4396719: Mark Sweep stack overflow on deeply nested Object arrays

Use an explicit stack for object arrays and process them in chunks.

Reviewed-by: iveresov, apetrusenko
This commit is contained in:
John Coomes 2010-03-03 14:48:26 -08:00
parent 5fdec09798
commit 4f82340476
26 changed files with 419 additions and 182 deletions

View File

@ -24,8 +24,8 @@
class G1CollectedHeap;
class CMTask;
typedef GenericTaskQueue<oop> CMTaskQueue;
typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
typedef GenericTaskQueue<oop> CMTaskQueue;
typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
// A generic CM bit map. This is essentially a wrapper around the BitMap
// class, with one bit per (1<<_shifter) HeapWords.

View File

@ -56,8 +56,8 @@ class ConcurrentZFThread;
# define IF_G1_DETAILED_STATS(code)
#endif
typedef GenericTaskQueue<StarTask> RefToScanQueue;
typedef GenericTaskQueueSet<StarTask> RefToScanQueueSet;
typedef GenericTaskQueue<StarTask> RefToScanQueue;
typedef GenericTaskQueueSet<RefToScanQueue> RefToScanQueueSet;
typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )

View File

@ -101,6 +101,8 @@ void G1MarkSweep::allocate_stacks() {
GenMarkSweep::_marking_stack =
new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
GenMarkSweep::_objarray_stack =
new (ResourceObj::C_HEAP) GrowableArray<ObjArrayTask>(50, true);
int size = SystemDictionary::number_of_classes() * 2;
GenMarkSweep::_revisit_klass_stack =

View File

@ -175,6 +175,7 @@ psAdaptiveSizePolicy.hpp gcUtil.hpp
psAdaptiveSizePolicy.hpp adaptiveSizePolicy.hpp
psCompactionManager.cpp gcTaskManager.hpp
psCompactionManager.cpp objArrayKlass.inline.hpp
psCompactionManager.cpp objectStartArray.hpp
psCompactionManager.cpp oop.hpp
psCompactionManager.cpp oop.inline.hpp
@ -189,6 +190,9 @@ psCompactionManager.cpp systemDictionary.hpp
psCompactionManager.hpp allocation.hpp
psCompactionManager.hpp taskqueue.hpp
psCompactionManager.inline.hpp psCompactionManager.hpp
psCompactionManager.inline.hpp psParallelCompact.hpp
psGCAdaptivePolicyCounters.hpp gcAdaptivePolicyCounters.hpp
psGCAdaptivePolicyCounters.hpp gcPolicyCounters.hpp
psGCAdaptivePolicyCounters.hpp psAdaptiveSizePolicy.hpp
@ -379,12 +383,12 @@ pcTasks.cpp fprofiler.hpp
pcTasks.cpp jniHandles.hpp
pcTasks.cpp jvmtiExport.hpp
pcTasks.cpp management.hpp
pcTasks.cpp objArrayKlass.inline.hpp
pcTasks.cpp psParallelCompact.hpp
pcTasks.cpp pcTasks.hpp
pcTasks.cpp oop.inline.hpp
pcTasks.cpp oop.pcgc.inline.hpp
pcTasks.cpp systemDictionary.hpp
pcTasks.cpp taskqueue.hpp
pcTasks.cpp thread.hpp
pcTasks.cpp universe.hpp
pcTasks.cpp vmThread.hpp

View File

@ -48,7 +48,7 @@ void ThreadRootsMarkingTask::do_it(GCTaskManager* manager, uint which) {
_vm_thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
// Do the real work
cm->drain_marking_stacks(&mark_and_push_closure);
cm->follow_marking_stacks();
}
@ -118,7 +118,7 @@ void MarkFromRootsTask::do_it(GCTaskManager* manager, uint which) {
}
// Do the real work
cm->drain_marking_stacks(&mark_and_push_closure);
cm->follow_marking_stacks();
// cm->deallocate_stacks();
}
@ -196,17 +196,19 @@ void StealMarkingTask::do_it(GCTaskManager* manager, uint which) {
PSParallelCompact::MarkAndPushClosure mark_and_push_closure(cm);
oop obj = NULL;
ObjArrayTask task;
int random_seed = 17;
while(true) {
if (ParCompactionManager::steal(which, &random_seed, obj)) {
obj->follow_contents(cm);
cm->drain_marking_stacks(&mark_and_push_closure);
} else {
if (terminator()->offer_termination()) {
break;
}
do {
while (ParCompactionManager::steal_objarray(which, &random_seed, task)) {
objArrayKlass* const k = (objArrayKlass*)task.obj()->blueprint();
k->oop_follow_contents(cm, task.obj(), task.index());
cm->follow_marking_stacks();
}
}
while (ParCompactionManager::steal(which, &random_seed, obj)) {
obj->follow_contents(cm);
cm->follow_marking_stacks();
}
} while (!terminator()->offer_termination());
}
//

View File

@ -28,6 +28,8 @@
PSOldGen* ParCompactionManager::_old_gen = NULL;
ParCompactionManager** ParCompactionManager::_manager_array = NULL;
OopTaskQueueSet* ParCompactionManager::_stack_array = NULL;
ParCompactionManager::ObjArrayTaskQueueSet*
ParCompactionManager::_objarray_queues = NULL;
ObjectStartArray* ParCompactionManager::_start_array = NULL;
ParMarkBitMap* ParCompactionManager::_mark_bitmap = NULL;
RegionTaskQueueSet* ParCompactionManager::_region_array = NULL;
@ -46,6 +48,11 @@ ParCompactionManager::ParCompactionManager() :
// We want the overflow stack to be permanent
_overflow_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(10, true);
_objarray_queue.initialize();
_objarray_overflow_stack =
new (ResourceObj::C_HEAP) ObjArrayOverflowStack(10, true);
#ifdef USE_RegionTaskQueueWithOverflow
region_stack()->initialize();
#else
@ -69,6 +76,7 @@ ParCompactionManager::ParCompactionManager() :
ParCompactionManager::~ParCompactionManager() {
delete _overflow_stack;
delete _objarray_overflow_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;
// _manager_array and _stack_array are statics
@ -86,18 +94,21 @@ void ParCompactionManager::initialize(ParMarkBitMap* mbm) {
assert(_manager_array == NULL, "Attempt to initialize twice");
_manager_array = NEW_C_HEAP_ARRAY(ParCompactionManager*, parallel_gc_threads+1 );
guarantee(_manager_array != NULL, "Could not initialize promotion manager");
guarantee(_manager_array != NULL, "Could not allocate manager_array");
_stack_array = new OopTaskQueueSet(parallel_gc_threads);
guarantee(_stack_array != NULL, "Count not initialize promotion manager");
guarantee(_stack_array != NULL, "Could not allocate stack_array");
_objarray_queues = new ObjArrayTaskQueueSet(parallel_gc_threads);
guarantee(_objarray_queues != NULL, "Could not allocate objarray_queues");
_region_array = new RegionTaskQueueSet(parallel_gc_threads);
guarantee(_region_array != NULL, "Count not initialize promotion manager");
guarantee(_region_array != NULL, "Could not allocate region_array");
// Create and register the ParCompactionManager(s) for the worker threads.
for(uint i=0; i<parallel_gc_threads; i++) {
_manager_array[i] = new ParCompactionManager();
guarantee(_manager_array[i] != NULL, "Could not create ParCompactionManager");
stack_array()->register_queue(i, _manager_array[i]->marking_stack());
_objarray_queues->register_queue(i, &_manager_array[i]->_objarray_queue);
#ifdef USE_RegionTaskQueueWithOverflow
region_array()->register_queue(i, _manager_array[i]->region_stack()->task_queue());
#else
@ -203,36 +214,30 @@ void ParCompactionManager::reset() {
}
}
void ParCompactionManager::drain_marking_stacks(OopClosure* blk) {
#ifdef ASSERT
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
MutableSpace* to_space = heap->young_gen()->to_space();
MutableSpace* old_space = heap->old_gen()->object_space();
MutableSpace* perm_space = heap->perm_gen()->object_space();
#endif /* ASSERT */
void ParCompactionManager::follow_marking_stacks() {
do {
// Drain overflow stack first, so other threads can steal from
// claimed stack while we work.
while(!overflow_stack()->is_empty()) {
oop obj = overflow_stack()->pop();
obj->follow_contents(this);
// Drain the overflow stack first, to allow stealing from the marking stack.
while (!overflow_stack()->is_empty()) {
overflow_stack()->pop()->follow_contents(this);
}
oop obj;
// obj is a reference!!!
while (marking_stack()->pop_local(obj)) {
// It would be nice to assert about the type of objects we might
// pop, but they can come from anywhere, unfortunately.
obj->follow_contents(this);
}
} while((marking_stack()->size() != 0) || (overflow_stack()->length() != 0));
assert(marking_stack()->size() == 0, "Sanity");
assert(overflow_stack()->length() == 0, "Sanity");
ObjArrayTask task;
while (!_objarray_overflow_stack->is_empty()) {
task = _objarray_overflow_stack->pop();
objArrayKlass* const k = (objArrayKlass*)task.obj()->blueprint();
k->oop_follow_contents(this, task.obj(), task.index());
}
while (_objarray_queue.pop_local(task)) {
objArrayKlass* const k = (objArrayKlass*)task.obj()->blueprint();
k->oop_follow_contents(this, task.obj(), task.index());
}
} while (!marking_stacks_empty());
assert(marking_stacks_empty(), "Sanity");
}
void ParCompactionManager::drain_region_overflow_stack() {

View File

@ -22,18 +22,6 @@
*
*/
//
// psPromotionManager is used by a single thread to manage object survival
// during a scavenge. The promotion manager contains thread local data only.
//
// NOTE! Be carefull when allocating the stacks on cheap. If you are going
// to use a promotion manager in more than one thread, the stacks MUST be
// on cheap. This can lead to memory leaks, though, as they are not auto
// deallocated.
//
// FIX ME FIX ME Add a destructor, and don't rely on the user to drain/flush/deallocate!
//
// Move to some global location
#define HAS_BEEN_MOVED 0x1501d01d
// End move to some global location
@ -46,8 +34,6 @@ class ObjectStartArray;
class ParallelCompactData;
class ParMarkBitMap;
// Move to it's own file if this works out.
class ParCompactionManager : public CHeapObj {
friend class ParallelTaskTerminator;
friend class ParMarkBitMap;
@ -72,14 +58,27 @@ class ParCompactionManager : public CHeapObj {
// ------------------------ End don't putback if not needed
private:
// 32-bit: 4K * 8 = 32KiB; 64-bit: 8K * 16 = 128KiB
#define OBJARRAY_QUEUE_SIZE (1 << NOT_LP64(12) LP64_ONLY(13))
typedef GenericTaskQueue<ObjArrayTask, OBJARRAY_QUEUE_SIZE> ObjArrayTaskQueue;
typedef GenericTaskQueueSet<ObjArrayTaskQueue> ObjArrayTaskQueueSet;
#undef OBJARRAY_QUEUE_SIZE
static ParCompactionManager** _manager_array;
static OopTaskQueueSet* _stack_array;
static ObjArrayTaskQueueSet* _objarray_queues;
static ObjectStartArray* _start_array;
static RegionTaskQueueSet* _region_array;
static PSOldGen* _old_gen;
private:
OopTaskQueue _marking_stack;
GrowableArray<oop>* _overflow_stack;
typedef GrowableArray<ObjArrayTask> ObjArrayOverflowStack;
ObjArrayTaskQueue _objarray_queue;
ObjArrayOverflowStack* _objarray_overflow_stack;
// Is there a way to reuse the _marking_stack for the
// saving empty regions? For now just create a different
// type of TaskQueue.
@ -128,8 +127,8 @@ class ParCompactionManager : public CHeapObj {
// Pushes onto the region stack. If the region stack is full,
// pushes onto the region overflow stack.
void region_stack_push(size_t region_index);
public:
public:
Action action() { return _action; }
void set_action(Action v) { _action = v; }
@ -163,6 +162,8 @@ class ParCompactionManager : public CHeapObj {
// Get a oop for scanning. If returns null, no oop were found.
oop retrieve_for_scanning();
inline void push_objarray(oop obj, size_t index);
// Save region for later processing. Must not fail.
void save_for_processing(size_t region_index);
// Get a region for processing. If returns null, no region were found.
@ -175,12 +176,17 @@ class ParCompactionManager : public CHeapObj {
return stack_array()->steal(queue_num, seed, t);
}
static bool steal_objarray(int queue_num, int* seed, ObjArrayTask& t) {
return _objarray_queues->steal(queue_num, seed, t);
}
static bool steal(int queue_num, int* seed, RegionTask& t) {
return region_array()->steal(queue_num, seed, t);
}
// Process tasks remaining on any stack
void drain_marking_stacks(OopClosure *blk);
// Process tasks remaining on any marking stack
void follow_marking_stacks();
inline bool marking_stacks_empty() const;
// Process tasks remaining on any stack
void drain_region_stacks();
@ -200,3 +206,8 @@ inline ParCompactionManager* ParCompactionManager::manager_array(int index) {
"out of range manager_array access");
return _manager_array[index];
}
bool ParCompactionManager::marking_stacks_empty() const {
return _marking_stack.size() == 0 && _overflow_stack->is_empty() &&
_objarray_queue.size() == 0 && _objarray_overflow_stack->is_empty();
}

View File

@ -0,0 +1,32 @@
/*
* Copyright 2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
void ParCompactionManager::push_objarray(oop obj, size_t index)
{
ObjArrayTask task(obj, index);
assert(task.is_valid(), "bad ObjArrayTask");
if (!_objarray_queue.push(task)) {
_objarray_overflow_stack->push(task);
}
}

View File

@ -479,6 +479,7 @@ void PSMarkSweep::allocate_stacks() {
_preserved_oop_stack = NULL;
_marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
_objarray_stack = new (ResourceObj::C_HEAP) GrowableArray<ObjArrayTask>(50, true);
int size = SystemDictionary::number_of_classes() * 2;
_revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
@ -497,6 +498,7 @@ void PSMarkSweep::deallocate_stacks() {
}
delete _marking_stack;
delete _objarray_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;
}

View File

@ -785,7 +785,7 @@ PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closu
void PSParallelCompact::AdjustPointerClosure::do_oop(oop* p) { adjust_pointer(p, _is_root); }
void PSParallelCompact::AdjustPointerClosure::do_oop(narrowOop* p) { adjust_pointer(p, _is_root); }
void PSParallelCompact::FollowStackClosure::do_void() { follow_stack(_compaction_manager); }
void PSParallelCompact::FollowStackClosure::do_void() { _compaction_manager->follow_marking_stacks(); }
void PSParallelCompact::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(_compaction_manager, p); }
void PSParallelCompact::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(_compaction_manager, p); }
@ -2376,7 +2376,7 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
// Follow code cache roots.
CodeCache::do_unloading(is_alive_closure(), &mark_and_push_closure,
purged_class);
follow_stack(cm); // Flush marking stack.
cm->follow_marking_stacks(); // Flush marking stack.
// Update subklass/sibling/implementor links of live klasses
// revisit_klass_stack is used in follow_weak_klass_links().
@ -2389,8 +2389,7 @@ void PSParallelCompact::marking_phase(ParCompactionManager* cm,
SymbolTable::unlink(is_alive_closure());
StringTable::unlink(is_alive_closure());
assert(cm->marking_stack()->size() == 0, "stack should be empty by now");
assert(cm->overflow_stack()->is_empty(), "stack should be empty by now");
assert(cm->marking_stacks_empty(), "marking stacks should be empty");
}
// This should be moved to the shared markSweep code!
@ -2709,22 +2708,6 @@ void PSParallelCompact::compact_serial(ParCompactionManager* cm) {
young_gen->move_and_update(cm);
}
void PSParallelCompact::follow_stack(ParCompactionManager* cm) {
while(!cm->overflow_stack()->is_empty()) {
oop obj = cm->overflow_stack()->pop();
obj->follow_contents(cm);
}
oop obj;
// obj is a reference!!!
while (cm->marking_stack()->pop_local(obj)) {
// It would be nice to assert about the type of objects we might
// pop, but they can come from anywhere, unfortunately.
obj->follow_contents(cm);
}
}
void
PSParallelCompact::follow_weak_klass_links() {
// All klasses on the revisit stack are marked at this point.
@ -2745,7 +2728,7 @@ PSParallelCompact::follow_weak_klass_links() {
&keep_alive_closure);
}
// revisit_klass_stack is cleared in reset()
follow_stack(cm);
cm->follow_marking_stacks();
}
}
@ -2776,7 +2759,7 @@ void PSParallelCompact::follow_mdo_weak_refs() {
rms->at(j)->follow_weak_refs(is_alive_closure());
}
// revisit_mdo_stack is cleared in reset()
follow_stack(cm);
cm->follow_marking_stacks();
}
}

View File

@ -901,7 +901,6 @@ class PSParallelCompact : AllStatic {
// Mark live objects
static void marking_phase(ParCompactionManager* cm,
bool maximum_heap_compaction);
static void follow_stack(ParCompactionManager* cm);
static void follow_weak_klass_links();
static void follow_mdo_weak_refs();
@ -1276,7 +1275,7 @@ inline void PSParallelCompact::follow_root(ParCompactionManager* cm, T* p) {
}
}
}
follow_stack(cm);
cm->follow_marking_stacks();
}
template <class T>

View File

@ -25,8 +25,9 @@
#include "incls/_precompiled.incl"
#include "incls/_markSweep.cpp.incl"
GrowableArray<oop>* MarkSweep::_marking_stack = NULL;
GrowableArray<Klass*>* MarkSweep::_revisit_klass_stack = NULL;
GrowableArray<oop>* MarkSweep::_marking_stack = NULL;
GrowableArray<ObjArrayTask>* MarkSweep::_objarray_stack = NULL;
GrowableArray<Klass*>* MarkSweep::_revisit_klass_stack = NULL;
GrowableArray<DataLayout*>* MarkSweep::_revisit_mdo_stack = NULL;
GrowableArray<oop>* MarkSweep::_preserved_oop_stack = NULL;
@ -104,11 +105,18 @@ void MarkSweep::MarkAndPushClosure::do_oop(oop* p) { mark_and_push(p); }
void MarkSweep::MarkAndPushClosure::do_oop(narrowOop* p) { mark_and_push(p); }
void MarkSweep::follow_stack() {
while (!_marking_stack->is_empty()) {
oop obj = _marking_stack->pop();
assert (obj->is_gc_marked(), "p must be marked");
obj->follow_contents();
}
do {
while (!_marking_stack->is_empty()) {
oop obj = _marking_stack->pop();
assert (obj->is_gc_marked(), "p must be marked");
obj->follow_contents();
}
while (!_objarray_stack->is_empty()) {
ObjArrayTask task = _objarray_stack->pop();
objArrayKlass* const k = (objArrayKlass*)task.obj()->blueprint();
k->oop_follow_contents(task.obj(), task.index());
}
} while (!_marking_stack->is_empty() || !_objarray_stack->is_empty());
}
MarkSweep::FollowStackClosure MarkSweep::follow_stack_closure;

View File

@ -110,8 +110,9 @@ class MarkSweep : AllStatic {
// Vars
//
protected:
// Traversal stack used during phase1
// Traversal stacks used during phase1
static GrowableArray<oop>* _marking_stack;
static GrowableArray<ObjArrayTask>* _objarray_stack;
// Stack for live klasses to revisit at end of marking phase
static GrowableArray<Klass*>* _revisit_klass_stack;
// Set (stack) of MDO's to revisit at end of marking phase
@ -188,6 +189,7 @@ class MarkSweep : AllStatic {
template <class T> static inline void mark_and_follow(T* p);
// Check mark and maybe push on marking stack
template <class T> static inline void mark_and_push(T* p);
static inline void push_objarray(oop obj, size_t index);
static void follow_stack(); // Empty marking stack.

View File

@ -77,6 +77,12 @@ template <class T> inline void MarkSweep::mark_and_push(T* p) {
}
}
void MarkSweep::push_objarray(oop obj, size_t index) {
ObjArrayTask task(obj, index);
assert(task.is_valid(), "bad ObjArrayTask");
_objarray_stack->push(task);
}
template <class T> inline void MarkSweep::adjust_pointer(T* p, bool isroot) {
T heap_oop = oopDesc::load_heap_oop(p);
if (!oopDesc::is_null(heap_oop)) {

View File

@ -2724,8 +2724,10 @@ markOop.inline.hpp markOop.hpp
markSweep.cpp compileBroker.hpp
markSweep.cpp methodDataOop.hpp
markSweep.cpp objArrayKlass.inline.hpp
markSweep.hpp collectedHeap.hpp
markSweep.hpp taskqueue.hpp
memRegion.cpp globals.hpp
memRegion.cpp memRegion.hpp
@ -3054,8 +3056,10 @@ objArrayKlass.cpp copy.hpp
objArrayKlass.cpp genOopClosures.inline.hpp
objArrayKlass.cpp handles.inline.hpp
objArrayKlass.cpp instanceKlass.hpp
objArrayKlass.cpp markSweep.inline.hpp
objArrayKlass.cpp mutexLocker.hpp
objArrayKlass.cpp objArrayKlass.hpp
objArrayKlass.cpp objArrayKlass.inline.hpp
objArrayKlass.cpp objArrayKlassKlass.hpp
objArrayKlass.cpp objArrayOop.hpp
objArrayKlass.cpp oop.inline.hpp
@ -3066,11 +3070,12 @@ objArrayKlass.cpp systemDictionary.hpp
objArrayKlass.cpp universe.inline.hpp
objArrayKlass.cpp vmSymbols.hpp
objArrayKlass.hpp arrayKlass.hpp
objArrayKlass.hpp instanceKlass.hpp
objArrayKlass.hpp specialized_oop_closures.hpp
objArrayKlass.inline.hpp objArrayKlass.hpp
objArrayKlassKlass.cpp collectedHeap.inline.hpp
objArrayKlassKlass.cpp instanceKlass.hpp
objArrayKlassKlass.cpp javaClasses.hpp
@ -4096,6 +4101,7 @@ task.cpp timer.hpp
task.hpp top.hpp
taskqueue.cpp debug.hpp
taskqueue.cpp oop.inline.hpp
taskqueue.cpp os.hpp
taskqueue.cpp taskqueue.hpp
taskqueue.cpp thread_<os_family>.inline.hpp

View File

@ -115,10 +115,14 @@ objArrayKlass.cpp heapRegionSeq.inline.hpp
objArrayKlass.cpp g1CollectedHeap.inline.hpp
objArrayKlass.cpp g1OopClosures.inline.hpp
objArrayKlass.cpp oop.pcgc.inline.hpp
objArrayKlass.cpp psCompactionManager.hpp
objArrayKlass.cpp psPromotionManager.inline.hpp
objArrayKlass.cpp psScavenge.inline.hpp
objArrayKlass.cpp parOopClosures.inline.hpp
objArrayKlass.inline.hpp psCompactionManager.inline.hpp
objArrayKlass.inline.hpp psParallelCompact.hpp
oop.pcgc.inline.hpp parNewGeneration.hpp
oop.pcgc.inline.hpp parallelScavengeHeap.hpp
oop.pcgc.inline.hpp psCompactionManager.hpp

View File

@ -159,6 +159,7 @@ void GenMarkSweep::allocate_stacks() {
_preserved_oop_stack = NULL;
_marking_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(4000, true);
_objarray_stack = new (ResourceObj::C_HEAP) GrowableArray<ObjArrayTask>(50, true);
int size = SystemDictionary::number_of_classes() * 2;
_revisit_klass_stack = new (ResourceObj::C_HEAP) GrowableArray<Klass*>(size, true);
@ -194,7 +195,6 @@ void GenMarkSweep::allocate_stacks() {
void GenMarkSweep::deallocate_stacks() {
if (!UseG1GC) {
GenCollectedHeap* gch = GenCollectedHeap::heap();
gch->release_scratch();
@ -208,6 +208,7 @@ void GenMarkSweep::deallocate_stacks() {
}
delete _marking_stack;
delete _objarray_stack;
delete _revisit_klass_stack;
delete _revisit_mdo_stack;

View File

@ -28,10 +28,10 @@ class CardTableRS;
class CardTableModRefBS;
class DefNewGeneration;
template<class E> class GenericTaskQueue;
typedef GenericTaskQueue<oop> OopTaskQueue;
template<class E> class GenericTaskQueueSet;
typedef GenericTaskQueueSet<oop> OopTaskQueueSet;
template<class E, unsigned int N> class GenericTaskQueue;
typedef GenericTaskQueue<oop, TASKQUEUE_SIZE> OopTaskQueue;
template<class T> class GenericTaskQueueSet;
typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
// Closure for iterating roots from a particular generation
// Note: all classes deriving from this MUST call this do_barrier

View File

@ -314,24 +314,24 @@ void objArrayKlass::initialize(TRAPS) {
void objArrayKlass::oop_follow_contents(oop obj) {
assert (obj->is_array(), "obj must be array");
objArrayOop a = objArrayOop(obj);
a->follow_header();
ObjArrayKlass_OOP_ITERATE( \
a, p, \
/* we call mark_and_follow here to avoid excessive marking stack usage */ \
MarkSweep::mark_and_follow(p))
objArrayOop(obj)->follow_header();
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(obj, 0);
} else {
objarray_follow_contents<oop>(obj, 0);
}
}
#ifndef SERIALGC
void objArrayKlass::oop_follow_contents(ParCompactionManager* cm,
oop obj) {
assert (obj->is_array(), "obj must be array");
objArrayOop a = objArrayOop(obj);
a->follow_header(cm);
ObjArrayKlass_OOP_ITERATE( \
a, p, \
/* we call mark_and_follow here to avoid excessive marking stack usage */ \
PSParallelCompact::mark_and_follow(cm, p))
assert(obj->is_array(), "obj must be array");
objArrayOop(obj)->follow_header(cm);
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(cm, obj, 0);
} else {
objarray_follow_contents<oop>(cm, obj, 0);
}
}
#endif // SERIALGC

View File

@ -91,10 +91,18 @@ class objArrayKlass : public arrayKlass {
// Garbage collection
void oop_follow_contents(oop obj);
inline void oop_follow_contents(oop obj, int index);
template <class T> inline void objarray_follow_contents(oop obj, int index);
int oop_adjust_pointers(oop obj);
// Parallel Scavenge and Parallel Old
PARALLEL_GC_DECLS
#ifndef SERIALGC
inline void oop_follow_contents(ParCompactionManager* cm, oop obj, int index);
template <class T> inline void
objarray_follow_contents(ParCompactionManager* cm, oop obj, int index);
#endif // !SERIALGC
// Iterators
int oop_oop_iterate(oop obj, OopClosure* blk) {
@ -131,5 +139,4 @@ class objArrayKlass : public arrayKlass {
void oop_verify_on(oop obj, outputStream* st);
void oop_verify_old_oop(oop obj, oop* p, bool allow_dirty);
void oop_verify_old_oop(oop obj, narrowOop* p, bool allow_dirty);
};

View File

@ -0,0 +1,89 @@
/*
* Copyright 2010 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
void objArrayKlass::oop_follow_contents(oop obj, int index) {
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(obj, index);
} else {
objarray_follow_contents<oop>(obj, index);
}
}
template <class T>
void objArrayKlass::objarray_follow_contents(oop obj, int index) {
objArrayOop a = objArrayOop(obj);
const size_t len = size_t(a->length());
const size_t beg_index = size_t(index);
assert(beg_index < len || len == 0, "index too large");
const size_t stride = MIN2(len - beg_index, ObjArrayMarkingStride);
const size_t end_index = beg_index + stride;
T* const base = (T*)a->base();
T* const beg = base + beg_index;
T* const end = base + end_index;
// Push the non-NULL elements of the next stride on the marking stack.
for (T* e = beg; e < end; e++) {
MarkSweep::mark_and_push<T>(e);
}
if (end_index < len) {
MarkSweep::push_objarray(a, end_index); // Push the continuation.
}
}
#ifndef SERIALGC
void objArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj,
int index) {
if (UseCompressedOops) {
objarray_follow_contents<narrowOop>(cm, obj, index);
} else {
objarray_follow_contents<oop>(cm, obj, index);
}
}
template <class T>
void objArrayKlass::objarray_follow_contents(ParCompactionManager* cm, oop obj,
int index) {
objArrayOop a = objArrayOop(obj);
const size_t len = size_t(a->length());
const size_t beg_index = size_t(index);
assert(beg_index < len || len == 0, "index too large");
const size_t stride = MIN2(len - beg_index, ObjArrayMarkingStride);
const size_t end_index = beg_index + stride;
T* const base = (T*)a->base();
T* const beg = base + beg_index;
T* const end = base + end_index;
// Push the non-NULL elements of the next stride on the marking stack.
for (T* e = beg; e < end; e++) {
PSParallelCompact::mark_and_push<T>(cm, e);
}
if (end_index < len) {
cm->push_objarray(a, end_index); // Push the continuation.
}
}
#endif // #ifndef SERIALGC

View File

@ -1346,9 +1346,7 @@ void Arguments::set_g1_gc_flags() {
}
if (FLAG_IS_DEFAULT(MarkStackSize)) {
// Size as a multiple of TaskQueueSuper::N which is larger
// for 64-bit.
FLAG_SET_DEFAULT(MarkStackSize, 128 * TaskQueueSuper::total_size());
FLAG_SET_DEFAULT(MarkStackSize, 128 * TASKQUEUE_SIZE);
}
if (PrintGCDetails && Verbose) {
tty->print_cr("MarkStackSize: %uk MarkStackSizeMax: %uk",

View File

@ -1795,6 +1795,10 @@ class CommandLineFlags {
product(uintx, PreserveMarkStackSize, 1024, \
"Size for stack used in promotion failure handling") \
\
develop(uintx, ObjArrayMarkingStride, 512, \
"Number of ObjArray elements to push onto the marking stack" \
"before pushing a continuation entry") \
\
product_pd(bool, UseTLAB, "Use thread-local object allocation") \
\
product_pd(bool, ResizeTLAB, \

View File

@ -827,6 +827,8 @@ const int badCodeHeapFreeVal = 0xDD; // value used to zap
#define badHeapWord (::badHeapWordVal)
#define badJNIHandle ((oop)::badJNIHandleVal)
// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
//----------------------------------------------------------------------------------------------------
// Utility functions for bitfield manipulations

View File

@ -31,10 +31,6 @@ uint ParallelTaskTerminator::_total_spins = 0;
uint ParallelTaskTerminator::_total_peeks = 0;
#endif
bool TaskQueueSuper::peek() {
return _bottom != _age.top();
}
int TaskQueueSetSuper::randomParkAndMiller(int *seed0) {
const int a = 16807;
const int m = 2147483647;
@ -180,6 +176,13 @@ void ParallelTaskTerminator::reset_for_reuse() {
}
}
#ifdef ASSERT
bool ObjArrayTask::is_valid() const {
return _obj != NULL && _obj->is_objArray() && _index > 0 &&
_index < objArrayOop(_obj)->length();
}
#endif // ASSERT
bool RegionTaskQueueWithOverflow::is_empty() {
return (_region_queue.size() == 0) &&
(_overflow_stack->length() == 0);

View File

@ -22,6 +22,7 @@
*
*/
template <unsigned int N>
class TaskQueueSuper: public CHeapObj {
protected:
// Internal type for indexing the queue; also used for the tag.
@ -30,10 +31,7 @@ protected:
// The first free element after the last one pushed (mod N).
volatile uint _bottom;
enum {
N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
MOD_N_MASK = N - 1 // To compute x mod N efficiently.
};
enum { MOD_N_MASK = N - 1 };
class Age {
public:
@ -84,12 +82,12 @@ protected:
// Returns a number in the range [0..N). If the result is "N-1", it should be
// interpreted as 0.
uint dirty_size(uint bot, uint top) {
uint dirty_size(uint bot, uint top) const {
return (bot - top) & MOD_N_MASK;
}
// Returns the size corresponding to the given "bot" and "top".
uint size(uint bot, uint top) {
uint size(uint bot, uint top) const {
uint sz = dirty_size(bot, top);
// Has the queue "wrapped", so that bottom is less than top? There's a
// complicated special case here. A pair of threads could perform pop_local
@ -111,17 +109,17 @@ protected:
public:
TaskQueueSuper() : _bottom(0), _age() {}
// Return "true" if the TaskQueue contains any tasks.
bool peek();
// Return true if the TaskQueue contains any tasks.
bool peek() { return _bottom != _age.top(); }
// Return an estimate of the number of elements in the queue.
// The "careful" version admits the possibility of pop_local/pop_global
// races.
uint size() {
uint size() const {
return size(_bottom, _age.top());
}
uint dirty_size() {
uint dirty_size() const {
return dirty_size(_bottom, _age.top());
}
@ -132,19 +130,36 @@ public:
// Maximum number of elements allowed in the queue. This is two less
// than the actual queue size, for somewhat complicated reasons.
uint max_elems() { return N - 2; }
uint max_elems() const { return N - 2; }
// Total size of queue.
static const uint total_size() { return N; }
};
template<class E> class GenericTaskQueue: public TaskQueueSuper {
template<class E, unsigned int N = TASKQUEUE_SIZE>
class GenericTaskQueue: public TaskQueueSuper<N> {
protected:
typedef typename TaskQueueSuper<N>::Age Age;
typedef typename TaskQueueSuper<N>::idx_t idx_t;
using TaskQueueSuper<N>::_bottom;
using TaskQueueSuper<N>::_age;
using TaskQueueSuper<N>::increment_index;
using TaskQueueSuper<N>::decrement_index;
using TaskQueueSuper<N>::dirty_size;
public:
using TaskQueueSuper<N>::max_elems;
using TaskQueueSuper<N>::size;
private:
// Slow paths for push, pop_local. (pop_global has no fast path.)
bool push_slow(E t, uint dirty_n_elems);
bool pop_local_slow(uint localBot, Age oldAge);
public:
typedef E element_type;
// Initializes the queue to empty.
GenericTaskQueue();
@ -175,19 +190,19 @@ private:
volatile E* _elems;
};
template<class E>
GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
template<class E, unsigned int N>
GenericTaskQueue<E, N>::GenericTaskQueue() {
assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
}
template<class E>
void GenericTaskQueue<E>::initialize() {
template<class E, unsigned int N>
void GenericTaskQueue<E, N>::initialize() {
_elems = NEW_C_HEAP_ARRAY(E, N);
guarantee(_elems != NULL, "Allocation failed.");
}
template<class E>
void GenericTaskQueue<E>::oops_do(OopClosure* f) {
template<class E, unsigned int N>
void GenericTaskQueue<E, N>::oops_do(OopClosure* f) {
// tty->print_cr("START OopTaskQueue::oops_do");
uint iters = size();
uint index = _bottom;
@ -203,21 +218,21 @@ void GenericTaskQueue<E>::oops_do(OopClosure* f) {
// tty->print_cr("END OopTaskQueue::oops_do");
}
template<class E>
bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::push_slow(E t, uint dirty_n_elems) {
if (dirty_n_elems == N - 1) {
// Actually means 0, so do the push.
uint localBot = _bottom;
_elems[localBot] = t;
// g++ complains if the volatile result of the assignment is unused.
const_cast<E&>(_elems[localBot] = t);
OrderAccess::release_store(&_bottom, increment_index(localBot));
return true;
}
return false;
}
template<class E>
bool GenericTaskQueue<E>::
template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::
pop_local_slow(uint localBot, Age oldAge) {
// This queue was observed to contain exactly one element; either this
// thread will claim it, or a competing "pop_global". In either case,
@ -249,8 +264,8 @@ pop_local_slow(uint localBot, Age oldAge) {
return false;
}
template<class E>
bool GenericTaskQueue<E>::pop_global(E& t) {
template<class E, unsigned int N>
bool GenericTaskQueue<E, N>::pop_global(E& t) {
Age oldAge = _age.get();
uint localBot = _bottom;
uint n_elems = size(localBot, oldAge.top());
@ -258,7 +273,7 @@ bool GenericTaskQueue<E>::pop_global(E& t) {
return false;
}
t = _elems[oldAge.top()];
const_cast<E&>(t = _elems[oldAge.top()]);
Age newAge(oldAge);
newAge.increment();
Age resAge = _age.cmpxchg(newAge, oldAge);
@ -269,8 +284,8 @@ bool GenericTaskQueue<E>::pop_global(E& t) {
return resAge == oldAge;
}
template<class E>
GenericTaskQueue<E>::~GenericTaskQueue() {
template<class E, unsigned int N>
GenericTaskQueue<E, N>::~GenericTaskQueue() {
FREE_C_HEAP_ARRAY(E, _elems);
}
@ -283,16 +298,18 @@ public:
virtual bool peek() = 0;
};
template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
template<class T>
class GenericTaskQueueSet: public TaskQueueSetSuper {
private:
uint _n;
GenericTaskQueue<E>** _queues;
T** _queues;
public:
typedef typename T::element_type E;
GenericTaskQueueSet(int n) : _n(n) {
typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
typedef T* GenericTaskQueuePtr;
_queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
guarantee(_queues != NULL, "Allocation failure.");
for (int i = 0; i < n; i++) {
_queues[i] = NULL;
}
@ -302,9 +319,9 @@ public:
bool steal_best_of_2(uint queue_num, int* seed, E& t);
bool steal_best_of_all(uint queue_num, int* seed, E& t);
void register_queue(uint i, GenericTaskQueue<E>* q);
void register_queue(uint i, T* q);
GenericTaskQueue<E>* queue(uint n);
T* queue(uint n);
// The thread with queue number "queue_num" (and whose random number seed
// is at "seed") is trying to steal a task from some other queue. (It
@ -316,27 +333,27 @@ public:
bool peek();
};
template<class E>
void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
template<class T> void
GenericTaskQueueSet<T>::register_queue(uint i, T* q) {
assert(i < _n, "index out of range.");
_queues[i] = q;
}
template<class E>
GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
template<class T> T*
GenericTaskQueueSet<T>::queue(uint i) {
return _queues[i];
}
template<class E>
bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
template<class T> bool
GenericTaskQueueSet<T>::steal(uint queue_num, int* seed, E& t) {
for (uint i = 0; i < 2 * _n; i++)
if (steal_best_of_2(queue_num, seed, t))
return true;
return false;
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
template<class T> bool
GenericTaskQueueSet<T>::steal_best_of_all(uint queue_num, int* seed, E& t) {
if (_n > 2) {
int best_k;
uint best_sz = 0;
@ -359,8 +376,8 @@ bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t)
}
}
template<class E>
bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
template<class T> bool
GenericTaskQueueSet<T>::steal_1_random(uint queue_num, int* seed, E& t) {
if (_n > 2) {
uint k = queue_num;
while (k == queue_num) k = randomParkAndMiller(seed) % _n;
@ -375,8 +392,8 @@ bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
}
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
template<class T> bool
GenericTaskQueueSet<T>::steal_best_of_2(uint queue_num, int* seed, E& t) {
if (_n > 2) {
uint k1 = queue_num;
while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
@ -397,8 +414,8 @@ bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
}
}
template<class E>
bool GenericTaskQueueSet<E>::peek() {
template<class T>
bool GenericTaskQueueSet<T>::peek() {
// Try all the queues.
for (uint j = 0; j < _n; j++) {
if (_queues[j]->peek())
@ -468,14 +485,16 @@ public:
#endif
};
template<class E> inline bool GenericTaskQueue<E>::push(E t) {
template<class E, unsigned int N> inline bool
GenericTaskQueue<E, N>::push(E t) {
uint localBot = _bottom;
assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
idx_t top = _age.top();
uint dirty_n_elems = dirty_size(localBot, top);
assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
assert(dirty_n_elems < N, "n_elems out of range.");
if (dirty_n_elems < max_elems()) {
_elems[localBot] = t;
// g++ complains if the volatile result of the assignment is unused.
const_cast<E&>(_elems[localBot] = t);
OrderAccess::release_store(&_bottom, increment_index(localBot));
return true;
} else {
@ -483,7 +502,8 @@ template<class E> inline bool GenericTaskQueue<E>::push(E t) {
}
}
template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
template<class E, unsigned int N> inline bool
GenericTaskQueue<E, N>::pop_local(E& t) {
uint localBot = _bottom;
// This value cannot be N-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
@ -497,7 +517,7 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
// This is necessary to prevent any read below from being reordered
// before the store just above.
OrderAccess::fence();
t = _elems[localBot];
const_cast<E&>(t = _elems[localBot]);
// This is a second read of "age"; the "size()" above is the first.
// If there's still at least one element in the queue, based on the
// "_bottom" and "age" we've read, then there can be no interference with
@ -514,17 +534,23 @@ template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
}
typedef oop Task;
typedef GenericTaskQueue<Task> OopTaskQueue;
typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
typedef GenericTaskQueue<Task> OopTaskQueue;
typedef GenericTaskQueueSet<OopTaskQueue> OopTaskQueueSet;
#define COMPRESSED_OOP_MASK 1
#ifdef _MSC_VER
#pragma warning(push)
// warning C4522: multiple assignment operators specified
#pragma warning(disable:4522)
#endif
// This is a container class for either an oop* or a narrowOop*.
// Both are pushed onto a task queue and the consumer will test is_narrow()
// to determine which should be processed.
class StarTask {
void* _holder; // either union oop* or narrowOop*
enum { COMPRESSED_OOP_MASK = 1 };
public:
StarTask(narrowOop* p) {
assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
@ -540,20 +566,61 @@ class StarTask {
return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
}
// Operators to preserve const/volatile in assignments required by gcc
void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
StarTask& operator=(const StarTask& t) {
_holder = t._holder;
return *this;
}
volatile StarTask& operator=(const volatile StarTask& t) volatile {
_holder = t._holder;
return *this;
}
bool is_narrow() const {
return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
}
};
typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
class ObjArrayTask
{
public:
ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
assert(idx <= size_t(max_jint), "too big");
}
ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
ObjArrayTask& operator =(const ObjArrayTask& t) {
_obj = t._obj;
_index = t._index;
return *this;
}
volatile ObjArrayTask&
operator =(const volatile ObjArrayTask& t) volatile {
_obj = t._obj;
_index = t._index;
return *this;
}
inline oop obj() const { return _obj; }
inline int index() const { return _index; }
DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
private:
oop _obj;
int _index;
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
typedef GenericTaskQueueSet<OopStarTaskQueue> OopStarTaskQueueSet;
typedef size_t RegionTask; // index for region
typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
typedef GenericTaskQueueSet<RegionTaskQueue> RegionTaskQueueSet;
class RegionTaskQueueWithOverflow: public CHeapObj {
protected: