diff --git a/src/java.base/share/classes/java/lang/Float.java b/src/java.base/share/classes/java/lang/Float.java
index ae3f99d4e2d..78eaddd611b 100644
--- a/src/java.base/share/classes/java/lang/Float.java
+++ b/src/java.base/share/classes/java/lang/Float.java
@@ -30,6 +30,7 @@ import java.lang.constant.Constable;
import java.lang.constant.ConstantDesc;
import java.util.Optional;
+import jdk.internal.math.FloatConsts;
import jdk.internal.math.FloatingDecimal;
import jdk.internal.math.FloatToDecimal;
import jdk.internal.vm.annotation.IntrinsicCandidate;
@@ -975,6 +976,198 @@ public final class Float extends Number
@IntrinsicCandidate
public static native float intBitsToFloat(int bits);
+ /**
+ * {@return the {@code float} value closest to the numerical value
+ * of the argument, a floating-point binary16 value encoded in a
+ * {@code short}} The conversion is exact; all binary16 values can
+ * be exactly represented in {@code float}.
+ *
+ * Special cases:
+ *
+ * - If the argument is zero, the result is a zero with the
+ * same sign as the argument.
+ *
- If the argument is infinite, the result is an infinity
+ * with the same sign as the argument.
+ *
- If the argument is a NaN, the result is a NaN.
+ *
+ *
+ *
+ * The IEEE 754 standard defines binary16 as a 16-bit format, along
+ * with the 32-bit binary32 format (corresponding to the {@code
+ * float} type) and the 64-bit binary64 format (corresponding to
+ * the {@code double} type). The binary16 format is similar to the
+ * other IEEE 754 formats, except smaller, having all the usual
+ * IEEE 754 values such as NaN, signed infinities, signed zeros,
+ * and subnormals. The parameters (JLS {@jls 4.2.3}) for the
+ * binary16 format are N = 11 precision bits, K = 5 exponent bits,
+ * Emax = 15, and
+ * Emin = -14.
+ *
+ * @apiNote
+ * This method corresponds to the convertFormat operation defined
+ * in IEEE 754 from the binary16 format to the binary32 format.
+ * The operation of this method is analogous to a primitive
+ * widening conversion (JLS {@jls 5.1.2}).
+ *
+ * @param floatBinary16 the binary16 value to convert to {@code float}
+ * @since 20
+ */
+ // @IntrinsicCandidate
+ public static float float16ToFloat(short floatBinary16) {
+ /*
+ * The binary16 format has 1 sign bit, 5 exponent bits, and 10
+ * significand bits. The exponent bias is 15.
+ */
+ int bin16arg = (int)floatBinary16;
+ int bin16SignBit = 0x8000 & bin16arg;
+ int bin16ExpBits = 0x7c00 & bin16arg;
+ int bin16SignifBits = 0x03FF & bin16arg;
+
+ // Shift left difference in the number of significand bits in
+ // the float and binary16 formats
+ final int SIGNIF_SHIFT = (FloatConsts.SIGNIFICAND_WIDTH - 11);
+
+ float sign = (bin16SignBit != 0) ? -1.0f : 1.0f;
+
+ // Extract binary16 exponent, remove its bias, add in the bias
+ // of a float exponent and shift to correct bit location
+ // (significand width includes the implicit bit so shift one
+ // less).
+ int bin16Exp = (bin16ExpBits >> 10) - 15;
+ if (bin16Exp == -15) {
+ // For subnormal binary16 values and 0, the numerical
+ // value is 2^24 * the significand as an integer (no
+ // implicit bit).
+ return sign * (0x1p-24f * bin16SignifBits);
+ } else if (bin16Exp == 16) {
+ return (bin16SignifBits == 0) ?
+ sign * Float.POSITIVE_INFINITY :
+ Float.intBitsToFloat((bin16SignBit << 16) |
+ 0x7f80_0000 |
+ // Preserve NaN signif bits
+ ( bin16SignifBits << SIGNIF_SHIFT ));
+ }
+
+ assert -15 < bin16Exp && bin16Exp < 16;
+
+ int floatExpBits = (bin16Exp + FloatConsts.EXP_BIAS)
+ << (FloatConsts.SIGNIFICAND_WIDTH - 1);
+
+ // Compute and combine result sign, exponent, and significand bits.
+ return Float.intBitsToFloat((bin16SignBit << 16) |
+ floatExpBits |
+ (bin16SignifBits << SIGNIF_SHIFT));
+ }
+
+ /**
+ * {@return the floating-point binary16 value, encoded in a {@code
+ * short}, closest in value to the argument}
+ * The conversion is computed under the {@linkplain
+ * java.math.RoundingMode#HALF_EVEN round to nearest even rounding
+ * mode}.
+ *
+ * Special cases:
+ *
+ * - If the argument is zero, the result is a zero with the
+ * same sign as the argument.
+ *
- If the argument is infinite, the result is an infinity
+ * with the same sign as the argument.
+ *
- If the argument is a NaN, the result is a NaN.
+ *
+ *
+ * The binary16 format is discussed in
+ * more detail in the {@link #float16ToFloat} method.
+ *
+ * @apiNote
+ * This method corresponds to the convertFormat operation defined
+ * in IEEE 754 from the binary32 format to the binary16 format.
+ * The operation of this method is analogous to a primitive
+ * narrowing conversion (JLS {@jls 5.1.3}).
+ *
+ * @param f the {@code float} value to convert to binary16
+ * @since 20
+ */
+ // @IntrinsicCandidate
+ public static short floatToFloat16(float f) {
+ int doppel = Float.floatToRawIntBits(f);
+ short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
+
+ if (Float.isNaN(f)) {
+ // Preserve sign and attempt to preserve significand bits
+ return (short)(sign_bit
+ | 0x7c00 // max exponent + 1
+ // Preserve high order bit of float NaN in the
+ // binary16 result NaN (tenth bit); OR in remaining
+ // bits into lower 9 bits of binary 16 significand.
+ | (doppel & 0x007f_e000) >> 13 // 10 bits
+ | (doppel & 0x0000_1ff0) >> 4 // 9 bits
+ | (doppel & 0x0000_000f)); // 4 bits
+ }
+
+ float abs_f = Math.abs(f);
+
+ // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
+ if (abs_f >= (0x1.ffcp15f + 0x0.002p15f) ) {
+ return (short)(sign_bit | 0x7c00); // Positive or negative infinity
+ }
+
+ // Smallest magnitude nonzero representable binary16 value
+ // is equal to 0x1.0p-24; half-way and smaller rounds to zero.
+ if (abs_f <= 0x1.0p-24f * 0.5f) { // Covers float zeros and subnormals.
+ return sign_bit; // Positive or negative zero
+ }
+
+ // Dealing with finite values in exponent range of binary16
+ // (when rounding is done, could still round up)
+ int exp = Math.getExponent(f);
+ assert -25 <= exp && exp <= 15;
+
+ // For binary16 subnormals, beside forcing exp to -15, retain
+ // the difference expdelta = E_min - exp. This is the excess
+ // shift value, in addition to 13, to be used in the
+ // computations below. Further the (hidden) msb with value 1
+ // in f must be involved as well.
+ int expdelta = 0;
+ int msb = 0x0000_0000;
+ if (exp < -14) {
+ expdelta = -14 - exp;
+ exp = -15;
+ msb = 0x0080_0000;
+ }
+ int f_signif_bits = doppel & 0x007f_ffff | msb;
+
+ // Significand bits as if using rounding to zero (truncation).
+ short signif_bits = (short)(f_signif_bits >> (13 + expdelta));
+
+ // For round to nearest even, determining whether or not to
+ // round up (in magnitude) is a function of the least
+ // significant bit (LSB), the next bit position (the round
+ // position), and the sticky bit (whether there are any
+ // nonzero bits in the exact result to the right of the round
+ // digit). An increment occurs in three cases:
+ //
+ // LSB Round Sticky
+ // 0 1 1
+ // 1 1 0
+ // 1 1 1
+ // See "Computer Arithmetic Algorithms," Koren, Table 4.9
+
+ int lsb = f_signif_bits & (1 << 13 + expdelta);
+ int round = f_signif_bits & (1 << 12 + expdelta);
+ int sticky = f_signif_bits & ((1 << 12 + expdelta) - 1);
+
+ if (round != 0 && ((lsb | sticky) != 0 )) {
+ signif_bits++;
+ }
+
+ // No bits set in significand beyond the *first* exponent bit,
+ // not just the sigificand; quantity is added to the exponent
+ // to implement a carry out from rounding the significand.
+ assert (0xf800 & signif_bits) == 0x0;
+
+ return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
+ }
+
/**
* Compares two {@code Float} objects numerically.
*
diff --git a/test/jdk/java/lang/Float/Binary16Conversion.java b/test/jdk/java/lang/Float/Binary16Conversion.java
new file mode 100644
index 00000000000..450db8f6139
--- /dev/null
+++ b/test/jdk/java/lang/Float/Binary16Conversion.java
@@ -0,0 +1,422 @@
+/*
+ * Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * @test
+ * @bug 8289551
+ * @summary Verify conversion between float and the binary16 format
+ * @library ../Math
+ * @build FloatConsts
+ * @run main Binary16Conversion
+ */
+
+public class Binary16Conversion {
+ public static void main(String... argv) {
+ int errors = 0;
+ errors += binary16RoundTrip();
+ // Note that helper methods do sign-symmetric testing
+ errors += binary16CardinalValues();
+ errors += roundFloatToBinary16();
+ errors += roundFloatToBinary16HalfWayCases();
+ errors += roundFloatToBinary16FullBinade();
+ errors += alternativeImplementation();
+
+ if (errors > 0)
+ throw new RuntimeException(errors + " errors");
+ }
+
+ /*
+ * Put all 16-bit values through a conversion loop and make sure
+ * the values are preserved (NaN bit patterns notwithstanding).
+ */
+ private static int binary16RoundTrip() {
+ int errors = 0;
+ for (int i = Short.MIN_VALUE; i < Short.MAX_VALUE; i++) {
+ short s = (short)i;
+ float f = Float.float16ToFloat(s);
+ short s2 = Float.floatToFloat16(f);
+
+ if (!Binary16.equivalent(s, s2)) {
+ errors++;
+ System.out.println("Roundtrip failure on " +
+ Integer.toHexString(0xFFFF & (int)s) +
+ "\t got back " + Integer.toHexString(0xFFFF & (int)s2));
+ }
+ }
+ return errors;
+ }
+
+ private static int binary16CardinalValues() {
+ int errors = 0;
+ // Encode short value for different binary16 cardinal values as an
+ // integer-valued float.
+ float[][] testCases = {
+ {Binary16.POSITIVE_ZERO, +0.0f},
+ {Binary16.MIN_VALUE, 0x1.0p-24f},
+ {Binary16.MAX_SUBNORMAL, 0x1.ff8p-15f},
+ {Binary16.MIN_NORMAL, 0x1.0p-14f},
+ {Binary16.ONE, 1.0f},
+ {Binary16.MAX_VALUE, 65504.0f},
+ {Binary16.POSITIVE_INFINITY, Float.POSITIVE_INFINITY},
+ };
+
+ // Check conversions in both directions
+
+ // short -> float
+ for (var testCase : testCases) {
+ errors += compareAndReportError((short)testCase[0],
+ testCase[1]);
+ }
+
+ // float -> short
+ for (var testCase : testCases) {
+ errors += compareAndReportError(testCase[1],
+ (short)testCase[0]);
+ }
+
+ return errors;
+ }
+
+ private static int roundFloatToBinary16() {
+ int errors = 0;
+
+ float[][] testCases = {
+ // Test all combinations of LSB, round, and sticky bit
+
+ // LSB = 0, test combination of round and sticky
+ {0x1.ff8000p-1f, (short)0x3bfe}, // round = 0, sticky = 0
+ {0x1.ff8010p-1f, (short)0x3bfe}, // round = 0, sticky = 1
+ {0x1.ffa000p-1f, (short)0x3bfe}, // round = 1, sticky = 0
+ {0x1.ffa010p-1f, (short)0x3bff}, // round = 1, sticky = 1 => ++
+
+ // LSB = 1, test combination of round and sticky
+ {0x1.ffc000p-1f, Binary16.ONE-1}, // round = 0, sticky = 0
+ {0x1.ffc010p-1f, Binary16.ONE-1}, // round = 0, sticky = 1
+ {0x1.ffe000p-1f, Binary16.ONE}, // round = 1, sticky = 0 => ++
+ {0x1.ffe010p-1f, Binary16.ONE}, // round = 1, sticky = 1 => ++
+
+ // Test subnormal rounding
+ // Largest subnormal binary16 0x03ff => 0x1.ff8p-15f; LSB = 1
+ {0x1.ff8000p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 0
+ {0x1.ff8010p-15f, Binary16.MAX_SUBNORMAL}, // round = 0, sticky = 1
+ {0x1.ffc000p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 0 => ++
+ {0x1.ffc010p-15f, Binary16.MIN_NORMAL}, // round = 1, sticky = 1 => ++
+
+ // Test rounding near binary16 MIN_VALUE
+ // Smallest in magnitude subnormal binary16 value 0x0001 => 0x1.0p-24f
+ // Half-way case,0x1.0p-25f, and smaller should round down to zero
+ {0x1.fffffep-26f, Binary16.POSITIVE_ZERO}, // nextDown in float
+ {0x1.000000p-25f, Binary16.POSITIVE_ZERO},
+ {0x1.000002p-25f, Binary16.MIN_VALUE}, // nextUp in float
+ {0x1.100000p-25f, Binary16.MIN_VALUE},
+
+ // Test rounding near overflow threshold
+ // Largest normal binary16 number 0x7bff => 0x1.ffcp15f; LSB = 1
+ {0x1.ffc000p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 0
+ {0x1.ffc010p15f, Binary16.MAX_VALUE}, // round = 0, sticky = 1
+ {0x1.ffe000p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 0 => ++
+ {0x1.ffe010p15f, Binary16.POSITIVE_INFINITY}, // round = 1, sticky = 1 => ++
+ };
+
+ for (var testCase : testCases) {
+ errors += compareAndReportError(testCase[0],
+ (short)testCase[1]);
+ }
+ return errors;
+ }
+
+ private static int roundFloatToBinary16HalfWayCases() {
+ int errors = 0;
+
+ // Test rounding of exact half-way cases between each pair of
+ // finite exactly-representable binary16 numbers. Also test
+ // rounding of half-way +/- ulp of the *float* value.
+ // Additionally, test +/- float ulp of the endpoints. (Other
+ // tests in this file make sure all short values round-trip so
+ // that doesn't need to be tested here.)
+
+ for (int i = Binary16.POSITIVE_ZERO; // 0x0000
+ i <= Binary16.MAX_VALUE; // 0x7bff
+ i += 2) { // Check every even/odd pair once
+ short lower = (short) i;
+ short upper = (short)(i+1);
+
+ float lowerFloat = Float.float16ToFloat(lower);
+ float upperFloat = Float.float16ToFloat(upper);
+ assert lowerFloat < upperFloat;
+
+ float midway = (lowerFloat + upperFloat) * 0.5f; // Exact midpoint
+
+ errors += compareAndReportError(Math.nextUp(lowerFloat), lower);
+ errors += compareAndReportError(Math.nextDown(midway), lower);
+
+ // Under round to nearest even, the midway point will
+ // round *down* to the (even) lower endpoint.
+ errors += compareAndReportError( midway, lower);
+
+ errors += compareAndReportError(Math.nextUp( midway), upper);
+ errors += compareAndReportError(Math.nextDown(upperFloat), upper);
+ }
+
+ // More testing around the overflow threshold
+ // Binary16.ulp(Binary16.MAX_VALUE) == 32.0f; test around Binary16.MAX_VALUE + 1/2 ulp
+ float binary16_MAX_VALUE = Float.float16ToFloat(Binary16.MAX_VALUE);
+ float binary16_MAX_VALUE_halfUlp = binary16_MAX_VALUE + 16.0f;
+
+ errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE), Binary16.MAX_VALUE);
+ errors += compareAndReportError( binary16_MAX_VALUE, Binary16.MAX_VALUE);
+ errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE), Binary16.MAX_VALUE);
+
+ // Binary16.MAX_VALUE is an "odd" value since its LSB = 1 so
+ // the half-way value greater than Binary16.MAX_VALUE should
+ // round up to the next even value, in this case Binary16.POSITIVE_INFINITY.
+ errors += compareAndReportError(Math.nextDown(binary16_MAX_VALUE_halfUlp), Binary16.MAX_VALUE);
+ errors += compareAndReportError( binary16_MAX_VALUE_halfUlp, Binary16.POSITIVE_INFINITY);
+ errors += compareAndReportError(Math.nextUp( binary16_MAX_VALUE_halfUlp), Binary16.POSITIVE_INFINITY);
+
+ return errors;
+ }
+
+ private static int compareAndReportError(float input,
+ short expected) {
+ // Round to nearest even is sign symmetric
+ return compareAndReportError0( input, expected) +
+ compareAndReportError0(-input, Binary16.negate(expected));
+ }
+
+ private static int compareAndReportError0(float input,
+ short expected) {
+ short actual = Float.floatToFloat16(input);
+ if (!Binary16.equivalent(actual, expected)) {
+ System.out.println("Unexpected result of converting " +
+ Float.toHexString(input) +
+ " to short. Expected 0x" + Integer.toHexString(0xFFFF & expected) +
+ " got 0x" + Integer.toHexString(0xFFFF & actual));
+ return 1;
+ }
+ return 0;
+ }
+
+ private static int compareAndReportError0(short input,
+ float expected) {
+ float actual = Float.float16ToFloat(input);
+ if (Float.compare(actual, expected) != 0) {
+ System.out.println("Unexpected result of converting " +
+ Integer.toHexString(input & 0xFFFF) +
+ " to float. Expected " + Float.toHexString(expected) +
+ " got " + Float.toHexString(actual));
+ return 1;
+ }
+ return 0;
+ }
+
+ private static int compareAndReportError(short input,
+ float expected) {
+ // Round to nearest even is sign symmetric
+ return compareAndReportError0( input, expected) +
+ compareAndReportError0(Binary16.negate(input), -expected);
+ }
+
+ private static int roundFloatToBinary16FullBinade() {
+ int errors = 0;
+
+ // For each float value between 1.0 and less than 2.0
+ // (i.e. set of float values with an exponent of 0), convert
+ // each value to binary16 and then convert that binary16 value
+ // back to float.
+ //
+ // Any exponent could be used; the maximum exponent for normal
+ // values would not exercise the full set of code paths since
+ // there is an up-front check on values that would overflow,
+ // which correspond to a ripple-carry of the significand that
+ // bumps the exponent.
+ short previous = (short)0;
+ for (int i = Float.floatToIntBits(1.0f);
+ i <= Float.floatToIntBits(Math.nextDown(2.0f));
+ i++) {
+ // (Could also express the loop control directly in terms
+ // of floating-point operations, incrementing by ulp(1.0),
+ // etc.)
+
+ float f = Float.intBitsToFloat(i);
+ short f_as_bin16 = Float.floatToFloat16(f);
+ short f_as_bin16_down = (short)(f_as_bin16 - 1);
+ short f_as_bin16_up = (short)(f_as_bin16 + 1);
+
+ // Across successive float values to convert to binary16,
+ // the binary16 results should be semi-monotonic,
+ // non-decreasing in this case.
+
+ // Only positive binary16 values so can compare using integer operations
+ if (f_as_bin16 < previous) {
+ errors++;
+ System.out.println("Semi-monotonicity violation observed on " +
+ Integer.toHexString(0xfff & f_as_bin16));
+ }
+ previous = f_as_bin16;
+
+ // If round-to-nearest was correctly done, when exactly
+ // mapped back to float, f_as_bin16 should be at least as
+ // close as either of its neighbors to the original value
+ // of f.
+
+ float f_prime_down = Float.float16ToFloat(f_as_bin16_down);
+ float f_prime = Float.float16ToFloat(f_as_bin16);
+ float f_prime_up = Float.float16ToFloat(f_as_bin16_up);
+
+ float f_prime_diff = Math.abs(f - f_prime);
+ if (f_prime_diff == 0.0) {
+ continue;
+ }
+ float f_prime_down_diff = Math.abs(f - f_prime_down);
+ float f_prime_up_diff = Math.abs(f - f_prime_up);
+
+ if (f_prime_diff > f_prime_down_diff ||
+ f_prime_diff > f_prime_up_diff) {
+ errors++;
+ System.out.println("Round-to-nearest violation on converting " +
+ Float.toHexString(f) + " to binary16 and back.");
+ }
+ }
+ return errors;
+ }
+
+ private static int alternativeImplementation() {
+ int errors = 0;
+
+ // For exhaustive test of all float values use
+ // for (long ell = Integer.MIN_VALUE; ell <= Integer.MAX_VALUE; ell++) {
+
+ for (long ell = Float.floatToIntBits(2.0f);
+ ell <= Float.floatToIntBits(4.0f);
+ ell++) {
+ float f = Float.intBitsToFloat((int)ell);
+ short s1 = Float.floatToFloat16(f);
+ short s2 = altFloatToFloat16(f);
+
+ if (s1 != s2) {
+ errors++;
+ System.out.println("Different conversion of float value " + Float.toHexString(f));
+ }
+ }
+
+ return errors;
+ }
+
+ /*
+ * Rely on float operations to do rounding in both normal and
+ * subnormal binary16 cases.
+ */
+ public static short altFloatToFloat16(float f) {
+ int doppel = Float.floatToRawIntBits(f);
+ short sign_bit = (short)((doppel & 0x8000_0000) >> 16);
+
+ if (Float.isNaN(f)) {
+ // Preserve sign and attempt to preserve significand bits
+ return (short)(sign_bit
+ | 0x7c00 // max exponent + 1
+ // Preserve high order bit of float NaN in the
+ // binary16 result NaN (tenth bit); OR in remaining
+ // bits into lower 9 bits of binary 16 significand.
+ | (doppel & 0x007f_e000) >> 13 // 10 bits
+ | (doppel & 0x0000_1ff0) >> 4 // 9 bits
+ | (doppel & 0x0000_000f)); // 4 bits
+ }
+
+ float abs_f = Math.abs(f);
+
+ // The overflow threshold is binary16 MAX_VALUE + 1/2 ulp
+ if (abs_f >= (65504.0f + 16.0f) ) {
+ return (short)(sign_bit | 0x7c00); // Positive or negative infinity
+ } else {
+ // Smallest magnitude nonzero representable binary16 value
+ // is equal to 0x1.0p-24; half-way and smaller rounds to zero.
+ if (abs_f <= 0x1.0p-25f) { // Covers float zeros and subnormals.
+ return sign_bit; // Positive or negative zero
+ }
+
+ // Dealing with finite values in exponent range of
+ // binary16 (when rounding is done, could still round up)
+ int exp = Math.getExponent(f);
+ assert -25 <= exp && exp <= 15;
+ short signif_bits;
+
+ if (exp <= -15) { // scale down to float subnormal range to do rounding
+ // Use a float multiply to compute the correct
+ // trailing significand bits for a binary16 subnormal.
+ //
+ // The exponent range of normalized binary16 subnormal
+ // values is [-24, -15]. The exponent range of float
+ // subnormals is [-149, -140]. Multiply abs_f down by
+ // 2^(-125) -- since (-125 = -149 - (-24)) -- so that
+ // the trailing bits of a subnormal float represent
+ // the correct trailing bits of a binary16 subnormal.
+ exp = -15; // Subnormal encoding using -E_max.
+ float f_adjust = abs_f * 0x1.0p-125f;
+
+ // In case the significand rounds up and has a carry
+ // propagate all the way up, take the bottom 11 bits
+ // rather than bottom 10 bits. Adding this value,
+ // rather than OR'ing htis value, will cause the right
+ // exponent adjustment.
+ signif_bits = (short)(Float.floatToRawIntBits(f_adjust) & 0x07ff);
+ return (short)(sign_bit | ( ((exp + 15) << 10) + signif_bits ) );
+ } else {
+ // Scale down to subnormal range to round off excess bits
+ int scalingExp = -139 - exp;
+ float scaled = Math.scalb(Math.scalb(f, scalingExp),
+ -scalingExp);
+ exp = Math.getExponent(scaled);
+ doppel = Float.floatToRawIntBits(scaled);
+
+ signif_bits = (short)((doppel & 0x007f_e000) >>
+ (FloatConsts.SIGNIFICAND_WIDTH - 11));
+ return (short)(sign_bit | ( ((exp + 15) << 10) | signif_bits ) );
+ }
+ }
+ }
+
+ public static class Binary16 {
+ public static final short POSITIVE_INFINITY = (short)0x7c00;
+ public static final short MAX_VALUE = 0x7bff;
+ public static final short ONE = 0x3c00;
+ public static final short MIN_NORMAL = 0x0400;
+ public static final short MAX_SUBNORMAL = 0x03ff;
+ public static final short MIN_VALUE = 0x0001;
+ public static final short POSITIVE_ZERO = 0x0000;
+
+ public static boolean isNaN(short binary16) {
+ return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
+ && ((binary16 & 0x03ff) != 0 ); // significand nonzero.
+ }
+
+ public static short negate(short binary16) {
+ return (short)(binary16 ^ 0x8000 ); // Flip only sign bit.
+ }
+
+ public static boolean equivalent(short bin16_1, short bin16_2) {
+ return (bin16_1 == bin16_2) ||
+ isNaN(bin16_1) && isNaN(bin16_2);
+ }
+ }
+}
diff --git a/test/jdk/java/lang/Float/Binary16ConversionNaN.java b/test/jdk/java/lang/Float/Binary16ConversionNaN.java
new file mode 100644
index 00000000000..d541fdf3c31
--- /dev/null
+++ b/test/jdk/java/lang/Float/Binary16ConversionNaN.java
@@ -0,0 +1,88 @@
+/*
+ * Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * @test
+ * @bug 8289551
+ * @summary Verify NaN sign and significand bits are preserved across conversions
+ */
+
+/*
+ * The behavior tested below is an implementation property not
+ * required by the specification. It would be acceptable for this
+ * information to not be preserved (as long as a NaN is returned) if,
+ * say, a intrinsified version using native hardware instructions
+ * behaved differently.
+ *
+ * If that is the case, this test should be modified to disable
+ * intrinsics or to otherwise not run on platforms with an differently
+ * behaving intrinsic.
+ */
+public class Binary16ConversionNaN {
+ public static void main(String... argv) {
+ int errors = 0;
+ errors += binary16NaNRoundTrip();
+
+ if (errors > 0)
+ throw new RuntimeException(errors + " errors");
+ }
+
+ /*
+ * Put all 16-bit NaN values through a conversion loop and make
+ * sure the significand, sign, and exponent are all preserved.
+ */
+ private static int binary16NaNRoundTrip() {
+ int errors = 0;
+ final int NAN_EXPONENT = 0x7c00;
+ final int SIGN_BIT = 0x8000;
+
+ // A NaN has a nonzero significand
+ for (int i = 1; i <= 0x3ff; i++) {
+ short binary16NaN = (short)(NAN_EXPONENT | i);
+ assert isNaN(binary16NaN);
+ errors += testRoundTrip( binary16NaN);
+ errors += testRoundTrip((short)(SIGN_BIT | binary16NaN));
+ }
+ return errors;
+ }
+
+ private static boolean isNaN(short binary16) {
+ return ((binary16 & 0x7c00) == 0x7c00) // Max exponent and...
+ && ((binary16 & 0x03ff) != 0 ); // significand nonzero.
+ }
+
+ private static int testRoundTrip(int i) {
+ int errors = 0;
+ short s = (short)i;
+ float f = Float.float16ToFloat(s);
+ short s2 = Float.floatToFloat16(f);
+
+ if (s != s2) {
+ errors++;
+ System.out.println("Roundtrip failure on NaN value " +
+ Integer.toHexString(0xFFFF & (int)s) +
+ "\t got back " + Integer.toHexString(0xFFFF & (int)s2));
+ }
+ return errors;
+ }
+}