMethodCompilable(method)) { if (isCompilable()) {
throw new RuntimeException(method + " must be not compilable"); throw new RuntimeException(method + " must be not compilable");
} }
// WB.clearMethodState() must reset no-compilable flags // WB.clearMethodState() must reset no-compilable flags
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
if (!WHITE_BOX.isMethodCompilable(method)) { if (!isCompilable()) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is not compilable after clearMethodState()"); + " is not compilable after clearMethodState()");
} }
@ -153,24 +160,23 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
// separately tests each tier // separately tests each tier
private void testTier(int testedTier) { private void testTier(int testedTier) {
if (!WHITE_BOX.isMethodCompilable(method, testedTier)) { if (!isCompilable(testedTier)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is not compilable on start"); + " is not compilable on start");
} }
WHITE_BOX.makeMethodNotCompilable(method, testedTier); makeNotCompilable(testedTier);
// tests for all other tiers // tests for all other tiers
for (int anotherTier = 1, tierLimit = TIERED_STOP_AT_LEVEL + 1; for (int anotherTier = 1, tierLimit = TIERED_STOP_AT_LEVEL + 1;
anotherTier < tierLimit; ++anotherTier) { anotherTier < tierLimit; ++anotherTier) {
boolean isCompilable = WHITE_BOX.isMethodCompilable(method, boolean isCompilable = isCompilable(anotherTier);
anotherTier);
if (sameCompile(testedTier, anotherTier)) { if (sameCompile(testedTier, anotherTier)) {
if (isCompilable) { if (isCompilable) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be not compilable at level " + anotherTier + " must be not compilable at level " + anotherTier
+ ", if it is not compilable at " + testedTier); + ", if it is not compilable at " + testedTier);
} }
WHITE_BOX.enqueueMethodForCompilation(method, anotherTier); WHITE_BOX.enqueueMethodForCompilation(method, anotherTier, bci);
checkNotCompiled(); checkNotCompiled();
} else { } else {
if (!isCompilable) { if (!isCompilable) {
@ -179,12 +185,12 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
+ ", even if it is not compilable at " + ", even if it is not compilable at "
+ testedTier); + testedTier);
} }
WHITE_BOX.enqueueMethodForCompilation(method, anotherTier); WHITE_BOX.enqueueMethodForCompilation(method, anotherTier, bci);
checkCompiled(); checkCompiled();
WHITE_BOX.deoptimizeMethod(method); deoptimize();
} }
if (!WHITE_BOX.isMethodCompilable(method, COMP_LEVEL_ANY)) { if (!isCompilable(COMP_LEVEL_ANY)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " must be compilable at 'CompLevel::CompLevel_any'" + " must be compilable at 'CompLevel::CompLevel_any'"
+ ", if it is not compilable only at " + testedTier); + ", if it is not compilable only at " + testedTier);
@ -193,7 +199,7 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
// clear state after test // clear state after test
WHITE_BOX.clearMethodState(method); WHITE_BOX.clearMethodState(method);
if (!WHITE_BOX.isMethodCompilable(method, testedTier)) { if (!isCompilable(testedTier)) {
throw new RuntimeException(method throw new RuntimeException(method
+ " is not compilable after clearMethodState()"); + " is not compilable after clearMethodState()");
} }
@ -211,4 +217,13 @@ public class MakeMethodNotCompilableTest extends CompilerWhiteBoxTest {
} }
return false; return false;
} }
private int getBci() {
compile();
checkCompiled();
int result = WHITE_BOX.getMethodEntryBci(method);
deoptimize();
WHITE_BOX.clearMethodState(method);
return result;
}
} }

View File

@ -23,6 +23,7 @@
/* /*
* @test SetDontInlineMethodTest * @test SetDontInlineMethodTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build SetDontInlineMethodTest * @build SetDontInlineMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox

View File

@ -23,6 +23,7 @@
/* /*
* @test SetForceInlineMethodTest * @test SetForceInlineMethodTest
* @bug 8006683 8007288 8022832
* @library /testlibrary /testlibrary/whitebox * @library /testlibrary /testlibrary/whitebox
* @build SetForceInlineMethodTest * @build SetForceInlineMethodTest
* @run main ClassFileInstaller sun.hotspot.WhiteBox * @run main ClassFileInstaller sun.hotspot.WhiteBox

View File

@ -93,23 +93,45 @@ public class WhiteBox {
// Compiler // Compiler
public native void deoptimizeAll(); public native void deoptimizeAll();
public native boolean isMethodCompiled(Executable method); public boolean isMethodCompiled(Executable method) {
return isMethodCompiled(method, false /*not osr*/);
}
public native boolean isMethodCompiled(Executable method, boolean isOsr);
public boolean isMethodCompilable(Executable method) { public boolean isMethodCompilable(Executable method) {
return isMethodCompilable(method, -1 /*any*/); return isMethodCompilable(method, -1 /*any*/);
} }
public native boolean isMethodCompilable(Executable method, int compLevel); public boolean isMethodCompilable(Executable method, int compLevel) {
return isMethodCompilable(method, compLevel, false /*not osr*/);
}
public native boolean isMethodCompilable(Executable method, int compLevel, boolean isOsr);
public native boolean isMethodQueuedForCompilation(Executable method); public native boolean isMethodQueuedForCompilation(Executable method);
public native int deoptimizeMethod(Executable method); public int deoptimizeMethod(Executable method) {
return deoptimizeMethod(method, false /*not osr*/);
}
public native int deoptimizeMethod(Executable method, boolean isOsr);
public void makeMethodNotCompilable(Executable method) { public void makeMethodNotCompilable(Executable method) {
makeMethodNotCompilable(method, -1 /*any*/); makeMethodNotCompilable(method, -1 /*any*/);
} }
public native void makeMethodNotCompilable(Executable method, int compLevel); public void makeMethodNotCompilable(Executable method, int compLevel) {
public native int getMethodCompilationLevel(Executable method); makeMethodNotCompilable(method, compLevel, false /*not osr*/);
}
public native void makeMethodNotCompilable(Executable method, int compLevel, boolean isOsr);
public int getMethodCompilationLevel(Executable method) {
return getMethodCompilationLevel(method, false /*not ost*/);
}
public native int getMethodCompilationLevel(Executable method, boolean isOsr);
public native boolean testSetDontInlineMethod(Executable method, boolean value); public native boolean testSetDontInlineMethod(Executable method, boolean value);
public native int getCompileQueuesSize(); public int getCompileQueuesSize() {
return getCompileQueueSize(-1 /*any*/);
}
public native int getCompileQueueSize(int compLevel);
public native boolean testSetForceInlineMethod(Executable method, boolean value); public native boolean testSetForceInlineMethod(Executable method, boolean value);
public native boolean enqueueMethodForCompilation(Executable method, int compLevel); public boolean enqueueMethodForCompilation(Executable method, int compLevel) {
return enqueueMethodForCompilation(method, compLevel, -1 /*InvocationEntryBci*/);
}
public native boolean enqueueMethodForCompilation(Executable method, int compLevel, int entry_bci);
public native void clearMethodState(Executable method); public native void clearMethodState(Executable method);
public native int getMethodEntryBci(Executable method);
// Intered strings // Intered strings
public native boolean isInStringTable(String str); public native boolean isInStringTable(String str);