This commit is contained in:
Erik Helin 2014-03-17 15:12:33 +01:00
commit 616b86635d
2 changed files with 105 additions and 132 deletions

View File

@ -272,3 +272,108 @@ void FreeRegionList::print_on(outputStream* out, bool print_contents) {
}
}
}
void FreeRegionList::verify_list() {
HeapRegion* curr = head();
HeapRegion* prev1 = NULL;
HeapRegion* prev0 = NULL;
uint count = 0;
size_t capacity = 0;
while (curr != NULL) {
verify_region(curr);
count++;
guarantee(count < _unrealistically_long_length,
hrs_err_msg("[%s] the calculated length: %u seems very long, is there maybe a cycle? curr: "PTR_FORMAT" prev0: "PTR_FORMAT" " "prev1: "PTR_FORMAT" length: %u", name(), count, curr, prev0, prev1, length()));
capacity += curr->capacity();
prev1 = prev0;
prev0 = curr;
curr = curr->next();
}
guarantee(tail() == prev0, err_msg("Expected %s to end with %u but it ended with %u.", name(), tail()->hrs_index(), prev0->hrs_index()));
guarantee(length() == count, err_msg("%s count mismatch. Expected %u, actual %u.", name(), length(), count));
guarantee(total_capacity_bytes() == capacity, err_msg("%s capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
name(), total_capacity_bytes(), capacity));
}
// Note on the check_mt_safety() methods below:
//
// Verification of the "master" heap region sets / lists that are
// maintained by G1CollectedHeap is always done during a STW pause and
// by the VM thread at the start / end of the pause. The standard
// verification methods all assert check_mt_safety(). This is
// important as it ensures that verification is done without
// concurrent updates taking place at the same time. It follows, that,
// for the "master" heap region sets / lists, the check_mt_safety()
// method should include the VM thread / STW case.
void MasterFreeRegionListMtSafeChecker::check() {
// Master Free List MT safety protocol:
// (a) If we're at a safepoint, operations on the master free list
// should be invoked by either the VM thread (which will serialize
// them) or by the GC workers while holding the
// FreeList_lock.
// (b) If we're not at a safepoint, operations on the master free
// list should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self(), "master free list MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master free list MT safety protocol outside a safepoint");
}
}
void SecondaryFreeRegionListMtSafeChecker::check() {
// Secondary Free List MT safety protocol:
// Operations on the secondary free list should always be invoked
// while holding the SecondaryFreeList_lock.
guarantee(SecondaryFreeList_lock->owned_by_self(), "secondary free list MT safety protocol");
}
void OldRegionSetMtSafeChecker::check() {
// Master Old Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master old set
// should be invoked:
// - by the VM thread (which will serialize them), or
// - by the GC workers while holding the FreeList_lock, if we're
// at a safepoint for an evacuation pause (this lock is taken
// anyway when an GC alloc region is retired so that a new one
// is allocated from the free list), or
// - by the GC workers while holding the OldSets_lock, if we're at a
// safepoint for a cleanup pause.
// (b) If we're not at a safepoint, operations on the master old set
// should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread()
|| FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
"master old set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
}
}
void HumongousRegionSetMtSafeChecker::check() {
// Humongous Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master humongous
// set should be invoked by either the VM thread (which will
// serialize them) or by the GC workers while holding the
// OldSets_lock.
// (b) If we're not at a safepoint, operations on the master
// humongous set should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
OldSets_lock->owned_by_self(),
"master humongous set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(),
"master humongous set MT safety protocol outside a safepoint");
}
}

View File

@ -1,132 +0,0 @@
/*
* Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "gc_implementation/g1/heapRegionRemSet.hpp"
#include "gc_implementation/g1/heapRegionSet.hpp"
// Note on the check_mt_safety() methods below:
//
// Verification of the "master" heap region sets / lists that are
// maintained by G1CollectedHeap is always done during a STW pause and
// by the VM thread at the start / end of the pause. The standard
// verification methods all assert check_mt_safety(). This is
// important as it ensures that verification is done without
// concurrent updates taking place at the same time. It follows, that,
// for the "master" heap region sets / lists, the check_mt_safety()
// method should include the VM thread / STW case.
void FreeRegionList::verify_list() {
HeapRegion* curr = head();
HeapRegion* prev1 = NULL;
HeapRegion* prev0 = NULL;
uint count = 0;
size_t capacity = 0;
while (curr != NULL) {
verify_region(curr);
count++;
guarantee(count < _unrealistically_long_length,
hrs_err_msg("[%s] the calculated length: %u seems very long, is there maybe a cycle? curr: "PTR_FORMAT" prev0: "PTR_FORMAT" " "prev1: "PTR_FORMAT" length: %u", name(), count, curr, prev0, prev1, length()));
capacity += curr->capacity();
prev1 = prev0;
prev0 = curr;
curr = curr->next();
}
guarantee(tail() == prev0, err_msg("Expected %s to end with %u but it ended with %u.", name(), tail()->hrs_index(), prev0->hrs_index()));
guarantee(length() == count, err_msg("%s count mismatch. Expected %u, actual %u.", name(), length(), count));
guarantee(total_capacity_bytes() == capacity, err_msg("%s capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
name(), total_capacity_bytes(), capacity));
}
void MasterFreeRegionListMtSafeChecker::check() {
// Master Free List MT safety protocol:
// (a) If we're at a safepoint, operations on the master free list
// should be invoked by either the VM thread (which will serialize
// them) or by the GC workers while holding the
// FreeList_lock.
// (b) If we're not at a safepoint, operations on the master free
// list should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self(), "master free list MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master free list MT safety protocol outside a safepoint");
}
}
void SecondaryFreeRegionListMtSafeChecker::check() {
// Secondary Free List MT safety protocol:
// Operations on the secondary free list should always be invoked
// while holding the SecondaryFreeList_lock.
guarantee(SecondaryFreeList_lock->owned_by_self(), "secondary free list MT safety protocol");
}
void OldRegionSetMtSafeChecker::check() {
// Master Old Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master old set
// should be invoked:
// - by the VM thread (which will serialize them), or
// - by the GC workers while holding the FreeList_lock, if we're
// at a safepoint for an evacuation pause (this lock is taken
// anyway when an GC alloc region is retired so that a new one
// is allocated from the free list), or
// - by the GC workers while holding the OldSets_lock, if we're at a
// safepoint for a cleanup pause.
// (b) If we're not at a safepoint, operations on the master old set
// should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread()
|| FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
"master old set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
}
}
void HumongousRegionSetMtSafeChecker::check() {
// Humongous Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master humongous
// set should be invoked by either the VM thread (which will
// serialize them) or by the GC workers while holding the
// OldSets_lock.
// (b) If we're not at a safepoint, operations on the master
// humongous set should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
OldSets_lock->owned_by_self(),
"master humongous set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(),
"master humongous set MT safety protocol outside a safepoint");
}
}