8043243: convert SCAN_AND_FORWARD, SCAN_AND_ADJUST_POINTERS, SCAN_AND_COMPACT macros to methods

Reviewed-by: mgerdin, kbarrett
This commit is contained in:
Marcus Larsson 2014-10-30 12:45:22 +01:00
parent 6306dce831
commit 5fd7516136
8 changed files with 402 additions and 332 deletions

View File

@ -2083,17 +2083,13 @@ bool CompactibleFreeListSpace::should_concurrent_collect() const {
}
// Support for compaction
void CompactibleFreeListSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp,end,block_is_obj,block_size);
scan_and_forward(this, cp);
// Prepare_for_compaction() uses the space between live objects
// so that later phase can skip dead space quickly. So verification
// of the free lists doesn't work after.
}
#define obj_size(q) adjustObjectSize(oop(q)->size())
#define adjust_obj_size(s) adjustObjectSize(s)
void CompactibleFreeListSpace::adjust_pointers() {
// In other versions of adjust_pointers(), a bail out
// based on the amount of live data in the generation
@ -2101,12 +2097,12 @@ void CompactibleFreeListSpace::adjust_pointers() {
// Cannot test used() == 0 here because the free lists have already
// been mangled by the compaction.
SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
scan_and_adjust_pointers(this);
// See note about verification in prepare_for_compaction().
}
void CompactibleFreeListSpace::compact() {
SCAN_AND_COMPACT(obj_size);
scan_and_compact(this);
}
// Fragmentation metric = 1 - [sum of (fbs**2) / (sum of fbs)**2]

View File

@ -73,6 +73,13 @@ class CompactibleFreeListSpace: public CompactibleSpace {
friend class CMSCollector;
// Local alloc buffer for promotion into this space.
friend class CFLS_LAB;
// Allow scan_and_* functions to call (private) overrides of the auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space);
template <typename SpaceType>
friend void CompactibleSpace::scan_and_compact(SpaceType* space);
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
// "Size" of chunks of work (executed during parallel remark phases
// of CMS collection); this probably belongs in CMSCollector, although
@ -288,6 +295,28 @@ class CompactibleFreeListSpace: public CompactibleSpace {
_bt.freed(start, size);
}
// Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return end();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return CompactibleFreeListSpace::block_is_obj(addr); // Avoid virtual call
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return CompactibleFreeListSpace::block_size(addr); // Avoid virtual call
}
inline size_t adjust_obj_size(size_t size) const {
return adjustObjectSize(size);
}
inline size_t obj_size(const HeapWord* addr) const {
return adjustObjectSize(oop(addr)->size());
}
protected:
// Reset the indexed free list to its initial empty condition.
void resetIndexedFreeListArray();

View File

@ -960,6 +960,10 @@ void HeapRegion::verify() const {
verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
}
void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
scan_and_forward(this, cp);
}
// G1OffsetTableContigSpace code; copied from space.cpp. Hope this can go
// away eventually.
@ -1043,12 +1047,6 @@ void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
}
}
#define block_is_always_obj(q) true
void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
}
#undef block_is_always_obj
G1OffsetTableContigSpace::
G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
MemRegion mr) :

View File

@ -187,8 +187,6 @@ class G1OffsetTableContigSpace: public CompactibleSpace {
HeapWord* block_start(const void* p);
HeapWord* block_start_const(const void* p) const;
void prepare_for_compaction(CompactPoint* cp);
// Add offset table update.
virtual HeapWord* allocate(size_t word_size);
HeapWord* par_allocate(size_t word_size);
@ -210,6 +208,9 @@ class G1OffsetTableContigSpace: public CompactibleSpace {
class HeapRegion: public G1OffsetTableContigSpace {
friend class VMStructs;
// Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private:
// The remembered set for this region.
@ -219,6 +220,20 @@ class HeapRegion: public G1OffsetTableContigSpace {
G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return HeapRegion::block_size(addr); // Avoid virtual call
}
protected:
// The index of this region in the heap region sequence.
uint _hrm_index;
@ -340,6 +355,9 @@ class HeapRegion: public G1OffsetTableContigSpace {
// and the amount of unallocated words if called on top()
size_t block_size(const HeapWord* p) const;
// Override for scan_and_forward support.
void prepare_for_compaction(CompactPoint* cp);
inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
inline HeapWord* allocate_no_bot_updates(size_t word_size);

View File

@ -27,6 +27,7 @@
#include "gc_implementation/shared/markSweep.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "oops/markOop.inline.hpp"
#include "utilities/stack.inline.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS

View File

@ -438,52 +438,8 @@ bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
}
}
#define block_is_always_obj(q) true
#define obj_size(q) oop(q)->size()
#define adjust_obj_size(s) s
void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
}
// Faster object search.
void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
}
void Space::adjust_pointers() {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
// First check to see if there is any work to be done.
if (used() == 0) {
return; // Nothing to do.
}
// Otherwise...
HeapWord* q = bottom();
HeapWord* t = end();
debug_only(HeapWord* prev_q = NULL);
while (q < t) {
if (oop(q)->is_gc_marked()) {
// q is alive
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
debug_only(prev_q = q);
q += size;
} else {
// q is not a live object. But we're not in a compactible space,
// So we don't have live ranges.
debug_only(prev_q = q);
q += block_size(q);
assert(q > prev_q, "we should be moving forward through memory");
}
}
assert(q == t, "just checking");
scan_and_forward(this, cp);
}
void CompactibleSpace::adjust_pointers() {
@ -492,11 +448,11 @@ void CompactibleSpace::adjust_pointers() {
return; // Nothing to do.
}
SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
scan_and_adjust_pointers(this);
}
void CompactibleSpace::compact() {
SCAN_AND_COMPACT(obj_size);
scan_and_compact(this);
}
void Space::print_short() const { print_short_on(tty); }

View File

@ -46,6 +46,7 @@
// - Space -- an abstract base class describing a heap area
// - CompactibleSpace -- a space supporting compaction
// - CompactibleFreeListSpace -- (used for CMS generation)
// - G1OffsetTableContigSpace -- G1 version of OffsetTableContigSpace
// - ContiguousSpace -- a compactible space in which all free space
// is contiguous
// - EdenSpace -- contiguous space used as nursery
@ -238,7 +239,7 @@ class Space: public CHeapObj<mtGC> {
// Mark-sweep-compact support: all spaces can update pointers to objects
// moving as a part of compaction.
virtual void adjust_pointers();
virtual void adjust_pointers() = 0;
// PrintHeapAtGC support
virtual void print() const;
@ -339,7 +340,36 @@ public:
// necessarily, a space that is normally contiguous. But, for example, a
// free-list-based space whose normal collection is a mark-sweep without
// compaction could still support compaction in full GC's.
//
// The compaction operations are implemented by the
// scan_and_{adjust_pointers,compact,forward} function templates.
// The following are, non-virtual, auxiliary functions used by these function templates:
// - scan_limit()
// - scanned_block_is_obj()
// - scanned_block_size()
// - adjust_obj_size()
// - obj_size()
// These functions are to be used exclusively by the scan_and_* function templates,
// and must be defined for all (non-abstract) subclasses of CompactibleSpace.
//
// NOTE: Any subclasses to CompactibleSpace wanting to change/define the behavior
// in any of the auxiliary functions must also override the corresponding
// prepare_for_compaction/adjust_pointers/compact functions using them.
// If not, such changes will not be used or have no effect on the compaction operations.
//
// This translates to the following dependencies:
// Overrides/definitions of
// - scan_limit
// - scanned_block_is_obj
// - scanned_block_size
// require override/definition of prepare_for_compaction().
// Similar dependencies exist between
// - adjust_obj_size and adjust_pointers()
// - obj_size and compact().
//
// Additionally, this also means that changes to block_size() or block_is_obj() that
// should be effective during the compaction operations must provide a corresponding
// definition of scanned_block_size/scanned_block_is_obj respectively.
class CompactibleSpace: public Space {
friend class VMStructs;
friend class CompactibleFreeListSpace;
@ -347,6 +377,15 @@ private:
HeapWord* _compaction_top;
CompactibleSpace* _next_compaction_space;
// Auxiliary functions for scan_and_{forward,adjust_pointers,compact} support.
inline size_t adjust_obj_size(size_t size) const {
return size;
}
inline size_t obj_size(const HeapWord* addr) const {
return oop(addr)->size();
}
public:
CompactibleSpace() :
_compaction_top(NULL), _next_compaction_space(NULL) {}
@ -390,7 +429,7 @@ public:
// "cp->compaction_space" up-to-date. Offset tables may be updated in
// this phase as if the final copy had occurred; if so, "cp->threshold"
// indicates when the next such action should be taken.
virtual void prepare_for_compaction(CompactPoint* cp);
virtual void prepare_for_compaction(CompactPoint* cp) = 0;
// MarkSweep support phase3
virtual void adjust_pointers();
// MarkSweep support phase4
@ -449,6 +488,25 @@ protected:
// words remaining after this operation.
bool insert_deadspace(size_t& allowed_deadspace_words, HeapWord* q,
size_t word_len);
// Below are template functions for scan_and_* algorithms (avoiding virtual calls).
// The space argument should be a subclass of CompactibleSpace, implementing
// scan_limit(), scanned_block_is_obj(), and scanned_block_size(),
// and possibly also overriding obj_size(), and adjust_obj_size().
// These functions should avoid virtual calls whenever possible.
// Frequently calls adjust_obj_size().
template <class SpaceType>
static inline void scan_and_adjust_pointers(SpaceType* space);
// Frequently calls obj_size().
template <class SpaceType>
static inline void scan_and_compact(SpaceType* space);
// Frequently calls scanned_block_is_obj() and scanned_block_size().
// Requires the scan_limit() function.
template <class SpaceType>
static inline void scan_and_forward(SpaceType* space, CompactPoint* cp);
};
class GenSpaceMangler;
@ -458,6 +516,25 @@ class GenSpaceMangler;
class ContiguousSpace: public CompactibleSpace {
friend class OneContigSpaceCardGeneration;
friend class VMStructs;
// Allow scan_and_forward function to call (private) overrides for auxiliary functions on this class
template <typename SpaceType>
friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
private:
// Auxiliary functions for scan_and_forward support.
// See comments for CompactibleSpace for more information.
inline HeapWord* scan_limit() const {
return top();
}
inline bool scanned_block_is_obj(const HeapWord* addr) const {
return true; // Always true, since scan_limit is top
}
inline size_t scanned_block_size(const HeapWord* addr) const {
return oop(addr)->size();
}
protected:
HeapWord* _top;
HeapWord* _concurrent_iteration_safe_limit;
@ -622,7 +699,6 @@ class ContiguousSpace: public CompactibleSpace {
// Used to increase collection frequency. "factor" of 0 means entire
// space.
void allocate_temporary_filler(int factor);
};

View File

@ -25,6 +25,9 @@
#ifndef SHARE_VM_MEMORY_SPACE_INLINE_HPP
#define SHARE_VM_MEMORY_SPACE_INLINE_HPP
#include "gc_implementation/shared/liveRange.hpp"
#include "gc_implementation/shared/markSweep.inline.hpp"
#include "gc_implementation/shared/spaceDecorator.hpp"
#include "gc_interface/collectedHeap.hpp"
#include "memory/space.hpp"
#include "memory/universe.hpp"
@ -35,272 +38,6 @@ inline HeapWord* Space::block_start(const void* p) {
return block_start_const(p);
}
#define SCAN_AND_FORWARD(cp,scan_limit,block_is_obj,block_size) { \
/* Compute the new addresses for the live objects and store it in the mark \
* Used by universe::mark_sweep_phase2() \
*/ \
HeapWord* compact_top; /* This is where we are currently compacting to. */ \
\
/* We're sure to be here before any objects are compacted into this \
* space, so this is a good time to initialize this: \
*/ \
set_compaction_top(bottom()); \
\
if (cp->space == NULL) { \
assert(cp->gen != NULL, "need a generation"); \
assert(cp->threshold == NULL, "just checking"); \
assert(cp->gen->first_compaction_space() == this, "just checking"); \
cp->space = cp->gen->first_compaction_space(); \
compact_top = cp->space->bottom(); \
cp->space->set_compaction_top(compact_top); \
cp->threshold = cp->space->initialize_threshold(); \
} else { \
compact_top = cp->space->compaction_top(); \
} \
\
/* We allow some amount of garbage towards the bottom of the space, so \
* we don't start compacting before there is a significant gain to be made.\
* Occasionally, we want to ensure a full compaction, which is determined \
* by the MarkSweepAlwaysCompactCount parameter. \
*/ \
uint invocations = MarkSweep::total_invocations(); \
bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); \
\
size_t allowed_deadspace = 0; \
if (skip_dead) { \
const size_t ratio = allowed_dead_ratio(); \
allowed_deadspace = (capacity() * ratio / 100) / HeapWordSize; \
} \
\
HeapWord* q = bottom(); \
HeapWord* t = scan_limit(); \
\
HeapWord* end_of_live= q; /* One byte beyond the last byte of the last \
live object. */ \
HeapWord* first_dead = end();/* The first dead object. */ \
LiveRange* liveRange = NULL; /* The current live range, recorded in the \
first header of preceding free area. */ \
_first_dead = first_dead; \
\
const intx interval = PrefetchScanIntervalInBytes; \
\
while (q < t) { \
assert(!block_is_obj(q) || \
oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || \
oop(q)->mark()->has_bias_pattern(), \
"these are the only valid states during a mark sweep"); \
if (block_is_obj(q) && oop(q)->is_gc_marked()) { \
/* prefetch beyond q */ \
Prefetch::write(q, interval); \
size_t size = block_size(q); \
compact_top = cp->space->forward(oop(q), size, cp, compact_top); \
q += size; \
end_of_live = q; \
} else { \
/* run over all the contiguous dead objects */ \
HeapWord* end = q; \
do { \
/* prefetch beyond end */ \
Prefetch::write(end, interval); \
end += block_size(end); \
} while (end < t && (!block_is_obj(end) || !oop(end)->is_gc_marked()));\
\
/* see if we might want to pretend this object is alive so that \
* we don't have to compact quite as often. \
*/ \
if (allowed_deadspace > 0 && q == compact_top) { \
size_t sz = pointer_delta(end, q); \
if (insert_deadspace(allowed_deadspace, q, sz)) { \
compact_top = cp->space->forward(oop(q), sz, cp, compact_top); \
q = end; \
end_of_live = end; \
continue; \
} \
} \
\
/* otherwise, it really is a free region. */ \
\
/* for the previous LiveRange, record the end of the live objects. */ \
if (liveRange) { \
liveRange->set_end(q); \
} \
\
/* record the current LiveRange object. \
* liveRange->start() is overlaid on the mark word. \
*/ \
liveRange = (LiveRange*)q; \
liveRange->set_start(end); \
liveRange->set_end(end); \
\
/* see if this is the first dead region. */ \
if (q < first_dead) { \
first_dead = q; \
} \
\
/* move on to the next object */ \
q = end; \
} \
} \
\
assert(q == t, "just checking"); \
if (liveRange != NULL) { \
liveRange->set_end(q); \
} \
_end_of_live = end_of_live; \
if (end_of_live < first_dead) { \
first_dead = end_of_live; \
} \
_first_dead = first_dead; \
\
/* save the compaction_top of the compaction space. */ \
cp->space->set_compaction_top(compact_top); \
}
#define SCAN_AND_ADJUST_POINTERS(adjust_obj_size) { \
/* adjust all the interior pointers to point at the new locations of objects \
* Used by MarkSweep::mark_sweep_phase3() */ \
\
HeapWord* q = bottom(); \
HeapWord* t = _end_of_live; /* Established by "prepare_for_compaction". */ \
\
assert(_first_dead <= _end_of_live, "Stands to reason, no?"); \
\
if (q < t && _first_dead > q && \
!oop(q)->is_gc_marked()) { \
/* we have a chunk of the space which hasn't moved and we've \
* reinitialized the mark word during the previous pass, so we can't \
* use is_gc_marked for the traversal. */ \
HeapWord* end = _first_dead; \
\
while (q < end) { \
/* I originally tried to conjoin "block_start(q) == q" to the \
* assertion below, but that doesn't work, because you can't \
* accurately traverse previous objects to get to the current one \
* after their pointers have been \
* updated, until the actual compaction is done. dld, 4/00 */ \
assert(block_is_obj(q), \
"should be at block boundaries, and should be looking at objs"); \
\
/* point all the oops to the new location */ \
size_t size = oop(q)->adjust_pointers(); \
size = adjust_obj_size(size); \
\
q += size; \
} \
\
if (_first_dead == t) { \
q = t; \
} else { \
/* $$$ This is funky. Using this to read the previously written \
* LiveRange. See also use below. */ \
q = (HeapWord*)oop(_first_dead)->mark()->decode_pointer(); \
} \
} \
\
const intx interval = PrefetchScanIntervalInBytes; \
\
debug_only(HeapWord* prev_q = NULL); \
while (q < t) { \
/* prefetch beyond q */ \
Prefetch::write(q, interval); \
if (oop(q)->is_gc_marked()) { \
/* q is alive */ \
/* point all the oops to the new location */ \
size_t size = oop(q)->adjust_pointers(); \
size = adjust_obj_size(size); \
debug_only(prev_q = q); \
q += size; \
} else { \
/* q is not a live object, so its mark should point at the next \
* live object */ \
debug_only(prev_q = q); \
q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
assert(q > prev_q, "we should be moving forward through memory"); \
} \
} \
\
assert(q == t, "just checking"); \
}
#define SCAN_AND_COMPACT(obj_size) { \
/* Copy all live objects to their new location \
* Used by MarkSweep::mark_sweep_phase4() */ \
\
HeapWord* q = bottom(); \
HeapWord* const t = _end_of_live; \
debug_only(HeapWord* prev_q = NULL); \
\
if (q < t && _first_dead > q && \
!oop(q)->is_gc_marked()) { \
debug_only( \
/* we have a chunk of the space which hasn't moved and we've reinitialized \
* the mark word during the previous pass, so we can't use is_gc_marked for \
* the traversal. */ \
HeapWord* const end = _first_dead; \
\
while (q < end) { \
size_t size = obj_size(q); \
assert(!oop(q)->is_gc_marked(), \
"should be unmarked (special dense prefix handling)"); \
debug_only(prev_q = q); \
q += size; \
} \
) /* debug_only */ \
\
if (_first_dead == t) { \
q = t; \
} else { \
/* $$$ Funky */ \
q = (HeapWord*) oop(_first_dead)->mark()->decode_pointer(); \
} \
} \
\
const intx scan_interval = PrefetchScanIntervalInBytes; \
const intx copy_interval = PrefetchCopyIntervalInBytes; \
while (q < t) { \
if (!oop(q)->is_gc_marked()) { \
/* mark is pointer to next marked oop */ \
debug_only(prev_q = q); \
q = (HeapWord*) oop(q)->mark()->decode_pointer(); \
assert(q > prev_q, "we should be moving forward through memory"); \
} else { \
/* prefetch beyond q */ \
Prefetch::read(q, scan_interval); \
\
/* size and destination */ \
size_t size = obj_size(q); \
HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); \
\
/* prefetch beyond compaction_top */ \
Prefetch::write(compaction_top, copy_interval); \
\
/* copy object and reinit its mark */ \
assert(q != compaction_top, "everything in this pass should be moving"); \
Copy::aligned_conjoint_words(q, compaction_top, size); \
oop(compaction_top)->init_mark(); \
assert(oop(compaction_top)->klass() != NULL, "should have a class"); \
\
debug_only(prev_q = q); \
q += size; \
} \
} \
\
/* Let's remember if we were empty before we did the compaction. */ \
bool was_empty = used_region().is_empty(); \
/* Reset space after compaction is complete */ \
reset_after_compaction(); \
/* We do this clear, below, since it has overloaded meanings for some */ \
/* space subtypes. For example, OffsetTableContigSpace's that were */ \
/* compacted into will have had their offset table thresholds updated */ \
/* continuously, but those that weren't need to have their thresholds */ \
/* re-initialized. Also mangles unused area for debugging. */ \
if (used_region().is_empty()) { \
if (!was_empty) clear(SpaceDecorator::Mangle); \
} else { \
if (ZapUnusedHeapArea) mangle_unused_area(); \
} \
}
inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
HeapWord* res = ContiguousSpace::allocate(size);
if (res != NULL) {
@ -334,4 +71,263 @@ OffsetTableContigSpace::block_start_const(const void* p) const {
return _offsets.block_start(p);
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
// Compute the new addresses for the live objects and store it in the mark
// Used by universe::mark_sweep_phase2()
HeapWord* compact_top; // This is where we are currently compacting to.
// We're sure to be here before any objects are compacted into this
// space, so this is a good time to initialize this:
space->set_compaction_top(space->bottom());
if (cp->space == NULL) {
assert(cp->gen != NULL, "need a generation");
assert(cp->threshold == NULL, "just checking");
assert(cp->gen->first_compaction_space() == space, "just checking");
cp->space = cp->gen->first_compaction_space();
compact_top = cp->space->bottom();
cp->space->set_compaction_top(compact_top);
cp->threshold = cp->space->initialize_threshold();
} else {
compact_top = cp->space->compaction_top();
}
// We allow some amount of garbage towards the bottom of the space, so
// we don't start compacting before there is a significant gain to be made.
// Occasionally, we want to ensure a full compaction, which is determined
// by the MarkSweepAlwaysCompactCount parameter.
uint invocations = MarkSweep::total_invocations();
bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0);
size_t allowed_deadspace = 0;
if (skip_dead) {
const size_t ratio = space->allowed_dead_ratio();
allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize;
}
HeapWord* q = space->bottom();
HeapWord* t = space->scan_limit();
HeapWord* end_of_live= q; // One byte beyond the last byte of the last
// live object.
HeapWord* first_dead = space->end(); // The first dead object.
LiveRange* liveRange = NULL; // The current live range, recorded in the
// first header of preceding free area.
space->_first_dead = first_dead;
const intx interval = PrefetchScanIntervalInBytes;
while (q < t) {
assert(!space->scanned_block_is_obj(q) ||
oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() ||
oop(q)->mark()->has_bias_pattern(),
"these are the only valid states during a mark sweep");
if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) {
// prefetch beyond q
Prefetch::write(q, interval);
size_t size = space->scanned_block_size(q);
compact_top = cp->space->forward(oop(q), size, cp, compact_top);
q += size;
end_of_live = q;
} else {
// run over all the contiguous dead objects
HeapWord* end = q;
do {
// prefetch beyond end
Prefetch::write(end, interval);
end += space->scanned_block_size(end);
} while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
// see if we might want to pretend this object is alive so that
// we don't have to compact quite as often.
if (allowed_deadspace > 0 && q == compact_top) {
size_t sz = pointer_delta(end, q);
if (space->insert_deadspace(allowed_deadspace, q, sz)) {
compact_top = cp->space->forward(oop(q), sz, cp, compact_top);
q = end;
end_of_live = end;
continue;
}
}
// otherwise, it really is a free region.
// for the previous LiveRange, record the end of the live objects.
if (liveRange) {
liveRange->set_end(q);
}
// record the current LiveRange object.
// liveRange->start() is overlaid on the mark word.
liveRange = (LiveRange*)q;
liveRange->set_start(end);
liveRange->set_end(end);
// see if this is the first dead region.
if (q < first_dead) {
first_dead = q;
}
// move on to the next object
q = end;
}
}
assert(q == t, "just checking");
if (liveRange != NULL) {
liveRange->set_end(q);
}
space->_end_of_live = end_of_live;
if (end_of_live < first_dead) {
first_dead = end_of_live;
}
space->_first_dead = first_dead;
// save the compaction_top of the compaction space.
cp->space->set_compaction_top(compact_top);
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
// adjust all the interior pointers to point at the new locations of objects
// Used by MarkSweep::mark_sweep_phase3()
HeapWord* q = space->bottom();
HeapWord* t = space->_end_of_live; // Established by "prepare_for_compaction".
assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?");
if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
// we have a chunk of the space which hasn't moved and we've
// reinitialized the mark word during the previous pass, so we can't
// use is_gc_marked for the traversal.
HeapWord* end = space->_first_dead;
while (q < end) {
// I originally tried to conjoin "block_start(q) == q" to the
// assertion below, but that doesn't work, because you can't
// accurately traverse previous objects to get to the current one
// after their pointers have been
// updated, until the actual compaction is done. dld, 4/00
assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs");
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
size = space->adjust_obj_size(size);
q += size;
}
if (space->_first_dead == t) {
q = t;
} else {
// $$$ This is funky. Using this to read the previously written
// LiveRange. See also use below.
q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer();
}
}
const intx interval = PrefetchScanIntervalInBytes;
debug_only(HeapWord* prev_q = NULL);
while (q < t) {
// prefetch beyond q
Prefetch::write(q, interval);
if (oop(q)->is_gc_marked()) {
// q is alive
// point all the oops to the new location
size_t size = oop(q)->adjust_pointers();
size = space->adjust_obj_size(size);
debug_only(prev_q = q);
q += size;
} else {
// q is not a live object, so its mark should point at the next
// live object
debug_only(prev_q = q);
q = (HeapWord*) oop(q)->mark()->decode_pointer();
assert(q > prev_q, "we should be moving forward through memory");
}
}
assert(q == t, "just checking");
}
template <class SpaceType>
inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
// Copy all live objects to their new location
// Used by MarkSweep::mark_sweep_phase4()
HeapWord* q = space->bottom();
HeapWord* const t = space->_end_of_live;
debug_only(HeapWord* prev_q = NULL);
if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) {
#ifdef ASSERT // Debug only
// we have a chunk of the space which hasn't moved and we've reinitialized
// the mark word during the previous pass, so we can't use is_gc_marked for
// the traversal.
HeapWord* const end = space->_first_dead;
while (q < end) {
size_t size = space->obj_size(q);
assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
prev_q = q;
q += size;
}
#endif
if (space->_first_dead == t) {
q = t;
} else {
// $$$ Funky
q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer();
}
}
const intx scan_interval = PrefetchScanIntervalInBytes;
const intx copy_interval = PrefetchCopyIntervalInBytes;
while (q < t) {
if (!oop(q)->is_gc_marked()) {
// mark is pointer to next marked oop
debug_only(prev_q = q);
q = (HeapWord*) oop(q)->mark()->decode_pointer();
assert(q > prev_q, "we should be moving forward through memory");
} else {
// prefetch beyond q
Prefetch::read(q, scan_interval);
// size and destination
size_t size = space->obj_size(q);
HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee();
// prefetch beyond compaction_top
Prefetch::write(compaction_top, copy_interval);
// copy object and reinit its mark
assert(q != compaction_top, "everything in this pass should be moving");
Copy::aligned_conjoint_words(q, compaction_top, size);
oop(compaction_top)->init_mark();
assert(oop(compaction_top)->klass() != NULL, "should have a class");
debug_only(prev_q = q);
q += size;
}
}
// Let's remember if we were empty before we did the compaction.
bool was_empty = space->used_region().is_empty();
// Reset space after compaction is complete
space->reset_after_compaction();
// We do this clear, below, since it has overloaded meanings for some
// space subtypes. For example, OffsetTableContigSpace's that were
// compacted into will have had their offset table thresholds updated
// continuously, but those that weren't need to have their thresholds
// re-initialized. Also mangles unused area for debugging.
if (space->used_region().is_empty()) {
if (!was_empty) space->clear(SpaceDecorator::Mangle);
} else {
if (ZapUnusedHeapArea) space->mangle_unused_area();
}
}
#endif // SHARE_VM_MEMORY_SPACE_INLINE_HPP