8241040: Support for AVX-512 Ternary Logic Instruction

A new pass has been added which folds expression tree involving vector boolean logic operations into a MacroLogic node.

Reviewed-by: vlivanov, neliasso
This commit is contained in:
Jatin Bhateja 2020-04-02 22:38:23 +05:30
parent fb56759d08
commit 5532b27d22
15 changed files with 842 additions and 1 deletions

View File

@ -6216,6 +6216,30 @@ void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vecto
emit_operand(dst, src);
}
void Assembler::vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len) {
assert(VM_Version::supports_evex(), "requires EVEX support");
assert(vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl(), "requires VL support");
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_is_evex_instruction();
int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src3->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x25);
emit_int8((unsigned char)(0xC0 | encode));
emit_int8(imm8);
}
void Assembler::vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, Address src3, int vector_len) {
assert(VM_Version::supports_evex(), "requires EVEX support");
assert(vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl(), "requires VL support");
assert(dst != xnoreg, "sanity");
InstructionMark im(this);
InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
attributes.set_is_evex_instruction();
attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
vex_prefix(src3, src2->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
emit_int8(0x25);
emit_operand(dst, src3);
emit_int8(imm8);
}
// vinserti forms

View File

@ -2198,6 +2198,9 @@ private:
void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
// Ternary logic instruction.
void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len);
void vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, Address src3, int vector_len);
// vinserti forms
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8);

View File

@ -3757,6 +3757,14 @@ void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file,
BLOCK_COMMENT("} verify_oop");
}
void MacroAssembler::vallones(XMMRegister dst, int vector_len) {
if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) {
vpternlogd(dst, 0xFF, dst, dst, vector_len);
} else {
assert(UseAVX > 0, "");
vpcmpeqb(dst, dst, dst, vector_len);
}
}
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,

View File

@ -1721,6 +1721,8 @@ public:
void cache_wb(Address line);
void cache_wbsync(bool is_pre);
#endif // _LP64
void vallones(XMMRegister dst, int vector_len);
};
/**

View File

@ -1363,6 +1363,11 @@ const bool Matcher::match_rule_supported(int opcode) {
return false; // 128bit vroundpd is not available
}
break;
case Op_MacroLogicV:
if (UseAVX < 3 || !UseVectorMacroLogic) {
return false;
}
break;
#ifndef _LP64
case Op_AddReductionVF:
case Op_AddReductionVD:
@ -1408,6 +1413,7 @@ const bool Matcher::match_rule_supported_vector(int opcode, int vlen, BasicType
// * implementation limitations
// * some 512bit vector operations on FLOAT and DOUBLE types require AVX512DQ
// * 128bit vroundpd instruction is present only in AVX1
int size_in_bits = vlen * type2aelembytes(bt) * BitsPerByte;
switch (opcode) {
case Op_AbsVF:
case Op_NegVF:
@ -1426,6 +1432,12 @@ const bool Matcher::match_rule_supported_vector(int opcode, int vlen, BasicType
return false; // implementation limitation (only vcmov8F_reg is present)
}
break;
case Op_MacroLogicV:
if (!VM_Version::supports_evex() ||
((size_in_bits != 512) && !VM_Version::supports_avx512vl())) {
return false;
}
break;
case Op_CMoveVD:
if (vlen != 4) {
return false; // implementation limitation (only vcmov4D_reg is present)
@ -3356,6 +3368,20 @@ instruct ReplI_zero(vec dst, immI0 zero) %{
ins_pipe( fpu_reg_reg );
%}
instruct ReplI_M1(vec dst, immI_M1 con) %{
predicate(UseAVX > 0);
match(Set dst (ReplicateB con));
match(Set dst (ReplicateS con));
match(Set dst (ReplicateI con));
effect(TEMP dst);
format %{ "vallones $dst" %}
ins_encode %{
int vector_len = vector_length_encoding(this);
__ vallones($dst$$XMMRegister, vector_len);
%}
ins_pipe( pipe_slow );
%}
// ====================ReplicateL=======================================
#ifdef _LP64
@ -3488,6 +3514,18 @@ instruct ReplL_zero(vec dst, immL0 zero) %{
ins_pipe( fpu_reg_reg );
%}
instruct ReplL_M1(vec dst, immL_M1 con) %{
predicate(UseAVX > 0);
match(Set dst (ReplicateL con));
effect(TEMP dst);
format %{ "vallones $dst" %}
ins_encode %{
int vector_len = vector_length_encoding(this);
__ vallones($dst$$XMMRegister, vector_len);
%}
ins_pipe( pipe_slow );
%}
// ====================ReplicateF=======================================
instruct ReplF_reg(vec dst, vlRegF src) %{
@ -5154,3 +5192,27 @@ instruct vpopcountI(vec dst, vec src) %{
%}
ins_pipe( pipe_slow );
%}
// --------------------------------- Bitwise Ternary Logic ----------------------------------
instruct vpternlogdB(vec dst, vec src2, vec src3, immU8 func) %{
match(Set dst (MacroLogicV (Binary dst src2) (Binary src3 func)));
effect(TEMP dst);
format %{ "vpternlogd $dst,$src2,$src3,$func\t! vector ternary logic" %}
ins_encode %{
int vector_len = vector_length_encoding(this);
__ vpternlogd($dst$$XMMRegister, $func$$constant, $src2$$XMMRegister, $src3$$XMMRegister, vector_len);
%}
ins_pipe( pipe_slow );
%}
instruct vpternlogdB_mem(vec dst, vec src2, memory src3, immU8 func) %{
match(Set dst (MacroLogicV (Binary dst src2) (Binary (LoadVector src3) func)));
effect(TEMP dst);
format %{ "vpternlogd $dst,$src2,$src3,$func\t! vector ternary logic" %}
ins_encode %{
int vector_len = vector_length_encoding(this);
__ vpternlogd($dst$$XMMRegister, $func$$constant, $src2$$XMMRegister, $src3$$Address, vector_len);
%}
ins_pipe( pipe_slow );
%}

View File

@ -4168,7 +4168,7 @@ bool MatchRule::is_vector() const {
"MulReductionVF", "MulReductionVD",
"MaxReductionV", "MinReductionV",
"AndReductionV", "OrReductionV", "XorReductionV",
"MulAddVS2VI",
"MulAddVS2VI", "MacroLogicV",
"LShiftCntV","RShiftCntV",
"LShiftVB","LShiftVS","LShiftVI","LShiftVL",
"RShiftVB","RShiftVS","RShiftVI","RShiftVL",

View File

@ -186,6 +186,9 @@
notproduct(bool, TraceSuperWordLoopUnrollAnalysis, false, \
"Trace what Superword Level Parallelism analysis applies") \
\
diagnostic(bool, UseVectorMacroLogic, true, \
"Use ternary macro logic instructions") \
\
product(intx, LoopUnrollMin, 4, \
"Minimum number of unroll loop bodies before checking progress" \
"of rounds of unroll,optimize,..") \

View File

@ -312,6 +312,7 @@ macro(SubI)
macro(SubL)
macro(TailCall)
macro(TailJump)
macro(MacroLogicV)
macro(ThreadLocal)
macro(Unlock)
macro(URShiftI)

View File

@ -76,6 +76,7 @@
#include "utilities/align.hpp"
#include "utilities/copy.hpp"
#include "utilities/macros.hpp"
#include "utilities/resourceHash.hpp"
// -------------------- Compile::mach_constant_base_node -----------------------
@ -2228,6 +2229,11 @@ void Compile::Optimize() {
igvn.optimize();
}
if (C->max_vector_size() > 0) {
C->optimize_logic_cones(igvn);
igvn.optimize();
}
DEBUG_ONLY( _modified_nodes = NULL; )
} // (End scope of igvn; run destructor if necessary for asserts.)
@ -2244,6 +2250,317 @@ void Compile::Optimize() {
print_method(PHASE_OPTIMIZE_FINISHED, 2);
}
//---------------------------- Bitwise operation packing optimization ---------------------------
static bool is_vector_unary_bitwise_op(Node* n) {
return n->Opcode() == Op_XorV &&
VectorNode::is_vector_bitwise_not_pattern(n);
}
static bool is_vector_binary_bitwise_op(Node* n) {
switch (n->Opcode()) {
case Op_AndV:
case Op_OrV:
return true;
case Op_XorV:
return !is_vector_unary_bitwise_op(n);
default:
return false;
}
}
static bool is_vector_ternary_bitwise_op(Node* n) {
return n->Opcode() == Op_MacroLogicV;
}
static bool is_vector_bitwise_op(Node* n) {
return is_vector_unary_bitwise_op(n) ||
is_vector_binary_bitwise_op(n) ||
is_vector_ternary_bitwise_op(n);
}
static bool is_vector_bitwise_cone_root(Node* n) {
if (!is_vector_bitwise_op(n)) {
return false;
}
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
if (is_vector_bitwise_op(n->fast_out(i))) {
return false;
}
}
return true;
}
static uint collect_unique_inputs(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
uint cnt = 0;
if (is_vector_bitwise_op(n)) {
if (VectorNode::is_vector_bitwise_not_pattern(n)) {
for (uint i = 1; i < n->req(); i++) {
Node* in = n->in(i);
bool skip = VectorNode::is_all_ones_vector(in);
if (!skip && !inputs.member(in)) {
inputs.push(in);
cnt++;
}
}
assert(cnt <= 1, "not unary");
} else {
uint last_req = n->req();
if (is_vector_ternary_bitwise_op(n)) {
last_req = n->req() - 1; // skip last input
}
for (uint i = 1; i < last_req; i++) {
Node* def = n->in(i);
if (!inputs.member(def)) {
inputs.push(def);
cnt++;
}
}
}
partition.push(n);
} else { // not a bitwise operations
if (!inputs.member(n)) {
inputs.push(n);
cnt++;
}
}
return cnt;
}
void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
Unique_Node_List useful_nodes;
C->identify_useful_nodes(useful_nodes);
for (uint i = 0; i < useful_nodes.size(); i++) {
Node* n = useful_nodes.at(i);
if (is_vector_bitwise_cone_root(n)) {
list.push(n);
}
}
}
Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
const TypeVect* vt,
Unique_Node_List& partition,
Unique_Node_List& inputs) {
assert(partition.size() == 2 || partition.size() == 3, "not supported");
assert(inputs.size() == 2 || inputs.size() == 3, "not supported");
assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
Node* in1 = inputs.at(0);
Node* in2 = inputs.at(1);
Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
uint func = compute_truth_table(partition, inputs);
return igvn.transform(MacroLogicVNode::make(igvn, in3, in2, in1, func, vt));
}
static uint extract_bit(uint func, uint pos) {
return (func & (1 << pos)) >> pos;
}
//
// A macro logic node represents a truth table. It has 4 inputs,
// First three inputs corresponds to 3 columns of a truth table
// and fourth input captures the logic function.
//
// eg. fn = (in1 AND in2) OR in3;
//
// MacroNode(in1,in2,in3,fn)
//
// -----------------
// in1 in2 in3 fn
// -----------------
// 0 0 0 0
// 0 0 1 1
// 0 1 0 0
// 0 1 1 1
// 1 0 0 0
// 1 0 1 1
// 1 1 0 1
// 1 1 1 1
//
uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
int res = 0;
for (int i = 0; i < 8; i++) {
int bit1 = extract_bit(in1, i);
int bit2 = extract_bit(in2, i);
int bit3 = extract_bit(in3, i);
int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
int func_bit = extract_bit(func, func_bit_pos);
res |= func_bit << i;
}
return res;
}
static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
assert(n != NULL, "");
assert(eval_map.contains(n), "absent");
return *(eval_map.get(n));
}
static void eval_operands(Node* n,
uint& func1, uint& func2, uint& func3,
ResourceHashtable<Node*,uint>& eval_map) {
assert(is_vector_bitwise_op(n), "");
func1 = eval_operand(n->in(1), eval_map);
if (is_vector_binary_bitwise_op(n)) {
func2 = eval_operand(n->in(2), eval_map);
} else if (is_vector_ternary_bitwise_op(n)) {
func2 = eval_operand(n->in(2), eval_map);
func3 = eval_operand(n->in(3), eval_map);
} else {
assert(is_vector_unary_bitwise_op(n), "not unary");
}
}
uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
assert(inputs.size() <= 3, "sanity");
ResourceMark rm;
uint res = 0;
ResourceHashtable<Node*,uint> eval_map;
// Populate precomputed functions for inputs.
// Each input corresponds to one column of 3 input truth-table.
uint input_funcs[] = { 0xAA, // (_, _, a) -> a
0xCC, // (_, b, _) -> b
0xF0 }; // (c, _, _) -> c
for (uint i = 0; i < inputs.size(); i++) {
eval_map.put(inputs.at(i), input_funcs[i]);
}
for (uint i = 0; i < partition.size(); i++) {
Node* n = partition.at(i);
uint func1 = 0, func2 = 0, func3 = 0;
eval_operands(n, func1, func2, func3, eval_map);
switch (n->Opcode()) {
case Op_OrV:
assert(func3 == 0, "not binary");
res = func1 | func2;
break;
case Op_AndV:
assert(func3 == 0, "not binary");
res = func1 & func2;
break;
case Op_XorV:
if (VectorNode::is_vector_bitwise_not_pattern(n)) {
assert(func2 == 0 && func3 == 0, "not unary");
res = (~func1) & 0xFF;
} else {
assert(func3 == 0, "not binary");
res = func1 ^ func2;
}
break;
case Op_MacroLogicV:
// Ordering of inputs may change during evaluation of sub-tree
// containing MacroLogic node as a child node, thus a re-evaluation
// makes sure that function is evaluated in context of current
// inputs.
res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
break;
default: assert(false, "not supported: %s", n->Name());
}
assert(res <= 0xFF, "invalid");
eval_map.put(n, res);
}
return res;
}
bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
assert(partition.size() == 0, "not empty");
assert(inputs.size() == 0, "not empty");
assert(!is_vector_ternary_bitwise_op(n), "not supported");
bool is_unary_op = is_vector_unary_bitwise_op(n);
if (is_unary_op) {
assert(collect_unique_inputs(n, partition, inputs) == 1, "not unary");
return false; // too few inputs
}
assert(is_vector_binary_bitwise_op(n), "not binary");
Node* in1 = n->in(1);
Node* in2 = n->in(2);
int in1_unique_inputs_cnt = collect_unique_inputs(in1, partition, inputs);
int in2_unique_inputs_cnt = collect_unique_inputs(in2, partition, inputs);
partition.push(n);
// Too many inputs?
if (inputs.size() > 3) {
partition.clear();
inputs.clear();
{ // Recompute in2 inputs
Unique_Node_List not_used;
in2_unique_inputs_cnt = collect_unique_inputs(in2, not_used, not_used);
}
// Pick the node with minimum number of inputs.
if (in1_unique_inputs_cnt >= 3 && in2_unique_inputs_cnt >= 3) {
return false; // still too many inputs
}
// Recompute partition & inputs.
Node* child = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in1 : in2);
collect_unique_inputs(child, partition, inputs);
Node* other_input = (in1_unique_inputs_cnt < in2_unique_inputs_cnt ? in2 : in1);
inputs.push(other_input);
partition.push(n);
}
return (partition.size() == 2 || partition.size() == 3) &&
(inputs.size() == 2 || inputs.size() == 3);
}
void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
assert(is_vector_bitwise_op(n), "not a root");
visited.set(n->_idx);
// 1) Do a DFS walk over the logic cone.
for (uint i = 1; i < n->req(); i++) {
Node* in = n->in(i);
if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
process_logic_cone_root(igvn, in, visited);
}
}
// 2) Bottom up traversal: Merge node[s] with
// the parent to form macro logic node.
Unique_Node_List partition;
Unique_Node_List inputs;
if (compute_logic_cone(n, partition, inputs)) {
const TypeVect* vt = n->bottom_type()->is_vect();
Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
igvn.replace_node(n, macro_logic);
}
}
void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
ResourceMark rm;
if (Matcher::match_rule_supported(Op_MacroLogicV)) {
Unique_Node_List list;
collect_logic_cone_roots(list);
while (list.size() > 0) {
Node* n = list.pop();
const TypeVect* vt = n->bottom_type()->is_vect();
bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
if (supported) {
VectorSet visited(comp_arena());
process_logic_cone_root(igvn, n, visited);
}
}
}
}
//------------------------------Code_Gen---------------------------------------
// Given a graph, generate code for it
@ -4225,6 +4542,7 @@ void CloneMap::dump(node_idx_t key) const {
}
}
// Move Allocate nodes to the start of the list
void Compile::sort_macro_nodes() {
int count = macro_count();

View File

@ -83,6 +83,7 @@ class TypeInt;
class TypePtr;
class TypeOopPtr;
class TypeFunc;
class TypeVect;
class Unique_Node_List;
class nmethod;
class WarmCallInfo;
@ -1106,6 +1107,15 @@ class Compile : public Phase {
void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
void eliminate_redundant_card_marks(Node* n);
// Logic cone optimization.
void optimize_logic_cones(PhaseIterGVN &igvn);
void collect_logic_cone_roots(Unique_Node_List& list);
void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited);
bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs);
uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs);
uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3);
Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs);
public:
// Note: Histogram array size is about 1 Kb.

View File

@ -2220,6 +2220,7 @@ bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_
case Op_FmaF:
case Op_FmaVD:
case Op_FmaVF:
case Op_MacroLogicV:
set_shared(n); // Force result into register (it will be anyways)
break;
case Op_ConP: { // Convert pointers above the centerline to NUL
@ -2313,6 +2314,15 @@ void Matcher::find_shared_post_visit(Node* n, uint opcode) {
n->del_req(3);
break;
}
case Op_MacroLogicV: {
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
Node* pair2 = new BinaryNode(n->in(3), n->in(4));
n->set_req(1, pair1);
n->set_req(2, pair2);
n->del_req(4);
n->del_req(3);
break;
}
case Op_LoopLimit: {
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
n->set_req(1, pair1);

View File

@ -518,6 +518,39 @@ bool VectorNode::is_vector_shift_count(int opc) {
}
}
static bool is_con_M1(Node* n) {
if (n->is_Con()) {
const Type* t = n->bottom_type();
if (t->isa_int() && t->is_int()->get_con() == -1) {
return true;
}
if (t->isa_long() && t->is_long()->get_con() == -1) {
return true;
}
}
return false;
}
bool VectorNode::is_all_ones_vector(Node* n) {
switch (n->Opcode()) {
case Op_ReplicateB:
case Op_ReplicateS:
case Op_ReplicateI:
case Op_ReplicateL:
return is_con_M1(n->in(1));
default:
return false;
}
}
bool VectorNode::is_vector_bitwise_not_pattern(Node* n) {
if (n->Opcode() == Op_XorV) {
return is_all_ones_vector(n->in(1)) ||
is_all_ones_vector(n->in(2));
}
return false;
}
// Return initial Pack node. Additional operands added with add_opd() calls.
PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
const TypeVect* vt = TypeVect::make(bt, vlen);
@ -740,3 +773,13 @@ bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
}
return false;
}
MacroLogicVNode* MacroLogicVNode::make(PhaseGVN& gvn, Node* v1, Node* v2, Node* v3,
uint truth_table, const TypeVect* vt) {
assert(truth_table <= 0xFF, "invalid");
assert(v1->bottom_type() == vt, "mismatch");
assert(v2->bottom_type() == vt, "mismatch");
assert(v3->bottom_type() == vt, "mismatch");
Node* fn = gvn.intcon(truth_table);
return new MacroLogicVNode(v1, v2, v3, fn, vt);
}

View File

@ -51,6 +51,14 @@ class VectorNode : public TypeNode {
init_req(3, n3);
}
VectorNode(Node *n0, Node* n1, Node* n2, Node* n3, const TypeVect* vt) : TypeNode(vt, 5) {
init_class_id(Class_Vector);
init_req(1, n0);
init_req(2, n1);
init_req(3, n2);
init_req(4, n3);
}
const TypeVect* vect_type() const { return type()->is_vect(); }
uint length() const { return vect_type()->length(); } // Vector length
uint length_in_bytes() const { return vect_type()->length_in_bytes(); }
@ -72,6 +80,9 @@ class VectorNode : public TypeNode {
static bool is_muladds2i(Node* n);
static bool is_roundopD(Node * n);
static bool is_invariant_vector(Node* n);
static bool is_all_ones_vector(Node* n);
static bool is_vector_bitwise_not_pattern(Node* n);
// [Start, end) half-open range defining which operands are vectors
static void vector_operands(Node* n, uint* start, uint* end);
@ -982,4 +993,17 @@ public:
virtual const Type *Value(PhaseGVN *phase) const { return TypeInt::INT; }
};
//------------------------------MacroLogicVNode-------------------------------
// Vector logical operations packing node.
class MacroLogicVNode : public VectorNode {
private:
MacroLogicVNode(Node* in1, Node* in2, Node* in3, Node* fn, const TypeVect* vt)
: VectorNode(in1, in2, in3, fn, vt) {}
public:
virtual int Opcode() const;
static MacroLogicVNode* make(PhaseGVN& igvn, Node* in1, Node* in2, Node* in3, uint truth_table, const TypeVect* vt);
};
#endif // SHARE_OPTO_VECTORNODE_HPP

View File

@ -0,0 +1,208 @@
/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/**
* @test
* @bug 8241040
* @library /test/lib
*
* @run main/othervm -XX:+IgnoreUnrecognizedVMOptions
* -Xbatch -XX:-TieredCompilation -XX:CICompilerCount=1 -XX:UseAVX=3
* -XX:CompileCommand=quiet -XX:CompileCommand=compileonly,*::test*
* -XX:+TraceNewVectors compiler.vectorization.TestMacroLogicVector
*/
package compiler.vectorization;
import jdk.test.lib.Utils;
import java.util.Random;
import java.util.concurrent.Callable;
public class TestMacroLogicVector {
static int intFunc1(int a, int b, int c) {
int v1 = (a & b) ^ (a & c) ^ (b & c);
int v2 = (~a & b) | (~b & c) | (~c & a);
return v1 & v2;
}
static void testInt1(int[] r, int[] a, int[] b, int[] c) {
for (int i = 0; i < r.length; i++) {
r[i] = intFunc1(a[i], b[i], c[i]);
}
}
static void verifyInt1(int[] r, int[] a, int[] b, int[] c) {
for (int i = 0; i < r.length; i++) {
int expected = intFunc1(a[i], b[i], c[i]);
if (r[i] != expected) {
throw new AssertionError(String.format("at #%d: r=%d, expected = %d = intFunc1(%d,%d,%d)",
i, r[i], expected, a[i], b[i], c[i]));
}
}
}
static int intFunc2(int a) {
int v1 = (a & a) ^ (a & a) ^ (a & a);
int v2 = (~a & ~a) | (~a & a) | (a & a);
return v1 & v2;
}
static void testInt2(int[] r, int[] a) {
for (int i = 0; i < r.length; i++) {
r[i] = intFunc2(a[i]);
}
}
static void verifyInt2(int[] r, int[] a) {
for (int i = 0; i < r.length; i++) {
int expected = intFunc2(a[i]);
if (r[i] != expected) {
throw new AssertionError(String.format("at #%d: r=%d, expected = %d = intFunc2(%d)",
i, r[i], expected, a[i]));
}
}
}
static int intFunc3(int a, int b) {
return (~a & b) ^ (a | b);
}
static void testInt3(int[] r, int[] a, int[] b) {
for (int i = 0; i < r.length; i++) {
r[i] = intFunc3(a[i], b[i]);
}
}
static void verifyInt3(int[] r, int[] a, int[] b) {
for (int i = 0; i < r.length; i++) {
int expected = intFunc3(a[i], b[i]);
if (r[i] != expected) {
throw new AssertionError(String.format("at #%d: r=%d, expected = %d = intFunc3(%d,%d)",
i, r[i], expected, a[i], b[i]));
}
}
}
static int intFunc4(int a, int b, int c, int d, int e, int f) {
int v1 = (~a | ~b) & ~c;
int v2 = ~d & (~e & f);
return v1 | v2;
}
static void testInt4(int[] r, int[] a, int[] b, int[] c, int[] d, int[] e, int[] f) {
for (int i = 0; i < r.length; i++) {
r[i] = intFunc4(a[i], b[i], c[i], d[i], e[i], f[i]);
}
}
static void verifyTest4(int[] r, int[] a, int[] b, int[] c, int[] d, int[] e, int[] f) {
for (int i = 0; i < r.length; i++) {
long expected = intFunc4(a[i], b[i], c[i], d[i], e[i], f[i]);
if (r[i] != expected) {
throw new AssertionError(
String.format("at #%d: r=%d, expected = %d = intFunc4(%d,%d,%d,%d,%d,%d)",
i, r[i], expected, a[i], b[i], c[i], d[i], e[i], f[i]));
}
}
}
// ===================================================== //
static long longFunc(long a, long b, long c) {
long v1 = (a & b) ^ (a & c) ^ (b & c);
long v2 = (~a & b) | (~b & c) | (~c & a);
return v1 & v2;
}
static void testLong(long[] r, long[] a, long[] b, long[] c) {
for (int i = 0; i < r.length; i++) {
r[i] = longFunc(a[i], b[i], c[i]);
}
}
static void verifyLong(long[] r, long[] a, long[] b, long[] c) {
for (int i = 0; i < r.length; i++) {
long expected = longFunc(a[i], b[i], c[i]);
if (r[i] != expected) {
throw new AssertionError(
String.format("at #%d: r=%d, expected = %d = longFunc(%d,%d,%d)",
i, r[i], expected, a[i], b[i], c[i]));
}
}
}
// ===================================================== //
private static final Random R = Utils.getRandomInstance();
static int[] fillIntRandom(Callable<int[]> factory) {
try {
int[] arr = factory.call();
for (int i = 0; i < arr.length; i++) {
arr[i] = R.nextInt();
}
return arr;
} catch (Exception e) {
throw new InternalError(e);
}
}
static long[] fillLongRandom(Callable<long[]> factory) {
try {
long[] arr = factory.call();
for (int i = 0; i < arr.length; i++) {
arr[i] = R.nextLong();
}
return arr;
} catch (Exception e) {
throw new InternalError(e);
}
}
// ===================================================== //
static final int SIZE = 128;
public static void main(String[] args) {
int[] r = new int[SIZE];
int[] a = fillIntRandom(()-> new int[SIZE]);
int[] b = fillIntRandom(()-> new int[SIZE]);
int[] c = fillIntRandom(()-> new int[SIZE]);
int[] d = fillIntRandom(()-> new int[SIZE]);
int[] e = fillIntRandom(()-> new int[SIZE]);
int[] f = fillIntRandom(()-> new int[SIZE]);
long[] rl = new long[SIZE];
long[] al = fillLongRandom(() -> new long[SIZE]);
long[] bl = fillLongRandom(() -> new long[SIZE]);
long[] cl = fillLongRandom(() -> new long[SIZE]);
for (int i = 0; i < 20_000; i++) {
testInt1(r, a, b, c);
verifyInt1(r, a, b, c);
testInt2(r, a);
verifyInt2(r, a);
testInt3(r, a, b);
verifyInt3(r, a, b);
testInt4(r, a, b, c, d, e, f);
verifyTest4(r, a, b, c, d, e, f);
testLong(rl, al, bl, cl);
verifyLong(rl, al, bl, cl);
}
}
}

View File

@ -0,0 +1,125 @@
/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.vm.compiler;
import org.openjdk.jmh.annotations.*;
import org.openjdk.jmh.infra.*;
import java.util.concurrent.TimeUnit;
import java.util.Random;
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.SECONDS)
@State(Scope.Thread)
public class MacroLogicOpt {
@Param({"64","128","256","512","1024","2048","4096"}) private int VECLEN;
private int [] ai = new int[VECLEN];
private int [] bi = new int[VECLEN];
private int [] ci = new int[VECLEN];
private int [] ri = new int[VECLEN];
private long [] al = new long[VECLEN];
private long [] bl = new long[VECLEN];
private long [] cl = new long[VECLEN];
private long [] dl = new long[VECLEN];
private long [] el = new long[VECLEN];
private long [] fl = new long[VECLEN];
private long [] rl = new long[VECLEN];
private Random r = new Random();
@Setup
public void init() {
ai = new int[VECLEN];
bi = new int[VECLEN];
ci = new int[VECLEN];
ri = new int[VECLEN];
al = new long[VECLEN];
bl = new long[VECLEN];
cl = new long[VECLEN];
dl = new long[VECLEN];
el = new long[VECLEN];
fl = new long[VECLEN];
rl = new long[VECLEN];
for (int i=0; i<VECLEN; i++) {
ai[i] = r.nextInt();
bi[i] = r.nextInt();
ci[i] = r.nextInt();
al[i] = r.nextLong();
bl[i] = r.nextLong();
cl[i] = r.nextLong();
dl[i] = r.nextLong();
el[i] = r.nextLong();
fl[i] = r.nextLong();
}
}
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
private int run_workload1(int count, int [] a , int [] b, int [] c, int [] r) {
for(int i = 0 ; i < r.length ; i++)
r[i] = (((a[i] & b[i]) ^ (a[i] & c[i]) ^ (b[i] & c[i])) & ((~a[i] & b[i]) | (~b[i] & c[i]) | ~c[i] & a[i]));
return r[count];
}
@Benchmark
public void workload1_caller(Blackhole bh) {
int r = 0;
for(int i = 0 ; i < 10000; i++)
r += run_workload1(i&(ri.length-1), ai, bi, ci, ri);
bh.consume(r);
}
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
private long run_workload2(int count, long [] a , long [] b, long [] c, long [] r) {
for(int i = 0 ; i < r.length ; i++)
r[i] = (((a[i] & b[i]) ^ (a[i] & c[i]) ^ (b[i] & c[i])) & ((~a[i] & b[i]) | (~b[i] & c[i]) | ~c[i] & a[i]));
return r[count];
}
@Benchmark
public void workload2_caller(Blackhole bh) {
long r = 0;
for(int i = 0 ; i < 100000; i++)
r += run_workload2(i&(rl.length-1), al, bl, cl, rl);
bh.consume(r);
}
@CompilerControl(CompilerControl.Mode.DONT_INLINE)
private long run_workload3(int count, long [] a , long [] b, long [] c,
long [] d, long [] e, long [] f, long [] r) {
for(int i = 0 ; i < r.length ; i++)
r[i] = (((~a[i] | ~b[i]) & (~c[i])) | (~d[i] & (~e[i] & f[i])));
return r[count];
}
@Benchmark
public void workload3_caller(Blackhole bh) {
long r = 0;
for(int i = 0 ; i < 10000; i++)
r += run_workload3(i&(ri.length-1), al, bl, cl, dl, el, fl, rl);
bh.consume(r);
}
}