8134795: Port fdlibm pow to Java

Reviewed-by: bpb
This commit is contained in:
Joe Darcy 2015-09-17 13:43:06 -07:00
parent d33fffce04
commit 67603e6d54
8 changed files with 409 additions and 408 deletions

View File

@ -150,7 +150,6 @@ SUNWprivate_1.1 {
Java_java_lang_StrictMath_exp;
Java_java_lang_StrictMath_log;
Java_java_lang_StrictMath_log10;
Java_java_lang_StrictMath_pow;
Java_java_lang_StrictMath_sin;
Java_java_lang_StrictMath_sqrt;
Java_java_lang_StrictMath_cbrt;

View File

@ -0,0 +1,383 @@
/*
* Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.lang;
/**
* Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
*
* <p>The C version of fdlibm relied on the idiom of pointer aliasing
* a 64-bit double floating-point value as a two-element array of
* 32-bit integers and reading and writing the two halves of the
* double independently. This coding pattern was problematic to C
* optimizers and not directly expressible in Java. Therefore, rather
* than a memory level overlay, if portions of a double need to be
* operated on as integer values, the standard library methods for
* bitwise floating-point to integer conversion,
* Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
* or indirectly used .
*
* <p>The C version of fdlibm also took some pains to signal the
* correct IEEE 754 exceptional conditions divide by zero, invalid,
* overflow and underflow. For example, overflow would be signaled by
* {@code huge * huge} where {@code huge} was a large constant that
* would overflow when squared. Since IEEE floating-point exceptional
* handling is not supported natively in the JVM, such coding patterns
* have been omitted from this port. For example, rather than {@code
* return huge * huge}, this port will use {@code return INFINITY}.
*/
class FdLibm {
// Constants used by multiple algorithms
private static final double INFINITY = Double.POSITIVE_INFINITY;
private FdLibm() {
throw new UnsupportedOperationException("No instances for you.");
}
/**
* Return the low-order 32 bits of the double argument as an int.
*/
private static int __LO(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)transducer;
}
/**
* Return a double with its low-order bits of the second argument
* and the high-order bits of the first argument..
*/
private static double __LO(double x, int low) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
}
/**
* Return the high-order 32 bits of the double argument as an int.
*/
private static int __HI(double x) {
long transducer = Double.doubleToRawLongBits(x);
return (int)(transducer >> 32);
}
/**
* Return a double with its high-order bits of the second argument
* and the low-order bits of the first argument..
*/
private static double __HI(double x, int high) {
long transX = Double.doubleToRawLongBits(x);
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
}
/**
* Compute x**y
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53 - 24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'| <= 0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*/
public static class Pow {
public static strictfp double compute(final double x, final double y) {
double z;
double r, s, t, u, v, w;
int i, j, k, n;
// y == zero: x**0 = 1
if (y == 0.0)
return 1.0;
// +/-NaN return x + y to propagate NaN significands
if (Double.isNaN(x) || Double.isNaN(y))
return x + y;
final double y_abs = Math.abs(y);
double x_abs = Math.abs(x);
// Special values of y
if (y == 2.0) {
return x * x;
} else if (y == 0.5) {
if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
} else if (y_abs == 1.0) { // y is +/-1
return (y == 1.0) ? x : 1.0 / x;
} else if (y_abs == INFINITY) { // y is +/-infinity
if (x_abs == 1.0)
return y - y; // inf**+/-1 is NaN
else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
return (y >= 0) ? y : 0.0;
else // (|x| < 1)**-/+inf = inf, 0
return (y < 0) ? -y : 0.0;
}
final int hx = __HI(x);
int ix = hx & 0x7fffffff;
/*
* When x < 0, determine if y is an odd integer:
* y_is_int = 0 ... y is not an integer
* y_is_int = 1 ... y is an odd int
* y_is_int = 2 ... y is an even int
*/
int y_is_int = 0;
if (hx < 0) {
if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15
y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
else if (y_abs >= 1.0) { // |y| >= 1.0
long y_abs_as_long = (long) y_abs;
if ( ((double) y_abs_as_long) == y_abs) {
y_is_int = 2 - (int)(y_abs_as_long & 0x1L);
}
}
}
// Special value of x
if (x_abs == 0.0 ||
x_abs == INFINITY ||
x_abs == 1.0) {
z = x_abs; // x is +/-0, +/-inf, +/-1
if (y < 0.0)
z = 1.0/z; // z = (1/|x|)
if (hx < 0) {
if (((ix - 0x3ff00000) | y_is_int) == 0) {
z = (z-z)/(z-z); // (-1)**non-int is NaN
} else if (y_is_int == 1)
z = -1.0 * z; // (x < 0)**odd = -(|x|**odd)
}
return z;
}
n = (hx >> 31) + 1;
// (x < 0)**(non-int) is NaN
if ((n | y_is_int) == 0)
return (x-x)/(x-x);
s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
if ( (n | (y_is_int - 1)) == 0)
s = -1.0; // (-ve)**(odd int)
double p_h, p_l, t1, t2;
// |y| is huge
if (y_abs > 0x1.0p31) { // if |y| > 2**31
final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2
final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2
final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail
// Over/underflow if x is not close to one
if (x_abs < 0x1.fffffp-1) // |x| < 0.9999995231628418
return (y < 0.0) ? s * INFINITY : s * 0.0;
if (x_abs > 1.0) // |x| > 1.0
return (y > 0.0) ? s * INFINITY : s * 0.0;
/*
* now |1-x| is tiny <= 2**-20, sufficient to compute
* log(x) by x - x^2/2 + x^3/3 - x^4/4
*/
t = x_abs - 1.0; // t has 20 trailing zeros
w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits
v = t * INV_LN2_L - w * INV_LN2;
t1 = u + v;
t1 =__LO(t1, 0);
t2 = v - (t1 - u);
} else {
final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2)
final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp
final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
n = 0;
// Take care of subnormal numbers
if (ix < 0x00100000) {
x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
n -= 53;
ix = __HI(x_abs);
}
n += ((ix) >> 20) - 0x3ff;
j = ix & 0x000fffff;
// Determine interval
ix = j | 0x3ff00000; // Normalize ix
if (j <= 0x3988E)
k = 0; // |x| <sqrt(3/2)
else if (j < 0xBB67A)
k = 1; // |x| <sqrt(3)
else {
k = 0;
n += 1;
ix -= 0x00100000;
}
x_abs = __HI(x_abs, ix);
// Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
final double BP[] = {1.0,
1.5};
final double DP_H[] = {0.0,
0x1.2b80_34p-1}; // 5.84962487220764160156e-01
final double DP_L[] = {0.0,
0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
final double L1 = 0x1.3333_3333_33303p-1; // 5.99999999999994648725e-01
final double L2 = 0x1.b6db_6db6_fabffp-2; // 4.28571428578550184252e-01
final double L3 = 0x1.5555_5518_f264dp-2; // 3.33333329818377432918e-01
final double L4 = 0x1.1746_0a91_d4101p-2; // 2.72728123808534006489e-01
final double L5 = 0x1.d864_a93c_9db65p-3; // 2.30660745775561754067e-01
final double L6 = 0x1.a7e2_84a4_54eefp-3; // 2.06975017800338417784e-01
u = x_abs - BP[k]; // BP[0]=1.0, BP[1]=1.5
v = 1.0 / (x_abs + BP[k]);
ss = u * v;
s_h = ss;
s_h = __LO(s_h, 0);
// t_h=x_abs + BP[k] High
t_h = 0.0;
t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
t_l = x_abs - (t_h - BP[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
// Compute log(x_abs)
s2 = ss * ss;
r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
r += s_l * (s_h + ss);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
t_h = __LO(t_h, 0);
t_l = r - ((t_h - 3.0) - s2);
// u+v = ss*(1+...)
u = s_h * t_h;
v = s_l * t_h + t_l * ss;
// 2/(3log2)*(ss + ...)
p_h = u + v;
p_h = __LO(p_h, 0);
p_l = v - (p_h - u);
z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2)
z_l = CP_L * p_h + p_l * CP + DP_L[k];
// log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
t = (double)n;
t1 = (((z_h + z_l) + DP_H[k]) + t);
t1 = __LO(t1, 0);
t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
}
// Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
double y1 = y;
y1 = __LO(y1, 0);
p_l = (y - y1) * t1 + y * t2;
p_h = y1 * t1;
z = p_l + p_h;
j = __HI(z);
i = __LO(z);
if (j >= 0x40900000) { // z >= 1024
if (((j - 0x40900000) | i)!=0) // if z > 1024
return s * INFINITY; // Overflow
else {
final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
if (p_l + OVT > z - p_h)
return s * INFINITY; // Overflow
}
} else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075
if (((j - 0xc090cc00) | i)!=0) // z < -1075
return s * 0.0; // Underflow
else {
if (p_l <= z - p_h)
return s * 0.0; // Underflow
}
}
/*
* Compute 2**(p_h+p_l)
*/
// Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01
final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03
final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05
final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08
final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01
final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01
final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
i = j & 0x7fffffff;
k = (i >> 20) - 0x3ff;
n = 0;
if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5]
n = j + (0x00100000 >> (k + 1));
k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n
t = 0.0;
t = __HI(t, (n & ~(0x000fffff >> k)) );
n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
if (j < 0)
n = -n;
p_h -= t;
}
t = p_l + p_h;
t = __LO(t, 0);
u = t * LG2_H;
v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
z = u + v;
w = v - (z - u);
t = z * z;
t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
r = (z * t1)/(t1 - 2.0) - (w + z * w);
z = 1.0 - (r - z);
j = __HI(z);
j += (n << 20);
if ((j >> 20) <= 0)
z = Math.scalb(z, n); // subnormal output
else {
int z_hi = __HI(z);
z_hi += (n << 20);
z = __HI(z, z_hi);
}
return s * z;
}
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -643,7 +643,9 @@ public final class StrictMath {
* @param b the exponent.
* @return the value {@code a}<sup>{@code b}</sup>.
*/
public static native double pow(double a, double b);
public static double pow(double a, double b) {
return FdLibm.Pow.compute(a, b);
}
/**
* Returns the closest {@code int} to the argument, with ties

View File

@ -1,320 +0,0 @@
/*
* Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#include "fdlibm.h"
#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
#ifdef __STDC__
double __ieee754_pow(double x, double y)
#else
double __ieee754_pow(x,y)
double x, y;
#endif
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
int i0,i1,i,j,k,yisint,n;
int hx,hy,ix,iy;
unsigned lx,ly;
i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
hx = __HI(x); lx = __LO(x);
hy = __HI(y); ly = __LO(y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if((j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return sqrt(x);
}
}
ax = fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -1.0*z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
n = (hx>>31)+1;
/* (x<0)**(non-int) is NaN */
if((n|yisint)==0) return (x-x)/(x-x);
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-one; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
__LO(t1) = 0;
t2 = v-(t1-u);
} else {
double ss,s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; ix = __HI(ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
__HI(ax) = ix;
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
ss = u*v;
s_h = ss;
__LO(s_h) = 0;
/* t_h=ax+bp[k] High */
t_h = zero;
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = ss*ss;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+ss);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
__LO(t_h) = 0;
t_l = r-((t_h-3.0)-s2);
/* u+v = ss*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*ss;
/* 2/(3log2)*(ss+...) */
p_h = u+v;
__LO(p_h) = 0;
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
__LO(t1) = 0;
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
__LO(y1) = 0;
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
j = __HI(z);
i = __LO(z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
__HI(t) = (n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
__LO(t) = 0;
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
j = __HI(z);
j += (n<<20);
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
else __HI(z) += (n<<20);
return s*z;
}

View File

@ -133,7 +133,6 @@ extern double log __P((double));
extern double log10 __P((double));
extern double modf __P((double, double *));
extern double pow __P((double, double));
extern double sqrt __P((double));
extern double ceil __P((double));
@ -187,7 +186,6 @@ extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_exp __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_log10 __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_hypot __P((double,double));

View File

@ -1,73 +0,0 @@
/*
* Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* wrapper pow(x,y) return x**y
*/
#include "fdlibm.h"
#ifdef __STDC__
double pow(double x, double y) /* wrapper pow */
#else
double pow(x,y) /* wrapper pow */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_pow(x,y);
#else
double z;
z=__ieee754_pow(x,y);
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
if(isnan(x)) {
if(y==0.0)
return __kernel_standard(x,y,42); /* pow(NaN,0.0) */
else
return z;
}
if(x==0.0){
if(y==0.0)
return __kernel_standard(x,y,20); /* pow(0.0,0.0) */
if(finite(y)&&y<0.0)
return __kernel_standard(x,y,23); /* pow(0.0,negative) */
return z;
}
if(!finite(z)) {
if(finite(x)&&finite(y)) {
if(isnan(z))
return __kernel_standard(x,y,24); /* pow neg**non-int */
else
return __kernel_standard(x,y,21); /* pow overflow */
}
}
if(z==0.0&&finite(x)&&finite(y))
return __kernel_standard(x,y,22); /* pow underflow */
return z;
#endif
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 1994, 2003, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 1994, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -100,12 +100,6 @@ Java_java_lang_StrictMath_atan2(JNIEnv *env, jclass unused, jdouble d1, jdouble
return (jdouble) jatan2((double)d1, (double)d2);
}
JNIEXPORT jdouble JNICALL
Java_java_lang_StrictMath_pow(JNIEnv *env, jclass unused, jdouble d1, jdouble d2)
{
return (jdouble) jpow((double)d1, (double)d2);
}
JNIEXPORT jdouble JNICALL
Java_java_lang_StrictMath_IEEEremainder(JNIEnv *env, jclass unused,
jdouble dividend,

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2004, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -23,7 +23,7 @@
/*
* @test
* @bug 4984407 5033578
* @bug 4984407 5033578 8134795
* @summary Tests for {Math, StrictMath}.pow
* @author Joseph D. Darcy
*/
@ -88,12 +88,19 @@ public class PowTests {
/* > -oo */ -Double.MAX_VALUE,
/**/ (double)Long.MIN_VALUE,
/**/ (double) -((1L<<53)+2L),
-0x1.0p65,
-0x1.0000000000001p64,
-0x1.0p64,
/**/ (double) -((1L<<53)),
/**/ (double) -((1L<<53)-1L),
/**/ -((double)Integer.MAX_VALUE + 4.0),
/**/ (double)Integer.MIN_VALUE - 1.0,
/**/ (double)Integer.MIN_VALUE,
/**/ (double)Integer.MIN_VALUE + 1.0,
-0x1.0p31 + 2.0,
-0x1.0p31 + 1.0,
-0x1.0000000000001p31,
-0x1.0p31,
/**/ -Math.PI,
/**/ -3.0,
/**/ -Math.E,
@ -103,6 +110,8 @@ public class PowTests {
-1.0,
/* > -1.0 */ -0.9999999999999999, // nextAfter(-1.0, +oo)
/* > -1.0 */ -0.9999999999999998,
-0x1.fffffp-1,
-0x1.ffffeffffffffp-1,
/**/ -0.5,
/**/ -1.0/3.0,
/* < 0.0 */ -Double.MIN_VALUE,
@ -111,6 +120,8 @@ public class PowTests {
/* > 0.0 */ +Double.MIN_VALUE,
/**/ +1.0/3.0,
/**/ +0.5,
+0x1.ffffeffffffffp-1,
+0x1.fffffp-1,
/**/ +0.9999999999999998,
/* < +1.0 */ +0.9999999999999999, // nextAfter(-1.0, +oo)
+1.0,
@ -120,6 +131,10 @@ public class PowTests {
/**/ +Math.E,
/**/ +3.0,
/**/ +Math.PI,
0x1.0p31,
0x1.0000000000001p31,
0x1.0p31 + 1.0,
0x1.0p31 + 2.0,
/**/ -(double)Integer.MIN_VALUE - 1.0,
/**/ -(double)Integer.MIN_VALUE,
/**/ -(double)Integer.MIN_VALUE + 1.0,
@ -127,6 +142,9 @@ public class PowTests {
/**/ (double) ((1L<<53)-1L),
/**/ (double) ((1L<<53)),
/**/ (double) ((1L<<53)+2L),
0x1.0p64,
0x1.0000000000001p64,
0x1.0p65,
/**/ -(double)Long.MIN_VALUE,
/* < oo */ Double.MAX_VALUE,
Double.POSITIVE_INFINITY,
@ -257,7 +275,7 @@ public class PowTests {
}
static boolean isFinite(double a) {
return (0.0*a == 0);
return (0.0 * a == 0);
}
/**