8323809: Serial: Refactor card table verification
Reviewed-by: tschatzl, sjohanss
This commit is contained in:
parent
cdf918b1d0
commit
51671c0b92
src/hotspot/share/gc/serial
@ -72,274 +72,59 @@ void CardTableRS::maintain_old_to_young_invariant(TenuredGeneration* old_gen,
|
||||
}
|
||||
}
|
||||
|
||||
class VerifyCleanCardClosure: public BasicOopIterateClosure {
|
||||
private:
|
||||
HeapWord* _boundary;
|
||||
HeapWord* _begin;
|
||||
HeapWord* _end;
|
||||
protected:
|
||||
class CheckForUnmarkedOops : public BasicOopIterateClosure {
|
||||
DefNewGeneration* _young_gen;
|
||||
CardTableRS* _card_table;
|
||||
HeapWord* _unmarked_addr;
|
||||
|
||||
template <class T> void do_oop_work(T* p) {
|
||||
HeapWord* jp = (HeapWord*)p;
|
||||
assert(jp >= _begin && jp < _end,
|
||||
"Error: jp " PTR_FORMAT " should be within "
|
||||
"[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
|
||||
p2i(jp), p2i(_begin), p2i(_end));
|
||||
oop obj = RawAccess<>::oop_load(p);
|
||||
guarantee(obj == nullptr || cast_from_oop<HeapWord*>(obj) >= _boundary,
|
||||
"pointer " PTR_FORMAT " at " PTR_FORMAT " on "
|
||||
"clean card crosses boundary" PTR_FORMAT,
|
||||
p2i(obj), p2i(jp), p2i(_boundary));
|
||||
}
|
||||
|
||||
public:
|
||||
VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
|
||||
_boundary(b), _begin(begin), _end(end) {
|
||||
assert(b <= begin,
|
||||
"Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
|
||||
p2i(b), p2i(begin));
|
||||
assert(begin <= end,
|
||||
"Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
|
||||
p2i(begin), p2i(end));
|
||||
}
|
||||
|
||||
virtual void do_oop(oop* p) { VerifyCleanCardClosure::do_oop_work(p); }
|
||||
virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
|
||||
};
|
||||
|
||||
class VerifyCTSpaceClosure: public SpaceClosure {
|
||||
private:
|
||||
CardTableRS* _ct;
|
||||
HeapWord* _boundary;
|
||||
public:
|
||||
VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
|
||||
_ct(ct), _boundary(boundary) {}
|
||||
virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
|
||||
};
|
||||
|
||||
class VerifyCTGenClosure: public SerialHeap::GenClosure {
|
||||
CardTableRS* _ct;
|
||||
public:
|
||||
VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
|
||||
void do_generation(Generation* gen) {
|
||||
// Skip the youngest generation.
|
||||
if (SerialHeap::heap()->is_young_gen(gen)) {
|
||||
return;
|
||||
}
|
||||
// Normally, we're interested in pointers to younger generations.
|
||||
VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
|
||||
gen->space_iterate(&blk, true);
|
||||
}
|
||||
};
|
||||
|
||||
void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
|
||||
// We don't need to do young-gen spaces.
|
||||
if (s->end() <= gen_boundary) return;
|
||||
MemRegion used = s->used_region();
|
||||
|
||||
CardValue* cur_entry = byte_for(used.start());
|
||||
CardValue* limit = byte_after(used.last());
|
||||
while (cur_entry < limit) {
|
||||
if (*cur_entry == clean_card_val()) {
|
||||
CardValue* first_dirty = cur_entry+1;
|
||||
while (first_dirty < limit &&
|
||||
*first_dirty == clean_card_val()) {
|
||||
first_dirty++;
|
||||
if (_young_gen->is_in_reserved(obj) &&
|
||||
!_card_table->is_dirty_for_addr(p)) {
|
||||
// Don't overwrite the first missing card mark
|
||||
if (_unmarked_addr == nullptr) {
|
||||
_unmarked_addr = (HeapWord*)p;
|
||||
}
|
||||
// If the first object is a regular object, and it has a
|
||||
// young-to-old field, that would mark the previous card.
|
||||
HeapWord* boundary = addr_for(cur_entry);
|
||||
HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
|
||||
HeapWord* boundary_block = s->block_start(boundary);
|
||||
HeapWord* begin = boundary; // Until proven otherwise.
|
||||
HeapWord* start_block = boundary_block; // Until proven otherwise.
|
||||
if (boundary_block < boundary) {
|
||||
if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
|
||||
oop boundary_obj = cast_to_oop(boundary_block);
|
||||
if (!boundary_obj->is_objArray() &&
|
||||
!boundary_obj->is_typeArray()) {
|
||||
guarantee(cur_entry > byte_for(used.start()),
|
||||
"else boundary would be boundary_block");
|
||||
if (*byte_for(boundary_block) != clean_card_val()) {
|
||||
begin = boundary_block + s->block_size(boundary_block);
|
||||
start_block = begin;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Now traverse objects until end.
|
||||
if (begin < end) {
|
||||
MemRegion mr(begin, end);
|
||||
VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
|
||||
for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
|
||||
if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
|
||||
cast_to_oop(cur)->oop_iterate(&verify_blk, mr);
|
||||
}
|
||||
}
|
||||
}
|
||||
cur_entry = first_dirty;
|
||||
} else {
|
||||
// We'd normally expect that cur_youngergen_and_prev_nonclean_card
|
||||
// is a transient value, that cannot be in the card table
|
||||
// except during GC, and thus assert that:
|
||||
// guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
|
||||
// "Illegal CT value");
|
||||
// That however, need not hold, as will become clear in the
|
||||
// following...
|
||||
|
||||
// We'd normally expect that if we are in the parallel case,
|
||||
// we can't have left a prev value (which would be different
|
||||
// from the current value) in the card table, and so we'd like to
|
||||
// assert that:
|
||||
// guarantee(cur_youngergen_card_val() == youngergen_card
|
||||
// || !is_prev_youngergen_card_val(*cur_entry),
|
||||
// "Illegal CT value");
|
||||
// That, however, may not hold occasionally, because of
|
||||
// CMS or MSC in the old gen. To wit, consider the
|
||||
// following two simple illustrative scenarios:
|
||||
// (a) CMS: Consider the case where a large object L
|
||||
// spanning several cards is allocated in the old
|
||||
// gen, and has a young gen reference stored in it, dirtying
|
||||
// some interior cards. A young collection scans the card,
|
||||
// finds a young ref and installs a youngergenP_n value.
|
||||
// L then goes dead. Now a CMS collection starts,
|
||||
// finds L dead and sweeps it up. Assume that L is
|
||||
// abutting _unallocated_blk, so _unallocated_blk is
|
||||
// adjusted down to (below) L. Assume further that
|
||||
// no young collection intervenes during this CMS cycle.
|
||||
// The next young gen cycle will not get to look at this
|
||||
// youngergenP_n card since it lies in the unoccupied
|
||||
// part of the space.
|
||||
// Some young collections later the blocks on this
|
||||
// card can be re-allocated either due to direct allocation
|
||||
// or due to absorbing promotions. At this time, the
|
||||
// before-gc verification will fail the above assert.
|
||||
// (b) MSC: In this case, an object L with a young reference
|
||||
// is on a card that (therefore) holds a youngergen_n value.
|
||||
// Suppose also that L lies towards the end of the used
|
||||
// the used space before GC. An MSC collection
|
||||
// occurs that compacts to such an extent that this
|
||||
// card is no longer in the occupied part of the space.
|
||||
// Since current code in MSC does not always clear cards
|
||||
// in the unused part of old gen, this stale youngergen_n
|
||||
// value is left behind and can later be covered by
|
||||
// an object when promotion or direct allocation
|
||||
// re-allocates that part of the heap.
|
||||
//
|
||||
// Fortunately, the presence of such stale card values is
|
||||
// "only" a minor annoyance in that subsequent young collections
|
||||
// might needlessly scan such cards, but would still never corrupt
|
||||
// the heap as a result. However, it's likely not to be a significant
|
||||
// performance inhibitor in practice. For instance,
|
||||
// some recent measurements with unoccupied cards eagerly cleared
|
||||
// out to maintain this invariant, showed next to no
|
||||
// change in young collection times; of course one can construct
|
||||
// degenerate examples where the cost can be significant.)
|
||||
// Note, in particular, that if the "stale" card is modified
|
||||
// after re-allocation, it would be dirty, not "stale". Thus,
|
||||
// we can never have a younger ref in such a card and it is
|
||||
// safe not to scan that card in any collection. [As we see
|
||||
// below, we do some unnecessary scanning
|
||||
// in some cases in the current parallel scanning algorithm.]
|
||||
//
|
||||
// The main point below is that the parallel card scanning code
|
||||
// deals correctly with these stale card values. There are two main
|
||||
// cases to consider where we have a stale "young gen" value and a
|
||||
// "derivative" case to consider, where we have a stale
|
||||
// "cur_younger_gen_and_prev_non_clean" value, as will become
|
||||
// apparent in the case analysis below.
|
||||
// o Case 1. If the stale value corresponds to a younger_gen_n
|
||||
// value other than the cur_younger_gen value then the code
|
||||
// treats this as being tantamount to a prev_younger_gen
|
||||
// card. This means that the card may be unnecessarily scanned.
|
||||
// There are two sub-cases to consider:
|
||||
// o Case 1a. Let us say that the card is in the occupied part
|
||||
// of the generation at the time the collection begins. In
|
||||
// that case the card will be either cleared when it is scanned
|
||||
// for young pointers, or will be set to cur_younger_gen as a
|
||||
// result of promotion. (We have elided the normal case where
|
||||
// the scanning thread and the promoting thread interleave
|
||||
// possibly resulting in a transient
|
||||
// cur_younger_gen_and_prev_non_clean value before settling
|
||||
// to cur_younger_gen. [End Case 1a.]
|
||||
// o Case 1b. Consider now the case when the card is in the unoccupied
|
||||
// part of the space which becomes occupied because of promotions
|
||||
// into it during the current young GC. In this case the card
|
||||
// will never be scanned for young references. The current
|
||||
// code will set the card value to either
|
||||
// cur_younger_gen_and_prev_non_clean or leave
|
||||
// it with its stale value -- because the promotions didn't
|
||||
// result in any younger refs on that card. Of these two
|
||||
// cases, the latter will be covered in Case 1a during
|
||||
// a subsequent scan. To deal with the former case, we need
|
||||
// to further consider how we deal with a stale value of
|
||||
// cur_younger_gen_and_prev_non_clean in our case analysis
|
||||
// below. This we do in Case 3 below. [End Case 1b]
|
||||
// [End Case 1]
|
||||
// o Case 2. If the stale value corresponds to cur_younger_gen being
|
||||
// a value not necessarily written by a current promotion, the
|
||||
// card will not be scanned by the younger refs scanning code.
|
||||
// (This is OK since as we argued above such cards cannot contain
|
||||
// any younger refs.) The result is that this value will be
|
||||
// treated as a prev_younger_gen value in a subsequent collection,
|
||||
// which is addressed in Case 1 above. [End Case 2]
|
||||
// o Case 3. We here consider the "derivative" case from Case 1b. above
|
||||
// because of which we may find a stale
|
||||
// cur_younger_gen_and_prev_non_clean card value in the table.
|
||||
// Once again, as in Case 1, we consider two subcases, depending
|
||||
// on whether the card lies in the occupied or unoccupied part
|
||||
// of the space at the start of the young collection.
|
||||
// o Case 3a. Let us say the card is in the occupied part of
|
||||
// the old gen at the start of the young collection. In that
|
||||
// case, the card will be scanned by the younger refs scanning
|
||||
// code which will set it to cur_younger_gen. In a subsequent
|
||||
// scan, the card will be considered again and get its final
|
||||
// correct value. [End Case 3a]
|
||||
// o Case 3b. Now consider the case where the card is in the
|
||||
// unoccupied part of the old gen, and is occupied as a result
|
||||
// of promotions during thus young gc. In that case,
|
||||
// the card will not be scanned for younger refs. The presence
|
||||
// of newly promoted objects on the card will then result in
|
||||
// its keeping the value cur_younger_gen_and_prev_non_clean
|
||||
// value, which we have dealt with in Case 3 here. [End Case 3b]
|
||||
// [End Case 3]
|
||||
//
|
||||
// (Please refer to the code in the helper class
|
||||
// ClearNonCleanCardWrapper and in CardTable for details.)
|
||||
//
|
||||
// The informal arguments above can be tightened into a formal
|
||||
// correctness proof and it behooves us to write up such a proof,
|
||||
// or to use model checking to prove that there are no lingering
|
||||
// concerns.
|
||||
//
|
||||
// Clearly because of Case 3b one cannot bound the time for
|
||||
// which a card will retain what we have called a "stale" value.
|
||||
// However, one can obtain a Loose upper bound on the redundant
|
||||
// work as a result of such stale values. Note first that any
|
||||
// time a stale card lies in the occupied part of the space at
|
||||
// the start of the collection, it is scanned by younger refs
|
||||
// code and we can define a rank function on card values that
|
||||
// declines when this is so. Note also that when a card does not
|
||||
// lie in the occupied part of the space at the beginning of a
|
||||
// young collection, its rank can either decline or stay unchanged.
|
||||
// In this case, no extra work is done in terms of redundant
|
||||
// younger refs scanning of that card.
|
||||
// Then, the case analysis above reveals that, in the worst case,
|
||||
// any such stale card will be scanned unnecessarily at most twice.
|
||||
//
|
||||
// It is nonetheless advisable to try and get rid of some of this
|
||||
// redundant work in a subsequent (low priority) re-design of
|
||||
// the card-scanning code, if only to simplify the underlying
|
||||
// state machine analysis/proof. ysr 1/28/2002. XXX
|
||||
cur_entry++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
CheckForUnmarkedOops(DefNewGeneration* young_gen, CardTableRS* card_table) :
|
||||
_young_gen(young_gen),
|
||||
_card_table(card_table),
|
||||
_unmarked_addr(nullptr) {}
|
||||
|
||||
void do_oop(oop* p) override { do_oop_work(p); }
|
||||
void do_oop(narrowOop* p) override { do_oop_work(p); }
|
||||
|
||||
bool has_unmarked_oop() {
|
||||
return _unmarked_addr != nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
void CardTableRS::verify() {
|
||||
// At present, we only know how to verify the card table RS for
|
||||
// generational heaps.
|
||||
VerifyCTGenClosure blk(this);
|
||||
SerialHeap::heap()->generation_iterate(&blk, false);
|
||||
class CheckForUnmarkedObjects : public ObjectClosure {
|
||||
DefNewGeneration* _young_gen;
|
||||
CardTableRS* _card_table;
|
||||
|
||||
public:
|
||||
CheckForUnmarkedObjects() {
|
||||
SerialHeap* heap = SerialHeap::heap();
|
||||
_young_gen = heap->young_gen();
|
||||
_card_table = heap->rem_set();
|
||||
}
|
||||
|
||||
void do_object(oop obj) override {
|
||||
CheckForUnmarkedOops object_check(_young_gen, _card_table);
|
||||
obj->oop_iterate(&object_check);
|
||||
// If this obj is imprecisely-marked, the card for obj-start must be dirty.
|
||||
if (object_check.has_unmarked_oop()) {
|
||||
guarantee(_card_table->is_dirty_for_addr(obj), "Found unmarked old-to-young pointer");
|
||||
}
|
||||
}
|
||||
} check;
|
||||
|
||||
SerialHeap::heap()->old_gen()->object_iterate(&check);
|
||||
}
|
||||
|
||||
CardTableRS::CardTableRS(MemRegion whole_heap) :
|
||||
|
@ -38,10 +38,6 @@ class TenuredSpace;
|
||||
|
||||
class CardTableRS : public CardTable {
|
||||
friend class VMStructs;
|
||||
// Below are private classes used in impl.
|
||||
friend class VerifyCTSpaceClosure;
|
||||
|
||||
void verify_space(Space* s, HeapWord* gen_start);
|
||||
|
||||
static bool is_dirty(const CardValue* const v) {
|
||||
return !is_clean(v);
|
||||
@ -74,6 +70,11 @@ public:
|
||||
*byte = dirty_card_val();
|
||||
}
|
||||
|
||||
bool is_dirty_for_addr(const void* p) const {
|
||||
CardValue* card = byte_for(p);
|
||||
return is_dirty(card);
|
||||
}
|
||||
|
||||
void verify();
|
||||
|
||||
// Update old gen cards to maintain old-to-young-pointer invariant: Clear
|
||||
|
Loading…
x
Reference in New Issue
Block a user