This commit is contained in:
Phil Race 2018-10-31 13:26:06 -07:00
commit 7613af50d9
723 changed files with 5783 additions and 33164 deletions

View File

@ -519,3 +519,4 @@ f0f5d23449d31f1b3580c8a73313918cafeaefd7 jdk-12+11
6f04692c7d5137ee34a6bd94c0c8a6c9219cb127 jdk-12+14
f8626bcc169813a4b2a15880386b952719d1d6d1 jdk-12+15
199658d1ef860cdc17055b4fd3e94b057f292fe9 jdk-12+16
eefa65e142af305923d2adcd596fab9c639723a1 jdk-12+17

View File

@ -707,7 +707,6 @@ ls build/linux-aarch64-normal-server-release/</code></pre></li>
<p>Additional architectures might be supported by Debian/Ubuntu Ports.</p>
<h3 id="building-for-armaarch64">Building for ARM/aarch64</h3>
<p>A common cross-compilation target is the ARM CPU. When building for ARM, it is useful to set the ABI profile. A number of pre-defined ABI profiles are available using <code>--with-abi-profile</code>: arm-vfp-sflt, arm-vfp-hflt, arm-sflt, armv5-vfp-sflt, armv6-vfp-hflt. Note that soft-float ABIs are no longer properly supported by the JDK.</p>
<p>The JDK contains two different ports for the aarch64 platform, one is the original aarch64 port from the <a href="http://openjdk.java.net/projects/aarch64-port">AArch64 Port Project</a> and one is a 64-bit version of the Oracle contributed ARM port. When targeting aarch64, by the default the original aarch64 port is used. To select the Oracle ARM 64 port, use <code>--with-cpu-port=arm64</code>. Also set the corresponding value (<code>aarch64</code> or <code>arm64</code>) to --with-abi-profile, to ensure a consistent build.</p>
<h3 id="verifying-the-build">Verifying the Build</h3>
<p>The build will end up in a directory named like <code>build/linux-arm-normal-server-release</code>.</p>
<p>Inside this build output directory, the <code>images/jdk</code> will contain the newly built JDK, for your <em>target</em> system.</p>

View File

@ -1080,14 +1080,6 @@ available using `--with-abi-profile`: arm-vfp-sflt, arm-vfp-hflt, arm-sflt,
armv5-vfp-sflt, armv6-vfp-hflt. Note that soft-float ABIs are no longer
properly supported by the JDK.
The JDK contains two different ports for the aarch64 platform, one is the
original aarch64 port from the [AArch64 Port Project](
http://openjdk.java.net/projects/aarch64-port) and one is a 64-bit version of
the Oracle contributed ARM port. When targeting aarch64, by the default the
original aarch64 port is used. To select the Oracle ARM 64 port, use
`--with-cpu-port=arm64`. Also set the corresponding value (`aarch64` or
`arm64`) to --with-abi-profile, to ensure a consistent build.
### Verifying the Build
The build will end up in a directory named like

View File

@ -18,12 +18,13 @@
</header>
<nav id="TOC">
<ul>
<li><a href="#using-the-run-test-framework">Using the run-test framework</a><ul>
<li><a href="#using-make-test-the-run-test-framework">Using &quot;make test&quot; (the run-test framework)</a><ul>
<li><a href="#configuration">Configuration</a></li>
</ul></li>
<li><a href="#test-selection">Test selection</a><ul>
<li><a href="#jtreg">JTReg</a></li>
<li><a href="#gtest">Gtest</a></li>
<li><a href="#special-tests">Special tests</a></li>
</ul></li>
<li><a href="#test-results-and-summary">Test results and summary</a></li>
<li><a href="#test-suite-control">Test suite control</a><ul>
@ -32,22 +33,23 @@
</ul></li>
</ul>
</nav>
<h2 id="using-the-run-test-framework">Using the run-test framework</h2>
<h2 id="using-make-test-the-run-test-framework">Using &quot;make test&quot; (the run-test framework)</h2>
<p>This new way of running tests is developer-centric. It assumes that you have built a JDK locally and want to test it. Running common test targets is simple, and more complex ad-hoc combination of tests is possible. The user interface is forgiving, and clearly report errors it cannot resolve.</p>
<p>The main target &quot;run-test&quot; uses the jdk-image as the tested product. There is also an alternate target &quot;exploded-run-test&quot; that uses the exploded image instead. Not all tests will run successfully on the exploded image, but using this target can greatly improve rebuild times for certain workflows.</p>
<p>The main target <code>test</code> uses the jdk-image as the tested product. There is also an alternate target <code>exploded-test</code> that uses the exploded image instead. Not all tests will run successfully on the exploded image, but using this target can greatly improve rebuild times for certain workflows.</p>
<p>Previously, <code>make test</code> was used invoke an old system for running test, and <code>make run-test</code> was used for the new test framework. For backward compatibility with scripts and muscle memory, <code>run-test</code> (and variants like <code>exploded-run-test</code> or <code>run-test-tier1</code>) are kept as aliases. The old system can still be accessed for some time using <code>cd test &amp;&amp; make</code>.</p>
<p>Some example command-lines:</p>
<pre><code>$ make run-test-tier1
$ make run-test-jdk_lang JTREG=&quot;JOBS=8&quot;
$ make run-test TEST=jdk_lang
$ make run-test-only TEST=&quot;gtest:LogTagSet gtest:LogTagSetDescriptions&quot; GTEST=&quot;REPEAT=-1&quot;
$ make run-test TEST=&quot;hotspot:hotspot_gc&quot; JTREG=&quot;JOBS=1;TIMEOUT=8;VM_OPTIONS=-XshowSettings -Xlog:gc+ref=debug&quot;
$ make run-test TEST=&quot;jtreg:test/hotspot:hotspot_gc test/hotspot/jtreg/native_sanity/JniVersion.java&quot;
$ make exploded-run-test TEST=tier2</code></pre>
<pre><code>$ make test-tier1
$ make test-jdk_lang JTREG=&quot;JOBS=8&quot;
$ make test TEST=jdk_lang
$ make test-only TEST=&quot;gtest:LogTagSet gtest:LogTagSetDescriptions&quot; GTEST=&quot;REPEAT=-1&quot;
$ make test TEST=&quot;hotspot:hotspot_gc&quot; JTREG=&quot;JOBS=1;TIMEOUT=8;VM_OPTIONS=-XshowSettings -Xlog:gc+ref=debug&quot;
$ make test TEST=&quot;jtreg:test/hotspot:hotspot_gc test/hotspot/jtreg/native_sanity/JniVersion.java&quot;
$ make exploded-test TEST=tier2</code></pre>
<h3 id="configuration">Configuration</h3>
<p>To be able to run JTReg tests, <code>configure</code> needs to know where to find the JTReg test framework. If it is not picked up automatically by configure, use the <code>--with-jtreg=&lt;path to jtreg home&gt;</code> option to point to the JTReg framework. Note that this option should point to the JTReg home, i.e. the top directory, containing <code>lib/jtreg.jar</code> etc. (An alternative is to set the <code>JT_HOME</code> environment variable to point to the JTReg home before running <code>configure</code>.)</p>
<h2 id="test-selection">Test selection</h2>
<p>All functionality is available using the run-test make target. In this use case, the test or tests to be executed is controlled using the <code>TEST</code> variable. To speed up subsequent test runs with no source code changes, run-test-only can be used instead, which do not depend on the source and test image build.</p>
<p>For some common top-level tests, direct make targets have been generated. This includes all JTReg test groups, the hotspot gtest, and custom tests (if present). This means that <code>make run-test-tier1</code> is equivalent to <code>make run-test TEST=&quot;tier1&quot;</code>, but the latter is more tab-completion friendly. For more complex test runs, the <code>run-test TEST=&quot;x&quot;</code> solution needs to be used.</p>
<p>All functionality is available using the <code>test</code> make target. In this use case, the test or tests to be executed is controlled using the <code>TEST</code> variable. To speed up subsequent test runs with no source code changes, <code>test-only</code> can be used instead, which do not depend on the source and test image build.</p>
<p>For some common top-level tests, direct make targets have been generated. This includes all JTReg test groups, the hotspot gtest, and custom tests (if present). This means that <code>make test-tier1</code> is equivalent to <code>make test TEST=&quot;tier1&quot;</code>, but the latter is more tab-completion friendly. For more complex test runs, the <code>test TEST=&quot;x&quot;</code> solution needs to be used.</p>
<p>The test specifications given in <code>TEST</code> is parsed into fully qualified test descriptors, which clearly and unambigously show which tests will be run. As an example, <code>:tier1</code> will expand to <code>jtreg:$(TOPDIR)/test/hotspot/jtreg:tier1 jtreg:$(TOPDIR)/test/jdk:tier1 jtreg:$(TOPDIR)/test/langtools:tier1 jtreg:$(TOPDIR)/test/nashorn:tier1 jtreg:$(TOPDIR)/test/jaxp:tier1</code>. You can always submit a list of fully qualified test descriptors in the <code>TEST</code> variable if you want to shortcut the parser.</p>
<h3 id="jtreg">JTReg</h3>
<p>JTReg tests can be selected either by picking a JTReg test group, or a selection of files or directories containing JTReg tests.</p>
@ -59,6 +61,14 @@ $ make exploded-run-test TEST=tier2</code></pre>
<p>Since the Hotspot Gtest suite is so quick, the default is to run all tests. This is specified by just <code>gtest</code>, or as a fully qualified test descriptor <code>gtest:all</code>.</p>
<p>If you want, you can single out an individual test or a group of tests, for instance <code>gtest:LogDecorations</code> or <code>gtest:LogDecorations.level_test_vm</code>. This can be particularly useful if you want to run a shaky test repeatedly.</p>
<p>For Gtest, there is a separate test suite for each JVM variant. The JVM variant is defined by adding <code>/&lt;variant&gt;</code> to the test descriptor, e.g. <code>gtest:Log/client</code>. If you specify no variant, gtest will run once for each JVM variant present (e.g. server, client). So if you only have the server JVM present, then <code>gtest:all</code> will be equivalent to <code>gtest:all/server</code>.</p>
<h3 id="special-tests">Special tests</h3>
<p>A handful of odd tests that are not covered by any other testing framework are accessible using the <code>special:</code> test descriptor. Currently, this includes <code>hotspot-internal</code>, <code>failure-handler</code> and <code>make</code>.</p>
<ul>
<li><p>Hotspot legacy internal testing (run using <code>-XX:+ExecuteInternalVMTests</code>) is run using <code>special:hotspot-internal</code> or just <code>hotspot-internal</code> as test descriptor, and will only work on a debug JVM.</p></li>
<li><p>Failure handler testing is run using <code>special:failure-handler</code> or just <code>failure-handler</code> as test descriptor.</p></li>
<li><p>Tests for the build system, including both makefiles and related functionality, is run using <code>special:make</code> or just <code>make</code> as test descriptor. This is equivalent to <code>special:make:all</code>.</p>
<p>A specific make test can be run by supplying it as argument, e.g. <code>special:make:idea</code>. As a special syntax, this can also be expressed as <code>make-idea</code>, which allows for command lines as <code>make test-make-idea</code>.</p></li>
</ul>
<h2 id="test-results-and-summary">Test results and summary</h2>
<p>At the end of the test run, a summary of all tests run will be presented. This will have a consistent look, regardless of what test suites were used. This is a sample summary:</p>
<pre><code>==============================
@ -72,7 +82,7 @@ Test summary
TEST FAILURE</code></pre>
<p>Tests where the number of TOTAL tests does not equal the number of PASSed tests will be considered a test failure. These are marked with the <code>&gt;&gt; ... &lt;&lt;</code> marker for easy identification.</p>
<p>The classification of non-passed tests differs a bit between test suites. In the summary, ERROR is used as a catch-all for tests that neither passed nor are classified as failed by the framework. This might indicate test framework error, timeout or other problems.</p>
<p>In case of test failures, <code>make run-test</code> will exit with a non-zero exit value.</p>
<p>In case of test failures, <code>make test</code> will exit with a non-zero exit value.</p>
<p>All tests have their result stored in <code>build/$BUILD/test-results/$TEST_ID</code>, where TEST_ID is a path-safe conversion from the fully qualified test descriptor, e.g. for <code>jtreg:jdk/test:tier1</code> the TEST_ID is <code>jtreg_jdk_test_tier1</code>. This path is also printed in the log at the end of the test run.</p>
<p>Additional work data is stored in <code>build/$BUILD/test-support/$TEST_ID</code>. For some frameworks, this directory might contain information that is useful in determining the cause of a failed test.</p>
<h2 id="test-suite-control">Test suite control</h2>

View File

@ -1,26 +1,32 @@
% Testing the JDK
## Using the run-test framework
## Using "make test" (the run-test framework)
This new way of running tests is developer-centric. It assumes that you have
built a JDK locally and want to test it. Running common test targets is simple,
and more complex ad-hoc combination of tests is possible. The user interface is
forgiving, and clearly report errors it cannot resolve.
The main target "run-test" uses the jdk-image as the tested product. There is
also an alternate target "exploded-run-test" that uses the exploded image
The main target `test` uses the jdk-image as the tested product. There is
also an alternate target `exploded-test` that uses the exploded image
instead. Not all tests will run successfully on the exploded image, but using
this target can greatly improve rebuild times for certain workflows.
Previously, `make test` was used invoke an old system for running test, and
`make run-test` was used for the new test framework. For backward compatibility
with scripts and muscle memory, `run-test` (and variants like
`exploded-run-test` or `run-test-tier1`) are kept as aliases. The old system
can still be accessed for some time using `cd test && make`.
Some example command-lines:
$ make run-test-tier1
$ make run-test-jdk_lang JTREG="JOBS=8"
$ make run-test TEST=jdk_lang
$ make run-test-only TEST="gtest:LogTagSet gtest:LogTagSetDescriptions" GTEST="REPEAT=-1"
$ make run-test TEST="hotspot:hotspot_gc" JTREG="JOBS=1;TIMEOUT=8;VM_OPTIONS=-XshowSettings -Xlog:gc+ref=debug"
$ make run-test TEST="jtreg:test/hotspot:hotspot_gc test/hotspot/jtreg/native_sanity/JniVersion.java"
$ make exploded-run-test TEST=tier2
$ make test-tier1
$ make test-jdk_lang JTREG="JOBS=8"
$ make test TEST=jdk_lang
$ make test-only TEST="gtest:LogTagSet gtest:LogTagSetDescriptions" GTEST="REPEAT=-1"
$ make test TEST="hotspot:hotspot_gc" JTREG="JOBS=1;TIMEOUT=8;VM_OPTIONS=-XshowSettings -Xlog:gc+ref=debug"
$ make test TEST="jtreg:test/hotspot:hotspot_gc test/hotspot/jtreg/native_sanity/JniVersion.java"
$ make exploded-test TEST=tier2
### Configuration
@ -33,16 +39,16 @@ environment variable to point to the JTReg home before running `configure`.)
## Test selection
All functionality is available using the run-test make target. In this use
case, the test or tests to be executed is controlled using the `TEST` variable.
To speed up subsequent test runs with no source code changes, run-test-only can
be used instead, which do not depend on the source and test image build.
All functionality is available using the `test` make target. In this use case,
the test or tests to be executed is controlled using the `TEST` variable. To
speed up subsequent test runs with no source code changes, `test-only` can be
used instead, which do not depend on the source and test image build.
For some common top-level tests, direct make targets have been generated. This
includes all JTReg test groups, the hotspot gtest, and custom tests (if
present). This means that `make run-test-tier1` is equivalent to `make run-test
present). This means that `make test-tier1` is equivalent to `make test
TEST="tier1"`, but the latter is more tab-completion friendly. For more complex
test runs, the `run-test TEST="x"` solution needs to be used.
test runs, the `test TEST="x"` solution needs to be used.
The test specifications given in `TEST` is parsed into fully qualified test
descriptors, which clearly and unambigously show which tests will be run. As an
@ -98,6 +104,27 @@ is defined by adding `/<variant>` to the test descriptor, e.g.
variant present (e.g. server, client). So if you only have the server JVM
present, then `gtest:all` will be equivalent to `gtest:all/server`.
### Special tests
A handful of odd tests that are not covered by any other testing framework are
accessible using the `special:` test descriptor. Currently, this includes
`hotspot-internal`, `failure-handler` and `make`.
* Hotspot legacy internal testing (run using `-XX:+ExecuteInternalVMTests`)
is run using `special:hotspot-internal` or just `hotspot-internal` as test
descriptor, and will only work on a debug JVM.
* Failure handler testing is run using `special:failure-handler` or just
`failure-handler` as test descriptor.
* Tests for the build system, including both makefiles and related
functionality, is run using `special:make` or just `make` as test
descriptor. This is equivalent to `special:make:all`.
A specific make test can be run by supplying it as argument, e.g.
`special:make:idea`. As a special syntax, this can also be expressed as
`make-idea`, which allows for command lines as `make test-make-idea`.
## Test results and summary
At the end of the test run, a summary of all tests run will be presented. This
@ -123,7 +150,7 @@ the summary, ERROR is used as a catch-all for tests that neither passed nor are
classified as failed by the framework. This might indicate test framework
error, timeout or other problems.
In case of test failures, `make run-test` will exit with a non-zero exit value.
In case of test failures, `make test` will exit with a non-zero exit value.
All tests have their result stored in `build/$BUILD/test-results/$TEST_ID`,
where TEST_ID is a path-safe conversion from the fully qualified test

View File

@ -61,11 +61,11 @@ MODULES_SOURCE_PATH := $(call PathList, $(call GetModuleSrcPath) \
$(SUPPORT_OUTPUTDIR)/rmic/* $(TOPDIR)/src/*/share/doc/stub)
# URLs
JAVADOC_BASE_URL := http://www.oracle.com/pls/topic/lookup?ctx=javase$(VERSION_NUMBER)&amp;id=homepage
BUG_SUBMIT_URL := http://bugreport.java.com/bugreport/
JAVADOC_BASE_URL := https://docs.oracle.com/pls/topic/lookup?ctx=javase$(VERSION_NUMBER)&amp;id=homepage
BUG_SUBMIT_URL := https://bugreport.java.com/bugreport/
COPYRIGHT_URL := {@docroot}/../legal/copyright.html
LICENSE_URL := http://www.oracle.com/technetwork/java/javase/terms/license/java$(VERSION_NUMBER)speclicense.html
REDISTRIBUTION_URL := http://www.oracle.com/technetwork/java/redist-137594.html
LICENSE_URL := https://www.oracle.com/technetwork/java/javase/terms/license/java$(VERSION_NUMBER)speclicense.html
REDISTRIBUTION_URL := https://www.oracle.com/technetwork/java/redist-137594.html
# In order to get a specific ordering it's necessary to specify the total
# ordering of tags as the tags are otherwise ordered in order of definition.

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -55,10 +55,10 @@ help:
$(info $(_) make install # Install the generated images locally)
$(info $(_) make reconfigure # Rerun configure with the same arguments as last time)
$(info $(_) make help # Give some help on using make)
$(info $(_) make test # Run tests, default is all tests (see TEST below))
$(info $(_) make run-test-<test> # Run test, e.g. run-test-tier1)
$(info $(_) make run-test TEST=<t> # Run test(s) given by TEST specification)
$(info $(_) make exploded-run-test TEST=<t> # Run test(s) on the exploded image instead of)
$(info $(_) make check # Run basic testing (currently tier1))
$(info $(_) make test-<test> # Run test, e.g. test-tier1)
$(info $(_) make test TEST=<t> # Run test(s) given by TEST specification)
$(info $(_) make exploded-test TEST=<t> # Run test(s) on the exploded image instead of)
$(info $(_) # the full jdk image)
$(info )
$(info Targets for cleaning)
@ -99,10 +99,12 @@ help:
$(info $(_) TEST_JOBS=<n> # Run <n> parallel test jobs)
$(info $(_) CONF_CHECK=<method> # What to do if spec file is out of date)
$(info $(_) # method is 'auto', 'ignore' or 'fail' (default))
$(info $(_) make test TEST=<test> # Only run the given test or tests, e.g.)
$(info $(_) # make test TEST="jdk_lang jdk_net")
$(info $(_) JTREG="OPT1=x;OPT2=y" # Control the JTREG test harness for run-test)
$(info $(_) GTEST="OPT1=x;OPT2=y" # Control the GTEST test harness for run-test)
$(info $(_) TEST="test1 ..." # Use the given test descriptor(s) for testing, e.g.)
$(info $(_) # make test TEST="jdk_lang gtest:all")
$(info $(_) JTREG="OPT1=x;OPT2=y" # Control the JTREG test harness)
$(info $(_) GTEST="OPT1=x;OPT2=y" # Control the GTEST test harness)
$(info $(_) TEST_OPTS="OPT1=x;..." # Generic control of all test harnesses)
$(info $(_) TEST_VM_OPTS="ARG ..." # Same as setting TEST_OPTS to VM_OPTIONS="ARG ...")
$(info )
$(if $(all_confs), $(info Available configurations in $(build_dir):) $(foreach var,$(all_confs),$(info * $(var))),\
$(info No configurations were found in $(build_dir).) $(info Run 'bash configure' to create a configuration.))

View File

@ -473,10 +473,10 @@ ALL_TARGETS += $(INTERIM_JMOD_TARGETS) interim-image generate-link-opt-data
#
define DeclareRunTestRecipe
run-test-$1:
test-$1:
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test TEST="$1")
exploded-run-test-$1:
exploded-test-$1:
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test \
TEST="$1" JDK_IMAGE_DIR=$(JDK_OUTPUTDIR))
@ -484,8 +484,8 @@ endef
# ALL_NAMED_TESTS is defined in FindTests.gmk
$(foreach t, $(ALL_NAMED_TESTS), $(eval $(call DeclareRunTestRecipe,$t)))
ALL_TEST_TARGETS := $(addprefix run-test-, $(ALL_NAMED_TESTS))
ALL_EXPLODED_TEST_TARGETS := $(addprefix exploded-run-test-, $(ALL_NAMED_TESTS))
ALL_TEST_TARGETS := $(addprefix test-, $(ALL_NAMED_TESTS))
ALL_EXPLODED_TEST_TARGETS := $(addprefix exploded-test-, $(ALL_NAMED_TESTS))
ALL_TARGETS += $(ALL_TEST_TARGETS) $(ALL_EXPLODED_TEST_TARGETS)
@ -520,13 +520,6 @@ test-image-hotspot-jtreg-graal:
+($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) -f JtregGraalUnit.gmk \
test-image-hotspot-jtreg-graal)
run-test:
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test TEST="$(TEST)")
exploded-run-test:
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test \
TEST="$(TEST)" JDK_IMAGE_DIR=$(JDK_OUTPUTDIR))
ifeq ($(BUILD_GTEST), true)
test-image-hotspot-gtest:
+($(CD) $(TOPDIR)/make/hotspot/test && $(MAKE) $(MAKE_ARGS) -f GtestImage.gmk)
@ -541,11 +534,6 @@ ifeq ($(BUILD_FAILURE_HANDLER), true)
+($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) \
-f BuildFailureHandler.gmk build)
# Runs the tests for the failure handler jtreg extension
test-failure-handler:
+($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) \
-f BuildFailureHandler.gmk test)
# Copies the failure handler jtreg extension into the test image
test-image-failure-handler:
+($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) \
@ -556,40 +544,19 @@ ALL_TARGETS += prepare-test-image build-test-hotspot-jtreg-native \
test-image-hotspot-jtreg-native build-test-jdk-jtreg-native \
test-image-jdk-jtreg-native build-test-lib build-test-failure-handler \
test-failure-handler test-image-failure-handler test-image-hotspot-gtest \
test-image-hotspot-jtreg-graal build-test-hotspot-jtreg-graal \
run-test exploded-run-test
test-image-hotspot-jtreg-graal build-test-hotspot-jtreg-graal
################################################################################
# Run tests
# Run tests specified by $(TEST), or the default test set.
test:
$(call RunTests, $(TEST), $(JDK_IMAGE_DIR))
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test TEST="$(TEST)")
test-hotspot-jtreg:
$(call RunTests, "hotspot_all", $(JDK_IMAGE_DIR))
exploded-test:
+($(CD) $(TOPDIR)/make && $(MAKE) $(MAKE_ARGS) -f RunTests.gmk run-test \
TEST="$(TEST)" JDK_IMAGE_DIR=$(JDK_OUTPUTDIR))
test-hotspot-jtreg-native:
$(call RunTests, "hotspot_native_sanity", $(JDK_IMAGE_DIR))
test-hotspot-internal:
$(call RunTests, "hotspot_internal", $(JDK_OUTPUTDIR))
test-hotspot-gtest:
$(call RunTests, "hotspot_gtest", $(JDK_OUTPUTDIR))
test-jdk-jtreg-native:
$(call RunTests, "jdk_native_sanity", $(JDK_IMAGE_DIR))
test-make:
($(CD) $(TOPDIR)/test/make && $(MAKE) $(MAKE_ARGS) -f TestMake.gmk $(TEST_TARGET))
test-compile-commands:
($(CD) $(TOPDIR)/test/make && $(MAKE) $(MAKE_ARGS) -f TestMake.gmk test-compile-commands)
ALL_TARGETS += test test-hotspot-jtreg test-hotspot-jtreg-native \
test-hotspot-internal test-hotspot-gtest test-jdk-jtreg-native test-make \
test-compile-commands
ALL_TARGETS += test exploded-test
################################################################################
# Bundles
@ -874,14 +841,18 @@ else
docs-zip: docs-jdk
# Tests
test: jdk-image test-image
run-test: jdk-image test-image
exploded-run-test: exploded-image test-image
exploded-test: exploded-image test-image
test-make: clean-test-make compile-commands
test-make-compile-commands: compile-commands
# Declare dependency for all generated test targets
$(foreach t, $(ALL_TEST_TARGETS), $(eval $t: jdk-image test-image))
$(foreach t, $(ALL_EXPLODED_TEST_TARGETS), $(eval $t: exploded-image test-image))
$(foreach t, $(filter-out test-make%, $(ALL_TEST_TARGETS)), $(eval $t: jdk-image test-image))
$(foreach t, $(filter-out exploded-test-make%, $(ALL_EXPLODED_TEST_TARGETS)), $(eval $t: exploded-image test-image))
create-buildjdk-copy: jdk.jlink-java java.base-gendata \
$(addsuffix -java, $(INTERIM_IMAGE_MODULES))
@ -890,16 +861,10 @@ else
interim-image: $(INTERIM_JMOD_TARGETS)
test-make: clean-test-make
test-compile-commands: compile-commands
build-test-lib: exploded-image-optimize
build-test-failure-handler: interim-langtools
test-failure-handler: build-test-failure-handler
test-image-failure-handler: build-test-failure-handler
build-test-hotspot-jtreg-native: buildtools-jdk \
@ -917,12 +882,6 @@ else
test-image-hotspot-gtest: hotspot
test-hotspot-internal: exploded-image
test-hotspot-jtreg: jdk-image test-image
test-hotspot-gtest: exploded-image test-image-hotspot-gtest
install: product-images
product-bundles: product-images
@ -1091,6 +1050,30 @@ all: all-images
ALL_TARGETS += default jdk images docs bundles all
# Aliases used for running tests.
# Let "run-test" be an alias for "test"
$(foreach t, $(ALL_NAMED_TESTS), $(eval run-test-$t: test-$t))
$(foreach t, $(ALL_NAMED_TESTS), $(eval exploded-run-test-$t: exploded-test-$t))
RUN_TEST_TARGETS := $(addprefix run-test-, $(ALL_NAMED_TESTS)) \
$(addprefix exploded-run-test-, $(ALL_NAMED_TESTS))
run-test: test
exploded-run-test: exploded-test
# "make check" is a common idiom for running basic testing
check: test-tier1
# Keep some old names as aliases
test-hotspot-jtreg: test-hotspot_all
test-hotspot-jtreg-native: test-hotspot_native_sanity
test-hotspot-gtest: exploded-test-gtest
test-jdk-jtreg-native: test-jdk_native_sanity
ALL_TARGETS += $(RUN_TEST_TARGETS) run-test exploded-run-test check \
test-hotspot-jtreg test-hotspot-jtreg-native test-hotspot-gtest \
test-jdk-jtreg-native
################################################################################
################################################################################
#

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2011, 2017, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -30,17 +30,6 @@
ifndef _MAINSUPPORT_GMK
_MAINSUPPORT_GMK := 1
# Run the tests specified by $1, with PRODUCT_HOME specified by $2
# JT_JAVA is picked up by the jtreg launcher and used to run Jtreg itself.
define RunTests
($(CD) $(TOPDIR)/test && $(MAKE) $(MAKE_ARGS) -j1 -k MAKEFLAGS= \
JT_HOME=$(JT_HOME) PRODUCT_HOME=$(strip $2) \
TEST_IMAGE_DIR=$(TEST_IMAGE_DIR) \
ALT_OUTPUTDIR=$(OUTPUTDIR) TEST_JOBS=$(TEST_JOBS) \
JT_JAVA=$(BOOT_JDK) JIB_JAR=$(JIB_JAR) \
JOBS=$(JOBS) $1) || true
endef
define CleanDocs
@$(PRINTF) "Cleaning docs ..."
@$(PRINTF) "\n" $(LOG_DEBUG)

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -65,10 +65,14 @@ ifeq ($(OPENJDK_TARGET_OS), windows)
ifndef _NT_SYMBOL_PATH
# Can't use PathList here as it adds quotes around the value.
_NT_SYMBOL_PATH := \
$(subst $(SPACE),;, $(foreach p, $(sort $(dir $(wildcard \
$(addprefix $(SYMBOLS_IMAGE_DIR)/bin/, *.pdb */*.pdb)))), $(call FixPath, $p)))
$(subst $(SPACE),;,$(strip \
$(foreach p, $(sort $(dir $(wildcard \
$(addprefix $(SYMBOLS_IMAGE_DIR)/bin/, *.pdb */*.pdb)))), \
$(call FixPath, $p) \
) \
))
export _NT_SYMBOL_PATH
$(info _NT_SYMBOL_PATH $(_NT_SYMBOL_PATH))
$(info _NT_SYMBOL_PATH=$(_NT_SYMBOL_PATH))
endif
endif
@ -296,16 +300,32 @@ endef
# Helper function to determine if a test specification is a special test
#
# It is a special test if it is "special:" followed by a test name.
# It is a special test if it is "special:" followed by a test name,
# if it is "make:" or "make-" followed by a make test, or any of the special test names
# as a single word.
define ParseSpecialTestSelection
$(if $(filter special:%, $1), \
$1 \
) \
$(if $(filter make%, $1), \
$(if $(filter make:%, $1), \
special:$(strip $1) \
) \
$(if $(filter make-%, $1), \
special:$(patsubst make-%,make:%, $1) \
) \
$(if $(filter make, $1), \
special:make:all \
)
) \
$(if $(filter hotspot-internal failure-handler, $1), \
special:$(strip $1) \
)
endef
ifeq ($(TEST), )
$(info No test selection given in TEST!)
$(info Please use e.g. 'run-test TEST=tier1' or 'run-test-tier1')
$(info Please use e.g. 'make test TEST=tier1' or 'make test-tier1')
$(info See doc/testing.[md|html] for help)
$(error Cannot continue)
endif
@ -659,9 +679,13 @@ define SetupRunSpecialTestBody
$$(JDK_IMAGE_DIR)/bin/java -XX:+ExecuteInternalVMTests \
-XX:+ShowMessageBoxOnError -version
else ifeq ($$($1_TEST_NAME), failure-handler)
$1_TEST_COMMAND_LINE := \
($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) -f \
BuildFailureHandler.gmk test)
ifeq ($(BUILD_FAILURE_HANDLER), true)
$1_TEST_COMMAND_LINE := \
($(CD) $(TOPDIR)/make/test && $(MAKE) $(MAKE_ARGS) -f \
BuildFailureHandler.gmk test)
else
$$(error Cannot test failure handler if it is not built)
endif
else ifeq ($$($1_TEST_NAME), make)
$1_TEST_COMMAND_LINE := \
($(CD) $(TOPDIR)/test/make && $(MAKE) $(MAKE_ARGS) -f \

View File

@ -182,3 +182,7 @@ ifeq ($(OPENJDK_BUILD_OS), solaris)
SED := gsed
TAR := gtar
endif
ifeq ($(OPENJDK_BUILD_OS), windows)
CYGPATH := cygpath
endif

View File

@ -747,10 +747,6 @@ AC_DEFUN([FLAGS_SETUP_CFLAGS_CPU_DEP],
# -Wno-psabi to get rid of annoying "note: the mangling of 'va_list' has changed in GCC 4.4"
$1_CFLAGS_CPU="-fsigned-char -Wno-psabi $ARM_ARCH_TYPE_FLAGS $ARM_FLOAT_TYPE_FLAGS -DJDK_ARCH_ABI_PROP_NAME='\"\$(JDK_ARCH_ABI_PROP_NAME)\"'"
$1_CFLAGS_CPU_JVM="-DARM"
elif test "x$FLAGS_CPU" = xaarch64; then
if test "x$HOTSPOT_TARGET_CPU_PORT" = xarm64; then
$1_CFLAGS_CPU_JVM="-fsigned-char -DARM"
fi
elif test "x$FLAGS_CPU_ARCH" = xppc; then
$1_CFLAGS_CPU_JVM="-minsert-sched-nops=regroup_exact -mno-multiple -mno-string"
if test "x$FLAGS_CPU" = xppc64; then

View File

@ -173,10 +173,6 @@ AC_DEFUN([FLAGS_SETUP_LDFLAGS_CPU_DEP],
elif test "x$OPENJDK_$1_CPU" = xarm; then
$1_CPU_LDFLAGS_JVM_ONLY="${$1_CPU_LDFLAGS_JVM_ONLY} -fsigned-char"
$1_CPU_LDFLAGS="$ARM_ARCH_TYPE_FLAGS $ARM_FLOAT_TYPE_FLAGS"
elif test "x$FLAGS_CPU" = xaarch64; then
if test "x$HOTSPOT_TARGET_CPU_PORT" = xarm64; then
$1_CPU_LDFLAGS_JVM_ONLY="${$1_CPU_LDFLAGS_JVM_ONLY} -fsigned-char"
fi
fi
elif test "x$TOOLCHAIN_TYPE" = xsolstudio; then

View File

@ -34,7 +34,7 @@ m4_include([flags-other.m4])
AC_DEFUN([FLAGS_SETUP_ABI_PROFILE],
[
AC_ARG_WITH(abi-profile, [AS_HELP_STRING([--with-abi-profile],
[specify ABI profile for ARM builds (arm-vfp-sflt,arm-vfp-hflt,arm-sflt, armv5-vfp-sflt,armv6-vfp-hflt,arm64,aarch64) @<:@toolchain dependent@:>@ ])])
[specify ABI profile for ARM builds (arm-vfp-sflt,arm-vfp-hflt,arm-sflt, armv5-vfp-sflt,armv6-vfp-hflt,aarch64) @<:@toolchain dependent@:>@ ])])
if test "x$with_abi_profile" != x; then
if test "x$OPENJDK_TARGET_CPU" != xarm && \
@ -61,10 +61,6 @@ AC_DEFUN([FLAGS_SETUP_ABI_PROFILE],
elif test "x$OPENJDK_TARGET_ABI_PROFILE" = xarmv6-vfp-hflt; then
ARM_FLOAT_TYPE=vfp-hflt
ARM_ARCH_TYPE_FLAGS='-march=armv6 -marm'
elif test "x$OPENJDK_TARGET_ABI_PROFILE" = xarm64; then
# No special flags, just need to trigger setting JDK_ARCH_ABI_PROP_NAME
ARM_FLOAT_TYPE=
ARM_ARCH_TYPE_FLAGS=
elif test "x$OPENJDK_TARGET_ABI_PROFILE" = xaarch64; then
# No special flags, just need to trigger setting JDK_ARCH_ABI_PROP_NAME
ARM_FLOAT_TYPE=

View File

@ -72,8 +72,6 @@ AC_DEFUN_ONCE([HOTSPOT_SETUP_JVM_VARIANTS],
AC_ARG_WITH([jvm-variants], [AS_HELP_STRING([--with-jvm-variants],
[JVM variants (separated by commas) to build (server,client,minimal,core,zero,custom) @<:@server@:>@])])
SETUP_HOTSPOT_TARGET_CPU_PORT
if test "x$with_jvm_variants" = x; then
with_jvm_variants="server"
fi
@ -299,9 +297,6 @@ AC_DEFUN_ONCE([HOTSPOT_SETUP_JVM_FEATURES],
if test "x$OPENJDK_TARGET_CPU" = xarm; then
HOTSPOT_TARGET_CPU=arm_32
HOTSPOT_TARGET_CPU_DEFINE="ARM32"
elif test "x$OPENJDK_TARGET_CPU" = xaarch64 && test "x$HOTSPOT_TARGET_CPU_PORT" = xarm64; then
HOTSPOT_TARGET_CPU=arm_64
HOTSPOT_TARGET_CPU_ARCH=arm
fi
# Verify that dependencies are met for explicitly set features.
@ -542,6 +537,9 @@ AC_DEFUN_ONCE([HOTSPOT_SETUP_JVM_FEATURES],
# Used for verification of Makefiles by check-jvm-feature
AC_SUBST(VALID_JVM_FEATURES)
# --with-cpu-port is no longer supported
BASIC_DEPRECATED_ARG_WITH(with-cpu-port)
])
###############################################################################
@ -578,31 +576,6 @@ AC_DEFUN_ONCE([HOTSPOT_FINALIZE_JVM_FEATURES],
done
])
################################################################################
#
# Specify which sources will be used to build the 64-bit ARM port
#
# --with-cpu-port=arm64 will use hotspot/src/cpu/arm
# --with-cpu-port=aarch64 will use hotspot/src/cpu/aarch64
#
AC_DEFUN([SETUP_HOTSPOT_TARGET_CPU_PORT],
[
AC_ARG_WITH(cpu-port, [AS_HELP_STRING([--with-cpu-port],
[specify sources to use for Hotspot 64-bit ARM port (arm64,aarch64) @<:@aarch64@:>@ ])])
if test "x$with_cpu_port" != x; then
if test "x$OPENJDK_TARGET_CPU" != xaarch64; then
AC_MSG_ERROR([--with-cpu-port only available on aarch64])
fi
if test "x$with_cpu_port" != xarm64 && \
test "x$with_cpu_port" != xaarch64; then
AC_MSG_ERROR([--with-cpu-port must specify arm64 or aarch64])
fi
HOTSPOT_TARGET_CPU_PORT="$with_cpu_port"
fi
])
################################################################################
# Check if gtest should be built
#

View File

@ -1,5 +1,5 @@
#
# Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
# Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
@ -72,6 +72,15 @@ ALL_NAMED_TESTS += $(JTREG_TEST_GROUPS)
# Add Gtest
ALL_NAMED_TESTS += gtest
# Find make test targets
MAKE_TEST_TARGETS := $(shell $(MAKE) -s --no-print-directory $(MAKE_ARGS) \
SPEC=$(SPEC) -f $(TOPDIR)/test/make/TestMake.gmk print-targets)
ALL_NAMED_TESTS += $(addprefix make-, $(MAKE_TEST_TARGETS))
# Add special tests
ALL_NAMED_TESTS += hotspot-internal failure-handler make
################################################################################
endif # _FIND_TESTS_GMK

View File

@ -233,8 +233,7 @@ var getJibProfilesCommon = function (input, data) {
common.main_profile_names = [
"linux-x64", "linux-x86", "macosx-x64", "solaris-x64",
"solaris-sparcv9", "windows-x64", "windows-x86",
"linux-aarch64", "linux-arm32", "linux-arm64", "linux-arm-vfp-hflt",
"linux-arm-vfp-hflt-dyn"
"linux-aarch64", "linux-arm32"
];
// These are the base setttings for all the main build profiles.
@ -440,20 +439,7 @@ var getJibProfilesProfiles = function (input, common, data) {
dependencies: ["devkit", "build_devkit", "cups"],
configure_args: [
"--openjdk-target=aarch64-linux-gnu", "--with-freetype=bundled",
"--disable-warnings-as-errors", "--with-cpu-port=aarch64",
],
},
"linux-arm64": {
target_os: "linux",
target_cpu: "aarch64",
build_cpu: "x64",
dependencies: ["devkit", "build_devkit", "cups", "headless_stubs"],
configure_args: [
"--with-cpu-port=arm64",
"--with-jvm-variants=server",
"--openjdk-target=aarch64-linux-gnu",
"--enable-headless-only"
"--disable-warnings-as-errors"
],
},
@ -467,30 +453,7 @@ var getJibProfilesProfiles = function (input, common, data) {
"--with-abi-profile=arm-vfp-hflt", "--disable-warnings-as-errors"
],
},
"linux-arm-vfp-hflt": {
target_os: "linux",
target_cpu: "arm",
build_cpu: "x64",
dependencies: ["devkit", "build_devkit", "cups"],
configure_args: [
"--with-jvm-variants=minimal1,client",
"--with-x=" + input.get("devkit", "install_path") + "/arm-linux-gnueabihf/libc/usr/X11R6-PI",
"--with-fontconfig=" + input.get("devkit", "install_path") + "/arm-linux-gnueabihf/libc/usr/X11R6-PI",
"--openjdk-target=arm-linux-gnueabihf",
"--with-abi-profile=arm-vfp-hflt",
"--with-freetype=bundled"
],
},
// Special version of the SE profile adjusted to be testable on arm64 hardware.
"linux-arm-vfp-hflt-dyn": {
configure_args: "--with-stdc++lib=dynamic"
}
};
// Let linux-arm-vfp-hflt-dyn inherit everything from linux-arm-vfp-hflt
profiles["linux-arm-vfp-hflt-dyn"] = concatObjects(
profiles["linux-arm-vfp-hflt-dyn"], profiles["linux-arm-vfp-hflt"]);
// Add the base settings to all the main profiles
common.main_profile_names.forEach(function (name) {
@ -617,15 +580,6 @@ var getJibProfilesProfiles = function (input, common, data) {
},
"linux-arm32": {
platform: "linux-arm32",
},
"linux-arm64": {
platform: "linux-arm64-vfp-hflt",
},
"linux-arm-vfp-hflt": {
platform: "linux-arm32-vfp-hflt",
},
"linux-arm-vfp-hflt-dyn": {
platform: "linux-arm32-vfp-hflt-dyn",
}
}
// Generate common artifacts for all main profiles
@ -759,7 +713,7 @@ var getJibProfilesProfiles = function (input, common, data) {
testedProfile + ".test"
],
src: "src.conf",
make_args: [ "run-test-prebuilt", "LOG_CMDLINES=true" ],
make_args: [ "run-test-prebuilt", "LOG_CMDLINES=true", "JTREG_VERBOSE=fail,error,time" ],
environment: {
"BOOT_JDK": common.boot_jdk_home,
"JDK_IMAGE_DIR": input.get(testedProfile + ".jdk", "home_path"),
@ -845,21 +799,13 @@ var getJibProfilesProfiles = function (input, common, data) {
var getJibProfilesDependencies = function (input, common) {
var devkit_platform_revisions = {
linux_x64: "gcc7.3.0-OEL6.4+1.0",
linux_x64: "gcc7.3.0-OEL6.4+1.1",
macosx_x64: "Xcode9.4-MacOSX10.13+1.0",
solaris_x64: "SS12u4-Solaris11u1+1.0",
solaris_sparcv9: "SS12u6-Solaris11u3+1.0",
windows_x64: "VS2017-15.5.5+1.0",
linux_aarch64: (input.profile != null && input.profile.indexOf("arm64") >= 0
? "gcc-linaro-aarch64-linux-gnu-4.8-2013.11_linux+1.0"
: "gcc7.3.0-Fedora27+1.0"),
linux_arm: (input.profile != null && input.profile.indexOf("hflt") >= 0
? "gcc-linaro-arm-linux-gnueabihf-raspbian-2012.09-20120921_linux+1.0"
: (input.profile != null && input.profile.indexOf("arm32") >= 0
? "gcc7.3.0-Fedora27+1.0"
: "arm-linaro-4.7+1.0"
)
)
linux_aarch64: "gcc7.3.0-Fedora27+1.0",
linux_arm: "gcc7.3.0-Fedora27+1.0"
};
var devkit_platform = (input.target_cpu == "x86"

View File

@ -36,7 +36,7 @@
# By default this Makefile will build a native toolchain for the current
# platform if called with something like this:
#
# make tars
# make tars BASE_OS=OEL6
#
# To build the full set of crosstools for additional platforms, use a command
# line looking like this:

View File

@ -110,6 +110,7 @@ RPM_LIST := \
libXext libXext-devel \
libXtst libXtst-devel \
libXrender libXrender-devel \
libXrandr libXrandr-devel \
freetype freetype-devel \
libXt libXt-devel \
libSM libSM-devel \

View File

@ -60,12 +60,6 @@ ifeq ($(OPENJDK_TARGET_CPU), x86_64)
OPENJDK_TARGET_CPU_VM_VERSION := amd64
else ifeq ($(OPENJDK_TARGET_CPU), sparcv9)
OPENJDK_TARGET_CPU_VM_VERSION := sparc
else ifeq ($(HOTSPOT_TARGET_CPU_ARCH), arm)
ifeq ($(OPENJDK_TARGET_CPU), aarch64)
# This sets the Oracle Aarch64 port to use arm64
# while the original Aarch64 port uses aarch64
OPENJDK_TARGET_CPU_VM_VERSION := arm64
endif
else
OPENJDK_TARGET_CPU_VM_VERSION := $(OPENJDK_TARGET_CPU)
endif

View File

@ -48,7 +48,7 @@ import static com.sun.source.doctree.DocTree.Kind.*;
* will produce the following html
* <p>
* {@code
* Please see <a href="https://www.oracle.com/pls/topic/lookup?ctx=javase10&id=Borealis">a spectacular</a> sight.
* Please see <a href="https://docs.oracle.com/pls/topic/lookup?ctx=javase10&id=Borealis">a spectacular</a> sight.
* }
*/
public class ExtLink implements Taglet {
@ -63,7 +63,7 @@ public class ExtLink implements Taglet {
static final String TAG_NAME = "extLink";
static final String URL = "https://www.oracle.com/pls/topic/lookup?ctx=javase" +
static final String URL = "https://docs.oracle.com/pls/topic/lookup?ctx=javase" +
SPEC_VERSION + "&amp;id=";
static final Pattern TAG_PATTERN = Pattern.compile("(?s)(\\s*)(?<name>\\w+)(\\s+)(?<desc>.*)$");

View File

@ -38,19 +38,6 @@
int AbstractInterpreter::BasicType_as_index(BasicType type) {
int i = 0;
switch (type) {
#ifdef AARCH64
case T_BOOLEAN: i = 0; break;
case T_CHAR : i = 1; break;
case T_BYTE : i = 2; break;
case T_SHORT : i = 3; break;
case T_INT : // fall through
case T_LONG : // fall through
case T_VOID : // fall through
case T_FLOAT : // fall through
case T_DOUBLE : i = 4; break;
case T_OBJECT : // fall through
case T_ARRAY : i = 5; break;
#else
case T_VOID : i = 0; break;
case T_BOOLEAN: i = 1; break;
case T_CHAR : i = 2; break;
@ -62,7 +49,6 @@ int AbstractInterpreter::BasicType_as_index(BasicType type) {
case T_LONG : i = 7; break;
case T_FLOAT : i = 8; break;
case T_DOUBLE : i = 9; break;
#endif // AARCH64
default : ShouldNotReachHere();
}
assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
@ -71,7 +57,7 @@ int AbstractInterpreter::BasicType_as_index(BasicType type) {
// How much stack a method activation needs in words.
int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
const int stub_code = AARCH64_ONLY(24) NOT_AARCH64(12); // see generate_call_stub
const int stub_code = 12; // see generate_call_stub
// Save space for one monitor to get into the interpreted method in case
// the method is synchronized
int monitor_size = method->is_synchronized() ?
@ -108,9 +94,6 @@ int AbstractInterpreter::size_activation(int max_stack,
(moncount*frame::interpreter_frame_monitor_size()) +
tempcount*Interpreter::stackElementWords + extra_args;
#ifdef AARCH64
size = align_up(size, StackAlignmentInBytes/BytesPerWord);
#endif // AARCH64
return size;
}
@ -146,65 +129,7 @@ void AbstractInterpreter::layout_activation(Method* method,
// interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
// and sender_sp is (fp + sender_sp_offset*wordSize)
#ifdef AARCH64
intptr_t* locals;
if (caller->is_interpreted_frame()) {
// attach locals to the expression stack of caller interpreter frame
locals = caller->interpreter_frame_tos_address() + caller_actual_parameters*Interpreter::stackElementWords - 1;
} else {
assert (is_bottom_frame, "should be");
locals = interpreter_frame->fp() + frame::sender_sp_offset + method->max_locals() - 1;
}
if (TraceDeoptimization) {
tty->print_cr("layout_activation:");
if (caller->is_entry_frame()) {
tty->print("entry ");
}
if (caller->is_compiled_frame()) {
tty->print("compiled ");
}
if (caller->is_interpreted_frame()) {
tty->print("interpreted ");
}
tty->print_cr("caller: sp=%p, unextended_sp=%p, fp=%p, pc=%p", caller->sp(), caller->unextended_sp(), caller->fp(), caller->pc());
tty->print_cr("interpreter_frame: sp=%p, unextended_sp=%p, fp=%p, pc=%p", interpreter_frame->sp(), interpreter_frame->unextended_sp(), interpreter_frame->fp(), interpreter_frame->pc());
tty->print_cr("method: max_locals = %d, size_of_parameters = %d", method->max_locals(), method->size_of_parameters());
tty->print_cr("caller_actual_parameters = %d", caller_actual_parameters);
tty->print_cr("locals = %p", locals);
}
#ifdef ASSERT
if (caller_actual_parameters != method->size_of_parameters()) {
assert(caller->is_interpreted_frame(), "adjusted caller_actual_parameters, but caller is not interpreter frame");
Bytecode_invoke inv(caller->interpreter_frame_method(), caller->interpreter_frame_bci());
if (is_bottom_frame) {
assert(caller_actual_parameters == 0, "invalid adjusted caller_actual_parameters value for bottom frame");
assert(inv.is_invokedynamic() || inv.is_invokehandle(), "adjusted caller_actual_parameters for bottom frame, but not invokedynamic/invokehandle");
} else {
assert(caller_actual_parameters == method->size_of_parameters()+1, "invalid adjusted caller_actual_parameters value");
assert(!inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name()), "adjusted caller_actual_parameters, but no member arg");
}
}
if (caller->is_interpreted_frame()) {
intptr_t* locals_base = (locals - method->max_locals()*Interpreter::stackElementWords + 1);
locals_base = align_down(locals_base, StackAlignmentInBytes);
assert(interpreter_frame->sender_sp() <= locals_base, "interpreter-to-interpreter frame chaining");
} else if (caller->is_compiled_frame()) {
assert(locals + 1 <= caller->unextended_sp(), "compiled-to-interpreter frame chaining");
} else {
assert(caller->is_entry_frame(), "should be");
assert(locals + 1 <= caller->fp(), "entry-to-interpreter frame chaining");
}
#endif // ASSERT
#else
intptr_t* locals = interpreter_frame->sender_sp() + max_locals - 1;
#endif // AARCH64
interpreter_frame->interpreter_frame_set_locals(locals);
BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
@ -215,44 +140,16 @@ void AbstractInterpreter::layout_activation(Method* method,
intptr_t* stack_top = (intptr_t*) monbot -
tempcount*Interpreter::stackElementWords -
popframe_extra_args;
#ifdef AARCH64
interpreter_frame->interpreter_frame_set_stack_top(stack_top);
// We have to add extra reserved slots to max_stack. There are 3 users of the extra slots,
// none of which are at the same time, so we just need to make sure there is enough room
// for the biggest user:
// -reserved slot for exception handler
// -reserved slots for JSR292. Method::extra_stack_entries() is the size.
// -3 reserved slots so get_method_counters() can save some registers before call_VM().
int max_stack = method->constMethod()->max_stack() + MAX2(3, Method::extra_stack_entries());
intptr_t* extended_sp = (intptr_t*) monbot -
(max_stack * Interpreter::stackElementWords) -
popframe_extra_args;
extended_sp = align_down(extended_sp, StackAlignmentInBytes);
interpreter_frame->interpreter_frame_set_extended_sp(extended_sp);
#else
interpreter_frame->interpreter_frame_set_last_sp(stack_top);
#endif // AARCH64
// All frames but the initial (oldest) interpreter frame we fill in have a
// value for sender_sp that allows walking the stack but isn't
// truly correct. Correct the value here.
#ifdef AARCH64
if (caller->is_interpreted_frame()) {
intptr_t* sender_sp = align_down(caller->interpreter_frame_tos_address(), StackAlignmentInBytes);
interpreter_frame->set_interpreter_frame_sender_sp(sender_sp);
} else {
// in case of non-interpreter caller sender_sp of the oldest frame is already
// set to valid value
}
#else
if (extra_locals != 0 &&
interpreter_frame->sender_sp() == interpreter_frame->interpreter_frame_sender_sp() ) {
interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() + extra_locals);
}
#endif // AARCH64
*interpreter_frame->interpreter_frame_cache_addr() =
method->constants()->cache();

File diff suppressed because it is too large Load Diff

View File

@ -1,998 +0,0 @@
//
// Copyright (c) 2008, 2014, Oracle and/or its affiliates. All rights reserved.
// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
//
// This code is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License version 2 only, as
// published by the Free Software Foundation.
//
// This code is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// version 2 for more details (a copy is included in the LICENSE file that
// accompanied this code).
//
// You should have received a copy of the GNU General Public License version
// 2 along with this work; if not, write to the Free Software Foundation,
// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
//
// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
// or visit www.oracle.com if you need additional information or have any
// questions.
//
// ARM Architecture Description File
//----------REGISTER DEFINITION BLOCK------------------------------------------
// This information is used by the matcher and the register allocator to
// describe individual registers and classes of registers within the target
// archtecture.
register %{
//----------Architecture Description Register Definitions----------------------
// General Registers
// "reg_def" name ( register save type, C convention save type,
// ideal register type, encoding, vm name );
// Register Save Types:
//
// NS = No-Save: The register allocator assumes that these registers
// can be used without saving upon entry to the method, &
// that they do not need to be saved at call sites.
//
// SOC = Save-On-Call: The register allocator assumes that these registers
// can be used without saving upon entry to the method,
// but that they must be saved at call sites.
//
// SOE = Save-On-Entry: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, but they do not need to be saved at call
// sites.
//
// AS = Always-Save: The register allocator assumes that these registers
// must be saved before using them upon entry to the
// method, & that they must be saved at call sites.
//
// Ideal Register Type is used to determine how to save & restore a
// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
// FIXME: above comment seems wrong. Spill done through MachSpillCopyNode
//
// The encoding number is the actual bit-pattern placed into the opcodes.
// ----------------------------
// Integer/Long Registers
// ----------------------------
// TODO: would be nice to keep track of high-word state:
// zeroRegI --> RegL
// signedRegI --> RegL
// junkRegI --> RegL
// how to tell C2 to treak RegI as RegL, or RegL as RegI?
reg_def R_R0 (SOC, SOC, Op_RegI, 0, R0->as_VMReg());
reg_def R_R0x (SOC, SOC, Op_RegI, 255, R0->as_VMReg()->next());
reg_def R_R1 (SOC, SOC, Op_RegI, 1, R1->as_VMReg());
reg_def R_R1x (SOC, SOC, Op_RegI, 255, R1->as_VMReg()->next());
reg_def R_R2 (SOC, SOC, Op_RegI, 2, R2->as_VMReg());
reg_def R_R2x (SOC, SOC, Op_RegI, 255, R2->as_VMReg()->next());
reg_def R_R3 (SOC, SOC, Op_RegI, 3, R3->as_VMReg());
reg_def R_R3x (SOC, SOC, Op_RegI, 255, R3->as_VMReg()->next());
reg_def R_R4 (SOC, SOC, Op_RegI, 4, R4->as_VMReg());
reg_def R_R4x (SOC, SOC, Op_RegI, 255, R4->as_VMReg()->next());
reg_def R_R5 (SOC, SOC, Op_RegI, 5, R5->as_VMReg());
reg_def R_R5x (SOC, SOC, Op_RegI, 255, R5->as_VMReg()->next());
reg_def R_R6 (SOC, SOC, Op_RegI, 6, R6->as_VMReg());
reg_def R_R6x (SOC, SOC, Op_RegI, 255, R6->as_VMReg()->next());
reg_def R_R7 (SOC, SOC, Op_RegI, 7, R7->as_VMReg());
reg_def R_R7x (SOC, SOC, Op_RegI, 255, R7->as_VMReg()->next());
reg_def R_R8 (SOC, SOC, Op_RegI, 8, R8->as_VMReg());
reg_def R_R8x (SOC, SOC, Op_RegI, 255, R8->as_VMReg()->next());
reg_def R_R9 (SOC, SOC, Op_RegI, 9, R9->as_VMReg());
reg_def R_R9x (SOC, SOC, Op_RegI, 255, R9->as_VMReg()->next());
reg_def R_R10 (SOC, SOC, Op_RegI, 10, R10->as_VMReg());
reg_def R_R10x(SOC, SOC, Op_RegI, 255, R10->as_VMReg()->next());
reg_def R_R11 (SOC, SOC, Op_RegI, 11, R11->as_VMReg());
reg_def R_R11x(SOC, SOC, Op_RegI, 255, R11->as_VMReg()->next());
reg_def R_R12 (SOC, SOC, Op_RegI, 12, R12->as_VMReg());
reg_def R_R12x(SOC, SOC, Op_RegI, 255, R12->as_VMReg()->next());
reg_def R_R13 (SOC, SOC, Op_RegI, 13, R13->as_VMReg());
reg_def R_R13x(SOC, SOC, Op_RegI, 255, R13->as_VMReg()->next());
reg_def R_R14 (SOC, SOC, Op_RegI, 14, R14->as_VMReg());
reg_def R_R14x(SOC, SOC, Op_RegI, 255, R14->as_VMReg()->next());
reg_def R_R15 (SOC, SOC, Op_RegI, 15, R15->as_VMReg());
reg_def R_R15x(SOC, SOC, Op_RegI, 255, R15->as_VMReg()->next());
reg_def R_R16 (SOC, SOC, Op_RegI, 16, R16->as_VMReg()); // IP0
reg_def R_R16x(SOC, SOC, Op_RegI, 255, R16->as_VMReg()->next());
reg_def R_R17 (SOC, SOC, Op_RegI, 17, R17->as_VMReg()); // IP1
reg_def R_R17x(SOC, SOC, Op_RegI, 255, R17->as_VMReg()->next());
reg_def R_R18 (SOC, SOC, Op_RegI, 18, R18->as_VMReg()); // Platform Register
reg_def R_R18x(SOC, SOC, Op_RegI, 255, R18->as_VMReg()->next());
reg_def R_R19 (SOC, SOE, Op_RegI, 19, R19->as_VMReg());
reg_def R_R19x(SOC, SOE, Op_RegI, 255, R19->as_VMReg()->next());
reg_def R_R20 (SOC, SOE, Op_RegI, 20, R20->as_VMReg());
reg_def R_R20x(SOC, SOE, Op_RegI, 255, R20->as_VMReg()->next());
reg_def R_R21 (SOC, SOE, Op_RegI, 21, R21->as_VMReg());
reg_def R_R21x(SOC, SOE, Op_RegI, 255, R21->as_VMReg()->next());
reg_def R_R22 (SOC, SOE, Op_RegI, 22, R22->as_VMReg());
reg_def R_R22x(SOC, SOE, Op_RegI, 255, R22->as_VMReg()->next());
reg_def R_R23 (SOC, SOE, Op_RegI, 23, R23->as_VMReg());
reg_def R_R23x(SOC, SOE, Op_RegI, 255, R23->as_VMReg()->next());
reg_def R_R24 (SOC, SOE, Op_RegI, 24, R24->as_VMReg());
reg_def R_R24x(SOC, SOE, Op_RegI, 255, R24->as_VMReg()->next());
reg_def R_R25 (SOC, SOE, Op_RegI, 25, R25->as_VMReg());
reg_def R_R25x(SOC, SOE, Op_RegI, 255, R25->as_VMReg()->next());
reg_def R_R26 (SOC, SOE, Op_RegI, 26, R26->as_VMReg());
reg_def R_R26x(SOC, SOE, Op_RegI, 255, R26->as_VMReg()->next());
reg_def R_R27 (SOC, SOE, Op_RegI, 27, R27->as_VMReg()); // Rheap_base
reg_def R_R27x(SOC, SOE, Op_RegI, 255, R27->as_VMReg()->next()); // Rheap_base
reg_def R_R28 ( NS, SOE, Op_RegI, 28, R28->as_VMReg()); // TLS
reg_def R_R28x( NS, SOE, Op_RegI, 255, R28->as_VMReg()->next()); // TLS
reg_def R_R29 ( NS, SOE, Op_RegI, 29, R29->as_VMReg()); // FP
reg_def R_R29x( NS, SOE, Op_RegI, 255, R29->as_VMReg()->next()); // FP
reg_def R_R30 (SOC, SOC, Op_RegI, 30, R30->as_VMReg()); // LR
reg_def R_R30x(SOC, SOC, Op_RegI, 255, R30->as_VMReg()->next()); // LR
reg_def R_ZR ( NS, NS, Op_RegI, 31, ZR->as_VMReg()); // ZR
reg_def R_ZRx( NS, NS, Op_RegI, 255, ZR->as_VMReg()->next()); // ZR
// FIXME
//reg_def R_SP ( NS, NS, Op_RegP, 32, SP->as_VMReg());
reg_def R_SP ( NS, NS, Op_RegI, 32, SP->as_VMReg());
//reg_def R_SPx( NS, NS, Op_RegP, 255, SP->as_VMReg()->next());
reg_def R_SPx( NS, NS, Op_RegI, 255, SP->as_VMReg()->next());
// ----------------------------
// Float/Double/Vector Registers
// ----------------------------
reg_def R_V0(SOC, SOC, Op_RegF, 0, V0->as_VMReg());
reg_def R_V1(SOC, SOC, Op_RegF, 1, V1->as_VMReg());
reg_def R_V2(SOC, SOC, Op_RegF, 2, V2->as_VMReg());
reg_def R_V3(SOC, SOC, Op_RegF, 3, V3->as_VMReg());
reg_def R_V4(SOC, SOC, Op_RegF, 4, V4->as_VMReg());
reg_def R_V5(SOC, SOC, Op_RegF, 5, V5->as_VMReg());
reg_def R_V6(SOC, SOC, Op_RegF, 6, V6->as_VMReg());
reg_def R_V7(SOC, SOC, Op_RegF, 7, V7->as_VMReg());
reg_def R_V8(SOC, SOC, Op_RegF, 8, V8->as_VMReg());
reg_def R_V9(SOC, SOC, Op_RegF, 9, V9->as_VMReg());
reg_def R_V10(SOC, SOC, Op_RegF, 10, V10->as_VMReg());
reg_def R_V11(SOC, SOC, Op_RegF, 11, V11->as_VMReg());
reg_def R_V12(SOC, SOC, Op_RegF, 12, V12->as_VMReg());
reg_def R_V13(SOC, SOC, Op_RegF, 13, V13->as_VMReg());
reg_def R_V14(SOC, SOC, Op_RegF, 14, V14->as_VMReg());
reg_def R_V15(SOC, SOC, Op_RegF, 15, V15->as_VMReg());
reg_def R_V16(SOC, SOC, Op_RegF, 16, V16->as_VMReg());
reg_def R_V17(SOC, SOC, Op_RegF, 17, V17->as_VMReg());
reg_def R_V18(SOC, SOC, Op_RegF, 18, V18->as_VMReg());
reg_def R_V19(SOC, SOC, Op_RegF, 19, V19->as_VMReg());
reg_def R_V20(SOC, SOC, Op_RegF, 20, V20->as_VMReg());
reg_def R_V21(SOC, SOC, Op_RegF, 21, V21->as_VMReg());
reg_def R_V22(SOC, SOC, Op_RegF, 22, V22->as_VMReg());
reg_def R_V23(SOC, SOC, Op_RegF, 23, V23->as_VMReg());
reg_def R_V24(SOC, SOC, Op_RegF, 24, V24->as_VMReg());
reg_def R_V25(SOC, SOC, Op_RegF, 25, V25->as_VMReg());
reg_def R_V26(SOC, SOC, Op_RegF, 26, V26->as_VMReg());
reg_def R_V27(SOC, SOC, Op_RegF, 27, V27->as_VMReg());
reg_def R_V28(SOC, SOC, Op_RegF, 28, V28->as_VMReg());
reg_def R_V29(SOC, SOC, Op_RegF, 29, V29->as_VMReg());
reg_def R_V30(SOC, SOC, Op_RegF, 30, V30->as_VMReg());
reg_def R_V31(SOC, SOC, Op_RegF, 31, V31->as_VMReg());
reg_def R_V0b(SOC, SOC, Op_RegF, 255, V0->as_VMReg()->next(1));
reg_def R_V1b(SOC, SOC, Op_RegF, 255, V1->as_VMReg()->next(1));
reg_def R_V2b(SOC, SOC, Op_RegF, 255, V2->as_VMReg()->next(1));
reg_def R_V3b(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(1));
reg_def R_V4b(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(1));
reg_def R_V5b(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(1));
reg_def R_V6b(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(1));
reg_def R_V7b(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(1));
reg_def R_V8b(SOC, SOC, Op_RegF, 255, V8->as_VMReg()->next(1));
reg_def R_V9b(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(1));
reg_def R_V10b(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(1));
reg_def R_V11b(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(1));
reg_def R_V12b(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(1));
reg_def R_V13b(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(1));
reg_def R_V14b(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(1));
reg_def R_V15b(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(1));
reg_def R_V16b(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(1));
reg_def R_V17b(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(1));
reg_def R_V18b(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(1));
reg_def R_V19b(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(1));
reg_def R_V20b(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(1));
reg_def R_V21b(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(1));
reg_def R_V22b(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(1));
reg_def R_V23b(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(1));
reg_def R_V24b(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(1));
reg_def R_V25b(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(1));
reg_def R_V26b(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(1));
reg_def R_V27b(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(1));
reg_def R_V28b(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(1));
reg_def R_V29b(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(1));
reg_def R_V30b(SOC, SOC, Op_RegD, 30, V30->as_VMReg()->next(1));
reg_def R_V31b(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(1));
reg_def R_V0c(SOC, SOC, Op_RegF, 0, V0->as_VMReg()->next(2));
reg_def R_V1c(SOC, SOC, Op_RegF, 1, V1->as_VMReg()->next(2));
reg_def R_V2c(SOC, SOC, Op_RegF, 2, V2->as_VMReg()->next(2));
reg_def R_V3c(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(2));
reg_def R_V4c(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(2));
reg_def R_V5c(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(2));
reg_def R_V6c(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(2));
reg_def R_V7c(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(2));
reg_def R_V8c(SOC, SOC, Op_RegF, 8, V8->as_VMReg()->next(2));
reg_def R_V9c(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(2));
reg_def R_V10c(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(2));
reg_def R_V11c(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(2));
reg_def R_V12c(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(2));
reg_def R_V13c(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(2));
reg_def R_V14c(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(2));
reg_def R_V15c(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(2));
reg_def R_V16c(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(2));
reg_def R_V17c(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(2));
reg_def R_V18c(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(2));
reg_def R_V19c(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(2));
reg_def R_V20c(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(2));
reg_def R_V21c(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(2));
reg_def R_V22c(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(2));
reg_def R_V23c(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(2));
reg_def R_V24c(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(2));
reg_def R_V25c(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(2));
reg_def R_V26c(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(2));
reg_def R_V27c(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(2));
reg_def R_V28c(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(2));
reg_def R_V29c(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(2));
reg_def R_V30c(SOC, SOC, Op_RegF, 30, V30->as_VMReg()->next(2));
reg_def R_V31c(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(2));
reg_def R_V0d(SOC, SOC, Op_RegF, 0, V0->as_VMReg()->next(3));
reg_def R_V1d(SOC, SOC, Op_RegF, 1, V1->as_VMReg()->next(3));
reg_def R_V2d(SOC, SOC, Op_RegF, 2, V2->as_VMReg()->next(3));
reg_def R_V3d(SOC, SOC, Op_RegF, 3, V3->as_VMReg()->next(3));
reg_def R_V4d(SOC, SOC, Op_RegF, 4, V4->as_VMReg()->next(3));
reg_def R_V5d(SOC, SOC, Op_RegF, 5, V5->as_VMReg()->next(3));
reg_def R_V6d(SOC, SOC, Op_RegF, 6, V6->as_VMReg()->next(3));
reg_def R_V7d(SOC, SOC, Op_RegF, 7, V7->as_VMReg()->next(3));
reg_def R_V8d(SOC, SOC, Op_RegF, 8, V8->as_VMReg()->next(3));
reg_def R_V9d(SOC, SOC, Op_RegF, 9, V9->as_VMReg()->next(3));
reg_def R_V10d(SOC, SOC, Op_RegF, 10, V10->as_VMReg()->next(3));
reg_def R_V11d(SOC, SOC, Op_RegF, 11, V11->as_VMReg()->next(3));
reg_def R_V12d(SOC, SOC, Op_RegF, 12, V12->as_VMReg()->next(3));
reg_def R_V13d(SOC, SOC, Op_RegF, 13, V13->as_VMReg()->next(3));
reg_def R_V14d(SOC, SOC, Op_RegF, 14, V14->as_VMReg()->next(3));
reg_def R_V15d(SOC, SOC, Op_RegF, 15, V15->as_VMReg()->next(3));
reg_def R_V16d(SOC, SOC, Op_RegF, 16, V16->as_VMReg()->next(3));
reg_def R_V17d(SOC, SOC, Op_RegF, 17, V17->as_VMReg()->next(3));
reg_def R_V18d(SOC, SOC, Op_RegF, 18, V18->as_VMReg()->next(3));
reg_def R_V19d(SOC, SOC, Op_RegF, 19, V19->as_VMReg()->next(3));
reg_def R_V20d(SOC, SOC, Op_RegF, 20, V20->as_VMReg()->next(3));
reg_def R_V21d(SOC, SOC, Op_RegF, 21, V21->as_VMReg()->next(3));
reg_def R_V22d(SOC, SOC, Op_RegF, 22, V22->as_VMReg()->next(3));
reg_def R_V23d(SOC, SOC, Op_RegF, 23, V23->as_VMReg()->next(3));
reg_def R_V24d(SOC, SOC, Op_RegF, 24, V24->as_VMReg()->next(3));
reg_def R_V25d(SOC, SOC, Op_RegF, 25, V25->as_VMReg()->next(3));
reg_def R_V26d(SOC, SOC, Op_RegF, 26, V26->as_VMReg()->next(3));
reg_def R_V27d(SOC, SOC, Op_RegF, 27, V27->as_VMReg()->next(3));
reg_def R_V28d(SOC, SOC, Op_RegF, 28, V28->as_VMReg()->next(3));
reg_def R_V29d(SOC, SOC, Op_RegF, 29, V29->as_VMReg()->next(3));
reg_def R_V30d(SOC, SOC, Op_RegF, 30, V30->as_VMReg()->next(3));
reg_def R_V31d(SOC, SOC, Op_RegF, 31, V31->as_VMReg()->next(3));
// ----------------------------
// Special Registers
// Condition Codes Flag Registers
reg_def APSR (SOC, SOC, Op_RegFlags, 255, VMRegImpl::Bad());
reg_def FPSCR(SOC, SOC, Op_RegFlags, 255, VMRegImpl::Bad());
// ----------------------------
// Specify the enum values for the registers. These enums are only used by the
// OptoReg "class". We can convert these enum values at will to VMReg when needed
// for visibility to the rest of the vm. The order of this enum influences the
// register allocator so having the freedom to set this order and not be stuck
// with the order that is natural for the rest of the vm is worth it.
// Quad vector must be aligned here, so list them first.
alloc_class fprs(
R_V8, R_V8b, R_V8c, R_V8d, R_V9, R_V9b, R_V9c, R_V9d,
R_V10, R_V10b, R_V10c, R_V10d, R_V11, R_V11b, R_V11c, R_V11d,
R_V12, R_V12b, R_V12c, R_V12d, R_V13, R_V13b, R_V13c, R_V13d,
R_V14, R_V14b, R_V14c, R_V14d, R_V15, R_V15b, R_V15c, R_V15d,
R_V16, R_V16b, R_V16c, R_V16d, R_V17, R_V17b, R_V17c, R_V17d,
R_V18, R_V18b, R_V18c, R_V18d, R_V19, R_V19b, R_V19c, R_V19d,
R_V20, R_V20b, R_V20c, R_V20d, R_V21, R_V21b, R_V21c, R_V21d,
R_V22, R_V22b, R_V22c, R_V22d, R_V23, R_V23b, R_V23c, R_V23d,
R_V24, R_V24b, R_V24c, R_V24d, R_V25, R_V25b, R_V25c, R_V25d,
R_V26, R_V26b, R_V26c, R_V26d, R_V27, R_V27b, R_V27c, R_V27d,
R_V28, R_V28b, R_V28c, R_V28d, R_V29, R_V29b, R_V29c, R_V29d,
R_V30, R_V30b, R_V30c, R_V30d, R_V31, R_V31b, R_V31c, R_V31d,
R_V0, R_V0b, R_V0c, R_V0d, R_V1, R_V1b, R_V1c, R_V1d,
R_V2, R_V2b, R_V2c, R_V2d, R_V3, R_V3b, R_V3c, R_V3d,
R_V4, R_V4b, R_V4c, R_V4d, R_V5, R_V5b, R_V5c, R_V5d,
R_V6, R_V6b, R_V6c, R_V6d, R_V7, R_V7b, R_V7c, R_V7d
);
// Need double-register alignment here.
// We are already quad-register aligned because of vectors above.
alloc_class gprs(
R_R0, R_R0x, R_R1, R_R1x, R_R2, R_R2x, R_R3, R_R3x,
R_R4, R_R4x, R_R5, R_R5x, R_R6, R_R6x, R_R7, R_R7x,
R_R8, R_R8x, R_R9, R_R9x, R_R10, R_R10x, R_R11, R_R11x,
R_R12, R_R12x, R_R13, R_R13x, R_R14, R_R14x, R_R15, R_R15x,
R_R16, R_R16x, R_R17, R_R17x, R_R18, R_R18x, R_R19, R_R19x,
R_R20, R_R20x, R_R21, R_R21x, R_R22, R_R22x, R_R23, R_R23x,
R_R24, R_R24x, R_R25, R_R25x, R_R26, R_R26x, R_R27, R_R27x,
R_R28, R_R28x, R_R29, R_R29x, R_R30, R_R30x
);
// Continuing with double-reigister alignment...
alloc_class chunk2(APSR, FPSCR);
alloc_class chunk3(R_SP, R_SPx);
alloc_class chunk4(R_ZR, R_ZRx);
//----------Architecture Description Register Classes--------------------------
// Several register classes are automatically defined based upon information in
// this architecture description.
// 1) reg_class inline_cache_reg ( as defined in frame section )
// 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
// 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
//
// ----------------------------
// Integer Register Classes
// ----------------------------
reg_class int_reg_all(R_R0, R_R1, R_R2, R_R3, R_R4, R_R5, R_R6, R_R7,
R_R8, R_R9, R_R10, R_R11, R_R12, R_R13, R_R14, R_R15,
R_R16, R_R17, R_R18, R_R19, R_R20, R_R21, R_R22, R_R23,
R_R24, R_R25, R_R26, R_R27, R_R28, R_R29, R_R30
);
// Exclusions from i_reg:
// SP (R31)
// Rthread/R28: reserved by HotSpot to the TLS register (invariant within Java)
reg_class int_reg %{
return _INT_REG_mask;
%}
reg_class ptr_reg %{
return _PTR_REG_mask;
%}
reg_class vectorx_reg %{
return _VECTORX_REG_mask;
%}
reg_class R0_regI(R_R0);
reg_class R1_regI(R_R1);
reg_class R2_regI(R_R2);
reg_class R3_regI(R_R3);
//reg_class R12_regI(R_R12);
// ----------------------------
// Pointer Register Classes
// ----------------------------
// Special class for storeP instructions, which can store SP or RPC to TLS.
// It is also used for memory addressing, allowing direct TLS addressing.
reg_class sp_ptr_reg %{
return _SP_PTR_REG_mask;
%}
reg_class store_reg %{
return _STR_REG_mask;
%}
reg_class store_ptr_reg %{
return _STR_PTR_REG_mask;
%}
reg_class spillP_reg %{
return _SPILLP_REG_mask;
%}
// Other special pointer regs
reg_class R0_regP(R_R0, R_R0x);
reg_class R1_regP(R_R1, R_R1x);
reg_class R2_regP(R_R2, R_R2x);
reg_class Rexception_regP(R_R19, R_R19x);
reg_class Ricklass_regP(R_R8, R_R8x);
reg_class Rmethod_regP(R_R27, R_R27x);
reg_class Rthread_regP(R_R28, R_R28x);
reg_class IP_regP(R_R16, R_R16x);
#define RtempRegP IPRegP
reg_class LR_regP(R_R30, R_R30x);
reg_class SP_regP(R_SP, R_SPx);
reg_class FP_regP(R_R29, R_R29x);
reg_class ZR_regP(R_ZR, R_ZRx);
reg_class ZR_regI(R_ZR);
// ----------------------------
// Long Register Classes
// ----------------------------
reg_class long_reg %{ return _PTR_REG_mask; %}
// for ldrexd, strexd: first reg of pair must be even
reg_class long_reg_align %{ return LONG_REG_mask(); %}
reg_class R0_regL(R_R0,R_R0x); // arg 1 or return value
// ----------------------------
// Special Class for Condition Code Flags Register
reg_class int_flags(APSR);
reg_class float_flags(FPSCR);
// ----------------------------
// Float Point Register Classes
// ----------------------------
reg_class sflt_reg_0(
R_V0, R_V1, R_V2, R_V3, R_V4, R_V5, R_V6, R_V7,
R_V8, R_V9, R_V10, R_V11, R_V12, R_V13, R_V14, R_V15,
R_V16, R_V17, R_V18, R_V19, R_V20, R_V21, R_V22, R_V23,
R_V24, R_V25, R_V26, R_V27, R_V28, R_V29, R_V30, R_V31);
reg_class sflt_reg %{
return _SFLT_REG_mask;
%}
reg_class dflt_low_reg %{
return _DFLT_REG_mask;
%}
reg_class actual_dflt_reg %{
return _DFLT_REG_mask;
%}
reg_class vectorx_reg_0(
R_V0, R_V1, R_V2, R_V3, R_V4, R_V5, R_V6, R_V7,
R_V8, R_V9, R_V10, R_V11, R_V12, R_V13, R_V14, R_V15,
R_V16, R_V17, R_V18, R_V19, R_V20, R_V21, R_V22, R_V23,
R_V24, R_V25, R_V26, R_V27, R_V28, R_V29, R_V30, /*R_V31,*/
R_V0b, R_V1b, R_V2b, R_V3b, R_V4b, R_V5b, R_V6b, R_V7b,
R_V8b, R_V9b, R_V10b, R_V11b, R_V12b, R_V13b, R_V14b, R_V15b,
R_V16b, R_V17b, R_V18b, R_V19b, R_V20b, R_V21b, R_V22b, R_V23b,
R_V24b, R_V25b, R_V26b, R_V27b, R_V28b, R_V29b, R_V30b, /*R_V31b,*/
R_V0c, R_V1c, R_V2c, R_V3c, R_V4c, R_V5c, R_V6c, R_V7c,
R_V8c, R_V9c, R_V10c, R_V11c, R_V12c, R_V13c, R_V14c, R_V15c,
R_V16c, R_V17c, R_V18c, R_V19c, R_V20c, R_V21c, R_V22c, R_V23c,
R_V24c, R_V25c, R_V26c, R_V27c, R_V28c, R_V29c, R_V30c, /*R_V31c,*/
R_V0d, R_V1d, R_V2d, R_V3d, R_V4d, R_V5d, R_V6d, R_V7d,
R_V8d, R_V9d, R_V10d, R_V11d, R_V12d, R_V13d, R_V14d, R_V15d,
R_V16d, R_V17d, R_V18d, R_V19d, R_V20d, R_V21d, R_V22d, R_V23d,
R_V24d, R_V25d, R_V26d, R_V27d, R_V28d, R_V29d, R_V30d, /*R_V31d*/);
reg_class Rmemcopy_reg %{
return _RMEMCOPY_REG_mask;
%}
%}
source_hpp %{
const MachRegisterNumbers R_mem_copy_lo_num = R_V31_num;
const MachRegisterNumbers R_mem_copy_hi_num = R_V31b_num;
const FloatRegister Rmemcopy = V31;
const MachRegisterNumbers R_hf_ret_lo_num = R_V0_num;
const MachRegisterNumbers R_hf_ret_hi_num = R_V0b_num;
const FloatRegister Rhfret = V0;
extern OptoReg::Name R_Ricklass_num;
extern OptoReg::Name R_Rmethod_num;
extern OptoReg::Name R_tls_num;
extern OptoReg::Name R_Rheap_base_num;
extern RegMask _INT_REG_mask;
extern RegMask _PTR_REG_mask;
extern RegMask _SFLT_REG_mask;
extern RegMask _DFLT_REG_mask;
extern RegMask _VECTORX_REG_mask;
extern RegMask _RMEMCOPY_REG_mask;
extern RegMask _SP_PTR_REG_mask;
extern RegMask _SPILLP_REG_mask;
extern RegMask _STR_REG_mask;
extern RegMask _STR_PTR_REG_mask;
#define LDR_DOUBLE "LDR_D"
#define LDR_FLOAT "LDR_S"
#define STR_DOUBLE "STR_D"
#define STR_FLOAT "STR_S"
#define STR_64 "STR"
#define LDR_64 "LDR"
#define STR_32 "STR_W"
#define LDR_32 "LDR_W"
#define MOV_DOUBLE "FMOV_D"
#define MOV_FLOAT "FMOV_S"
#define FMSR "FMOV_SW"
#define FMRS "FMOV_WS"
#define LDREX "ldxr "
#define STREX "stxr "
#define str_64 str
#define ldr_64 ldr
#define ldr_32 ldr_w
#define ldrex ldxr
#define strex stxr
#define fmsr fmov_sw
#define fmrs fmov_ws
#define fconsts fmov_s
#define fconstd fmov_d
static inline bool is_uimm12(jlong imm, int shift) {
return Assembler::is_unsigned_imm_in_range(imm, 12, shift);
}
static inline bool is_memoryD(int offset) {
int scale = 3; // LogBytesPerDouble
return is_uimm12(offset, scale);
}
static inline bool is_memoryfp(int offset) {
int scale = LogBytesPerInt; // include 32-bit word accesses
return is_uimm12(offset, scale);
}
static inline bool is_memoryI(int offset) {
int scale = LogBytesPerInt;
return is_uimm12(offset, scale);
}
static inline bool is_memoryP(int offset) {
int scale = LogBytesPerWord;
return is_uimm12(offset, scale);
}
static inline bool is_memoryHD(int offset) {
int scale = LogBytesPerInt; // include 32-bit word accesses
return is_uimm12(offset, scale);
}
uintx limmL_low(uintx imm, int n);
static inline bool Xis_aimm(int imm) {
return Assembler::ArithmeticImmediate(imm).is_encoded();
}
static inline bool is_aimm(intptr_t imm) {
return Assembler::ArithmeticImmediate(imm).is_encoded();
}
static inline bool is_limmL(uintptr_t imm) {
return Assembler::LogicalImmediate(imm).is_encoded();
}
static inline bool is_limmL_low(intptr_t imm, int n) {
return is_limmL(limmL_low(imm, n));
}
static inline bool is_limmI(jint imm) {
return Assembler::LogicalImmediate(imm, true).is_encoded();
}
static inline uintx limmI_low(jint imm, int n) {
return limmL_low(imm, n);
}
static inline bool is_limmI_low(jint imm, int n) {
return is_limmL_low(imm, n);
}
%}
source %{
// Given a register encoding, produce a Integer Register object
static Register reg_to_register_object(int register_encoding) {
assert(R0->encoding() == R_R0_enc && R30->encoding() == R_R30_enc, "right coding");
assert(Rthread->encoding() == R_R28_enc, "right coding");
assert(SP->encoding() == R_SP_enc, "right coding");
return as_Register(register_encoding);
}
// Given a register encoding, produce a single-precision Float Register object
static FloatRegister reg_to_FloatRegister_object(int register_encoding) {
assert(V0->encoding() == R_V0_enc && V31->encoding() == R_V31_enc, "right coding");
return as_FloatRegister(register_encoding);
}
RegMask _INT_REG_mask;
RegMask _PTR_REG_mask;
RegMask _SFLT_REG_mask;
RegMask _DFLT_REG_mask;
RegMask _VECTORX_REG_mask;
RegMask _RMEMCOPY_REG_mask;
RegMask _SP_PTR_REG_mask;
RegMask _SPILLP_REG_mask;
RegMask _STR_REG_mask;
RegMask _STR_PTR_REG_mask;
OptoReg::Name R_Ricklass_num = -1;
OptoReg::Name R_Rmethod_num = -1;
OptoReg::Name R_tls_num = -1;
OptoReg::Name R_Rtemp_num = -1;
OptoReg::Name R_Rheap_base_num = -1;
static int mov_oop_size = -1;
#ifdef ASSERT
static bool same_mask(const RegMask &a, const RegMask &b) {
RegMask a_sub_b = a; a_sub_b.SUBTRACT(b);
RegMask b_sub_a = b; b_sub_a.SUBTRACT(a);
return a_sub_b.Size() == 0 && b_sub_a.Size() == 0;
}
#endif
void Compile::pd_compiler2_init() {
R_Ricklass_num = OptoReg::as_OptoReg(Ricklass->as_VMReg());
R_Rmethod_num = OptoReg::as_OptoReg(Rmethod->as_VMReg());
R_tls_num = OptoReg::as_OptoReg(Rthread->as_VMReg());
R_Rtemp_num = OptoReg::as_OptoReg(Rtemp->as_VMReg());
R_Rheap_base_num = OptoReg::as_OptoReg(Rheap_base->as_VMReg());
_INT_REG_mask = _INT_REG_ALL_mask;
_INT_REG_mask.Remove(R_tls_num);
_INT_REG_mask.Remove(R_SP_num);
if (UseCompressedOops) {
_INT_REG_mask.Remove(R_Rheap_base_num);
}
// Remove Rtemp because safepoint poll can trash it
// (see SharedRuntime::generate_handler_blob)
_INT_REG_mask.Remove(R_Rtemp_num);
_PTR_REG_mask = _INT_REG_mask;
_PTR_REG_mask.smear_to_sets(2);
// STR_REG = INT_REG+ZR
// SPILLP_REG = INT_REG+SP
// SP_PTR_REG = INT_REG+SP+TLS
_STR_REG_mask = _INT_REG_mask;
_SP_PTR_REG_mask = _STR_REG_mask;
_STR_REG_mask.Insert(R_ZR_num);
_SP_PTR_REG_mask.Insert(R_SP_num);
_SPILLP_REG_mask = _SP_PTR_REG_mask;
_SP_PTR_REG_mask.Insert(R_tls_num);
_STR_PTR_REG_mask = _STR_REG_mask;
_STR_PTR_REG_mask.smear_to_sets(2);
_SP_PTR_REG_mask.smear_to_sets(2);
_SPILLP_REG_mask.smear_to_sets(2);
_RMEMCOPY_REG_mask = RegMask(R_mem_copy_lo_num);
assert(OptoReg::as_OptoReg(Rmemcopy->as_VMReg()) == R_mem_copy_lo_num, "!");
_SFLT_REG_mask = _SFLT_REG_0_mask;
_SFLT_REG_mask.SUBTRACT(_RMEMCOPY_REG_mask);
_DFLT_REG_mask = _SFLT_REG_mask;
_DFLT_REG_mask.smear_to_sets(2);
_VECTORX_REG_mask = _SFLT_REG_mask;
_VECTORX_REG_mask.smear_to_sets(4);
assert(same_mask(_VECTORX_REG_mask, _VECTORX_REG_0_mask), "!");
#ifdef ASSERT
RegMask r((RegMask *)&SFLT_REG_mask());
r.smear_to_sets(2);
assert(same_mask(r, _DFLT_REG_mask), "!");
#endif
if (VM_Version::prefer_moves_over_load_literal()) {
mov_oop_size = 4;
} else {
mov_oop_size = 1;
}
assert(Matcher::interpreter_method_oop_reg_encode() == Rmethod->encoding(), "should be");
}
uintx limmL_low(uintx imm, int n) {
// 1: try as is
if (is_limmL(imm)) {
return imm;
}
// 2: try low bits + all 0's
uintx imm0 = imm & right_n_bits(n);
if (is_limmL(imm0)) {
return imm0;
}
// 3: try low bits + all 1's
uintx imm1 = imm0 | left_n_bits(BitsPerWord - n);
if (is_limmL(imm1)) {
return imm1;
}
#if 0
// 4: try low bits replicated
int field = 1 << log2_intptr(n + n - 1);
assert(field >= n, "!");
assert(field / n == 1, "!");
intptr_t immr = immx;
while (field < BitsPerWord) {
intrptr_t bits = immr & right_n_bits(field);
immr = bits | (bits << field);
field = field << 1;
}
// replicate at power-of-2 boundary
if (is_limmL(immr)) {
return immr;
}
#endif
return imm;
}
// Convert the raw encoding form into the form expected by the
// constructor for Address.
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
RelocationHolder rspec;
if (disp_reloc != relocInfo::none) {
rspec = Relocation::spec_simple(disp_reloc);
}
Register rbase = (base == 0xff) ? SP : as_Register(base);
if (index != 0xff) {
Register rindex = as_Register(index);
if (disp == 0x7fffffff) { // special value to indicate sign-extend
Address madr(rbase, rindex, ex_sxtw, scale);
madr._rspec = rspec;
return madr;
} else {
assert(disp == 0, "unsupported");
Address madr(rbase, rindex, ex_lsl, scale);
madr._rspec = rspec;
return madr;
}
} else {
assert(scale == 0, "not supported");
Address madr(rbase, disp);
madr._rspec = rspec;
return madr;
}
}
// Location of compiled Java return values. Same as C
OptoRegPair c2::return_value(int ideal_reg) {
assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
static int lo[Op_RegL+1] = { 0, 0, OptoReg::Bad, R_R0_num, R_R0_num, R_hf_ret_lo_num, R_hf_ret_lo_num, R_R0_num };
static int hi[Op_RegL+1] = { 0, 0, OptoReg::Bad, OptoReg::Bad, R_R0x_num, OptoReg::Bad, R_hf_ret_hi_num, R_R0x_num };
return OptoRegPair( hi[ideal_reg], lo[ideal_reg]);
}
// !!!!! Special hack to get all type of calls to specify the byte offset
// from the start of the call to the point where the return address
// will point.
int MachCallStaticJavaNode::ret_addr_offset() {
bool far = (_method == NULL) ? maybe_far_call(this) : !cache_reachable();
bool patchable = _method != NULL;
int call_size = MacroAssembler::call_size(entry_point(), far, patchable);
return (call_size + (_method_handle_invoke ? 1 : 0)) * NativeInstruction::instruction_size;
}
int MachCallDynamicJavaNode::ret_addr_offset() {
bool far = !cache_reachable();
int call_size = MacroAssembler::call_size(entry_point(), far, true);
return (mov_oop_size + call_size) * NativeInstruction::instruction_size;
}
int MachCallRuntimeNode::ret_addr_offset() {
int call_size = 0;
// TODO: check if Leaf nodes also need this
if (!is_MachCallLeaf()) {
// adr $temp, ret_addr
// str $temp, [SP + last_java_pc]
call_size += 2;
}
// bl or mov_slow; blr
bool far = maybe_far_call(this);
call_size += MacroAssembler::call_size(entry_point(), far, false);
return call_size * NativeInstruction::instruction_size;
}
%}
// The intptr_t operand types, defined by textual substitution.
// (Cf. opto/type.hpp. This lets us avoid many, many other ifdefs.)
#define immX immL
#define iRegX iRegL
#define aimmX aimmL
#define limmX limmL
#define immX9 immL9
#define LShiftX LShiftL
#define shimmX immU6
#define store_RegLd store_RegL
//----------ATTRIBUTES---------------------------------------------------------
//----------Operand Attributes-------------------------------------------------
op_attrib op_cost(1); // Required cost attribute
//----------OPERANDS-----------------------------------------------------------
// Operand definitions must precede instruction definitions for correct parsing
// in the ADLC because operands constitute user defined types which are used in
// instruction definitions.
//----------Simple Operands----------------------------------------------------
// Immediate Operands
// Integer Immediate: 9-bit (including sign bit), so same as immI8?
// FIXME: simm9 allows -256, but immI8 doesn't...
operand simm9() %{
predicate(Assembler::is_imm_in_range(n->get_int(), 9, 0));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand uimm12() %{
predicate(Assembler::is_unsigned_imm_in_range(n->get_int(), 12, 0));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand aimmP() %{
predicate(n->get_ptr() == 0 || (is_aimm(n->get_ptr()) && ((ConPNode*)n)->type()->reloc() == relocInfo::none));
match(ConP);
op_cost(0);
// formats are generated automatically for constants and base registers
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 12-bit - for addressing mode
operand immL12() %{
predicate((-4096 < n->get_long()) && (n->get_long() < 4096));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Long Immediate: 9-bit - for addressing mode
operand immL9() %{
predicate((-256 <= n->get_long()) && (n->get_long() < 256));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immIMov() %{
predicate(n->get_int() >> 16 == 0);
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immLMov() %{
predicate(n->get_long() >> 16 == 0);
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12() %{
predicate(is_uimm12(n->get_long(), 0));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x2() %{
predicate(is_uimm12(n->get_long(), 1));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x4() %{
predicate(is_uimm12(n->get_long(), 2));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x8() %{
predicate(is_uimm12(n->get_long(), 3));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
operand immUL12x16() %{
predicate(is_uimm12(n->get_long(), 4));
match(ConL);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Used for long shift
operand immU6() %{
predicate(0 <= n->get_int() && (n->get_int() <= 63));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Used for register extended shift
operand immI_0_4() %{
predicate(0 <= n->get_int() && (n->get_int() <= 4));
match(ConI);
op_cost(0);
format %{ %}
interface(CONST_INTER);
%}
// Compressed Pointer Register
operand iRegN() %{
constraint(ALLOC_IN_RC(int_reg));
match(RegN);
match(ZRRegN);
format %{ %}
interface(REG_INTER);
%}
operand SPRegP() %{
constraint(ALLOC_IN_RC(SP_regP));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegP() %{
constraint(ALLOC_IN_RC(ZR_regP));
match(RegP);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegL() %{
constraint(ALLOC_IN_RC(ZR_regP));
match(RegL);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegI() %{
constraint(ALLOC_IN_RC(ZR_regI));
match(RegI);
format %{ %}
interface(REG_INTER);
%}
operand ZRRegN() %{
constraint(ALLOC_IN_RC(ZR_regI));
match(RegN);
format %{ %}
interface(REG_INTER);
%}

View File

@ -40,29 +40,14 @@ enum AsmShift {
lsl, lsr, asr, ror
};
#ifdef AARCH64
enum AsmExtendOp {
ex_uxtb, ex_uxth, ex_uxtw, ex_uxtx,
ex_sxtb, ex_sxth, ex_sxtw, ex_sxtx,
ex_lsl = ex_uxtx
};
#endif
enum AsmOffset {
#ifdef AARCH64
basic_offset = 0b00,
pre_indexed = 0b11,
post_indexed = 0b01
#else
basic_offset = 1 << 24,
pre_indexed = 1 << 24 | 1 << 21,
post_indexed = 0
#endif
};
#ifndef AARCH64
enum AsmWriteback {
no_writeback,
writeback
@ -72,7 +57,6 @@ enum AsmOffsetOp {
sub_offset = 0,
add_offset = 1
};
#endif
// ARM Addressing Modes 2 and 3 - Load and store
@ -84,21 +68,13 @@ class Address {
AsmOffset _mode;
RelocationHolder _rspec;
int _shift_imm;
#ifdef AARCH64
AsmExtendOp _extend;
#else
AsmShift _shift;
AsmOffsetOp _offset_op;
static inline int abs(int x) { return x < 0 ? -x : x; }
static inline int up (int x) { return x < 0 ? 0 : 1; }
#endif
#ifdef AARCH64
static const AsmExtendOp LSL = ex_lsl;
#else
static const AsmShift LSL = lsl;
#endif
public:
Address() : _base(noreg) {}
@ -109,12 +85,8 @@ class Address {
_disp = offset;
_mode = mode;
_shift_imm = 0;
#ifdef AARCH64
_extend = ex_lsl;
#else
_shift = lsl;
_offset_op = add_offset;
#endif
}
#ifdef ASSERT
@ -124,27 +96,11 @@ class Address {
_disp = in_bytes(offset);
_mode = mode;
_shift_imm = 0;
#ifdef AARCH64
_extend = ex_lsl;
#else
_shift = lsl;
_offset_op = add_offset;
#endif
}
#endif
#ifdef AARCH64
Address(Register rn, Register rm, AsmExtendOp extend = ex_lsl, int shift_imm = 0) {
assert ((extend == ex_uxtw) || (extend == ex_lsl) || (extend == ex_sxtw) || (extend == ex_sxtx), "invalid extend for address mode");
assert ((0 <= shift_imm) && (shift_imm <= 4), "shift amount is out of range");
_base = rn;
_index = rm;
_disp = 0;
_mode = basic_offset;
_extend = extend;
_shift_imm = shift_imm;
}
#else
Address(Register rn, Register rm, AsmShift shift = lsl,
int shift_imm = 0, AsmOffset mode = basic_offset,
AsmOffsetOp offset_op = add_offset) {
@ -181,7 +137,6 @@ class Address {
_mode = basic_offset;
_offset_op = add_offset;
}
#endif // AARCH64
// [base + index * wordSize]
static Address indexed_ptr(Register base, Register index) {
@ -211,25 +166,6 @@ class Address {
return a;
}
#ifdef AARCH64
int encoding_simd() const {
assert(_index != SP, "encoding constraint");
assert(_disp == 0 || _mode == post_indexed, "encoding constraint");
assert(_index == noreg || _mode == basic_offset, "encoding constraint");
assert(_mode == basic_offset || _mode == post_indexed, "encoding constraint");
assert(_extend == ex_lsl, "encoding constraint");
int index;
if (_index == noreg) {
if (_mode == post_indexed)
index = 0b100 << 5 | 31;
else
index = 0;
} else {
index = 0b100 << 5 | _index->encoding();
}
return index << 16 | _base->encoding_with_sp() << 5;
}
#else /* !AARCH64 */
int encoding2() const {
assert(_mode == basic_offset || _base != PC, "unpredictable instruction");
if (_index == noreg) {
@ -287,7 +223,6 @@ class Address {
return _base->encoding() << 16 | index;
}
#endif // !AARCH64
Register base() const {
return _base;
@ -309,11 +244,6 @@ class Address {
return _shift_imm;
}
#ifdef AARCH64
AsmExtendOp extend() const {
return _extend;
}
#else
AsmShift shift() const {
return _shift;
}
@ -321,7 +251,6 @@ class Address {
AsmOffsetOp offset_op() const {
return _offset_op;
}
#endif
bool uses(Register reg) const { return _base == reg || _index == reg; }
@ -394,11 +323,7 @@ class VFP {
};
#endif
#ifdef AARCH64
#include "assembler_arm_64.hpp"
#else
#include "assembler_arm_32.hpp"
#endif
#endif // CPU_ARM_VM_ASSEMBLER_ARM_HPP

View File

@ -1,186 +0,0 @@
/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/assembler.hpp"
#include "asm/assembler.inline.hpp"
#include "ci/ciEnv.hpp"
#include "gc/shared/cardTableBarrierSet.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "interpreter/templateInterpreterGenerator.hpp"
#include "memory/resourceArea.hpp"
#include "prims/jvm_misc.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/hashtable.hpp"
#include "utilities/macros.hpp"
// Returns whether given imm has equal bit fields <0:size-1> and <size:2*size-1>.
inline bool Assembler::LogicalImmediate::has_equal_subpatterns(uintx imm, int size) {
uintx mask = right_n_bits(size);
uintx subpattern1 = mask_bits(imm, mask);
uintx subpattern2 = mask_bits(imm >> size, mask);
return subpattern1 == subpattern2;
}
// Returns least size that is a power of two from 2 to 64 with the proviso that given
// imm is composed of repeating patterns of this size.
inline int Assembler::LogicalImmediate::least_pattern_size(uintx imm) {
int size = BitsPerWord;
while (size > 2 && has_equal_subpatterns(imm, size >> 1)) {
size >>= 1;
}
return size;
}
// Returns count of set bits in given imm. Based on variable-precision SWAR algorithm.
inline int Assembler::LogicalImmediate::population_count(uintx x) {
x -= ((x >> 1) & 0x5555555555555555L);
x = (((x >> 2) & 0x3333333333333333L) + (x & 0x3333333333333333L));
x = (((x >> 4) + x) & 0x0f0f0f0f0f0f0f0fL);
x += (x >> 8);
x += (x >> 16);
x += (x >> 32);
return(x & 0x7f);
}
// Let given x be <A:B> where B = 0 and least bit of A = 1. Returns <A:C>, where C is B-size set bits.
inline uintx Assembler::LogicalImmediate::set_least_zeroes(uintx x) {
return x | (x - 1);
}
#ifdef ASSERT
// Restores immediate by encoded bit masks.
uintx Assembler::LogicalImmediate::decode() {
assert (_encoded, "should be");
int len_code = (_immN << 6) | ((~_imms) & 0x3f);
assert (len_code != 0, "should be");
int len = 6;
while (!is_set_nth_bit(len_code, len)) len--;
int esize = 1 << len;
assert (len > 0, "should be");
assert ((_is32bit ? 32 : 64) >= esize, "should be");
int levels = right_n_bits(len);
int S = _imms & levels;
int R = _immr & levels;
assert (S != levels, "should be");
uintx welem = right_n_bits(S + 1);
uintx wmask = (R == 0) ? welem : ((welem >> R) | (welem << (esize - R)));
for (int size = esize; size < 64; size <<= 1) {
wmask |= (wmask << size);
}
return wmask;
}
#endif
// Constructs LogicalImmediate by given imm. Figures out if given imm can be used in AArch64 logical
// instructions (AND, ANDS, EOR, ORR) and saves its encoding.
void Assembler::LogicalImmediate::construct(uintx imm, bool is32) {
_is32bit = is32;
if (is32) {
assert(((imm >> 32) == 0) || (((intx)imm >> 31) == -1), "32-bit immediate is out of range");
// Replicate low 32 bits.
imm &= 0xffffffff;
imm |= imm << 32;
}
// All-zeroes and all-ones can not be encoded.
if (imm != 0 && (~imm != 0)) {
// Let LPS (least pattern size) be the least size (power of two from 2 to 64) of repeating
// patterns in the immediate. If immediate value can be encoded, it is encoded by pattern
// of exactly LPS size (due to structure of valid patterns). In order to verify
// that immediate value can be encoded, LPS is calculated and <LPS-1:0> bits of immediate
// are verified to be valid pattern.
int lps = least_pattern_size(imm);
uintx lps_mask = right_n_bits(lps);
// A valid pattern has one of the following forms:
// | 0 x A | 1 x B | 0 x C |, where B > 0 and C > 0, or
// | 1 x A | 0 x B | 1 x C |, where B > 0 and C > 0.
// For simplicity, the second form of the pattern is inverted into the first form.
bool inverted = imm & 0x1;
uintx pattern = (inverted ? ~imm : imm) & lps_mask;
// | 0 x A | 1 x (B + C) |
uintx without_least_zeroes = set_least_zeroes(pattern);
// Pattern is valid iff without least zeroes it is a power of two - 1.
if ((without_least_zeroes & (without_least_zeroes + 1)) == 0) {
// Count B as population count of pattern.
int bits_count = population_count(pattern);
// Count B+C as population count of pattern without least zeroes
int left_range = population_count(without_least_zeroes);
// S-prefix is a part of imms field which encodes LPS.
// LPS | S prefix
// 64 | not defined
// 32 | 0b0
// 16 | 0b10
// 8 | 0b110
// 4 | 0b1110
// 2 | 0b11110
int s_prefix = (lps == 64) ? 0 : ~set_least_zeroes(lps) & 0x3f;
// immN bit is set iff LPS == 64.
_immN = (lps == 64) ? 1 : 0;
assert (!is32 || (_immN == 0), "32-bit immediate should be encoded with zero N-bit");
// immr is the rotation size.
_immr = lps + (inverted ? 0 : bits_count) - left_range;
// imms is the field that encodes bits count and S-prefix.
_imms = ((inverted ? (lps - bits_count) : bits_count) - 1) | s_prefix;
_encoded = true;
assert (decode() == imm, "illegal encoding");
return;
}
}
_encoded = false;
}

File diff suppressed because it is too large Load Diff

View File

@ -67,9 +67,6 @@ void RangeCheckStub::emit_code(LIR_Assembler* ce) {
__ bind(_entry);
if (_info->deoptimize_on_exception()) {
#ifdef AARCH64
__ NOT_TESTED();
#endif
__ call(Runtime1::entry_for(Runtime1::predicate_failed_trap_id), relocInfo::runtime_call_type);
ce->add_call_info_here(_info);
ce->verify_oop_map(_info);
@ -86,9 +83,6 @@ void RangeCheckStub::emit_code(LIR_Assembler* ce) {
}
if (_throw_index_out_of_bounds_exception) {
#ifdef AARCH64
__ NOT_TESTED();
#endif
__ call(Runtime1::entry_for(Runtime1::throw_index_exception_id), relocInfo::runtime_call_type);
} else {
__ str(_array->as_pointer_register(), Address(SP, BytesPerWord)); // ??? Correct offset? Correct instruction?
@ -208,16 +202,12 @@ void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
const Register lock_reg = _lock_reg->as_pointer_register();
ce->verify_reserved_argument_area_size(2);
#ifdef AARCH64
__ stp(obj_reg, lock_reg, Address(SP));
#else
if (obj_reg < lock_reg) {
__ stmia(SP, RegisterSet(obj_reg) | RegisterSet(lock_reg));
} else {
__ str(obj_reg, Address(SP));
__ str(lock_reg, Address(SP, BytesPerWord));
}
#endif // AARCH64
Runtime1::StubID enter_id = ce->compilation()->has_fpu_code() ?
Runtime1::monitorenter_id :
@ -259,7 +249,7 @@ void PatchingStub::align_patch_site(MacroAssembler* masm) {
}
void PatchingStub::emit_code(LIR_Assembler* ce) {
const int patchable_instruction_offset = AARCH64_ONLY(NativeInstruction::instruction_size) NOT_AARCH64(0);
const int patchable_instruction_offset = 0;
assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF,
"not enough room for call");
@ -267,31 +257,17 @@ void PatchingStub::emit_code(LIR_Assembler* ce) {
Label call_patch;
bool is_load = (_id == load_klass_id) || (_id == load_mirror_id) || (_id == load_appendix_id);
#ifdef AARCH64
assert(nativeInstruction_at(_pc_start)->is_nop(), "required for MT safe patching");
// Same alignment of reg2mem code and PatchingStub code. Required to make copied bind_literal() code properly aligned.
__ align(wordSize);
#endif // AARCH64
if (is_load NOT_AARCH64(&& !VM_Version::supports_movw())) {
if (is_load && !VM_Version::supports_movw()) {
address start = __ pc();
// The following sequence duplicates code provided in MacroAssembler::patchable_mov_oop()
// without creating relocation info entry.
#ifdef AARCH64
// Extra nop for MT safe patching
__ nop();
#endif // AARCH64
assert((__ pc() - start) == patchable_instruction_offset, "should be");
#ifdef AARCH64
__ ldr(_obj, __ pc());
#else
__ ldr(_obj, Address(PC));
// Extra nop to handle case of large offset of oop placeholder (see NativeMovConstReg::set_data).
__ nop();
#endif // AARCH64
#ifdef ASSERT
for (int i = 0; i < _bytes_to_copy; i++) {

View File

@ -47,9 +47,9 @@ enum {
// registers
enum {
pd_nof_cpu_regs_frame_map = AARCH64_ONLY(33) NOT_AARCH64(16), // number of registers used during code emission
pd_nof_caller_save_cpu_regs_frame_map = AARCH64_ONLY(27) NOT_AARCH64(10), // number of registers killed by calls
pd_nof_cpu_regs_reg_alloc = AARCH64_ONLY(27) NOT_AARCH64(10), // number of registers that are visible to register allocator (including Rheap_base which is visible only if compressed pointers are not enabled)
pd_nof_cpu_regs_frame_map = 16, // number of registers used during code emission
pd_nof_caller_save_cpu_regs_frame_map = 10, // number of registers killed by calls
pd_nof_cpu_regs_reg_alloc = 10, // number of registers that are visible to register allocator (including Rheap_base which is visible only if compressed pointers are not enabled)
pd_nof_cpu_regs_linearscan = pd_nof_cpu_regs_frame_map, // number of registers visible to linear scan
pd_nof_cpu_regs_processed_in_linearscan = pd_nof_cpu_regs_reg_alloc + 1, // number of registers processed in linear scan; includes LR as it is used as temporary register in c1_LIRGenerator_arm
pd_first_cpu_reg = 0,
@ -57,7 +57,7 @@ enum {
pd_nof_fpu_regs_frame_map = VFP(32) SOFT(0), // number of float registers used during code emission
pd_nof_caller_save_fpu_regs_frame_map = VFP(32) SOFT(0), // number of float registers killed by calls
pd_nof_fpu_regs_reg_alloc = AARCH64_ONLY(32) NOT_AARCH64(VFP(30) SOFT(0)), // number of float registers that are visible to register allocator
pd_nof_fpu_regs_reg_alloc = VFP(30) SOFT(0), // number of float registers that are visible to register allocator
pd_nof_fpu_regs_linearscan = pd_nof_fpu_regs_frame_map, // number of float registers visible to linear scan
pd_first_fpu_reg = pd_nof_cpu_regs_frame_map,
pd_last_fpu_reg = pd_first_fpu_reg + pd_nof_fpu_regs_frame_map - 1,
@ -74,11 +74,7 @@ enum {
pd_float_saved_as_double = false
};
#ifdef AARCH64
#define PATCHED_ADDR 0xff8
#else
#define PATCHED_ADDR (204)
#endif
#define CARDTABLEBARRIERSET_POST_BARRIER_HELPER
#define GENERATE_ADDRESS_IS_PREFERRED

View File

@ -49,9 +49,6 @@ LIR_Opr FrameMap::R3_metadata_opr;
LIR_Opr FrameMap::R4_metadata_opr;
LIR_Opr FrameMap::R5_metadata_opr;
#ifdef AARCH64
LIR_Opr FrameMap::ZR_opr;
#endif // AARCH64
LIR_Opr FrameMap::LR_opr;
LIR_Opr FrameMap::LR_oop_opr;
@ -82,12 +79,7 @@ LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
} else if (r_1->is_Register()) {
Register reg = r_1->as_Register();
if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
#ifdef AARCH64
assert(r_1->next() == r_2, "should be the same");
opr = as_long_opr(reg);
#else
opr = as_long_opr(reg, r_2->as_Register());
#endif
} else if (type == T_OBJECT || type == T_ARRAY) {
opr = as_oop_opr(reg);
} else if (type == T_METADATA) {
@ -115,20 +107,10 @@ void FrameMap::initialize() {
int rnum = 0;
// Registers used for allocation
#ifdef AARCH64
assert(Rthread == R28 && Rheap_base == R27 && Rtemp == R16, "change the code here");
for (i = 0; i < 16; i++) {
map_register(rnum++, as_Register(i));
}
for (i = 17; i < 28; i++) {
map_register(rnum++, as_Register(i));
}
#else
assert(Rthread == R10 && Rtemp == R12, "change the code here");
for (i = 0; i < 10; i++) {
map_register(rnum++, as_Register(i));
}
#endif // AARCH64
assert(rnum == pd_nof_cpu_regs_reg_alloc, "should be");
// Registers not used for allocation
@ -139,11 +121,7 @@ void FrameMap::initialize() {
map_register(rnum++, Rthread);
map_register(rnum++, FP); // ARM32: R7 or R11
map_register(rnum++, SP);
#ifdef AARCH64
map_register(rnum++, ZR);
#else
map_register(rnum++, PC);
#endif
assert(rnum == pd_nof_cpu_regs_frame_map, "should be");
_init_done = true;
@ -155,9 +133,6 @@ void FrameMap::initialize() {
R4_opr = as_opr(R4); R4_oop_opr = as_oop_opr(R4); R4_metadata_opr = as_metadata_opr(R4);
R5_opr = as_opr(R5); R5_oop_opr = as_oop_opr(R5); R5_metadata_opr = as_metadata_opr(R5);
#ifdef AARCH64
ZR_opr = as_opr(ZR);
#endif // AARCH64
LR_opr = as_opr(LR);
LR_oop_opr = as_oop_opr(LR);
@ -169,11 +144,6 @@ void FrameMap::initialize() {
// LIR operands for result
Int_result_opr = R0_opr;
Object_result_opr = R0_oop_opr;
#ifdef AARCH64
Long_result_opr = as_long_opr(R0);
Float_result_opr = as_float_opr(S0);
Double_result_opr = as_double_opr(D0);
#else
Long_result_opr = as_long_opr(R0, R1);
#ifdef __ABI_HARD__
Float_result_opr = as_float_opr(S0);
@ -182,7 +152,6 @@ void FrameMap::initialize() {
Float_result_opr = LIR_OprFact::single_softfp(0);
Double_result_opr = LIR_OprFact::double_softfp(0, 1);
#endif // __ABI_HARD__
#endif // AARCH64
Exception_oop_opr = as_oop_opr(Rexception_obj);
Exception_pc_opr = as_opr(Rexception_pc);
@ -222,7 +191,7 @@ bool FrameMap::validate_frame() {
}
java_index += type2size[opr->type()];
}
return max_offset < AARCH64_ONLY(16384) NOT_AARCH64(4096); // TODO-AARCH64 check that LIRAssembler does not generate load/store of byte and half-word with SP as address base
return max_offset < 4096;
}
VMReg FrameMap::fpu_regname(int n) {

View File

@ -54,9 +54,6 @@
static LIR_Opr R4_metadata_opr;
static LIR_Opr R5_metadata_opr;
#ifdef AARCH64
static LIR_Opr ZR_opr;
#endif // AARCH64
static LIR_Opr LR_opr;
static LIR_Opr LR_oop_opr;
@ -75,19 +72,6 @@
static LIR_Opr Exception_oop_opr;
static LIR_Opr Exception_pc_opr;
#ifdef AARCH64
static LIR_Opr as_long_opr(Register r) {
return LIR_OprFact::double_cpu(cpu_reg2rnr(r), cpu_reg2rnr(r));
}
static LIR_Opr as_pointer_opr(Register r) {
return LIR_OprFact::double_cpu(cpu_reg2rnr(r), cpu_reg2rnr(r));
}
static LIR_Opr as_double_opr(FloatRegister r) {
return LIR_OprFact::double_fpu(r->encoding());
}
#else
static LIR_Opr as_long_opr(Register r, Register r2) {
return LIR_OprFact::double_cpu(cpu_reg2rnr(r), cpu_reg2rnr(r2));
}
@ -99,7 +83,6 @@
static LIR_Opr as_double_opr(FloatRegister r) {
return LIR_OprFact::double_fpu(r->encoding(), r->successor()->encoding());
}
#endif
static LIR_Opr as_float_opr(FloatRegister r) {
return LIR_OprFact::single_fpu(r->encoding());

File diff suppressed because it is too large Load Diff

View File

@ -44,9 +44,6 @@
Label* profile_cast_success, Label* profile_cast_failure,
Label* success, Label* failure);
#ifdef AARCH64
void long_compare_helper(LIR_Opr opr1, LIR_Opr opr2);
#endif // AARCH64
// Saves 4 given registers in reserved argument area.
void save_in_reserved_area(Register r1, Register r2, Register r3, Register r4);
@ -55,10 +52,10 @@
void restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4);
enum {
_call_stub_size = AARCH64_ONLY(32) NOT_AARCH64(16),
_call_stub_size = 16,
_call_aot_stub_size = 0,
_exception_handler_size = PRODUCT_ONLY(AARCH64_ONLY(256) NOT_AARCH64(68)) NOT_PRODUCT(AARCH64_ONLY(256+216) NOT_AARCH64(68+60)),
_deopt_handler_size = AARCH64_ONLY(32) NOT_AARCH64(16)
_exception_handler_size = PRODUCT_ONLY(68) NOT_PRODUCT(68+60),
_deopt_handler_size = 16
};
public:

View File

@ -118,19 +118,6 @@ LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
#ifdef AARCH64
if (v->type()->as_IntConstant() != NULL) {
return v->type()->as_IntConstant()->value() == 0;
} else if (v->type()->as_LongConstant() != NULL) {
return v->type()->as_LongConstant()->value() == 0;
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else if (v->type()->as_FloatConstant() != NULL) {
return jint_cast(v->type()->as_FloatConstant()->value()) == 0;
} else if (v->type()->as_DoubleConstant() != NULL) {
return jlong_cast(v->type()->as_DoubleConstant()->value()) == 0;
}
#endif // AARCH64
return false;
}
@ -140,15 +127,10 @@ bool LIRGenerator::can_inline_as_constant(Value v) const {
return Assembler::is_arith_imm_in_range(v->type()->as_IntConstant()->value());
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
#ifdef AARCH64
} else if (v->type()->as_LongConstant() != NULL) {
return Assembler::is_arith_imm_in_range(v->type()->as_LongConstant()->value());
#else
} else if (v->type()->as_FloatConstant() != NULL) {
return v->type()->as_FloatConstant()->value() == 0.0f;
} else if (v->type()->as_DoubleConstant() != NULL) {
return v->type()->as_DoubleConstant()->value() == 0.0;
#endif // AARCH64
}
return false;
}
@ -160,39 +142,6 @@ bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
}
#ifdef AARCH64
static bool can_inline_as_constant_in_cmp(Value v) {
jlong constant;
if (v->type()->as_IntConstant() != NULL) {
constant = v->type()->as_IntConstant()->value();
} else if (v->type()->as_LongConstant() != NULL) {
constant = v->type()->as_LongConstant()->value();
} else if (v->type()->as_ObjectConstant() != NULL) {
return v->type()->as_ObjectConstant()->value()->is_null_object();
} else if (v->type()->as_FloatConstant() != NULL) {
return v->type()->as_FloatConstant()->value() == 0.0f;
} else if (v->type()->as_DoubleConstant() != NULL) {
return v->type()->as_DoubleConstant()->value() == 0.0;
} else {
return false;
}
return Assembler::is_arith_imm_in_range(constant) || Assembler::is_arith_imm_in_range(-constant);
}
static bool can_inline_as_constant_in_logic(Value v) {
if (v->type()->as_IntConstant() != NULL) {
return Assembler::LogicalImmediate(v->type()->as_IntConstant()->value(), true).is_encoded();
} else if (v->type()->as_LongConstant() != NULL) {
return Assembler::LogicalImmediate(v->type()->as_LongConstant()->value(), false).is_encoded();
}
return false;
}
#endif // AARCH64
LIR_Opr LIRGenerator::safepoint_poll_register() {
@ -211,48 +160,10 @@ static LIR_Opr make_constant(BasicType type, jlong c) {
}
}
#ifdef AARCH64
void LIRGenerator::add_constant(LIR_Opr src, jlong c, LIR_Opr dest) {
if (c == 0) {
__ move(src, dest);
return;
}
BasicType type = src->type();
bool is_neg = (c < 0);
c = ABS(c);
if ((c >> 24) == 0) {
for (int shift = 0; shift <= 12; shift += 12) {
int part = ((int)c) & (right_n_bits(12) << shift);
if (part != 0) {
if (is_neg) {
__ sub(src, make_constant(type, part), dest);
} else {
__ add(src, make_constant(type, part), dest);
}
src = dest;
}
}
} else {
__ move(make_constant(type, c), dest);
if (is_neg) {
__ sub(src, dest, dest);
} else {
__ add(src, dest, dest);
}
}
}
#endif // AARCH64
void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
assert(c != 0, "must be");
#ifdef AARCH64
add_constant(src, c, dest);
#else
// Find first non-zero bit
int shift = 0;
while ((c & (3 << shift)) == 0) {
@ -272,7 +183,6 @@ void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
if (c & (mask << 24)) {
__ add(dest, LIR_OprFact::intConst(c & (mask << 24)), dest);
}
#endif // AARCH64
}
static LIR_Address* make_address(LIR_Opr base, LIR_Opr index, LIR_Address::Scale scale, BasicType type) {
@ -288,7 +198,6 @@ LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
index = LIR_OprFact::illegalOpr;
}
#ifndef AARCH64
if (base->type() == T_LONG) {
LIR_Opr tmp = new_register(T_INT);
__ convert(Bytecodes::_l2i, base, tmp);
@ -302,26 +211,11 @@ LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
// At this point base and index should be all ints and not constants
assert(base->is_single_cpu() && !base->is_constant(), "base should be an non-constant int");
assert(index->is_illegal() || (index->type() == T_INT && !index->is_constant()), "index should be an non-constant int");
#endif
int max_disp;
bool disp_is_in_range;
bool embedded_shift;
#ifdef AARCH64
int align = exact_log2(type2aelembytes(type, true));
assert((disp & right_n_bits(align)) == 0, "displacement is not aligned");
assert(shift == 0 || shift == align, "shift should be zero or equal to embedded align");
max_disp = (1 << 12) << align;
if (disp >= 0) {
disp_is_in_range = Assembler::is_unsigned_imm_in_range(disp, 12, align);
} else {
disp_is_in_range = Assembler::is_imm_in_range(disp, 9, 0);
}
embedded_shift = true;
#else
switch (type) {
case T_BYTE:
case T_SHORT:
@ -344,7 +238,6 @@ LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
}
disp_is_in_range = (-max_disp < disp && disp < max_disp);
#endif // !AARCH64
if (index->is_register()) {
LIR_Opr tmp = new_pointer_register();
@ -394,11 +287,7 @@ LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_o
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
assert(type == T_LONG || type == T_INT, "should be");
LIR_Opr r = make_constant(type, x);
#ifdef AARCH64
bool imm_in_range = Assembler::LogicalImmediate(x, type == T_INT).is_encoded();
#else
bool imm_in_range = AsmOperand::is_rotated_imm(x);
#endif // AARCH64
if (!imm_in_range) {
LIR_Opr tmp = new_register(type);
__ move(r, tmp);
@ -439,14 +328,9 @@ void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr bas
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
assert(left != result, "should be different registers");
if (is_power_of_2(c + 1)) {
#ifdef AARCH64
__ shift_left(left, log2_intptr(c + 1), result);
__ sub(result, left, result);
#else
LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c + 1);
LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
__ sub(LIR_OprFact::address(addr), left, result); // rsb with shifted register
#endif // AARCH64
return true;
} else if (is_power_of_2(c - 1)) {
LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c - 1);
@ -465,12 +349,7 @@ void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp)
void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
assert(CardTable::dirty_card_val() == 0,
"Cannot use ZR register (aarch64) or the register containing the card table base address directly (aarch32) otherwise");
#ifdef AARCH64
// AARCH64 has a register that is constant zero. We can use that one to set the
// value in the card table to dirty.
__ move(FrameMap::ZR_opr, card_addr);
#else // AARCH64
"Cannot use the register containing the card table base address directly");
if((ci_card_table_address_as<intx>() & 0xff) == 0) {
// If the card table base address is aligned to 256 bytes, we can use the register
// that contains the card_table_base_address.
@ -481,7 +360,6 @@ void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
__ move(LIR_OprFact::intConst(CardTable::dirty_card_val()), tmp_zero);
__ move(tmp_zero, card_addr);
}
#endif // AARCH64
}
void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base) {
@ -492,24 +370,16 @@ void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LI
LIR_Opr tmp = FrameMap::LR_ptr_opr;
// TODO-AARCH64: check performance
bool load_card_table_base_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw());
bool load_card_table_base_const = VM_Version::supports_movw();
if (load_card_table_base_const) {
__ move((LIR_Opr)card_table_base, tmp);
} else {
__ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
}
#ifdef AARCH64
LIR_Address* shifted_reg_operand = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BYTE);
LIR_Opr tmp2 = tmp;
__ add(tmp, LIR_OprFact::address(shifted_reg_operand), tmp2); // tmp2 = tmp + (addr >> CardTable::card_shift)
LIR_Address* card_addr = new LIR_Address(tmp2, T_BYTE);
#else
// Use unsigned type T_BOOLEAN here rather than (signed) T_BYTE since signed load
// byte instruction does not support the addressing mode we need.
LIR_Address* card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BOOLEAN);
#endif
if (UseCondCardMark) {
if (ct->scanned_concurrently()) {
__ membar_storeload();
@ -679,63 +549,6 @@ void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
info = state_for(x);
}
#ifdef AARCH64
LIRItem left(x->x(), this);
LIRItem right(x->y(), this);
LIRItem* left_arg = &left;
LIRItem* right_arg = &right;
// Test if instr is commutative and if we should swap
if (x->is_commutative() && left.is_constant()) {
left_arg = &right;
right_arg = &left;
}
left_arg->load_item();
switch (x->op()) {
case Bytecodes::_ldiv:
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_LONG, info);
__ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
break;
case Bytecodes::_lrem: {
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_LONG, info);
// a % b is implemented with 2 instructions:
// tmp = a/b (sdiv)
// res = a - b*tmp (msub)
LIR_Opr tmp = FrameMap::as_long_opr(Rtemp);
__ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
break;
}
case Bytecodes::_lmul:
if (right_arg->is_constant() && is_power_of_2_long(right_arg->get_jlong_constant())) {
right_arg->dont_load_item();
__ shift_left(left_arg->result(), exact_log2_long(right_arg->get_jlong_constant()), rlock_result(x));
} else {
right_arg->load_item();
__ mul(left_arg->result(), right_arg->result(), rlock_result(x));
}
break;
case Bytecodes::_ladd:
case Bytecodes::_lsub:
if (right_arg->is_constant()) {
jlong c = right_arg->get_jlong_constant();
add_constant(left_arg->result(), (x->op() == Bytecodes::_ladd) ? c : -c, rlock_result(x));
} else {
right_arg->load_item();
arithmetic_op_long(x->op(), rlock_result(x), left_arg->result(), right_arg->result(), NULL);
}
break;
default:
ShouldNotReachHere();
return;
}
#else
switch (x->op()) {
case Bytecodes::_ldiv:
case Bytecodes::_lrem: {
@ -777,7 +590,6 @@ void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
default:
ShouldNotReachHere();
}
#endif // AARCH64
}
@ -804,20 +616,6 @@ void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
LIR_Opr result = rlock_result(x);
__ idiv(left_arg->result(), right_arg->result(), result, tmp, info);
} else {
#ifdef AARCH64
left_arg->load_item();
right_arg->load_item();
make_div_by_zero_check(right_arg->result(), T_INT, info);
if (x->op() == Bytecodes::_idiv) {
__ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
} else {
// a % b is implemented with 2 instructions:
// tmp = a/b (sdiv)
// res = a - b*tmp (msub)
LIR_Opr tmp = FrameMap::as_opr(Rtemp);
__ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
}
#else
left_arg->load_item_force(FrameMap::R0_opr);
right_arg->load_item_force(FrameMap::R2_opr);
LIR_Opr tmp = FrameMap::R1_opr;
@ -831,16 +629,8 @@ void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
__ idiv(left_arg->result(), right_arg->result(), out_reg, tmp, info);
}
__ move(out_reg, result);
#endif // AARCH64
}
#ifdef AARCH64
} else if (((x->op() == Bytecodes::_iadd) || (x->op() == Bytecodes::_isub)) && right_arg->is_constant()) {
left_arg->load_item();
jint c = right_arg->get_jint_constant();
right_arg->dont_load_item();
add_constant(left_arg->result(), (x->op() == Bytecodes::_iadd) ? c : -c, rlock_result(x));
#endif // AARCH64
} else {
left_arg->load_item();
@ -852,7 +642,6 @@ void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
right_arg->load_item();
}
} else {
AARCH64_ONLY(assert(!right_arg->is_constant(), "constant right_arg is already handled by this moment");)
right_arg->load_nonconstant();
}
rlock_result(x);
@ -880,11 +669,9 @@ void LIRGenerator::do_ShiftOp(ShiftOp* x) {
LIRItem value(x->x(), this);
LIRItem count(x->y(), this);
#ifndef AARCH64
if (value.type()->is_long()) {
count.set_destroys_register();
}
#endif // !AARCH64
if (count.is_constant()) {
assert(count.type()->as_IntConstant() != NULL, "should be");
@ -906,15 +693,7 @@ void LIRGenerator::do_LogicOp(LogicOp* x) {
left.load_item();
#ifdef AARCH64
if (right.is_constant() && can_inline_as_constant_in_logic(right.value())) {
right.dont_load_item();
} else {
right.load_item();
}
#else
right.load_nonconstant();
#endif // AARCH64
logic_op(x->op(), rlock_result(x), left.result(), right.result());
}
@ -956,15 +735,7 @@ void LIRGenerator::do_CompareOp(CompareOp* x) {
LIRItem right(x->y(), this);
left.load_item();
#ifdef AARCH64
if (right.is_constant() && can_inline_as_constant_in_cmp(right.value())) {
right.dont_load_item();
} else {
right.load_item();
}
#else
right.load_nonconstant();
#endif // AARCH64
LIR_Opr reg = rlock_result(x);
@ -987,19 +758,11 @@ LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_
cmp_value.load_item();
LIR_Opr result = new_register(T_INT);
if (type == T_OBJECT || type == T_ARRAY) {
#ifdef AARCH64
if (UseCompressedOops) {
tmp1 = new_pointer_register();
tmp2 = new_pointer_register();
}
#endif
__ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
} else if (type == T_INT) {
__ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp1, result);
} else if (type == T_LONG) {
#ifndef AARCH64
tmp1 = new_register(T_LONG);
#endif // !AARCH64
__ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp2, result);
} else {
ShouldNotReachHere();
@ -1135,7 +898,6 @@ void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
void LIRGenerator::do_Convert(Convert* x) {
address runtime_func;
switch (x->op()) {
#ifndef AARCH64
case Bytecodes::_l2f:
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
break;
@ -1170,7 +932,6 @@ void LIRGenerator::do_Convert(Convert* x) {
runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
break;
#endif // __SOFTFP__
#endif // !AARCH64
default: {
LIRItem value(x->value(), this);
value.load_item();
@ -1488,7 +1249,6 @@ void LIRGenerator::do_If(If* x) {
LIRItem* yin = &yitem;
If::Condition cond = x->cond();
#ifndef AARCH64
if (tag == longTag) {
if (cond == If::gtr || cond == If::leq) {
cond = Instruction::mirror(cond);
@ -1497,20 +1257,11 @@ void LIRGenerator::do_If(If* x) {
}
xin->set_destroys_register();
}
#endif // !AARCH64
xin->load_item();
LIR_Opr left = xin->result();
LIR_Opr right;
#ifdef AARCH64
if (yin->is_constant() && can_inline_as_constant_in_cmp(yin->value())) {
yin->dont_load_item();
} else {
yin->load_item();
}
right = yin->result();
#else
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
(cond == If::eql || cond == If::neq)) {
// inline long zero
@ -1519,7 +1270,6 @@ void LIRGenerator::do_If(If* x) {
yin->load_nonconstant();
right = yin->result();
}
#endif // AARCH64
set_no_result(x);
@ -1558,7 +1308,6 @@ void LIRGenerator::trace_block_entry(BlockBegin* block) {
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
CodeEmitInfo* info) {
#ifndef AARCH64
if (value->is_double_cpu()) {
assert(address->index()->is_illegal(), "should have a constant displacement");
LIR_Opr tmp = new_pointer_register();
@ -1566,14 +1315,11 @@ void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
__ volatile_store_mem_reg(value, new LIR_Address(tmp, (intx)0, address->type()), info);
return;
}
#endif // !AARCH64
// TODO-AARCH64 implement with stlr instruction
__ store(value, address, info, lir_patch_none);
}
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
CodeEmitInfo* info) {
#ifndef AARCH64
if (result->is_double_cpu()) {
assert(address->index()->is_illegal(), "should have a constant displacement");
LIR_Opr tmp = new_pointer_register();
@ -1581,7 +1327,5 @@ void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
__ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, address->type()), result, info);
return;
}
#endif // !AARCH64
// TODO-AARCH64 implement with ldar instruction
__ load(address, result, info, lir_patch_none);
}

View File

@ -27,7 +27,3 @@
void make_div_by_zero_check(LIR_Opr right_arg, BasicType type, CodeEmitInfo* info);
#ifdef AARCH64
// the helper for arithmetic
void add_constant(LIR_Opr src, jlong c, LIR_Opr dest);
#endif // AARCH64

View File

@ -33,17 +33,6 @@ FloatRegister LIR_OprDesc::as_double_reg() const {
return as_FloatRegister(fpu_regnrLo());
}
#ifdef AARCH64
// Reg2 unused.
LIR_Opr LIR_OprFact::double_fpu(int reg1, int reg2) {
assert(as_FloatRegister(reg2) == fnoreg, "Not used on this platform");
return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
(reg1 << LIR_OprDesc::reg2_shift) |
LIR_OprDesc::double_type |
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size);
}
#else
LIR_Opr LIR_OprFact::double_fpu(int reg1, int reg2) {
assert(as_FloatRegister(reg2) != fnoreg, "Arm32 holds double in two regs.");
return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
@ -52,22 +41,12 @@ LIR_Opr LIR_OprFact::double_fpu(int reg1, int reg2) {
LIR_OprDesc::fpu_register |
LIR_OprDesc::double_size);
}
#endif
#ifndef PRODUCT
void LIR_Address::verify() const {
#ifdef _LP64
assert(base()->is_cpu_register(), "wrong base operand");
#endif
#ifdef AARCH64
if (base()->type() == T_INT) {
assert(index()->is_single_cpu() && (index()->type() == T_INT), "wrong index operand");
} else {
assert(index()->is_illegal() || index()->is_double_cpu() ||
(index()->is_single_cpu() && (index()->is_oop_register() || index()->type() == T_INT)), "wrong index operand");
assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA, "wrong type for addresses");
}
#else
assert(disp() == 0 || index()->is_illegal(), "can't have both");
// Note: offsets higher than 4096 must not be rejected here. They can
// be handled by the back-end or will be rejected if not.
@ -81,6 +60,5 @@ void LIR_Address::verify() const {
assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA,
"wrong type for addresses");
#endif
#endif // AARCH64
}
#endif // PRODUCT

View File

@ -31,24 +31,17 @@ inline bool LinearScan::is_processed_reg_num(int reg_num) {
}
inline int LinearScan::num_physical_regs(BasicType type) {
#ifndef AARCH64
if (type == T_LONG || type == T_DOUBLE) return 2;
#endif // !AARCH64
return 1;
}
inline bool LinearScan::requires_adjacent_regs(BasicType type) {
#ifdef AARCH64
return false;
#else
return type == T_DOUBLE || type == T_LONG;
#endif // AARCH64
}
inline bool LinearScan::is_caller_save(int assigned_reg) {
assert(assigned_reg >= 0 && assigned_reg < nof_regs, "should call this only for registers");
// TODO-AARCH64 try to add callee-saved registers
return true;
}

View File

@ -46,11 +46,7 @@ void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
load_klass(Rtemp, receiver);
cmp(Rtemp, iCache);
b(verified, eq); // jump over alignment no-ops
#ifdef AARCH64
jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type, Rtemp);
#else
jump(SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
#endif
align(CodeEntryAlignment);
bind(verified);
}
@ -59,10 +55,6 @@ void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_by
assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect");
assert((frame_size_in_bytes % StackAlignmentInBytes) == 0, "frame size should be aligned");
#ifdef AARCH64
// Extra nop for MT-safe patching in NativeJump::patch_verified_entry
nop();
#endif // AARCH64
arm_stack_overflow_check(bang_size_in_bytes, Rtemp);
@ -103,28 +95,12 @@ void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register
mov(tmp, (intptr_t)markOopDesc::prototype());
}
#ifdef AARCH64
if (UseCompressedClassPointers) {
str(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
encode_klass_not_null(tmp, klass); // Take care not to kill klass
str_w(tmp, Address(obj, oopDesc::klass_offset_in_bytes()));
} else {
assert(oopDesc::mark_offset_in_bytes() + wordSize == oopDesc::klass_offset_in_bytes(), "adjust this code");
stp(tmp, klass, Address(obj, oopDesc::mark_offset_in_bytes()));
}
#else
str(tmp, Address(obj, oopDesc::mark_offset_in_bytes()));
str(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
#endif // AARCH64
if (len->is_valid()) {
str_32(len, Address(obj, arrayOopDesc::length_offset_in_bytes()));
}
#ifdef AARCH64
else if (UseCompressedClassPointers) {
store_klass_gap(obj);
}
#endif // AARCH64
}
@ -145,40 +121,6 @@ void C1_MacroAssembler::initialize_object(Register obj, Register obj_end, Regist
const Register ptr = tmp2;
if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) {
#ifdef AARCH64
if (obj_size_in_bytes < 0) {
add_rc(ptr, obj, header_size);
initialize_body(ptr, obj_end, tmp1);
} else {
int base = instanceOopDesc::header_size() * HeapWordSize;
assert(obj_size_in_bytes >= base, "should be");
const int zero_bytes = obj_size_in_bytes - base;
assert((zero_bytes % wordSize) == 0, "should be");
if ((zero_bytes % (2*wordSize)) != 0) {
str(ZR, Address(obj, base));
base += wordSize;
}
const int stp_count = zero_bytes / (2*wordSize);
if (zero_bytes > 8 * wordSize) {
Label loop;
add(ptr, obj, base);
mov(tmp1, stp_count);
bind(loop);
subs(tmp1, tmp1, 1);
stp(ZR, ZR, Address(ptr, 2*wordSize, post_indexed));
b(loop, gt);
} else {
for (int i = 0; i < stp_count; i++) {
stp(ZR, ZR, Address(obj, base + i * 2 * wordSize));
}
}
}
#else
if (obj_size_in_bytes >= 0 && obj_size_in_bytes <= 8 * BytesPerWord) {
mov(tmp1, 0);
const int base = instanceOopDesc::header_size() * HeapWordSize;
@ -190,7 +132,6 @@ void C1_MacroAssembler::initialize_object(Register obj, Register obj_end, Regist
add(ptr, obj, header_size);
initialize_body(ptr, obj_end, tmp1);
}
#endif // AARCH64
}
// StoreStore barrier required after complete initialization
@ -227,12 +168,7 @@ void C1_MacroAssembler::allocate_array(Register obj, Register len,
const int scale_shift = exact_log2(element_size);
const Register obj_size = Rtemp; // Rtemp should be free at c1 LIR level
#ifdef AARCH64
mov_slow(Rtemp, max_array_allocation_length);
cmp_32(len, Rtemp);
#else
cmp_32(len, max_array_allocation_length);
#endif // AARCH64
b(slow_case, hs);
bool align_header = ((header_size_in_bytes | element_size) & MinObjAlignmentInBytesMask) != 0;
@ -271,34 +207,6 @@ int C1_MacroAssembler::lock_object(Register hdr, Register obj,
assert(oopDesc::mark_offset_in_bytes() == 0, "Required by atomic instructions");
#ifdef AARCH64
str(obj, Address(disp_hdr, obj_offset));
if (!UseBiasedLocking) {
null_check_offset = offset();
}
ldr(hdr, obj);
// Test if object is already locked
assert(markOopDesc::unlocked_value == 1, "adjust this code");
tbnz(hdr, exact_log2(markOopDesc::unlocked_value), fast_lock);
// Check for recursive locking
// See comments in InterpreterMacroAssembler::lock_object for
// explanations on the fast recursive locking check.
intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
Assembler::LogicalImmediate imm(mask, false);
mov(tmp2, SP);
sub(tmp2, hdr, tmp2);
ands(tmp2, tmp2, imm);
b(slow_case, ne);
// Recursive locking: store 0 into a lock record
str(ZR, Address(disp_hdr, mark_offset));
b(fast_lock_done);
#else // AARCH64
if (!UseBiasedLocking) {
null_check_offset = offset();
@ -328,7 +236,6 @@ int C1_MacroAssembler::lock_object(Register hdr, Register obj,
// else need slow case
b(slow_case);
#endif // AARCH64
bind(fast_lock);
// Save previous object header in BasicLock structure and update the header

View File

@ -80,15 +80,8 @@ int StubAssembler::call_RT(Register oop_result1, Register metadata_result, addre
// Runtime1::exception_handler_for_pc
if (_stub_id != Runtime1::forward_exception_id) {
assert(frame_size() != no_frame_size, "cannot directly call forward_exception_id");
#ifdef AARCH64
Label skip;
cbz(R3, skip);
jump(Runtime1::entry_for(Runtime1::forward_exception_id), relocInfo::runtime_call_type, Rtemp);
bind(skip);
#else
cmp(R3, 0);
jump(Runtime1::entry_for(Runtime1::forward_exception_id), relocInfo::runtime_call_type, Rtemp, ne);
#endif // AARCH64
} else {
#ifdef ASSERT
// Should not have pending exception in forward_exception stub
@ -124,43 +117,6 @@ int StubAssembler::call_RT(Register oop_result1, Register metadata_result, addre
#define __ sasm->
// TODO: ARM - does this duplicate RegisterSaver in SharedRuntime?
#ifdef AARCH64
//
// On AArch64 registers save area has the following layout:
//
// |---------------------|
// | return address (LR) |
// | FP |
// |---------------------|
// | D31 |
// | ... |
// | D0 |
// |---------------------|
// | padding |
// |---------------------|
// | R28 |
// | ... |
// | R0 |
// |---------------------| <-- SP
//
enum RegisterLayout {
number_of_saved_gprs = 29,
number_of_saved_fprs = FloatRegisterImpl::number_of_registers,
R0_offset = 0,
D0_offset = R0_offset + number_of_saved_gprs + 1,
FP_offset = D0_offset + number_of_saved_fprs,
LR_offset = FP_offset + 1,
reg_save_size = LR_offset + 1,
arg1_offset = reg_save_size * wordSize,
arg2_offset = (reg_save_size + 1) * wordSize
};
#else
enum RegisterLayout {
fpu_save_size = pd_nof_fpu_regs_reg_alloc,
@ -191,7 +147,6 @@ enum RegisterLayout {
arg2_offset = (reg_save_size + 1) * wordSize
};
#endif // AARCH64
static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers = HaveVFP) {
sasm->set_frame_size(reg_save_size /* in words */);
@ -200,19 +155,6 @@ static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers = H
// Locations are offsets from sp after runtime call.
OopMap* map = new OopMap(VMRegImpl::slots_per_word * reg_save_size, 0);
#ifdef AARCH64
for (int i = 0; i < number_of_saved_gprs; i++) {
map->set_callee_saved(VMRegImpl::stack2reg((R0_offset + i) * VMRegImpl::slots_per_word), as_Register(i)->as_VMReg());
}
map->set_callee_saved(VMRegImpl::stack2reg(FP_offset * VMRegImpl::slots_per_word), FP->as_VMReg());
map->set_callee_saved(VMRegImpl::stack2reg(LR_offset * VMRegImpl::slots_per_word), LR->as_VMReg());
if (save_fpu_registers) {
for (int i = 0; i < number_of_saved_fprs; i++) {
map->set_callee_saved(VMRegImpl::stack2reg((D0_offset + i) * VMRegImpl::slots_per_word), as_FloatRegister(i)->as_VMReg());
}
}
#else
int j=0;
for (int i = R0_offset; i < R10_offset; i++) {
if (j == FP_REG_NUM) {
@ -235,7 +177,6 @@ static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers = H
map->set_callee_saved(VMRegImpl::stack2reg(i), as_FloatRegister(i)->as_VMReg());
}
}
#endif // AARCH64
return map;
}
@ -244,29 +185,6 @@ static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers
__ block_comment("save_live_registers");
sasm->set_frame_size(reg_save_size /* in words */);
#ifdef AARCH64
assert((reg_save_size * wordSize) % StackAlignmentInBytes == 0, "SP should be aligned");
__ raw_push(FP, LR);
__ sub(SP, SP, (reg_save_size - 2) * wordSize);
for (int i = 0; i < align_down((int)number_of_saved_gprs, 2); i += 2) {
__ stp(as_Register(i), as_Register(i+1), Address(SP, (R0_offset + i) * wordSize));
}
if (is_odd(number_of_saved_gprs)) {
int i = number_of_saved_gprs - 1;
__ str(as_Register(i), Address(SP, (R0_offset + i) * wordSize));
}
if (save_fpu_registers) {
assert (is_even(number_of_saved_fprs), "adjust this code");
for (int i = 0; i < number_of_saved_fprs; i += 2) {
__ stp_d(as_FloatRegister(i), as_FloatRegister(i+1), Address(SP, (D0_offset + i) * wordSize));
}
}
#else
__ push(RegisterSet(FP) | RegisterSet(LR));
__ push(RegisterSet(R0, R6) | RegisterSet(R8, R10) | R12 | altFP_7_11);
if (save_fpu_registers) {
@ -274,7 +192,6 @@ static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers
} else {
__ sub(SP, SP, fpu_save_size * wordSize);
}
#endif // AARCH64
return generate_oop_map(sasm, save_fpu_registers);
}
@ -287,34 +204,6 @@ static void restore_live_registers(StubAssembler* sasm,
bool restore_fpu_registers = HaveVFP) {
__ block_comment("restore_live_registers");
#ifdef AARCH64
if (restore_R0) {
__ ldr(R0, Address(SP, R0_offset * wordSize));
}
assert(is_odd(number_of_saved_gprs), "adjust this code");
for (int i = 1; i < number_of_saved_gprs; i += 2) {
__ ldp(as_Register(i), as_Register(i+1), Address(SP, (R0_offset + i) * wordSize));
}
if (restore_fpu_registers) {
assert (is_even(number_of_saved_fprs), "adjust this code");
for (int i = 0; i < number_of_saved_fprs; i += 2) {
__ ldp_d(as_FloatRegister(i), as_FloatRegister(i+1), Address(SP, (D0_offset + i) * wordSize));
}
}
__ add(SP, SP, (reg_save_size - 2) * wordSize);
if (restore_FP_LR) {
__ raw_pop(FP, LR);
if (do_return) {
__ ret();
}
} else {
assert (!do_return, "return without restoring FP/LR");
}
#else
if (restore_fpu_registers) {
__ fldmiad(SP, FloatRegisterSet(D0, fpu_save_size / 2), writeback);
if (!restore_R0) {
@ -329,7 +218,6 @@ static void restore_live_registers(StubAssembler* sasm,
} else {
assert (!do_return, "return without restoring FP/LR");
}
#endif // AARCH64
}
@ -341,11 +229,9 @@ static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registe
restore_live_registers(sasm, true, true, true, restore_fpu_registers);
}
#ifndef AARCH64
static void restore_live_registers_except_FP_LR(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, true, false, false, restore_fpu_registers);
}
#endif // !AARCH64
static void restore_live_registers_without_return(StubAssembler* sasm, bool restore_fpu_registers = HaveVFP) {
restore_live_registers(sasm, true, true, false, restore_fpu_registers);
@ -386,15 +272,8 @@ OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address targe
static void restore_sp_for_method_handle(StubAssembler* sasm) {
// Restore SP from its saved reg (FP) if the exception PC is a MethodHandle call site.
__ ldr_s32(Rtemp, Address(Rthread, JavaThread::is_method_handle_return_offset()));
#ifdef AARCH64
Label skip;
__ cbz(Rtemp, skip);
__ mov(SP, Rmh_SP_save);
__ bind(skip);
#else
__ cmp(Rtemp, 0);
__ mov(SP, Rmh_SP_save, ne);
#endif // AARCH64
}
@ -500,22 +379,12 @@ OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
__ cmp_32(R0, 0);
#ifdef AARCH64
Label call_deopt;
restore_live_registers_without_return(sasm);
__ b(call_deopt, ne);
__ ret();
__ bind(call_deopt);
#else
restore_live_registers_except_FP_LR(sasm);
__ pop(RegisterSet(FP) | RegisterSet(PC), eq);
// Deoptimization needed
// TODO: ARM - no need to restore FP & LR because unpack_with_reexecution() stores them back
__ pop(RegisterSet(FP) | RegisterSet(LR));
#endif // AARCH64
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, Rtemp);
@ -622,12 +491,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
if (!UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
Label slow_case, slow_case_no_pop;
#ifdef AARCH64
__ mov_slow(Rtemp, C1_MacroAssembler::max_array_allocation_length);
__ cmp_32(length, Rtemp);
#else
__ cmp_32(length, C1_MacroAssembler::max_array_allocation_length);
#endif // AARCH64
__ b(slow_case_no_pop, hs);
// Free some temporary registers
@ -644,12 +508,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ mov(arr_size, MinObjAlignmentInBytesMask);
__ and_32(tmp2, tmp1, (unsigned int)(Klass::_lh_header_size_mask << Klass::_lh_header_size_shift));
#ifdef AARCH64
__ lslv_w(tmp3, length, tmp1);
__ add(arr_size, arr_size, tmp3);
#else
__ add(arr_size, arr_size, AsmOperand(length, lsl, tmp1));
#endif // AARCH64
__ add(arr_size, arr_size, AsmOperand(tmp2, lsr, Klass::_lh_header_size_shift));
__ align_reg(arr_size, arr_size, MinObjAlignmentInBytes);
@ -714,15 +573,8 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
__ load_klass(Rtemp, R0);
__ ldr_u32(Rtemp, Address(Rtemp, Klass::access_flags_offset()));
#ifdef AARCH64
Label L;
__ tbnz(Rtemp, exact_log2(JVM_ACC_HAS_FINALIZER), L);
__ ret();
__ bind(L);
#else
__ tst(Rtemp, JVM_ACC_HAS_FINALIZER);
__ bx(LR, eq);
#endif // AARCH64
// Call VM
OopMap* map = save_live_registers(sasm);
@ -744,9 +596,6 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case throw_index_exception_id:
{
__ set_info("index_range_check_failed", dont_gc_arguments);
#ifdef AARCH64
__ NOT_TESTED();
#endif
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
}
break;
@ -804,9 +653,6 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
case throw_incompatible_class_change_error_id:
{
__ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments);
#ifdef AARCH64
__ NOT_TESTED();
#endif
oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
}
break;
@ -890,7 +736,7 @@ OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
restore_live_registers_without_return(sasm);
DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
assert(deopt_blob != NULL, "deoptimization blob must have been created");
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg));
__ jump(deopt_blob->unpack_with_reexecution(), relocInfo::runtime_call_type, noreg);
}
break;

View File

@ -39,27 +39,15 @@ define_pd_global(bool, PreferInterpreterNativeStubs, false);
define_pd_global(bool, ProfileTraps, true);
define_pd_global(bool, UseOnStackReplacement, true);
define_pd_global(bool, ProfileInterpreter, true);
#ifdef AARCH64
define_pd_global(bool, TieredCompilation, trueInTiered);
#else
define_pd_global(bool, TieredCompilation, false);
#endif
define_pd_global(intx, CompileThreshold, 10000);
define_pd_global(intx, OnStackReplacePercentage, 140);
define_pd_global(intx, ConditionalMoveLimit, 4);
// C2 gets to use all the float/double registers
#ifdef AARCH64
define_pd_global(intx, FLOATPRESSURE, 31);
#else
define_pd_global(intx, FLOATPRESSURE, 30);
#endif
define_pd_global(intx, FreqInlineSize, 175);
#ifdef AARCH64
define_pd_global(intx, INTPRESSURE, 27);
#else
define_pd_global(intx, INTPRESSURE, 12);
#endif
define_pd_global(intx, InteriorEntryAlignment, 16); // = CodeEntryAlignment
define_pd_global(size_t, NewSizeThreadIncrease, ScaleForWordSize(4*K));
// The default setting 16/16 seems to work best.

View File

@ -304,26 +304,12 @@ void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
*((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
}
#ifdef AARCH64
// Used by template based interpreter deoptimization
void frame::interpreter_frame_set_stack_top(intptr_t* stack_top) {
*((intptr_t**)addr_at(interpreter_frame_stack_top_offset)) = stack_top;
}
// Used by template based interpreter deoptimization
void frame::interpreter_frame_set_extended_sp(intptr_t* sp) {
*((intptr_t**)addr_at(interpreter_frame_extended_sp_offset)) = sp;
}
#else
// Used by template based interpreter deoptimization
void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
*((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
}
#endif // AARCH64
frame frame::sender_for_entry_frame(RegisterMap* map) const {
assert(map != NULL, "map must be set");
@ -334,18 +320,12 @@ frame frame::sender_for_entry_frame(RegisterMap* map) const {
assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
map->clear();
assert(map->include_argument_oops(), "should be set by clear");
#ifdef AARCH64
assert (jfa->last_Java_pc() != NULL, "pc should be stored");
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
return fr;
#else
if (jfa->last_Java_pc() != NULL) {
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
return fr;
}
frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
return fr;
#endif // AARCH64
}
//------------------------------------------------------------------------------
@ -403,10 +383,6 @@ void frame::adjust_unextended_sp() {
void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
// see x86 for comments
map->set_location(FP->as_VMReg(), (address) link_addr);
#ifdef AARCH64
// also adjust a high part of register
map->set_location(FP->as_VMReg()->next(), (address) link_addr);
#endif // AARCH64
}
frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
@ -539,14 +515,6 @@ BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result)
if (method->is_native()) {
// Prior to calling into the runtime to report the method_exit both of
// the possible return value registers are saved.
#ifdef AARCH64
// Return value registers are saved into the frame
if (type == T_FLOAT || type == T_DOUBLE) {
res_addr = addr_at(interpreter_frame_fp_saved_result_offset);
} else {
res_addr = addr_at(interpreter_frame_gp_saved_result_offset);
}
#else
// Return value registers are pushed to the native stack
res_addr = (intptr_t*)sp();
#ifdef __ABI_HARD__
@ -555,7 +523,6 @@ BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result)
res_addr += 2;
}
#endif // __ABI_HARD__
#endif // AARCH64
} else {
res_addr = (intptr_t*)interpreter_frame_tos_address();
}
@ -602,12 +569,7 @@ intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
void frame::describe_pd(FrameValues& values, int frame_no) {
if (is_interpreted_frame()) {
DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
#ifdef AARCH64
DESCRIBE_FP_OFFSET(interpreter_frame_stack_top);
DESCRIBE_FP_OFFSET(interpreter_frame_extended_sp);
#else
DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
#endif // AARCH64
DESCRIBE_FP_OFFSET(interpreter_frame_method);
DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
DESCRIBE_FP_OFFSET(interpreter_frame_cache);
@ -631,7 +593,6 @@ intptr_t *frame::initial_deoptimization_info() {
}
intptr_t* frame::real_fp() const {
#ifndef AARCH64
if (is_entry_frame()) {
// Work-around: FP (currently) does not conform to the ABI for entry
// frames (see generate_call_stub). Might be worth fixing as another CR.
@ -644,7 +605,6 @@ intptr_t* frame::real_fp() const {
#endif
return new_fp;
}
#endif // !AARCH64
if (_cb != NULL) {
// use the frame size if valid
int size = _cb->frame_size();

View File

@ -37,22 +37,12 @@
sender_sp_offset = 2,
// Interpreter frames
#ifdef AARCH64
interpreter_frame_gp_saved_result_offset = 4, // for native calls only
interpreter_frame_fp_saved_result_offset = 3, // for native calls only
#endif
interpreter_frame_oop_temp_offset = 2, // for native calls only
interpreter_frame_sender_sp_offset = -1,
#ifdef AARCH64
interpreter_frame_stack_top_offset = interpreter_frame_sender_sp_offset - 1,
interpreter_frame_extended_sp_offset = interpreter_frame_stack_top_offset - 1,
interpreter_frame_method_offset = interpreter_frame_extended_sp_offset - 1,
#else
// outgoing sp before a call to an invoked method
interpreter_frame_last_sp_offset = interpreter_frame_sender_sp_offset - 1,
interpreter_frame_method_offset = interpreter_frame_last_sp_offset - 1,
#endif // AARCH64
interpreter_frame_mirror_offset = interpreter_frame_method_offset - 1,
interpreter_frame_mdp_offset = interpreter_frame_mirror_offset - 1,
interpreter_frame_cache_offset = interpreter_frame_mdp_offset - 1,
@ -64,7 +54,7 @@
interpreter_frame_monitor_block_bottom_offset = interpreter_frame_initial_sp_offset,
// Entry frames
entry_frame_call_wrapper_offset = AARCH64_ONLY(2) NOT_AARCH64(0)
entry_frame_call_wrapper_offset = 0
};
intptr_t ptr_at(int offset) const {
@ -107,9 +97,7 @@
frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address pc);
#ifndef AARCH64
frame(intptr_t* sp, intptr_t* fp);
#endif // !AARCH64
void init(intptr_t* sp, intptr_t* fp, address pc);
@ -119,18 +107,11 @@
inline address* sender_pc_addr() const;
#ifdef AARCH64
// Used by template based interpreter deoptimization
void interpreter_frame_set_stack_top(intptr_t* stack_top);
void interpreter_frame_set_extended_sp(intptr_t* sp);
#else
// expression stack tos if we are nested in a java call
intptr_t* interpreter_frame_last_sp() const;
// deoptimization support
void interpreter_frame_set_last_sp(intptr_t* sp);
#endif // AARCH64
// helper to update a map with callee-saved FP
static void update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr);

View File

@ -83,7 +83,6 @@ inline frame::frame(intptr_t* sp, intptr_t* unextended_sp, intptr_t* fp, address
}
}
#ifndef AARCH64
inline frame::frame(intptr_t* sp, intptr_t* fp) {
_sp = sp;
@ -104,7 +103,6 @@ inline frame::frame(intptr_t* sp, intptr_t* fp) {
}
}
#endif // !AARCH64
// Accessors
@ -148,11 +146,9 @@ inline intptr_t** frame::interpreter_frame_locals_addr() const {
return (intptr_t**)addr_at(interpreter_frame_locals_offset);
}
#ifndef AARCH64
inline intptr_t* frame::interpreter_frame_last_sp() const {
return *(intptr_t**)addr_at(interpreter_frame_last_sp_offset);
}
#endif // !AARCH64
inline intptr_t* frame::interpreter_frame_bcp_addr() const {
return (intptr_t*)addr_at(interpreter_frame_bcp_offset);
@ -181,12 +177,6 @@ inline oop* frame::interpreter_frame_mirror_addr() const {
// top of expression stack
inline intptr_t* frame::interpreter_frame_tos_address() const {
#ifdef AARCH64
intptr_t* stack_top = (intptr_t*)*addr_at(interpreter_frame_stack_top_offset);
assert(stack_top != NULL, "should be stored before call");
assert(stack_top <= (intptr_t*) interpreter_frame_monitor_end(), "bad tos");
return stack_top;
#else
intptr_t* last_sp = interpreter_frame_last_sp();
if (last_sp == NULL ) {
return sp();
@ -197,7 +187,6 @@ inline intptr_t* frame::interpreter_frame_tos_address() const {
assert(last_sp <= (intptr_t*) interpreter_frame_monitor_end(), "bad tos");
return last_sp;
}
#endif // AARCH64
}
inline oop* frame::interpreter_frame_temp_oop_addr() const {

View File

@ -60,27 +60,16 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
BLOCK_COMMENT("PreBarrier");
#ifdef AARCH64
callee_saved_regs = align_up(callee_saved_regs, 2);
for (int i = 0; i < callee_saved_regs; i += 2) {
__ raw_push(as_Register(i), as_Register(i+1));
}
#else
RegisterSet saved_regs = RegisterSet(R0, as_Register(callee_saved_regs-1));
__ push(saved_regs | R9ifScratched);
#endif // AARCH64
if (addr != R0) {
assert_different_registers(count, R0);
__ mov(R0, addr);
}
#ifdef AARCH64
__ zero_extend(R1, count, 32); // G1BarrierSetRuntime::write_ref_array_pre_*_entry takes size_t
#else
if (count != R1) {
__ mov(R1, count);
}
#endif // AARCH64
if (UseCompressedOops) {
__ call(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_narrow_oop_entry));
@ -88,13 +77,7 @@ void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm
__ call(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_oop_entry));
}
#ifdef AARCH64
for (int i = callee_saved_regs - 2; i >= 0; i -= 2) {
__ raw_pop(as_Register(i), as_Register(i+1));
}
#else
__ pop(saved_regs | R9ifScratched);
#endif // AARCH64
}
}
@ -106,9 +89,6 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
assert_different_registers(count, R0);
__ mov(R0, addr);
}
#ifdef AARCH64
__ zero_extend(R1, count, 32); // G1BarrierSetRuntime::write_ref_array_post_entry takes size_t
#else
if (count != R1) {
__ mov(R1, count);
}
@ -120,17 +100,14 @@ void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* mas
// difficult for this particular call site.
__ push(R9);
#endif // !R9_IS_SCRATCHED
#endif // !AARCH64
__ call(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_post_entry));
#ifndef AARCH64
#if R9_IS_SCRATCHED
__ pop(R9);
#endif // !R9_IS_SCRATCHED
#endif // !AARCH64
}
// G1 pre-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// Blows all volatile registers R0-R3, Rtemp, LR).
// If store_addr != noreg, then previous value is loaded from [store_addr];
// in such case store_addr and new_val registers are preserved;
// otherwise pre_val register is preserved.
@ -186,20 +163,12 @@ void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
__ bind(runtime);
// save the live input values
#ifdef AARCH64
if (store_addr != noreg) {
__ raw_push(store_addr, new_val);
} else {
__ raw_push(pre_val, ZR);
}
#else
if (store_addr != noreg) {
// avoid raw_push to support any ordering of store_addr and new_val
__ push(RegisterSet(store_addr) | RegisterSet(new_val));
} else {
__ push(pre_val);
}
#endif // AARCH64
if (pre_val != R0) {
__ mov(R0, pre_val);
@ -208,25 +177,17 @@ void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
__ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), R0, R1);
#ifdef AARCH64
if (store_addr != noreg) {
__ raw_pop(store_addr, new_val);
} else {
__ raw_pop(pre_val, ZR);
}
#else
if (store_addr != noreg) {
__ pop(RegisterSet(store_addr) | RegisterSet(new_val));
} else {
__ pop(pre_val);
}
#endif // AARCH64
__ bind(done);
}
// G1 post-barrier.
// Blows all volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// Blows all volatile registers R0-R3, Rtemp, LR).
void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
Register store_addr,
Register new_val,
@ -246,13 +207,8 @@ void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
// Does store cross heap regions?
__ eor(tmp1, store_addr, new_val);
#ifdef AARCH64
__ logical_shift_right(tmp1, tmp1, HeapRegion::LogOfHRGrainBytes);
__ cbz(tmp1, done);
#else
__ movs(tmp1, AsmOperand(tmp1, lsr, HeapRegion::LogOfHRGrainBytes));
__ b(done, eq);
#endif
// crosses regions, storing NULL?
@ -333,12 +289,8 @@ void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet deco
const Register store_addr = obj.base();
if (obj.index() != noreg) {
assert (obj.disp() == 0, "index or displacement, not both");
#ifdef AARCH64
__ add(store_addr, obj.base(), obj.index(), obj.extend(), obj.shift_imm());
#else
assert(obj.offset_op() == add_offset, "addition is expected");
__ add(store_addr, obj.base(), AsmOperand(obj.index(), obj.shift(), obj.shift_imm()));
#endif // AARCH64
} else if (obj.disp() != 0) {
__ add(store_addr, obj.base(), obj.disp());
}
@ -415,16 +367,10 @@ void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler*
__ set_info("g1_pre_barrier_slow_id", false);
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_pre_val_0 = R0; // must be R0, to be ready for the runtime call
const Register r_index_1 = R1;
@ -454,12 +400,7 @@ void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler*
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();
@ -492,16 +433,10 @@ void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler*
AddressLiteral cardtable(ci_card_table_address_as<address>(), relocInfo::none);
// save at least the registers that need saving if the runtime is called
#ifdef AARCH64
__ raw_push(R0, R1);
__ raw_push(R2, R3);
const int nb_saved_regs = 4;
#else // AARCH64
const RegisterSet saved_regs = RegisterSet(R0,R3) | RegisterSet(R12) | RegisterSet(LR);
const int nb_saved_regs = 6;
assert(nb_saved_regs == saved_regs.size(), "fix nb_saved_regs");
__ push(saved_regs);
#endif // AARCH64
const Register r_card_addr_0 = R0; // must be R0 for the slow case
const Register r_obj_0 = R0;
@ -528,12 +463,7 @@ void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler*
__ bind(done);
#ifdef AARCH64
__ raw_pop(R2, R3);
__ raw_pop(R0, R1);
#else // AARCH64
__ pop(saved_regs);
#endif // AARCH64
__ ret();

View File

@ -37,12 +37,6 @@ void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators,
case T_OBJECT:
case T_ARRAY: {
if (in_heap) {
#ifdef AARCH64
if (UseCompressedOops) {
__ ldr_w(dst, src);
__ decode_heap_oop(dst);
} else
#endif // AARCH64
{
__ ldr(dst, src);
}
@ -59,13 +53,9 @@ void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators,
case T_INT: __ ldr_s32 (dst, src); break;
case T_ADDRESS: __ ldr (dst, src); break;
case T_LONG:
#ifdef AARCH64
__ ldr (dst, src); break;
#else
assert(dst == noreg, "only to ltos");
__ add (src.index(), src.index(), src.base());
__ ldmia (src.index(), RegisterSet(R0_tos_lo) | RegisterSet(R1_tos_hi));
#endif // AARCH64
break;
#ifdef __SOFTFP__
case T_FLOAT:
@ -102,15 +92,6 @@ void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators
case T_OBJECT:
case T_ARRAY: {
if (in_heap) {
#ifdef AARCH64
if (UseCompressedOops) {
assert(!dst.uses(src), "not enough registers");
if (!is_null) {
__ encode_heap_oop(src);
}
__ str_w(val, obj);
} else
#endif // AARCH64
{
__ str(val, obj);
}
@ -130,13 +111,9 @@ void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators
case T_INT: __ str (val, obj); break;
case T_ADDRESS: __ str (val, obj); break;
case T_LONG:
#ifdef AARCH64
__ str (val, obj); break;
#else // AARCH64
assert(val == noreg, "only tos");
__ add (obj.index(), obj.index(), obj.base());
__ stmia (obj.index(), RegisterSet(R0_tos_lo) | RegisterSet(R1_tos_hi));
#endif // AARCH64
break;
#ifdef __SOFTFP__
case T_FLOAT:
@ -188,7 +165,7 @@ void BarrierSetAssembler::eden_allocate(MacroAssembler* masm, Register obj, Regi
assert_different_registers(obj, obj_end, top_addr, heap_end);
}
bool load_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw() ); // TODO-AARCH64 check performance
bool load_const = VM_Version::supports_movw();
if (load_const) {
__ mov_address(top_addr, (address)Universe::heap()->top_addr(), symbolic_Relocation::eden_top_reference);
} else {
@ -197,13 +174,7 @@ void BarrierSetAssembler::eden_allocate(MacroAssembler* masm, Register obj, Regi
// Calculate new heap_top by adding the size of the object
Label retry;
__ bind(retry);
#ifdef AARCH64
__ ldxr(obj, top_addr);
#else
__ ldr(obj, Address(top_addr));
#endif // AARCH64
__ ldr(heap_end, Address(top_addr, (intptr_t)ch->end_addr() - (intptr_t)ch->top_addr()));
__ add_rc(obj_end, obj, size_expression);
// Check if obj_end wrapped around, i.e., obj_end < obj. If yes, jump to the slow case.
@ -213,13 +184,8 @@ void BarrierSetAssembler::eden_allocate(MacroAssembler* masm, Register obj, Regi
__ cmp(obj_end, heap_end);
__ b(slow_case, hi);
#ifdef AARCH64
__ stxr(heap_end/*scratched*/, obj_end, top_addr);
__ cbnz_w(heap_end, retry);
#else
__ atomic_cas_bool(obj, obj_end, top_addr, 0, heap_end/*scratched*/);
__ b(retry, ne);
#endif // AARCH64
incr_allocated_bytes(masm, size_expression, tmp1);
}
@ -239,11 +205,6 @@ void BarrierSetAssembler::tlab_allocate(MacroAssembler* masm, Register obj, Regi
}
void BarrierSetAssembler::incr_allocated_bytes(MacroAssembler* masm, RegisterOrConstant size_in_bytes, Register tmp) {
#ifdef AARCH64
__ ldr(tmp, Address(Rthread, in_bytes(JavaThread::allocated_bytes_offset())));
__ add_rc(tmp, tmp, size_in_bytes);
__ str(tmp, Address(Rthread, in_bytes(JavaThread::allocated_bytes_offset())));
#else
// Bump total bytes allocated by this thread
Label done;
@ -281,5 +242,4 @@ void BarrierSetAssembler::incr_allocated_bytes(MacroAssembler* masm, RegisterOrC
// Unborrow the Rthread
__ sub(Rthread, Ralloc, in_bytes(JavaThread::allocated_bytes_offset()));
#endif // AARCH64
}

View File

@ -119,7 +119,6 @@ void CardTableBarrierSetAssembler::store_check_part1(MacroAssembler* masm, Regis
Possible cause is a cache miss (card table base address resides in a
rarely accessed area of thread descriptor).
*/
// TODO-AARCH64 Investigate if mov_slow is faster than ldr from Rthread on AArch64
__ mov_address(card_table_base, (address)ct->byte_map_base(), symbolic_Relocation::card_table_reference);
}
@ -136,12 +135,7 @@ void CardTableBarrierSetAssembler::store_check_part2(MacroAssembler* masm, Regis
assert(sizeof(*ct->byte_map_base()) == sizeof(jbyte), "Adjust store check code");
assert(CardTable::dirty_card_val() == 0, "Dirty card value must be 0 due to optimizations.");
#ifdef AARCH64
add(card_table_base, card_table_base, AsmOperand(obj, lsr, CardTable::card_shift));
Address card_table_addr(card_table_base);
#else
Address card_table_addr(card_table_base, obj, lsr, CardTable::card_shift);
#endif
if (UseCondCardMark) {
if (ct->scanned_concurrently()) {
@ -164,9 +158,6 @@ void CardTableBarrierSetAssembler::store_check_part2(MacroAssembler* masm, Regis
}
void CardTableBarrierSetAssembler::set_card(MacroAssembler* masm, Register card_table_base, Address card_table_addr, Register tmp) {
#ifdef AARCH64
strb(ZR, card_table_addr);
#else
CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
CardTable* ct = ctbs->card_table();
if ((((uintptr_t)ct->byte_map_base() & 0xff) == 0)) {
@ -178,5 +169,4 @@ void CardTableBarrierSetAssembler::set_card(MacroAssembler* masm, Register card_
__ mov(tmp, 0);
__ strb(tmp, card_table_addr);
}
#endif // AARCH64
}

View File

@ -25,19 +25,7 @@
#ifndef CPU_ARM_VM_GLOBALDEFINITIONS_ARM_HPP
#define CPU_ARM_VM_GLOBALDEFINITIONS_ARM_HPP
#ifdef AARCH64
#define AARCH64_ONLY(code) code
#define AARCH64_ONLY_ARG(arg) , arg
#define NOT_AARCH64(code)
#define NOT_AARCH64_ARG(arg)
#else
#define AARCH64_ONLY(code)
#define AARCH64_ONLY_ARG(arg)
#define NOT_AARCH64(code) code
#define NOT_AARCH64_ARG(arg) , arg
#endif
const int StackAlignmentInBytes = AARCH64_ONLY(16) NOT_AARCH64(8);
const int StackAlignmentInBytes = 8;
// Indicates whether the C calling conventions require that
// 32-bit integer argument values are extended to 64 bits.
@ -49,24 +37,19 @@ const bool HaveVFP = false;
const bool HaveVFP = true;
#endif
#if defined(__ARM_PCS_VFP) || defined(AARCH64)
#if defined(__ARM_PCS_VFP)
#define __ABI_HARD__
#endif
#if defined(__ARM_ARCH_7A__) || defined(AARCH64)
#if defined(__ARM_ARCH_7A__)
#define SUPPORTS_NATIVE_CX8
#endif
#define STUBROUTINES_MD_HPP "stubRoutines_arm.hpp"
#define INTERP_MASM_MD_HPP "interp_masm_arm.hpp"
#define TEMPLATETABLE_MD_HPP "templateTable_arm.hpp"
#ifdef AARCH64
#define ADGLOBALS_MD_HPP "adfiles/adGlobals_arm_64.hpp"
#define AD_MD_HPP "adfiles/ad_arm_64.hpp"
#else
#define ADGLOBALS_MD_HPP "adfiles/adGlobals_arm_32.hpp"
#define AD_MD_HPP "adfiles/ad_arm_32.hpp"
#endif
#define C1_LIRGENERATOR_MD_HPP "c1_LIRGenerator_arm.hpp"
#ifdef TARGET_COMPILER_gcc

View File

@ -88,13 +88,5 @@ define_pd_global(bool, ThreadLocalHandshakes, false);
notproduct, \
range, \
constraint, \
writeable) \
\
develop(bool, VerifyInterpreterStackTop, false, \
"Verify interpreter stack top at every stack expansion (AArch64 only)") \
\
develop(bool, ZapHighNonSignificantBits, false, \
"Zap high non-significant bits of values (AArch64 only)") \
\
writeable)
#endif // CPU_ARM_VM_GLOBALS_ARM_HPP

View File

@ -35,7 +35,7 @@
#define __ masm->
int InlineCacheBuffer::ic_stub_code_size() {
return (AARCH64_ONLY(8) NOT_AARCH64(4)) * Assembler::InstructionSize;
return (4 * Assembler::InstructionSize);
}
void InlineCacheBuffer::assemble_ic_buffer_code(address code_begin, void* cached_value, address entry_point) {

View File

@ -29,49 +29,12 @@
#define __ _masm->
#ifdef AARCH64
static int icache_flush(address addr, int lines, int magic) {
// TODO-AARCH64 Figure out actual cache line size (mrs Xt, CTR_EL0)
address p = addr;
for (int i = 0; i < lines; i++, p += ICache::line_size) {
__asm__ volatile(
" dc cvau, %[p]"
:
: [p] "r" (p)
: "memory");
}
__asm__ volatile(
" dsb ish"
: : : "memory");
p = addr;
for (int i = 0; i < lines; i++, p += ICache::line_size) {
__asm__ volatile(
" ic ivau, %[p]"
:
: [p] "r" (p)
: "memory");
}
__asm__ volatile(
" dsb ish\n\t"
" isb\n\t"
: : : "memory");
return magic;
}
#else
static int icache_flush(address addr, int lines, int magic) {
__builtin___clear_cache(addr, addr + (lines << ICache::log2_line_size));
return magic;
}
#endif // AARCH64
void ICacheStubGenerator::generate_icache_flush(ICache::flush_icache_stub_t* flush_icache_stub) {
address start = (address)icache_flush;

View File

@ -54,7 +54,7 @@ InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAs
}
void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
#if defined(ASSERT) && !defined(AARCH64)
#ifdef ASSERT
// Ensure that last_sp is not filled.
{ Label L;
ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
@ -62,27 +62,15 @@ void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entr
stop("InterpreterMacroAssembler::call_VM_helper: last_sp != NULL");
bind(L);
}
#endif // ASSERT && !AARCH64
#endif // ASSERT
// Rbcp must be saved/restored since it may change due to GC.
save_bcp();
#ifdef AARCH64
check_no_cached_stack_top(Rtemp);
save_stack_top();
check_extended_sp(Rtemp);
cut_sp_before_call();
#endif // AARCH64
// super call
MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
#ifdef AARCH64
// Restore SP to extended SP
restore_sp_after_call(Rtemp);
check_stack_top();
clear_cached_stack_top();
#endif // AARCH64
// Restore interpreter specific registers.
restore_bcp();
@ -128,10 +116,8 @@ void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
#ifndef AARCH64
const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
+ in_ByteSize(wordSize));
#endif // !AARCH64
Register zero = zero_register(Rtemp);
@ -141,11 +127,7 @@ void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
break;
#ifdef AARCH64
case ltos: ldr(R0_tos, val_addr); break;
#else
case ltos: ldr(R1_tos_hi, val_addr_hi); // fall through
#endif // AARCH64
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
@ -163,9 +145,7 @@ void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
}
// Clean up tos value in the thread object
str(zero, val_addr);
#ifndef AARCH64
str(zero, val_addr_hi);
#endif // !AARCH64
mov(Rtemp, (int) ilgl);
str_32(Rtemp, tos_addr);
@ -220,7 +200,6 @@ void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset,
ldrb(tmp_reg, Address(Rbcp, bcp_offset));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
} else if (index_size == sizeof(u4)) {
// TODO-AARCH64: consider using unaligned access here
ldrb(index, Address(Rbcp, bcp_offset+3));
ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
@ -252,7 +231,6 @@ void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Regis
// convert from field index to ConstantPoolCacheEntry index
assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
// TODO-AARCH64 merge this shift with shift "add(..., Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord))" after this method is called
logical_shift_left(index, index, 2);
}
@ -261,13 +239,8 @@ void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register
get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
// caution index and bytecode can be the same
add(bytecode, cache, AsmOperand(index, lsl, LogBytesPerWord));
#ifdef AARCH64
add(bytecode, bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
ldarb(bytecode, bytecode);
#else
ldrb(bytecode, Address(bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())));
TemplateTable::volatile_barrier(MacroAssembler::LoadLoad, noreg, true);
#endif // AARCH64
}
// Sets cache. Blows reg_tmp.
@ -365,31 +338,21 @@ void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
#ifdef AARCH64
cbz(supers_cnt, not_subtype);
add(supers_arr, supers_arr, Array<Klass*>::base_offset_in_bytes());
#else
cmp(supers_cnt, 0);
// Skip to the start of array elements and prefetch the first super-klass.
ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
b(not_subtype, eq);
#endif // AARCH64
bind(loop);
#ifdef AARCH64
ldr(cur_super, Address(supers_arr, wordSize, post_indexed));
#endif // AARCH64
cmp(cur_super, Rsuper_klass);
b(update_cache, eq);
subs(supers_cnt, supers_cnt, 1);
#ifndef AARCH64
ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
#endif // !AARCH64
b(loop, ne);
@ -419,33 +382,18 @@ void InterpreterMacroAssembler::pop_i(Register r) {
zap_high_non_significant_bits(r);
}
#ifdef AARCH64
void InterpreterMacroAssembler::pop_l(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
ldr(r, Address(Rstack_top, 2*wordSize, post_indexed));
}
#else
void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
assert_different_registers(lo, hi);
assert(lo < hi, "lo must be < hi");
pop(RegisterSet(lo) | RegisterSet(hi));
}
#endif // AARCH64
void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
#ifdef AARCH64
ldr_s(fd, Address(Rstack_top, wordSize, post_indexed));
#else
fpops(fd);
#endif // AARCH64
}
void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
#ifdef AARCH64
ldr_d(fd, Address(Rstack_top, 2*wordSize, post_indexed));
#else
fpopd(fd);
#endif // AARCH64
}
@ -458,11 +406,7 @@ void InterpreterMacroAssembler::pop(TosState state) {
case ctos: // fall through
case stos: // fall through
case itos: pop_i(R0_tos); break;
#ifdef AARCH64
case ltos: pop_l(R0_tos); break;
#else
case ltos: pop_l(R0_tos_lo, R1_tos_hi); break;
#endif // AARCH64
#ifdef __SOFTFP__
case ftos: pop_i(R0_tos); break;
case dtos: pop_l(R0_tos_lo, R1_tos_hi); break;
@ -488,36 +432,18 @@ void InterpreterMacroAssembler::push_i(Register r) {
check_stack_top_on_expansion();
}
#ifdef AARCH64
void InterpreterMacroAssembler::push_l(Register r) {
assert(r != Rstack_top, "unpredictable instruction");
stp(r, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
check_stack_top_on_expansion();
}
#else
void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
assert_different_registers(lo, hi);
assert(lo < hi, "lo must be < hi");
push(RegisterSet(lo) | RegisterSet(hi));
}
#endif // AARCH64
void InterpreterMacroAssembler::push_f() {
#ifdef AARCH64
str_s(S0_tos, Address(Rstack_top, -wordSize, pre_indexed));
check_stack_top_on_expansion();
#else
fpushs(S0_tos);
#endif // AARCH64
}
void InterpreterMacroAssembler::push_d() {
#ifdef AARCH64
str_d(D0_tos, Address(Rstack_top, -2*wordSize, pre_indexed));
check_stack_top_on_expansion();
#else
fpushd(D0_tos);
#endif // AARCH64
}
// Transition state -> vtos. Blows Rtemp.
@ -530,11 +456,7 @@ void InterpreterMacroAssembler::push(TosState state) {
case ctos: // fall through
case stos: // fall through
case itos: push_i(R0_tos); break;
#ifdef AARCH64
case ltos: push_l(R0_tos); break;
#else
case ltos: push_l(R0_tos_lo, R1_tos_hi); break;
#endif // AARCH64
#ifdef __SOFTFP__
case ftos: push_i(R0_tos); break;
case dtos: push_l(R0_tos_lo, R1_tos_hi); break;
@ -548,7 +470,6 @@ void InterpreterMacroAssembler::push(TosState state) {
}
#ifndef AARCH64
// Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
@ -576,7 +497,6 @@ void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
#endif // !__SOFTFP__ && !__ABI_HARD__
}
#endif // !AARCH64
// Helpers for swap and dup
@ -590,20 +510,12 @@ void InterpreterMacroAssembler::store_ptr(int n, Register val) {
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
#ifdef AARCH64
check_no_cached_stack_top(Rtemp);
save_stack_top();
cut_sp_before_call();
mov(Rparams, Rstack_top);
#endif // AARCH64
// set sender sp
mov(Rsender_sp, SP);
#ifndef AARCH64
// record last_sp
str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // !AARCH64
}
// Jump to from_interpreted entry of a call unless single stepping is possible
@ -619,19 +531,8 @@ void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
// interp_only_mode if these events CAN be enabled.
ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
#ifdef AARCH64
{
Label not_interp_only_mode;
cbz(Rtemp, not_interp_only_mode);
indirect_jump(Address(method, Method::interpreter_entry_offset()), Rtemp);
bind(not_interp_only_mode);
}
#else
cmp(Rtemp, 0);
ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
#endif // AARCH64
}
indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
@ -658,12 +559,7 @@ void InterpreterMacroAssembler::dispatch_base(TosState state,
bool verifyoop) {
if (VerifyActivationFrameSize) {
Label L;
#ifdef AARCH64
mov(Rtemp, SP);
sub(Rtemp, FP, Rtemp);
#else
sub(Rtemp, FP, SP);
#endif // AARCH64
int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
cmp(Rtemp, min_frame_size);
b(L, ge);
@ -692,16 +588,10 @@ void InterpreterMacroAssembler::dispatch_base(TosState state,
if (state == vtos) {
indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
} else {
#ifdef AARCH64
sub(Rtemp, R3_bytecode, (Interpreter::distance_from_dispatch_table(vtos) -
Interpreter::distance_from_dispatch_table(state)));
indirect_jump(Address::indexed_ptr(RdispatchTable, Rtemp), Rtemp);
#else
// on 32-bit ARM this method is faster than the one above.
sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
Interpreter::distance_from_dispatch_table(state)) * wordSize);
indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
#endif
}
} else {
assert(table_mode == DispatchNormal, "invalid dispatch table mode");
@ -897,25 +787,18 @@ void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_a
// points to word before bottom of monitor block
cmp(Rcur, Rbottom); // check if there are no monitors
#ifndef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
// prefetch monitor's object
#endif // !AARCH64
b(no_unlock, eq);
bind(loop);
#ifdef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
#endif // AARCH64
// check if current entry is used
cbnz(Rcur_obj, exception_monitor_is_still_locked);
add(Rcur, Rcur, entry_size); // otherwise advance to next entry
cmp(Rcur, Rbottom); // check if bottom reached
#ifndef AARCH64
ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
// prefetch monitor's object
#endif // !AARCH64
b(loop, ne); // if not at bottom then check this entry
}
@ -929,15 +812,9 @@ void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_a
}
// remove activation
#ifdef AARCH64
ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
ldp(FP, LR, Address(FP));
mov(SP, Rtemp);
#else
mov(Rtemp, FP);
ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
#endif
if (ret_addr != LR) {
mov(ret_addr, LR);
@ -965,7 +842,7 @@ void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Reg
//
// Argument: R1 : Points to BasicObjectLock to be used for locking.
// Must be initialized with object to lock.
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
// Blows volatile registers R0-R3, Rtemp, LR. Calls VM.
void InterpreterMacroAssembler::lock_object(Register Rlock) {
assert(Rlock == R1, "the second argument");
@ -991,15 +868,6 @@ void InterpreterMacroAssembler::lock_object(Register Rlock) {
biased_locking_enter(Robj, Rmark/*scratched*/, R0, false, Rtemp, done, slow_case);
}
#ifdef AARCH64
assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
ldr(Rmark, Robj);
// Test if object is already locked
assert(markOopDesc::unlocked_value == 1, "adjust this code");
tbz(Rmark, exact_log2(markOopDesc::unlocked_value), already_locked);
#else // AARCH64
// On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
// That would be acceptable as ether CAS or slow case path is taken in that case.
@ -1013,7 +881,6 @@ void InterpreterMacroAssembler::lock_object(Register Rlock) {
tst(Rmark, markOopDesc::unlocked_value);
b(already_locked, eq);
#endif // !AARCH64
// Save old object->mark() into BasicLock's displaced header
str(Rmark, Address(Rlock, mark_offset));
@ -1059,19 +926,6 @@ void InterpreterMacroAssembler::lock_object(Register Rlock) {
// conditions into a single test:
// => ((mark - SP) & (3 - os::pagesize())) == 0
#ifdef AARCH64
// Use the single check since the immediate is OK for AARCH64
sub(R0, Rmark, Rstack_top);
intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
Assembler::LogicalImmediate imm(mask, false);
ands(R0, R0, imm);
// For recursive case store 0 into lock record.
// It is harmless to store it unconditionally as lock record contains some garbage
// value in its _displaced_header field by this moment.
str(ZR, Address(Rlock, mark_offset));
#else // AARCH64
// (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
// Check independently the low bits and the distance to SP.
// -1- test low 2 bits
@ -1082,7 +936,6 @@ void InterpreterMacroAssembler::lock_object(Register Rlock) {
// If still 'eq' then recursive locking OK: store 0 into lock record
str(R0, Address(Rlock, mark_offset), eq);
#endif // AARCH64
#ifndef PRODUCT
if (PrintBiasedLockingStatistics) {
@ -1106,7 +959,7 @@ void InterpreterMacroAssembler::lock_object(Register Rlock) {
//
// Argument: R1: Points to BasicObjectLock structure for lock
// Throw an IllegalMonitorException if object is not locked by current thread
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
// Blows volatile registers R0-R3, Rtemp, LR. Calls VM.
void InterpreterMacroAssembler::unlock_object(Register Rlock) {
assert(Rlock == R1, "the second argument");
@ -1168,7 +1021,7 @@ void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& ze
// Set the method data pointer for the current bcp.
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
// Blows volatile registers R0-R3, Rtemp, LR.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label set_mdp;
@ -1265,22 +1118,12 @@ void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
// Decrement the register. Set condition codes.
subs(bumped_count, bumped_count, DataLayout::counter_increment);
// Avoid overflow.
#ifdef AARCH64
assert(DataLayout::counter_increment == 1, "required for cinc");
cinc(bumped_count, bumped_count, pl);
#else
add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
#endif // AARCH64
} else {
// Increment the register. Set condition codes.
adds(bumped_count, bumped_count, DataLayout::counter_increment);
// Avoid overflow.
#ifdef AARCH64
assert(DataLayout::counter_increment == 1, "required for cinv");
cinv(bumped_count, bumped_count, mi); // inverts 0x80..00 back to 0x7f..ff
#else
sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
#endif // AARCH64
}
str(bumped_count, data);
}
@ -1328,7 +1171,7 @@ void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int cons
}
// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// Blows volatile registers R0-R3, Rtemp, LR).
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
@ -1542,7 +1385,7 @@ void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
bind (done);
}
// Sets mdp, blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
// Sets mdp, blows volatile registers R0-R3, Rtemp, LR).
void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
@ -1704,9 +1547,6 @@ void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index
void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
#ifdef AARCH64
rev_w(r, r);
#else
if (VM_Version::supports_rev()) {
rev(r, r);
} else {
@ -1715,7 +1555,6 @@ void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Registe
andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
eor(r, rtmp1, AsmOperand(r, ror, 8));
}
#endif // AARCH64
}
@ -1723,7 +1562,7 @@ void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, i
const intx addr = (intx) (address_of_counter + offset);
assert ((addr & 0x3) == 0, "address of counter should be aligned");
const intx offset_mask = right_n_bits(AARCH64_ONLY(12 + 2) NOT_AARCH64(12));
const intx offset_mask = right_n_bits(12);
const address base = (address) (addr & ~offset_mask);
const int offs = (int) (addr & offset_mask);
@ -1736,14 +1575,7 @@ void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, i
if (avoid_overflow) {
adds_32(val, val, 1);
#ifdef AARCH64
Label L;
b(L, mi);
str_32(val, Address(addr_base, offs));
bind(L);
#else
str(val, Address(addr_base, offs), pl);
#endif // AARCH64
} else {
add_32(val, val, 1);
str_32(val, Address(addr_base, offs));
@ -1823,17 +1655,9 @@ void InterpreterMacroAssembler::notify_method_exit(
if (native) {
// For c++ and template interpreter push both result registers on the
// stack in native, we don't know the state.
// On AArch64 result registers are stored into the frame at known locations.
// See frame::interpreter_frame_result for code that gets the result values from here.
assert(result_lo != noreg, "result registers should be defined");
#ifdef AARCH64
assert(result_hi == noreg, "result_hi is not used on AArch64");
assert(result_fp != fnoreg, "FP result register must be defined");
str_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
str(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
#else
assert(result_hi != noreg, "result registers should be defined");
#ifdef __ABI_HARD__
@ -1843,20 +1667,14 @@ void InterpreterMacroAssembler::notify_method_exit(
#endif // __ABI_HARD__
push(RegisterSet(result_lo) | RegisterSet(result_hi));
#endif // AARCH64
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
#ifdef AARCH64
ldr_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
ldr(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
#else
pop(RegisterSet(result_lo) | RegisterSet(result_hi));
#ifdef __ABI_HARD__
fldd(result_fp, Address(SP));
add(SP, SP, 2 * wordSize);
#endif // __ABI_HARD__
#endif // AARCH64
} else {
// For the template interpreter, the value on tos is the size of the
@ -1932,13 +1750,8 @@ void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
add(scratch, scratch, increment);
str_32(scratch, counter_addr);
#ifdef AARCH64
ldr_u32(scratch2, mask_addr);
ands_w(ZR, scratch, scratch2);
#else
ldr(scratch2, mask_addr);
andrs(scratch, scratch, scratch2);
#endif // AARCH64
b(*where, cond);
}
@ -1959,26 +1772,15 @@ void InterpreterMacroAssembler::get_method_counters(Register method,
// Save and restore in use caller-saved registers since they will be trashed by call_VM
assert(reg1 != noreg, "must specify reg1");
assert(reg2 != noreg, "must specify reg2");
#ifdef AARCH64
assert(reg3 != noreg, "must specify reg3");
stp(reg1, reg2, Address(Rstack_top, -2*wordSize, pre_indexed));
stp(reg3, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
#else
assert(reg3 == noreg, "must not specify reg3");
push(RegisterSet(reg1) | RegisterSet(reg2));
#endif
}
mov(R1, method);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
if (saveRegs) {
#ifdef AARCH64
ldp(reg3, ZR, Address(Rstack_top, 2*wordSize, post_indexed));
ldp(reg1, reg2, Address(Rstack_top, 2*wordSize, post_indexed));
#else
pop(RegisterSet(reg1) | RegisterSet(reg2));
#endif
}
ldr(Rcounters, method_counters);

View File

@ -63,48 +63,12 @@ class InterpreterMacroAssembler: public MacroAssembler {
virtual void check_and_handle_earlyret();
// Interpreter-specific registers
#if defined(AARCH64) && defined(ASSERT)
#define check_stack_top() _check_stack_top("invalid Rstack_top at " __FILE__ ":" XSTR(__LINE__))
#define check_stack_top_on_expansion() _check_stack_top("invalid Rstack_top at " __FILE__ ":" XSTR(__LINE__), VerifyInterpreterStackTop)
#define check_extended_sp(tmp) _check_extended_sp(tmp, "SP does not match extended SP in frame at " __FILE__ ":" XSTR(__LINE__))
#define check_no_cached_stack_top(tmp) _check_no_cached_stack_top(tmp, "stack_top is already cached in frame at " __FILE__ ":" XSTR(__LINE__))
void _check_stack_top(const char* msg, bool enabled = true) {
if (enabled) {
Label L;
cmp(SP, Rstack_top);
b(L, ls);
stop(msg);
bind(L);
}
}
void _check_extended_sp(Register tmp, const char* msg) {
Label L;
ldr(tmp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
cmp(SP, tmp);
b(L, eq);
stop(msg);
bind(L);
}
void _check_no_cached_stack_top(Register tmp, const char* msg) {
Label L;
ldr(tmp, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize));
cbz(tmp, L);
stop(msg);
bind(L);
}
#else
inline void check_stack_top() {}
inline void check_stack_top_on_expansion() {}
inline void check_extended_sp(Register tmp) {}
inline void check_no_cached_stack_top(Register tmp) {}
#endif // AARCH64 && ASSERT
void save_bcp() { str(Rbcp, Address(FP, frame::interpreter_frame_bcp_offset * wordSize)); }
void restore_bcp() { ldr(Rbcp, Address(FP, frame::interpreter_frame_bcp_offset * wordSize)); }
@ -112,13 +76,6 @@ class InterpreterMacroAssembler: public MacroAssembler {
void restore_method() { ldr(Rmethod, Address(FP, frame::interpreter_frame_method_offset * wordSize)); }
void restore_dispatch();
#ifdef AARCH64
void save_stack_top() { check_stack_top(); str(Rstack_top, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize)); }
void clear_cached_stack_top() { str(ZR, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize)); }
void restore_stack_top() { ldr(Rstack_top, Address(FP, frame::interpreter_frame_stack_top_offset * wordSize)); clear_cached_stack_top(); check_stack_top(); }
void cut_sp_before_call() { align_reg(SP, Rstack_top, StackAlignmentInBytes); }
void restore_sp_after_call(Register tmp) { ldr(tmp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize)); mov(SP, tmp); }
#endif
// Helpers for runtime call arguments/results
void get_const(Register reg) { ldr(reg, Address(Rmethod, Method::const_offset())); }
@ -145,21 +102,13 @@ class InterpreterMacroAssembler: public MacroAssembler {
void pop_ptr(Register r);
void pop_i(Register r = R0_tos);
#ifdef AARCH64
void pop_l(Register r = R0_tos);
#else
void pop_l(Register lo = R0_tos_lo, Register hi = R1_tos_hi);
#endif
void pop_f(FloatRegister fd);
void pop_d(FloatRegister fd);
void push_ptr(Register r);
void push_i(Register r = R0_tos);
#ifdef AARCH64
void push_l(Register r = R0_tos);
#else
void push_l(Register lo = R0_tos_lo, Register hi = R1_tos_hi);
#endif
void push_f();
void push_d();
@ -168,7 +117,6 @@ class InterpreterMacroAssembler: public MacroAssembler {
// Transition state -> vtos. Blows Rtemp.
void push(TosState state);
#ifndef AARCH64
// The following methods are overridden to allow overloaded calls to
// MacroAssembler::push/pop(Register)
// MacroAssembler::push/pop(RegisterSet)
@ -183,7 +131,6 @@ class InterpreterMacroAssembler: public MacroAssembler {
void convert_retval_to_tos(TosState state);
// Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
void convert_tos_to_retval(TosState state);
#endif
// JVMTI ForceEarlyReturn support
void load_earlyret_value(TosState state);
@ -194,12 +141,8 @@ class InterpreterMacroAssembler: public MacroAssembler {
void empty_expression_stack() {
ldr(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
check_stack_top();
#ifdef AARCH64
clear_cached_stack_top();
#else
// NULL last_sp until next java call
str(zero_register(Rtemp), Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
}
// Helpers for swap and dup

View File

@ -44,13 +44,9 @@ InterpreterRuntime::SignatureHandlerGenerator::SignatureHandlerGenerator(
_abi_offset = 0;
_ireg = is_static() ? 2 : 1;
#ifdef __ABI_HARD__
#ifdef AARCH64
_freg = 0;
#else
_fp_slot = 0;
_single_fpr_slot = 0;
#endif
#endif
}
#ifdef SHARING_FAST_NATIVE_FINGERPRINTS
@ -126,17 +122,6 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_int() {
}
void InterpreterRuntime::SignatureHandlerGenerator::pass_long() {
#ifdef AARCH64
if (_ireg < GPR_PARAMS) {
Register dst = as_Register(_ireg);
__ ldr(dst, Address(Rlocals, Interpreter::local_offset_in_bytes(offset() + 1)));
_ireg++;
} else {
__ ldr(Rtemp, Address(Rlocals, Interpreter::local_offset_in_bytes(offset() + 1)));
__ str(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#else
if (_ireg <= 2) {
#if (ALIGN_WIDE_ARGUMENTS == 1)
if ((_ireg & 1) != 0) {
@ -170,24 +155,9 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_long() {
_abi_offset += 2;
_ireg = 4;
}
#endif // AARCH64
}
void InterpreterRuntime::SignatureHandlerGenerator::pass_object() {
#ifdef AARCH64
__ ldr(Rtemp, Address(Rlocals, Interpreter::local_offset_in_bytes(offset())));
__ cmp(Rtemp, 0);
__ sub(Rtemp, Rlocals, -Interpreter::local_offset_in_bytes(offset()));
if (_ireg < GPR_PARAMS) {
Register dst = as_Register(_ireg);
__ csel(dst, ZR, Rtemp, eq);
_ireg++;
} else {
__ csel(Rtemp, ZR, Rtemp, eq);
__ str(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#else
if (_ireg < 4) {
Register dst = as_Register(_ireg);
__ ldr(dst, Address(Rlocals, Interpreter::local_offset_in_bytes(offset())));
@ -201,7 +171,6 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_object() {
__ str(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#endif // AARCH64
}
#ifndef __ABI_HARD__
@ -220,17 +189,6 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_float() {
#else
#ifndef __SOFTFP__
void InterpreterRuntime::SignatureHandlerGenerator::pass_float() {
#ifdef AARCH64
if (_freg < FPR_PARAMS) {
FloatRegister dst = as_FloatRegister(_freg);
__ ldr_s(dst, Address(Rlocals, Interpreter::local_offset_in_bytes(offset())));
_freg++;
} else {
__ ldr_u32(Rtemp, Address(Rlocals, Interpreter::local_offset_in_bytes(offset())));
__ str_32(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#else
if((_fp_slot < 16) || (_single_fpr_slot & 1)) {
if ((_single_fpr_slot & 1) == 0) {
_single_fpr_slot = _fp_slot;
@ -243,21 +201,9 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_float() {
__ str(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#endif // AARCH64
}
void InterpreterRuntime::SignatureHandlerGenerator::pass_double() {
#ifdef AARCH64
if (_freg < FPR_PARAMS) {
FloatRegister dst = as_FloatRegister(_freg);
__ ldr_d(dst, Address(Rlocals, Interpreter::local_offset_in_bytes(offset() + 1)));
_freg++;
} else {
__ ldr(Rtemp, Address(Rlocals, Interpreter::local_offset_in_bytes(offset() + 1)));
__ str(Rtemp, Address(SP, _abi_offset * wordSize));
_abi_offset++;
}
#else
if(_fp_slot <= 14) {
__ fldd(as_FloatRegister(_fp_slot), Address(Rlocals, Interpreter::local_offset_in_bytes(offset()+1)));
_fp_slot += 2;
@ -269,7 +215,6 @@ void InterpreterRuntime::SignatureHandlerGenerator::pass_double() {
_abi_offset += 2;
_single_fpr_slot = 16;
}
#endif // AARCH64
}
#endif // __SOFTFP__
#endif // __ABI_HARD__
@ -281,14 +226,10 @@ void InterpreterRuntime::SignatureHandlerGenerator::generate(uint64_t fingerprin
address result_handler = Interpreter::result_handler(result_type);
#ifdef AARCH64
__ mov_slow(R0, (address)result_handler);
#else
// Check that result handlers are not real handler on ARM (0 or -1).
// This ensures the signature handlers do not need symbolic information.
assert((result_handler == NULL)||(result_handler==(address)0xffffffff),"");
__ mov_slow(R0, (intptr_t)result_handler);
#endif
__ ret();
}
@ -339,9 +280,7 @@ class SlowSignatureHandler: public NativeSignatureIterator {
intptr_t* _toGP;
int _last_gp;
int _last_fp;
#ifndef AARCH64
int _last_single_fp;
#endif // !AARCH64
virtual void pass_int() {
if(_last_gp < GPR_PARAMS) {
@ -353,13 +292,6 @@ class SlowSignatureHandler: public NativeSignatureIterator {
}
virtual void pass_long() {
#ifdef AARCH64
if(_last_gp < GPR_PARAMS) {
_toGP[_last_gp++] = *(jlong *)(_from+Interpreter::local_offset_in_bytes(1));
} else {
*_to++ = *(jlong *)(_from+Interpreter::local_offset_in_bytes(1));
}
#else
assert(ALIGN_WIDE_ARGUMENTS == 1, "ABI_HARD not supported with unaligned wide arguments");
if (_last_gp <= 2) {
if(_last_gp & 1) _last_gp++;
@ -375,7 +307,6 @@ class SlowSignatureHandler: public NativeSignatureIterator {
_to += 2;
_last_gp = 4;
}
#endif // AARCH64
_from -= 2*Interpreter::stackElementSize;
}
@ -390,13 +321,6 @@ class SlowSignatureHandler: public NativeSignatureIterator {
}
virtual void pass_float() {
#ifdef AARCH64
if(_last_fp < FPR_PARAMS) {
_toFP[_last_fp++] = *(jint *)(_from+Interpreter::local_offset_in_bytes(0));
} else {
*_to++ = *(jint *)(_from+Interpreter::local_offset_in_bytes(0));
}
#else
if((_last_fp < 16) || (_last_single_fp & 1)) {
if ((_last_single_fp & 1) == 0) {
_last_single_fp = _last_fp;
@ -407,18 +331,10 @@ class SlowSignatureHandler: public NativeSignatureIterator {
} else {
*_to++ = *(jint *)(_from+Interpreter::local_offset_in_bytes(0));
}
#endif // AARCH64
_from -= Interpreter::stackElementSize;
}
virtual void pass_double() {
#ifdef AARCH64
if(_last_fp < FPR_PARAMS) {
_toFP[_last_fp++] = *(intptr_t*)(_from+Interpreter::local_offset_in_bytes(1));
} else {
*_to++ = *(intptr_t*)(_from+Interpreter::local_offset_in_bytes(1));
}
#else
assert(ALIGN_WIDE_ARGUMENTS == 1, "ABI_HARD not supported with unaligned wide arguments");
if(_last_fp <= 14) {
_toFP[_last_fp++] = *(intptr_t*)(_from+Interpreter::local_offset_in_bytes(1));
@ -432,7 +348,6 @@ class SlowSignatureHandler: public NativeSignatureIterator {
_to += 2;
_last_single_fp = 16;
}
#endif // AARCH64
_from -= 2*Interpreter::stackElementSize;
}
@ -446,12 +361,10 @@ class SlowSignatureHandler: public NativeSignatureIterator {
#ifdef __ABI_HARD__
_toGP = to;
_toFP = _toGP + GPR_PARAMS;
_to = _toFP + AARCH64_ONLY(FPR_PARAMS) NOT_AARCH64(8*2);
_to = _toFP + (8*2);
_last_gp = (is_static() ? 2 : 1);
_last_fp = 0;
#ifndef AARCH64
_last_single_fp = 0;
#endif // !AARCH64
#else
_to = to + (is_static() ? 2 : 1);
#endif // __ABI_HARD__

View File

@ -34,12 +34,8 @@ class SignatureHandlerGenerator: public NativeSignatureIterator {
int _ireg;
#ifdef __ABI_HARD__
#ifdef AARCH64
int _freg;
#else
int _fp_slot; // number of FPR's with arguments loaded
int _single_fpr_slot;
#endif
#endif
void move(int from_offset, int to_offset);
@ -60,10 +56,8 @@ class SignatureHandlerGenerator: public NativeSignatureIterator {
void generate(uint64_t fingerprint);
};
#ifndef AARCH64
// ARM provides a normalized fingerprint for native calls (to increase
// sharing). See normalize_fast_native_fingerprint
#define SHARING_FAST_NATIVE_FINGERPRINTS
#endif
#endif // CPU_ARM_VM_INTERPRETERRT_ARM_HPP

View File

@ -78,26 +78,19 @@ address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
// R1 - object handle
// R2 - jfieldID
const Register Rsafepoint_counter_addr = AARCH64_ONLY(R4) NOT_AARCH64(R3);
const Register Robj = AARCH64_ONLY(R5) NOT_AARCH64(R1);
const Register Rres = AARCH64_ONLY(R6) NOT_AARCH64(R0);
#ifndef AARCH64
const Register Rsafepoint_counter_addr = R3;
const Register Robj = R1;
const Register Rres = R0;
const Register Rres_hi = R1;
#endif // !AARCH64
const Register Rsafept_cnt = Rtemp;
const Register Rsafept_cnt2 = Rsafepoint_counter_addr;
const Register Rtmp1 = AARCH64_ONLY(R7) NOT_AARCH64(R3); // same as Rsafepoint_counter_addr on 32-bit ARM
const Register Rtmp2 = AARCH64_ONLY(R8) NOT_AARCH64(R2); // same as jfieldID on 32-bit ARM
const Register Rtmp1 = R3; // same as Rsafepoint_counter_addr
const Register Rtmp2 = R2; // same as jfieldID
#ifdef AARCH64
assert_different_registers(Rsafepoint_counter_addr, Rsafept_cnt, Robj, Rres, Rtmp1, Rtmp2, R0, R1, R2, LR);
assert_different_registers(Rsafept_cnt2, Rsafept_cnt, Rres, R0, R1, R2, LR);
#else
assert_different_registers(Rsafepoint_counter_addr, Rsafept_cnt, Robj, Rres, LR);
assert_different_registers(Rsafept_cnt, R1, R2, Rtmp1, LR);
assert_different_registers(Rsafepoint_counter_addr, Rsafept_cnt, Rres, Rres_hi, Rtmp2, LR);
assert_different_registers(Rsafept_cnt2, Rsafept_cnt, Rres, Rres_hi, LR);
#endif // AARCH64
address fast_entry;
@ -112,29 +105,17 @@ address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
Label slow_case;
__ ldr_literal(Rsafepoint_counter_addr, safepoint_counter_addr);
#ifndef AARCH64
__ push(RegisterSet(R0, R3)); // save incoming arguments for slow case
#endif // !AARCH64
__ ldr_s32(Rsafept_cnt, Address(Rsafepoint_counter_addr));
__ tbnz(Rsafept_cnt, 0, slow_case);
#ifdef AARCH64
// If mask changes we need to ensure that the inverse is still encodable as an immediate
STATIC_ASSERT(JNIHandles::weak_tag_mask == 1);
__ andr(R1, R1, ~JNIHandles::weak_tag_mask);
#else
__ bic(R1, R1, JNIHandles::weak_tag_mask);
#endif
// Address dependency restricts memory access ordering. It's cheaper than explicit LoadLoad barrier
__ andr(Rtmp1, Rsafept_cnt, (unsigned)1);
__ ldr(Robj, Address(R1, Rtmp1));
#ifdef AARCH64
__ add(Robj, Robj, AsmOperand(R2, lsr, 2));
Address field_addr = Address(Robj);
#else
Address field_addr;
if (type != T_BOOLEAN
&& type != T_INT
@ -148,7 +129,6 @@ address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
} else {
field_addr = Address(Robj, R2, lsr, 2);
}
#endif // AARCH64
assert(count < LIST_CAPACITY, "LIST_CAPACITY too small");
speculative_load_pclist[count] = __ pc();
@ -175,12 +155,8 @@ address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
#ifndef __ABI_HARD__
case T_DOUBLE:
#endif
#ifdef AARCH64
__ ldr(Rres, field_addr);
#else
// Safe to use ldrd since long and double fields are 8-byte aligned
__ ldrd(Rres, field_addr);
#endif // AARCH64
break;
#ifdef __ABI_HARD__
case T_FLOAT:
@ -195,38 +171,28 @@ address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
}
// Address dependency restricts memory access ordering. It's cheaper than explicit LoadLoad barrier
#if defined(__ABI_HARD__) && !defined(AARCH64)
#ifdef __ABI_HARD__
if (type == T_FLOAT || type == T_DOUBLE) {
__ ldr_literal(Rsafepoint_counter_addr, safepoint_counter_addr);
__ fmrrd(Rres, Rres_hi, D0);
__ eor(Rtmp2, Rres, Rres);
__ ldr_s32(Rsafept_cnt2, Address(Rsafepoint_counter_addr, Rtmp2));
} else
#endif // __ABI_HARD__ && !AARCH64
#endif // __ABI_HARD__
{
#ifndef AARCH64
__ ldr_literal(Rsafepoint_counter_addr, safepoint_counter_addr);
#endif // !AARCH64
__ eor(Rtmp2, Rres, Rres);
__ ldr_s32(Rsafept_cnt2, Address(Rsafepoint_counter_addr, Rtmp2));
}
__ cmp(Rsafept_cnt2, Rsafept_cnt);
#ifdef AARCH64
__ b(slow_case, ne);
__ mov(R0, Rres);
__ ret();
#else
// discards saved R0 R1 R2 R3
__ add(SP, SP, 4 * wordSize, eq);
__ bx(LR, eq);
#endif // AARCH64
slowcase_entry_pclist[count++] = __ pc();
__ bind(slow_case);
#ifndef AARCH64
__ pop(RegisterSet(R0, R3));
#endif // !AARCH64
// thumb mode switch handled by MacroAssembler::jump if needed
__ jump(slow_case_addr, relocInfo::none, Rtemp);

View File

@ -44,12 +44,10 @@ class JNITypes : AllStatic {
private:
#ifndef AARCH64
// 32bit Helper routines.
static inline void put_int2r(jint *from, intptr_t *to) { *(jint *)(to++) = from[1];
*(jint *)(to ) = from[0]; }
static inline void put_int2r(jint *from, intptr_t *to, int& pos) { put_int2r(from, to + pos); pos += 2; }
#endif
public:
// Ints are stored in native format in one JavaCallArgument slot at *to.
@ -57,18 +55,11 @@ public:
static inline void put_int(jint from, intptr_t *to, int& pos) { *(jint *)(to + pos++) = from; }
static inline void put_int(jint *from, intptr_t *to, int& pos) { *(jint *)(to + pos++) = *from; }
#ifdef AARCH64
// Longs are stored in native format in one JavaCallArgument slot at *(to+1).
static inline void put_long(jlong from, intptr_t *to) { *(jlong *)(to + 1 + 0) = from; }
static inline void put_long(jlong from, intptr_t *to, int& pos) { *(jlong *)(to + 1 + pos) = from; pos += 2; }
static inline void put_long(jlong *from, intptr_t *to, int& pos) { *(jlong *)(to + 1 + pos) = *from; pos += 2; }
#else
// Longs are stored in big-endian word format in two JavaCallArgument slots at *to.
// The high half is in *to and the low half in *(to+1).
static inline void put_long(jlong from, intptr_t *to) { put_int2r((jint *)&from, to); }
static inline void put_long(jlong from, intptr_t *to, int& pos) { put_int2r((jint *)&from, to, pos); }
static inline void put_long(jlong *from, intptr_t *to, int& pos) { put_int2r((jint *) from, to, pos); }
#endif
// Oops are stored in native format in one JavaCallArgument slot at *to.
static inline void put_obj(oop from, intptr_t *to) { *(oop *)(to + 0 ) = from; }
@ -80,18 +71,11 @@ public:
static inline void put_float(jfloat from, intptr_t *to, int& pos) { *(jfloat *)(to + pos++) = from; }
static inline void put_float(jfloat *from, intptr_t *to, int& pos) { *(jfloat *)(to + pos++) = *from; }
#ifdef AARCH64
// Doubles are stored in native word format in one JavaCallArgument slot at *(to+1).
static inline void put_double(jdouble from, intptr_t *to) { *(jdouble *)(to + 1 + 0) = from; }
static inline void put_double(jdouble from, intptr_t *to, int& pos) { *(jdouble *)(to + 1 + pos) = from; pos += 2; }
static inline void put_double(jdouble *from, intptr_t *to, int& pos) { *(jdouble *)(to + 1 + pos) = *from; pos += 2; }
#else
// Doubles are stored in big-endian word format in two JavaCallArgument slots at *to.
// The high half is in *to and the low half in *(to+1).
static inline void put_double(jdouble from, intptr_t *to) { put_int2r((jint *)&from, to); }
static inline void put_double(jdouble from, intptr_t *to, int& pos) { put_int2r((jint *)&from, to, pos); }
static inline void put_double(jdouble *from, intptr_t *to, int& pos) { put_int2r((jint *) from, to, pos); }
#endif
};

File diff suppressed because it is too large Load Diff

View File

@ -229,10 +229,6 @@ public:
// this was subsequently modified to its present name and return type
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
#ifdef AARCH64
# define NOT_IMPLEMENTED() unimplemented("NYI at " __FILE__ ":" XSTR(__LINE__))
# define NOT_TESTED() warn("Not tested at " __FILE__ ":" XSTR(__LINE__))
#endif
void align(int modulus);
@ -275,7 +271,7 @@ public:
// Always sets/resets sp, which default to SP if (last_sp == noreg)
// Optionally sets/resets fp (use noreg to avoid setting it)
// Always sets/resets pc on AArch64; optionally sets/resets pc on 32-bit ARM depending on save_last_java_pc flag
// Optionally sets/resets pc depending on save_last_java_pc flag
// Note: when saving PC, set_last_Java_frame returns PC's offset in the code section
// (for oop_maps offset computation)
int set_last_Java_frame(Register last_sp, Register last_fp, bool save_last_java_pc, Register tmp);
@ -399,7 +395,6 @@ public:
void resolve_jobject(Register value, Register tmp1, Register tmp2);
#ifndef AARCH64
void nop() {
mov(R0, R0);
}
@ -439,7 +434,6 @@ public:
void fpops(FloatRegister fd, AsmCondition cond = al) {
fldmias(SP, FloatRegisterSet(fd), writeback, cond);
}
#endif // !AARCH64
// Order access primitives
enum Membar_mask_bits {
@ -449,15 +443,10 @@ public:
LoadLoad = 1 << 0
};
#ifdef AARCH64
// tmp register is not used on AArch64, this parameter is provided solely for better compatibility with 32-bit ARM
void membar(Membar_mask_bits order_constraint, Register tmp = noreg);
#else
void membar(Membar_mask_bits mask,
Register tmp,
bool preserve_flags = true,
Register load_tgt = noreg);
#endif
void breakpoint(AsmCondition cond = al);
void stop(const char* msg);
@ -489,47 +478,28 @@ public:
void add_slow(Register rd, Register rn, int c);
void sub_slow(Register rd, Register rn, int c);
#ifdef AARCH64
static int mov_slow_helper(Register rd, intptr_t c, MacroAssembler* masm /* optional */);
#endif
void mov_slow(Register rd, intptr_t c NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_slow(Register rd, intptr_t c, AsmCondition cond = al);
void mov_slow(Register rd, const char *string);
void mov_slow(Register rd, address addr);
void patchable_mov_oop(Register rd, jobject o, int oop_index) {
mov_oop(rd, o, oop_index AARCH64_ONLY_ARG(true));
mov_oop(rd, o, oop_index);
}
void mov_oop(Register rd, jobject o, int index = 0
AARCH64_ONLY_ARG(bool patchable = false)
NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_oop(Register rd, jobject o, int index = 0, AsmCondition cond = al);
void patchable_mov_metadata(Register rd, Metadata* o, int index) {
mov_metadata(rd, o, index AARCH64_ONLY_ARG(true));
mov_metadata(rd, o, index);
}
void mov_metadata(Register rd, Metadata* o, int index = 0 AARCH64_ONLY_ARG(bool patchable = false));
void mov_metadata(Register rd, Metadata* o, int index = 0);
void mov_float(FloatRegister fd, jfloat c NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_double(FloatRegister fd, jdouble c NOT_AARCH64_ARG(AsmCondition cond = al));
void mov_float(FloatRegister fd, jfloat c, AsmCondition cond = al);
void mov_double(FloatRegister fd, jdouble c, AsmCondition cond = al);
#ifdef AARCH64
int mov_pc_to(Register rd) {
Label L;
adr(rd, L);
bind(L);
return offset();
}
#endif
// Note: this variant of mov_address assumes the address moves with
// the code. Do *not* implement it with non-relocated instructions,
// unless PC-relative.
#ifdef AARCH64
void mov_relative_address(Register rd, address addr) {
adr(rd, addr);
}
#else
void mov_relative_address(Register rd, address addr, AsmCondition cond = al) {
int offset = addr - pc() - 8;
assert((offset & 3) == 0, "bad alignment");
@ -541,7 +511,6 @@ public:
sub(rd, PC, -offset, cond);
}
}
#endif // AARCH64
// Runtime address that may vary from one execution to another. The
// symbolic_reference describes what the address is, allowing
@ -562,7 +531,6 @@ public:
mov_slow(rd, (intptr_t)addr);
return;
}
#ifndef AARCH64
if (VM_Version::supports_movw()) {
relocate(rspec);
int c = (int)addr;
@ -572,15 +540,11 @@ public:
}
return;
}
#endif
Label skip_literal;
InlinedAddress addr_literal(addr, rspec);
ldr_literal(rd, addr_literal);
b(skip_literal);
bind_literal(addr_literal);
// AARCH64 WARNING: because of alignment padding, extra padding
// may be required to get a consistent size for C2, or rules must
// overestimate size see MachEpilogNode::size
bind(skip_literal);
}
@ -594,45 +558,28 @@ public:
assert(L.rspec().type() != relocInfo::runtime_call_type, "avoid ldr_literal for calls");
assert(L.rspec().type() != relocInfo::static_call_type, "avoid ldr_literal for calls");
relocate(L.rspec());
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void ldr_literal(Register rd, InlinedString& L) {
const char* msg = L.msg();
if (code()->consts()->contains((address)msg)) {
// string address moves with the code
#ifdef AARCH64
ldr(rd, (address)msg);
#else
ldr(rd, Address(PC, ((address)msg) - pc() - 8));
#endif
return;
}
// Warning: use external strings with care. They are not relocated
// if the code moves. If needed, use code_string to move them
// to the consts section.
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void ldr_literal(Register rd, InlinedMetadata& L) {
// relocation done in the bind_literal for metadatas
#ifdef AARCH64
ldr(rd, target(L.label));
#else
ldr(rd, Address(PC, target(L.label) - pc() - 8));
#endif
}
void bind_literal(InlinedAddress& L) {
AARCH64_ONLY(align(wordSize));
bind(L.label);
assert(L.rspec().type() != relocInfo::metadata_type, "Must use InlinedMetadata");
// We currently do not use oop 'bound' literals.
@ -650,13 +597,11 @@ public:
// to detect errors.
return;
}
AARCH64_ONLY(align(wordSize));
bind(L.label);
AbstractAssembler::emit_address((address)L.msg());
}
void bind_literal(InlinedMetadata& L) {
AARCH64_ONLY(align(wordSize));
bind(L.label);
relocate(metadata_Relocation::spec_for_immediate());
AbstractAssembler::emit_address((address)L.data());
@ -665,138 +610,106 @@ public:
void resolve_oop_handle(Register result);
void load_mirror(Register mirror, Register method, Register tmp);
// Porting layer between 32-bit ARM and AArch64
#define COMMON_INSTR_1(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg_type) \
#define ARM_INSTR_1(common_mnemonic, arm32_mnemonic, arg_type) \
void common_mnemonic(arg_type arg) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg); \
arm32_mnemonic(arg); \
}
#define COMMON_INSTR_2(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \
#define ARM_INSTR_2(common_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \
void common_mnemonic(arg1_type arg1, arg2_type arg2) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2); \
arm32_mnemonic(arg1, arg2); \
}
#define COMMON_INSTR_3(common_mnemonic, aarch64_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \
#define ARM_INSTR_3(common_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \
void common_mnemonic(arg1_type arg1, arg2_type arg2, arg3_type arg3) { \
AARCH64_ONLY(aarch64_mnemonic) NOT_AARCH64(arm32_mnemonic) (arg1, arg2, arg3); \
arm32_mnemonic(arg1, arg2, arg3); \
}
COMMON_INSTR_1(jump, br, bx, Register)
COMMON_INSTR_1(call, blr, blx, Register)
ARM_INSTR_1(jump, bx, Register)
ARM_INSTR_1(call, blx, Register)
COMMON_INSTR_2(cbz_32, cbz_w, cbz, Register, Label&)
COMMON_INSTR_2(cbnz_32, cbnz_w, cbnz, Register, Label&)
ARM_INSTR_2(cbz_32, cbz, Register, Label&)
ARM_INSTR_2(cbnz_32, cbnz, Register, Label&)
COMMON_INSTR_2(ldr_u32, ldr_w, ldr, Register, Address)
COMMON_INSTR_2(ldr_s32, ldrsw, ldr, Register, Address)
COMMON_INSTR_2(str_32, str_w, str, Register, Address)
ARM_INSTR_2(ldr_u32, ldr, Register, Address)
ARM_INSTR_2(ldr_s32, ldr, Register, Address)
ARM_INSTR_2(str_32, str, Register, Address)
COMMON_INSTR_2(mvn_32, mvn_w, mvn, Register, Register)
COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, Register)
COMMON_INSTR_2(neg_32, neg_w, neg, Register, Register)
COMMON_INSTR_2(clz_32, clz_w, clz, Register, Register)
COMMON_INSTR_2(rbit_32, rbit_w, rbit, Register, Register)
ARM_INSTR_2(mvn_32, mvn, Register, Register)
ARM_INSTR_2(cmp_32, cmp, Register, Register)
ARM_INSTR_2(neg_32, neg, Register, Register)
ARM_INSTR_2(clz_32, clz, Register, Register)
ARM_INSTR_2(rbit_32, rbit, Register, Register)
COMMON_INSTR_2(cmp_32, cmp_w, cmp, Register, int)
COMMON_INSTR_2(cmn_32, cmn_w, cmn, Register, int)
ARM_INSTR_2(cmp_32, cmp, Register, int)
ARM_INSTR_2(cmn_32, cmn, Register, int)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, Register)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, Register)
COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, Register)
COMMON_INSTR_3(mul_32, mul_w, mul, Register, Register, Register)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, Register)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, Register)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, Register)
ARM_INSTR_3(add_32, add, Register, Register, Register)
ARM_INSTR_3(sub_32, sub, Register, Register, Register)
ARM_INSTR_3(subs_32, subs, Register, Register, Register)
ARM_INSTR_3(mul_32, mul, Register, Register, Register)
ARM_INSTR_3(and_32, andr, Register, Register, Register)
ARM_INSTR_3(orr_32, orr, Register, Register, Register)
ARM_INSTR_3(eor_32, eor, Register, Register, Register)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, AsmOperand)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, AsmOperand)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, AsmOperand)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, AsmOperand)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, AsmOperand)
ARM_INSTR_3(add_32, add, Register, Register, AsmOperand)
ARM_INSTR_3(sub_32, sub, Register, Register, AsmOperand)
ARM_INSTR_3(orr_32, orr, Register, Register, AsmOperand)
ARM_INSTR_3(eor_32, eor, Register, Register, AsmOperand)
ARM_INSTR_3(and_32, andr, Register, Register, AsmOperand)
COMMON_INSTR_3(add_32, add_w, add, Register, Register, int)
COMMON_INSTR_3(adds_32, adds_w, adds, Register, Register, int)
COMMON_INSTR_3(sub_32, sub_w, sub, Register, Register, int)
COMMON_INSTR_3(subs_32, subs_w, subs, Register, Register, int)
ARM_INSTR_3(add_32, add, Register, Register, int)
ARM_INSTR_3(adds_32, adds, Register, Register, int)
ARM_INSTR_3(sub_32, sub, Register, Register, int)
ARM_INSTR_3(subs_32, subs, Register, Register, int)
COMMON_INSTR_2(tst_32, tst_w, tst, Register, unsigned int)
COMMON_INSTR_2(tst_32, tst_w, tst, Register, AsmOperand)
ARM_INSTR_2(tst_32, tst, Register, unsigned int)
ARM_INSTR_2(tst_32, tst, Register, AsmOperand)
COMMON_INSTR_3(and_32, andr_w, andr, Register, Register, uint)
COMMON_INSTR_3(orr_32, orr_w, orr, Register, Register, uint)
COMMON_INSTR_3(eor_32, eor_w, eor, Register, Register, uint)
ARM_INSTR_3(and_32, andr, Register, Register, uint)
ARM_INSTR_3(orr_32, orr, Register, Register, uint)
ARM_INSTR_3(eor_32, eor, Register, Register, uint)
COMMON_INSTR_1(cmp_zero_float, fcmp0_s, fcmpzs, FloatRegister)
COMMON_INSTR_1(cmp_zero_double, fcmp0_d, fcmpzd, FloatRegister)
ARM_INSTR_1(cmp_zero_float, fcmpzs, FloatRegister)
ARM_INSTR_1(cmp_zero_double, fcmpzd, FloatRegister)
COMMON_INSTR_2(ldr_float, ldr_s, flds, FloatRegister, Address)
COMMON_INSTR_2(str_float, str_s, fsts, FloatRegister, Address)
COMMON_INSTR_2(mov_float, fmov_s, fcpys, FloatRegister, FloatRegister)
COMMON_INSTR_2(neg_float, fneg_s, fnegs, FloatRegister, FloatRegister)
COMMON_INSTR_2(abs_float, fabs_s, fabss, FloatRegister, FloatRegister)
COMMON_INSTR_2(sqrt_float, fsqrt_s, fsqrts, FloatRegister, FloatRegister)
COMMON_INSTR_2(cmp_float, fcmp_s, fcmps, FloatRegister, FloatRegister)
ARM_INSTR_2(ldr_float, flds, FloatRegister, Address)
ARM_INSTR_2(str_float, fsts, FloatRegister, Address)
ARM_INSTR_2(mov_float, fcpys, FloatRegister, FloatRegister)
ARM_INSTR_2(neg_float, fnegs, FloatRegister, FloatRegister)
ARM_INSTR_2(abs_float, fabss, FloatRegister, FloatRegister)
ARM_INSTR_2(sqrt_float, fsqrts, FloatRegister, FloatRegister)
ARM_INSTR_2(cmp_float, fcmps, FloatRegister, FloatRegister)
COMMON_INSTR_3(add_float, fadd_s, fadds, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(sub_float, fsub_s, fsubs, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(mul_float, fmul_s, fmuls, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(div_float, fdiv_s, fdivs, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(add_float, fadds, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(sub_float, fsubs, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(mul_float, fmuls, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(div_float, fdivs, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_2(ldr_double, ldr_d, fldd, FloatRegister, Address)
COMMON_INSTR_2(str_double, str_d, fstd, FloatRegister, Address)
COMMON_INSTR_2(mov_double, fmov_d, fcpyd, FloatRegister, FloatRegister)
COMMON_INSTR_2(neg_double, fneg_d, fnegd, FloatRegister, FloatRegister)
COMMON_INSTR_2(cmp_double, fcmp_d, fcmpd, FloatRegister, FloatRegister)
COMMON_INSTR_2(abs_double, fabs_d, fabsd, FloatRegister, FloatRegister)
COMMON_INSTR_2(sqrt_double, fsqrt_d, fsqrtd, FloatRegister, FloatRegister)
ARM_INSTR_2(ldr_double, fldd, FloatRegister, Address)
ARM_INSTR_2(str_double, fstd, FloatRegister, Address)
ARM_INSTR_2(mov_double, fcpyd, FloatRegister, FloatRegister)
ARM_INSTR_2(neg_double, fnegd, FloatRegister, FloatRegister)
ARM_INSTR_2(cmp_double, fcmpd, FloatRegister, FloatRegister)
ARM_INSTR_2(abs_double, fabsd, FloatRegister, FloatRegister)
ARM_INSTR_2(sqrt_double, fsqrtd, FloatRegister, FloatRegister)
COMMON_INSTR_3(add_double, fadd_d, faddd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(sub_double, fsub_d, fsubd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(mul_double, fmul_d, fmuld, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_3(div_double, fdiv_d, fdivd, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(add_double, faddd, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(sub_double, fsubd, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(mul_double, fmuld, FloatRegister, FloatRegister, FloatRegister)
ARM_INSTR_3(div_double, fdivd, FloatRegister, FloatRegister, FloatRegister)
COMMON_INSTR_2(convert_f2d, fcvt_ds, fcvtds, FloatRegister, FloatRegister)
COMMON_INSTR_2(convert_d2f, fcvt_sd, fcvtsd, FloatRegister, FloatRegister)
ARM_INSTR_2(convert_f2d, fcvtds, FloatRegister, FloatRegister)
ARM_INSTR_2(convert_d2f, fcvtsd, FloatRegister, FloatRegister)
COMMON_INSTR_2(mov_fpr2gpr_float, fmov_ws, fmrs, Register, FloatRegister)
ARM_INSTR_2(mov_fpr2gpr_float, fmrs, Register, FloatRegister)
#undef COMMON_INSTR_1
#undef COMMON_INSTR_2
#undef COMMON_INSTR_3
#undef ARM_INSTR_1
#undef ARM_INSTR_2
#undef ARM_INSTR_3
#ifdef AARCH64
void mov(Register dst, Register src, AsmCondition cond) {
if (cond == al) {
mov(dst, src);
} else {
csel(dst, src, dst, cond);
}
}
// Propagate other overloaded "mov" methods from Assembler.
void mov(Register dst, Register src) { Assembler::mov(dst, src); }
void mov(Register rd, int imm) { Assembler::mov(rd, imm); }
void mov(Register dst, int imm, AsmCondition cond) {
assert(imm == 0 || imm == 1, "");
if (imm == 0) {
mov(dst, ZR, cond);
} else if (imm == 1) {
csinc(dst, dst, ZR, inverse(cond));
} else if (imm == -1) {
csinv(dst, dst, ZR, inverse(cond));
} else {
fatal("illegal mov(R%d,%d,cond)", dst->encoding(), imm);
}
}
void movs(Register dst, Register src) { adds(dst, src, 0); }
#else // AARCH64
void tbz(Register rt, int bit, Label& L) {
assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
@ -829,166 +742,91 @@ public:
bx(dst);
}
#endif // AARCH64
Register zero_register(Register tmp) {
#ifdef AARCH64
return ZR;
#else
mov(tmp, 0);
return tmp;
#endif
}
void logical_shift_left(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsl(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsl, shift));
#endif
}
void logical_shift_left_32(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsl_w(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsl, shift));
#endif
}
void logical_shift_right(Register dst, Register src, int shift) {
#ifdef AARCH64
_lsr(dst, src, shift);
#else
mov(dst, AsmOperand(src, lsr, shift));
#endif
}
void arith_shift_right(Register dst, Register src, int shift) {
#ifdef AARCH64
_asr(dst, src, shift);
#else
mov(dst, AsmOperand(src, asr, shift));
#endif
}
void asr_32(Register dst, Register src, int shift) {
#ifdef AARCH64
_asr_w(dst, src, shift);
#else
mov(dst, AsmOperand(src, asr, shift));
#endif
}
// If <cond> holds, compares r1 and r2. Otherwise, flags are set so that <cond> does not hold.
void cond_cmp(Register r1, Register r2, AsmCondition cond) {
#ifdef AARCH64
ccmp(r1, r2, flags_for_condition(inverse(cond)), cond);
#else
cmp(r1, r2, cond);
#endif
}
// If <cond> holds, compares r and imm. Otherwise, flags are set so that <cond> does not hold.
void cond_cmp(Register r, int imm, AsmCondition cond) {
#ifdef AARCH64
ccmp(r, imm, flags_for_condition(inverse(cond)), cond);
#else
cmp(r, imm, cond);
#endif
}
void align_reg(Register dst, Register src, int align) {
assert (is_power_of_2(align), "should be");
#ifdef AARCH64
andr(dst, src, ~(uintx)(align-1));
#else
bic(dst, src, align-1);
#endif
}
void prefetch_read(Address addr) {
#ifdef AARCH64
prfm(pldl1keep, addr);
#else
pld(addr);
#endif
}
void raw_push(Register r1, Register r2) {
#ifdef AARCH64
stp(r1, r2, Address(SP, -2*wordSize, pre_indexed));
#else
assert(r1->encoding() < r2->encoding(), "should be ordered");
push(RegisterSet(r1) | RegisterSet(r2));
#endif
}
void raw_pop(Register r1, Register r2) {
#ifdef AARCH64
ldp(r1, r2, Address(SP, 2*wordSize, post_indexed));
#else
assert(r1->encoding() < r2->encoding(), "should be ordered");
pop(RegisterSet(r1) | RegisterSet(r2));
#endif
}
void raw_push(Register r1, Register r2, Register r3) {
#ifdef AARCH64
raw_push(r1, r2);
raw_push(r3, ZR);
#else
assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
push(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
#endif
}
void raw_pop(Register r1, Register r2, Register r3) {
#ifdef AARCH64
raw_pop(r3, ZR);
raw_pop(r1, r2);
#else
assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
pop(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
#endif
}
// Restores registers r1 and r2 previously saved by raw_push(r1, r2, ret_addr) and returns by ret_addr. Clobbers LR.
void raw_pop_and_ret(Register r1, Register r2) {
#ifdef AARCH64
raw_pop(r1, r2, LR);
ret();
#else
raw_pop(r1, r2, PC);
#endif
}
void indirect_jump(Address addr, Register scratch) {
#ifdef AARCH64
ldr(scratch, addr);
br(scratch);
#else
ldr(PC, addr);
#endif
}
void indirect_jump(InlinedAddress& literal, Register scratch) {
#ifdef AARCH64
ldr_literal(scratch, literal);
br(scratch);
#else
ldr_literal(PC, literal);
#endif
}
#ifndef AARCH64
void neg(Register dst, Register src) {
rsb(dst, src, 0);
}
#endif
void branch_if_negative_32(Register r, Label& L) {
// Note about branch_if_negative_32() / branch_if_any_negative_32() implementation for AArch64:
// TODO: This function and branch_if_any_negative_32 could possibly
// be revised after the aarch64 removal.
// tbnz is not used instead of tst & b.mi because destination may be out of tbnz range (+-32KB)
// since these methods are used in LIR_Assembler::emit_arraycopy() to jump to stub entry.
tst_32(r, r);
@ -996,56 +834,31 @@ public:
}
void branch_if_any_negative_32(Register r1, Register r2, Register tmp, Label& L) {
#ifdef AARCH64
orr_32(tmp, r1, r2);
tst_32(tmp, tmp);
#else
orrs(tmp, r1, r2);
#endif
b(L, mi);
}
void branch_if_any_negative_32(Register r1, Register r2, Register r3, Register tmp, Label& L) {
orr_32(tmp, r1, r2);
#ifdef AARCH64
orr_32(tmp, tmp, r3);
tst_32(tmp, tmp);
#else
orrs(tmp, tmp, r3);
#endif
b(L, mi);
}
void add_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
#ifdef AARCH64
add(dst, r1, r2, ex_sxtw, shift);
#else
add(dst, r1, AsmOperand(r2, lsl, shift));
#endif
}
void sub_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
#ifdef AARCH64
sub(dst, r1, r2, ex_sxtw, shift);
#else
sub(dst, r1, AsmOperand(r2, lsl, shift));
#endif
}
// klass oop manipulations if compressed
#ifdef AARCH64
void load_klass(Register dst_klass, Register src_oop);
#else
void load_klass(Register dst_klass, Register src_oop, AsmCondition cond = al);
#endif // AARCH64
void store_klass(Register src_klass, Register dst_oop);
#ifdef AARCH64
void store_klass_gap(Register dst);
#endif // AARCH64
// oop manipulations
@ -1060,39 +873,6 @@ public:
// All other registers are preserved.
void resolve(DecoratorSet decorators, Register obj);
#ifdef AARCH64
void encode_heap_oop(Register dst, Register src);
void encode_heap_oop(Register r) {
encode_heap_oop(r, r);
}
void decode_heap_oop(Register dst, Register src);
void decode_heap_oop(Register r) {
decode_heap_oop(r, r);
}
#ifdef COMPILER2
void encode_heap_oop_not_null(Register dst, Register src);
void decode_heap_oop_not_null(Register dst, Register src);
void set_narrow_klass(Register dst, Klass* k);
void set_narrow_oop(Register dst, jobject obj);
#endif
void encode_klass_not_null(Register r);
void encode_klass_not_null(Register dst, Register src);
void decode_klass_not_null(Register r);
void decode_klass_not_null(Register dst, Register src);
void reinit_heapbase();
#ifdef ASSERT
void verify_heapbase(const char* msg);
#endif // ASSERT
static int instr_count_for_mov_slow(intptr_t c);
static int instr_count_for_mov_slow(address addr);
static int instr_count_for_decode_klass_not_null();
#endif // AARCH64
void ldr_global_ptr(Register reg, address address_of_global);
void ldr_global_s32(Register reg, address address_of_global);
@ -1108,12 +888,7 @@ public:
assert ((offset() & (wordSize-1)) == 0, "should be aligned by word size");
#ifdef AARCH64
emit_int32(address_placeholder_instruction);
emit_int32(address_placeholder_instruction);
#else
AbstractAssembler::emit_address((address)address_placeholder_instruction);
#endif
}
void b(address target, AsmCondition cond = al) {
@ -1124,15 +899,14 @@ public:
Assembler::b(target(L), cond);
}
void bl(address target NOT_AARCH64_ARG(AsmCondition cond = al)) {
Assembler::bl(target NOT_AARCH64_ARG(cond));
void bl(address target, AsmCondition cond = al) {
Assembler::bl(target, cond);
}
void bl(Label& L NOT_AARCH64_ARG(AsmCondition cond = al)) {
void bl(Label& L, AsmCondition cond = al) {
// internal calls
Assembler::bl(target(L) NOT_AARCH64_ARG(cond));
Assembler::bl(target(L), cond);
}
#ifndef AARCH64
void adr(Register dest, Label& L, AsmCondition cond = al) {
int delta = target(L) - pc() - 8;
if (delta >= 0) {
@ -1141,7 +915,6 @@ public:
sub(dest, PC, -delta, cond);
}
}
#endif // !AARCH64
// Variable-length jump and calls. We now distinguish only the
// patchable case from the other cases. Patchable must be
@ -1165,30 +938,23 @@ public:
// specified to allow future optimizations.
void jump(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type,
Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
#ifndef AARCH64
, AsmCondition cond = al
#endif
);
Register scratch = noreg, AsmCondition cond = al);
void call(address target,
RelocationHolder rspec
NOT_AARCH64_ARG(AsmCondition cond = al));
RelocationHolder rspec, AsmCondition cond = al);
void call(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type
NOT_AARCH64_ARG(AsmCondition cond = al)) {
call(target, Relocation::spec_simple(rtype) NOT_AARCH64_ARG(cond));
relocInfo::relocType rtype = relocInfo::runtime_call_type,
AsmCondition cond = al) {
call(target, Relocation::spec_simple(rtype), cond);
}
void jump(AddressLiteral dest) {
jump(dest.target(), dest.reloc());
}
#ifndef AARCH64
void jump(address dest, relocInfo::relocType rtype, AsmCondition cond) {
jump(dest, rtype, Rtemp, cond);
}
#endif
void call(AddressLiteral dest) {
call(dest.target(), dest.reloc());
@ -1206,10 +972,7 @@ public:
// specified to allow future optimizations.
void patchable_jump(address target,
relocInfo::relocType rtype = relocInfo::runtime_call_type,
Register scratch = AARCH64_ONLY(Rtemp) NOT_AARCH64(noreg)
#ifndef AARCH64
, AsmCondition cond = al
#endif
Register scratch = noreg, AsmCondition cond = al
);
// patchable_call may scratch Rtemp
@ -1223,13 +986,7 @@ public:
return patchable_call(target, Relocation::spec_simple(rtype), c2);
}
#if defined(AARCH64) && defined(COMPILER2)
static int call_size(address target, bool far, bool patchable);
#endif
#ifdef AARCH64
static bool page_reachable_from_cache(address target);
#endif
static bool _reachable_from_cache(address target);
static bool _cache_fully_reachable();
bool cache_fully_reachable();
@ -1239,15 +996,8 @@ public:
void sign_extend(Register rd, Register rn, int bits);
inline void zap_high_non_significant_bits(Register r) {
#ifdef AARCH64
if(ZapHighNonSignificantBits) {
movk(r, 0xBAAD, 48);
movk(r, 0xF00D, 32);
}
#endif
}
#ifndef AARCH64
void cmpoop(Register obj1, Register obj2);
void long_move(Register rd_lo, Register rd_hi,
@ -1263,7 +1013,6 @@ public:
void atomic_cas(Register tmpreg1, Register tmpreg2, Register oldval, Register newval, Register base, int offset);
void atomic_cas_bool(Register oldval, Register newval, Register base, int offset, Register tmpreg);
void atomic_cas64(Register temp_lo, Register temp_hi, Register temp_result, Register oldval_lo, Register oldval_hi, Register newval_lo, Register newval_hi, Register base, int offset);
#endif // !AARCH64
void cas_for_lock_acquire(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
void cas_for_lock_release(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
@ -1286,14 +1035,9 @@ public:
// size must not exceed wordSize (i.e. 8-byte values are not supported on 32-bit ARM);
// each of these calls generates exactly one load or store instruction,
// so src can be pre- or post-indexed address.
#ifdef AARCH64
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
void store_sized_value(Register src, Address dst, size_t size_in_bytes);
#else
// 32-bit ARM variants also support conditional execution
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, AsmCondition cond = al);
void store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond = al);
#endif
void lookup_interface_method(Register recv_klass,
Register intf_klass,
@ -1315,11 +1059,7 @@ public:
void ldr_literal(Register rd, AddressLiteral addr) {
relocate(addr.rspec());
#ifdef AARCH64
ldr(rd, addr.target());
#else
ldr(rd, Address(PC, addr.target() - pc() - 8));
#endif
}
void lea(Register Rd, AddressLiteral addr) {
@ -1330,46 +1070,10 @@ public:
void restore_default_fp_mode();
#ifdef COMPILER2
#ifdef AARCH64
// Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
void fast_lock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
void fast_unlock(Register obj, Register box, Register scratch, Register scratch2, Register scratch3);
#else
void fast_lock(Register obj, Register box, Register scratch, Register scratch2);
void fast_unlock(Register obj, Register box, Register scratch, Register scratch2);
#endif
#endif
#ifdef AARCH64
#define F(mnemonic) \
void mnemonic(Register rt, address target) { \
Assembler::mnemonic(rt, target); \
} \
void mnemonic(Register rt, Label& L) { \
Assembler::mnemonic(rt, target(L)); \
}
F(cbz_w);
F(cbnz_w);
F(cbz);
F(cbnz);
#undef F
#define F(mnemonic) \
void mnemonic(Register rt, int bit, address target) { \
Assembler::mnemonic(rt, bit, target); \
} \
void mnemonic(Register rt, int bit, Label& L) { \
Assembler::mnemonic(rt, bit, target(L)); \
}
F(tbz);
F(tbnz);
#undef F
#endif // AARCH64
};

View File

@ -32,46 +32,9 @@
inline void MacroAssembler::pd_patch_instruction(address branch, address target, const char* file, int line) {
int instr = *(int*)branch;
int new_offset = (int)(target - branch NOT_AARCH64(- 8));
int new_offset = (int)(target - branch - 8);
assert((new_offset & 3) == 0, "bad alignment");
#ifdef AARCH64
if ((instr & (0x1f << 26)) == (0b00101 << 26)) {
// Unconditional B or BL
assert (is_offset_in_range(new_offset, 26), "offset is too large");
*(int*)branch = (instr & ~right_n_bits(26)) | encode_offset(new_offset, 26, 0);
} else if ((instr & (0xff << 24)) == (0b01010100 << 24) && (instr & (1 << 4)) == 0) {
// Conditional B
assert (is_offset_in_range(new_offset, 19), "offset is too large");
*(int*)branch = (instr & ~(right_n_bits(19) << 5)) | encode_offset(new_offset, 19, 5);
} else if ((instr & (0b111111 << 25)) == (0b011010 << 25)) {
// Compare & branch CBZ/CBNZ
assert (is_offset_in_range(new_offset, 19), "offset is too large");
*(int*)branch = (instr & ~(right_n_bits(19) << 5)) | encode_offset(new_offset, 19, 5);
} else if ((instr & (0b111111 << 25)) == (0b011011 << 25)) {
// Test & branch TBZ/TBNZ
assert (is_offset_in_range(new_offset, 14), "offset is too large");
*(int*)branch = (instr & ~(right_n_bits(14) << 5)) | encode_offset(new_offset, 14, 5);
} else if ((instr & (0b111011 << 24)) == (0b011000 << 24)) {
// LDR (literal)
unsigned opc = ((unsigned)instr >> 30);
assert (opc != 0b01 || ((uintx)target & 7) == 0, "ldr target should be aligned");
assert (is_offset_in_range(new_offset, 19), "offset is too large");
*(int*)branch = (instr & ~(right_n_bits(19) << 5)) | encode_offset(new_offset, 19, 5);
} else if (((instr & (1 << 31)) == 0) && ((instr & (0b11111 << 24)) == (0b10000 << 24))) {
// ADR
assert (is_imm_in_range(new_offset, 21, 0), "offset is too large");
instr = (instr & ~(right_n_bits(2) << 29)) | (new_offset & 3) << 29;
*(int*)branch = (instr & ~(right_n_bits(19) << 5)) | encode_imm(new_offset >> 2, 19, 0, 5);
} else if((unsigned int)instr == address_placeholder_instruction) {
// address
assert (*(unsigned int *)(branch + InstructionSize) == address_placeholder_instruction, "address placeholder occupies two instructions");
*(intx*)branch = (intx)target;
} else {
::tty->print_cr("=============== instruction: 0x%x ================\n", instr);
Unimplemented(); // TODO-AARCH64
}
#else
if ((instr & 0x0e000000) == 0x0a000000) {
// B or BL instruction
assert(new_offset < 0x2000000 && new_offset > -0x2000000, "encoding constraint");
@ -98,7 +61,6 @@ inline void MacroAssembler::pd_patch_instruction(address branch, address target,
*(int*)branch = (instr & 0xff0ff000) | 1 << 20 | -new_offset;
}
}
#endif // AARCH64
}
#endif // CPU_ARM_VM_MACROASSEMBLER_ARM_INLINE_HPP

View File

@ -125,15 +125,8 @@ void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, bool for_comp
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
__ ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
#ifdef AARCH64
Label L;
__ cbz(Rtemp, L);
__ indirect_jump(Address(Rmethod, Method::interpreter_entry_offset()), Rtemp);
__ bind(L);
#else
__ cmp(Rtemp, 0);
__ ldr(PC, Address(Rmethod, Method::interpreter_entry_offset()), ne);
#endif // AARCH64
}
const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() :
Method::from_interpreted_offset();
@ -268,11 +261,7 @@ address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler*
DEBUG_ONLY(rdx_param_size = noreg);
}
Register rbx_member = rbx_method; // MemberName ptr; incoming method ptr is dead now
#ifdef AARCH64
__ ldr(rbx_member, Address(Rparams, Interpreter::stackElementSize, post_indexed));
#else
__ pop(rbx_member);
#endif
generate_method_handle_dispatch(_masm, iid, rcx_recv, rbx_member, not_for_compiler_entry);
}
return entry_point;
@ -288,22 +277,15 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
Register rbx_method = Rmethod; // eventual target of this invocation
// temps used in this code are not used in *either* compiled or interpreted calling sequences
Register temp1 = (for_compiler_entry ? saved_last_sp_register() : R1_tmp);
Register temp2 = AARCH64_ONLY(R9) NOT_AARCH64(R8);
Register temp2 = R8;
Register temp3 = Rtemp; // R12/R16
Register temp4 = AARCH64_ONLY(Rtemp2) NOT_AARCH64(R5);
Register temp4 = R5;
if (for_compiler_entry) {
assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment");
#ifdef AARCH64
assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
assert_different_registers(temp4, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
#else
assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3);
assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3);
assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3);
assert_different_registers(temp4, j_rarg0, j_rarg1, j_rarg2, j_rarg3);
#endif // AARCH64
}
assert_different_registers(temp1, temp2, temp3, receiver_reg);
assert_different_registers(temp1, temp2, temp3, temp4, member_reg);
@ -353,12 +335,7 @@ void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
__ load_heap_oop(temp2_defc, member_clazz);
load_klass_from_Class(_masm, temp2_defc, temp3, temp4);
__ verify_klass_ptr(temp2_defc);
#ifdef AARCH64
// TODO-AARCH64
__ b(L_ok);
#else
__ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, temp4, noreg, L_ok);
#endif
// If we get here, the type check failed!
__ stop("receiver class disagrees with MemberName.clazz");
__ bind(L_ok);
@ -484,13 +461,9 @@ enum {
// the slop defends against false alarms due to fencepost errors
};
#ifdef AARCH64
const int trace_mh_nregs = 32; // R0-R30, PC
#else
const int trace_mh_nregs = 15;
const Register trace_mh_regs[trace_mh_nregs] =
{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, LR, PC};
#endif // AARCH64
void trace_method_handle_stub(const char* adaptername,
intptr_t* saved_regs,
@ -501,7 +474,7 @@ void trace_method_handle_stub(const char* adaptername,
strstr(adaptername, "linkTo") == NULL); // static linkers don't have MH
intptr_t* entry_sp = (intptr_t*) &saved_regs[trace_mh_nregs]; // just after the saved regs
intptr_t* saved_sp = (intptr_t*) saved_regs[Rsender_sp->encoding()]; // save of Rsender_sp
intptr_t* last_sp = (intptr_t*) saved_bp[AARCH64_ONLY(frame::interpreter_frame_stack_top_offset) NOT_AARCH64(frame::interpreter_frame_last_sp_offset)];
intptr_t* last_sp = (intptr_t*) saved_bp[frame::interpreter_frame_last_sp_offset];
intptr_t* base_sp = last_sp;
intptr_t mh_reg = (intptr_t)saved_regs[R5_mh->encoding()];
@ -517,13 +490,9 @@ void trace_method_handle_stub(const char* adaptername,
tty->print(" reg dump: ");
int i;
for (i = 0; i < trace_mh_nregs; i++) {
if (i > 0 && i % AARCH64_ONLY(2) NOT_AARCH64(4) == 0)
if (i > 0 && i % 4 == 0)
tty->print("\n + dump: ");
#ifdef AARCH64
const char* reg_name = (i == trace_mh_nregs-1) ? "pc" : as_Register(i)->name();
#else
const char* reg_name = trace_mh_regs[i]->name();
#endif
tty->print(" %s: " INTPTR_FORMAT, reg_name, p2i((void *)saved_regs[i]));
}
tty->cr();

View File

@ -30,11 +30,7 @@
#include "runtime/os.hpp"
#ifdef AARCH64
#include "nativeInst_arm_64.hpp"
#else
#include "nativeInst_arm_32.hpp"
#endif
#endif // CPU_ARM_VM_NATIVEINST_ARM_HPP

View File

@ -1,243 +0,0 @@
/*
* Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "assembler_arm.inline.hpp"
#include "code/codeCache.hpp"
#include "memory/resourceArea.hpp"
#include "nativeInst_arm.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
#include "oops/oop.hpp"
#include "runtime/handles.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/ostream.hpp"
#ifdef COMPILER1
#include "c1/c1_Runtime1.hpp"
#endif
void RawNativeInstruction::verify() {
// make sure code pattern is actually an instruction address
address addr = instruction_address();
if (addr == NULL || ((intptr_t)addr & (instruction_size - 1)) != 0) {
fatal("not an instruction address");
}
}
void NativeMovRegMem::set_offset(int x) {
int scale = get_offset_scale();
assert((x & right_n_bits(scale)) == 0, "offset should be aligned");
guarantee((x >> 24) == 0, "encoding constraint");
if (Assembler::is_unsigned_imm_in_range(x, 12, scale)) {
set_unsigned_imm(x, 12, get_offset_scale(), 10);
return;
}
// If offset is too large to be placed into single ldr/str instruction, we replace
// ldr/str Rt, [Rn, #offset]
// nop
// with
// add LR, Rn, #offset_hi
// ldr/str Rt, [LR, #offset_lo]
// Note: Rtemp cannot be used as a temporary register as it could be used
// for value being stored (see LIR_Assembler::reg2mem).
// Patchable NativeMovRegMem instructions are generated in LIR_Assembler::mem2reg and LIR_Assembler::reg2mem
// which do not use LR, so it is free. Also, it does not conflict with LR usages in c1_LIRGenerator_arm.cpp.
const int tmp = LR->encoding();
const int rn = (encoding() >> 5) & 0x1f;
NativeInstruction* next = nativeInstruction_at(next_raw_instruction_address());
assert(next->is_nop(), "must be");
next->set_encoding((encoding() & 0xffc0001f) | Assembler::encode_unsigned_imm((x & 0xfff), 12, scale, 10) | tmp << 5);
this->set_encoding(0x91400000 | Assembler::encode_unsigned_imm((x >> 12), 12, 0, 10) | rn << 5 | tmp);
}
intptr_t NativeMovConstReg::_data() const {
#ifdef COMPILER2
if (is_movz()) {
// narrow constant or ic call cached value
RawNativeInstruction* ni = next_raw();
assert(ni->is_movk(), "movz;movk expected");
uint lo16 = (encoding() >> 5) & 0xffff;
intptr_t hi = 0;
int i = 0;
while (ni->is_movk() && i < 3) {
uint hi16 = (ni->encoding() >> 5) & 0xffff;
int shift = ((ni->encoding() >> 21) & 0x3) << 4;
hi |= (intptr_t)hi16 << shift;
ni = ni->next_raw();
++i;
}
return lo16 | hi;
}
#endif
return (intptr_t)(nativeLdrLiteral_at(instruction_address())->literal_value());
}
static void raw_set_data(RawNativeInstruction* si, intptr_t x, oop* oop_addr, Metadata** metadata_addr) {
#ifdef COMPILER2
if (si->is_movz()) {
// narrow constant or ic call cached value
uintptr_t nx = 0;
int val_size = 32;
if (oop_addr != NULL) {
narrowOop encoded_oop = CompressedOops::encode(*oop_addr);
nx = encoded_oop;
} else if (metadata_addr != NULL) {
assert((*metadata_addr)->is_klass(), "expected Klass");
narrowKlass encoded_k = Klass::encode_klass((Klass *)*metadata_addr);
nx = encoded_k;
} else {
nx = x;
val_size = 64;
}
RawNativeInstruction* ni = si->next_raw();
uint lo16 = nx & 0xffff;
int shift = 16;
int imm16 = 0xffff << 5;
si->set_encoding((si->encoding() & ~imm16) | (lo16 << 5));
while (shift < val_size) {
assert(ni->is_movk(), "movk expected");
assert((((ni->encoding() >> 21) & 0x3) << 4) == shift, "wrong shift");
uint hi16 = (nx >> shift) & 0xffff;
ni->set_encoding((ni->encoding() & ~imm16) | (hi16 << 5));
shift += 16;
ni = ni->next_raw();
}
return;
}
#endif
assert(si->is_ldr_literal(), "should be");
if (oop_addr == NULL && metadata_addr == NULL) {
// A static ldr_literal without oop_relocation
nativeLdrLiteral_at(si->instruction_address())->set_literal_value((address)x);
} else {
// Oop is loaded from oops section
address addr = oop_addr != NULL ? (address)oop_addr : (address)metadata_addr;
int offset = addr - si->instruction_address();
assert((((intptr_t)addr) & 0x7) == 0, "target address should be aligned");
assert((offset & 0x3) == 0, "offset should be aligned");
guarantee(Assembler::is_offset_in_range(offset, 19), "offset is not in range");
nativeLdrLiteral_at(si->instruction_address())->set_literal_address(si->instruction_address() + offset);
}
}
void NativeMovConstReg::set_data(intptr_t x) {
// Find and replace the oop corresponding to this instruction in oops section
oop* oop_addr = NULL;
Metadata** metadata_addr = NULL;
CodeBlob* cb = CodeCache::find_blob(instruction_address());
{
nmethod* nm = cb->as_nmethod_or_null();
if (nm != NULL) {
RelocIterator iter(nm, instruction_address(), next_raw()->instruction_address());
while (iter.next()) {
if (iter.type() == relocInfo::oop_type) {
oop_addr = iter.oop_reloc()->oop_addr();
*oop_addr = cast_to_oop(x);
break;
} else if (iter.type() == relocInfo::metadata_type) {
metadata_addr = iter.metadata_reloc()->metadata_addr();
*metadata_addr = (Metadata*)x;
break;
}
}
}
}
raw_set_data(adjust(this), x, oop_addr, metadata_addr);
}
void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
}
void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "should be");
NativeInstruction* instr = nativeInstruction_at(verified_entry);
assert(instr->is_nop() || instr->encoding() == zombie_illegal_instruction, "required for MT-safe patching");
instr->set_encoding(zombie_illegal_instruction);
}
void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
assert (nativeInstruction_at(instr_addr)->is_b(), "MT-safe patching of arbitrary instructions is not allowed");
assert (nativeInstruction_at(code_buffer)->is_nop(), "MT-safe patching of arbitrary instructions is not allowed");
nativeInstruction_at(instr_addr)->set_encoding(*(int*)code_buffer);
}
void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
// Insert at code_pos unconditional B instruction jumping to entry
intx offset = entry - code_pos;
assert (Assembler::is_offset_in_range(offset, 26), "offset is out of range");
NativeInstruction* instr = nativeInstruction_at(code_pos);
assert (instr->is_b() || instr->is_nop(), "MT-safe patching of arbitrary instructions is not allowed");
instr->set_encoding(0x5 << 26 | Assembler::encode_offset(offset, 26, 0));
}
static address call_for(address return_address) {
CodeBlob* cb = CodeCache::find_blob(return_address);
nmethod* nm = cb->as_nmethod_or_null();
if (nm == NULL) {
ShouldNotReachHere();
return NULL;
}
// Look back 8 instructions (for LIR_Assembler::ic_call and MacroAssembler::patchable_call)
address begin = return_address - 8*NativeInstruction::instruction_size;
if (begin < nm->code_begin()) {
begin = nm->code_begin();
}
RelocIterator iter(nm, begin, return_address);
while (iter.next()) {
Relocation* reloc = iter.reloc();
if (reloc->is_call()) {
address call = reloc->addr();
if (nativeInstruction_at(call)->is_call()) {
if (nativeCall_at(call)->return_address() == return_address) {
return call;
}
}
}
}
return NULL;
}
bool NativeCall::is_call_before(address return_address) {
return (call_for(return_address) != NULL);
}
NativeCall* nativeCall_before(address return_address) {
assert(NativeCall::is_call_before(return_address), "must be");
return nativeCall_at(call_for(return_address));
}

View File

@ -1,771 +0,0 @@
/*
* Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_ARM_VM_NATIVEINST_ARM_64_HPP
#define CPU_ARM_VM_NATIVEINST_ARM_64_HPP
#include "asm/macroAssembler.hpp"
#include "code/codeCache.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"
// -------------------------------------------------------------------
// Some experimental projects extend the ARM back-end by implementing
// what the front-end usually assumes is a single native instruction
// with a sequence of instructions.
//
// The 'Raw' variants are the low level initial code (usually one
// instruction wide but some of them were already composed
// instructions). They should be used only by the back-end.
//
// The non-raw classes are the front-end entry point, hiding potential
// back-end extensions or the actual instructions size.
class NativeInstruction;
class RawNativeInstruction {
public:
enum ARM_specific {
instruction_size = Assembler::InstructionSize,
instruction_size_in_bits = instruction_size * BitsPerByte,
};
// illegal instruction used by NativeJump::patch_verified_entry
static const int zombie_illegal_instruction = 0xd4000542; // hvc #42
address addr_at(int offset) const { return (address)this + offset; }
address instruction_address() const { return addr_at(0); }
address next_raw_instruction_address() const { return addr_at(instruction_size); }
static RawNativeInstruction* at(address address) {
return (RawNativeInstruction*)address;
}
RawNativeInstruction* next_raw() const {
return at(next_raw_instruction_address());
}
int encoding() const {
return *(int*)this;
}
void set_encoding(int value) {
int old = encoding();
if (old != value) {
*(int*)this = value;
ICache::invalidate_word((address)this);
}
}
bool is_nop() const { return encoding() == (int)0xd503201f; }
bool is_b() const { return (encoding() & 0xfc000000) == 0x14000000; } // unconditional branch
bool is_b_cond() const { return (encoding() & 0xff000010) == 0x54000000; } // conditional branch
bool is_bl() const { return (encoding() & 0xfc000000) == 0x94000000; }
bool is_br() const { return (encoding() & 0xfffffc1f) == 0xd61f0000; }
bool is_blr() const { return (encoding() & 0xfffffc1f) == 0xd63f0000; }
bool is_ldr_literal() const { return (encoding() & 0xff000000) == 0x58000000; }
bool is_adr_aligned() const { return (encoding() & 0xff000000) == 0x10000000; } // adr Xn, <label>, where label is aligned to 4 bytes (address of instruction).
bool is_adr_aligned_lr() const { return (encoding() & 0xff00001f) == 0x1000001e; } // adr LR, <label>, where label is aligned to 4 bytes (address of instruction).
bool is_ldr_str_gp_reg_unsigned_imm() const { return (encoding() & 0x3f000000) == 0x39000000; } // ldr/str{b, sb, h, sh, _w, sw} Rt, [Rn, #imm]
bool is_ldr_str_fp_reg_unsigned_imm() const { return (encoding() & 0x3f000000) == 0x3D000000; } // ldr/str Rt(SIMD), [Rn, #imm]
bool is_ldr_str_reg_unsigned_imm() const { return is_ldr_str_gp_reg_unsigned_imm() || is_ldr_str_fp_reg_unsigned_imm(); }
bool is_stp_preindex() const { return (encoding() & 0xffc00000) == 0xa9800000; } // stp Xt1, Xt2, [Xn, #imm]!
bool is_ldp_postindex() const { return (encoding() & 0xffc00000) == 0xa8c00000; } // ldp Xt1, Xt2, [Xn] #imm
bool is_mov_sp() const { return (encoding() & 0xfffffc00) == 0x91000000; } // mov <Xn|SP>, <Xm|SP>
bool is_movn() const { return (encoding() & 0x7f800000) == 0x12800000; }
bool is_movz() const { return (encoding() & 0x7f800000) == 0x52800000; }
bool is_movk() const { return (encoding() & 0x7f800000) == 0x72800000; }
bool is_orr_imm() const { return (encoding() & 0x7f800000) == 0x32000000; }
bool is_cmp_rr() const { return (encoding() & 0x7fe00000) == 0x6b000000; }
bool is_csel() const { return (encoding() & 0x7fe00000) == 0x1a800000; }
bool is_sub_shift() const { return (encoding() & 0x7f200000) == 0x4b000000; } // sub Rd, Rn, shift (Rm, imm)
bool is_mov() const { return (encoding() & 0x7fe0ffe0) == 0x2a0003e0; } // mov Rd, Rm (orr Rd, ZR, shift (Rm, 0))
bool is_tst() const { return (encoding() & 0x7f20001f) == 0x6a00001f; } // tst Rn, shift (Rm, imm) (ands ZR, Rn, shift(Rm, imm))
bool is_lsr_imm() const { return (encoding() & 0x7f807c00) == 0x53007c00; } // lsr Rd, Rn, imm (ubfm Rd, Rn, imm, 31/63)
bool is_far_jump() const { return is_ldr_literal() && next_raw()->is_br(); }
bool is_fat_call() const {
return
#ifdef COMPILER2
(is_blr() && next_raw()->is_b()) ||
#endif
(is_adr_aligned_lr() && next_raw()->is_br());
}
bool is_far_call() const {
return is_ldr_literal() && next_raw()->is_fat_call();
}
bool is_ic_near_call() const { return is_adr_aligned_lr() && next_raw()->is_b(); }
bool is_ic_far_call() const { return is_adr_aligned_lr() && next_raw()->is_ldr_literal() && next_raw()->next_raw()->is_br(); }
bool is_ic_call() const { return is_ic_near_call() || is_ic_far_call(); }
bool is_jump() const { return is_b() || is_far_jump(); }
bool is_call() const { return is_bl() || is_far_call() || is_ic_call(); }
bool is_branch() const { return is_b() || is_bl(); }
// c2 doesn't use fixed registers for safepoint poll address
bool is_safepoint_poll() const {
return true;
}
bool is_save_all_registers(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_stp_preindex()) return false; current = current->next_raw();
for (int i = 28; i >= 0; i -= 2) {
if (!current->is_stp_preindex()) return false; current = current->next_raw();
}
if (!current->is_adr_aligned()) return false; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
bool is_restore_all_registers(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
for (int i = 0; i <= 28; i += 2) {
if (!current->is_ldp_postindex()) return false; current = current->next_raw();
}
if (!current->is_ldp_postindex()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
const RawNativeInstruction* skip_bind_literal() const {
const RawNativeInstruction* current = this;
if (((uintptr_t)current) % wordSize != 0) {
assert(current->is_nop(), "should be");
current = current->next_raw();
}
assert(((uintptr_t)current) % wordSize == 0, "should be"); // bound literal should be aligned
current = current->next_raw()->next_raw();
return current;
}
bool is_stop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_save_all_registers(&current)) return false;
if (!current->is_ldr_literal()) return false; current = current->next_raw();
if (!current->is_mov_sp()) return false; current = current->next_raw();
if (!current->is_ldr_literal()) return false; current = current->next_raw();
if (!current->is_br()) return false; current = current->next_raw();
current = current->skip_bind_literal();
current = current->skip_bind_literal();
*next = (RawNativeInstruction*) current;
return true;
}
bool is_mov_slow(const RawNativeInstruction** next = NULL) const {
const RawNativeInstruction* current = this;
if (current->is_orr_imm()) {
current = current->next_raw();
} else if (current->is_movn() || current->is_movz()) {
current = current->next_raw();
int movkCount = 0;
while (current->is_movk()) {
movkCount++;
if (movkCount > 3) return false;
current = current->next_raw();
}
} else {
return false;
}
if (next != NULL) {
*next = (RawNativeInstruction*)current;
}
return true;
}
#ifdef ASSERT
void skip_verify_heapbase(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (CheckCompressedOops) {
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
if (!current->is_stp_preindex()) return; current = current->next_raw();
// NOTE: temporary workaround, remove with m6-01?
// skip saving condition flags
current = current->next_raw();
current = current->next_raw();
if (!current->is_mov_slow(&current)) return;
if (!current->is_cmp_rr()) return; current = current->next_raw();
if (!current->is_b_cond()) return; current = current->next_raw();
if (!current->is_stop(&current)) return;
#ifdef COMPILER2
if (current->is_nop()) current = current->next_raw();
#endif
// NOTE: temporary workaround, remove with m6-01?
// skip restoring condition flags
current = current->next_raw();
current = current->next_raw();
if (!current->is_ldp_postindex()) return; current = current->next_raw();
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
}
*next = (RawNativeInstruction*) current;
}
#endif // ASSERT
bool is_ldr_global_ptr(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (!current->is_mov_slow(&current)) return false;
if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
*next = (RawNativeInstruction*) current;
return true;
}
void skip_verify_oop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
if (VerifyOops) {
if (!current->is_save_all_registers(&current)) return;
if (current->is_mov()) {
current = current->next_raw();
}
if (!current->is_mov_sp()) return; current = current->next_raw();
if (!current->is_ldr_literal()) return; current = current->next_raw();
if (!current->is_ldr_global_ptr(&current)) return;
if (!current->is_blr()) return; current = current->next_raw();
if (!current->is_restore_all_registers(&current)) return;
if (!current->is_b()) return; current = current->next_raw();
current = current->skip_bind_literal();
}
*next = (RawNativeInstruction*) current;
}
void skip_encode_heap_oop(const RawNativeInstruction** next) const {
const RawNativeInstruction* current = this;
assert (Universe::heap() != NULL, "java heap should be initialized");
#ifdef ASSERT
current->skip_verify_heapbase(&current);
#endif // ASSERT
current->skip_verify_oop(&current);
if (Universe::narrow_oop_base() == NULL) {
if (Universe::narrow_oop_shift() != 0) {
if (!current->is_lsr_imm()) return; current = current->next_raw();
} else {
if (current->is_mov()) {
current = current->next_raw();
}
}
} else {
if (!current->is_tst()) return; current = current->next_raw();
if (!current->is_csel()) return; current = current->next_raw();
if (!current->is_sub_shift()) return; current = current->next_raw();
if (Universe::narrow_oop_shift() != 0) {
if (!current->is_lsr_imm()) return; current = current->next_raw();
}
}
*next = (RawNativeInstruction*) current;
}
void verify();
// For unit tests
static void test() {}
private:
void check_bits_range(int bits, int scale, int low_bit) const {
assert((0 <= low_bit) && (0 < bits) && (low_bit + bits <= instruction_size_in_bits), "invalid bits range");
assert((0 <= scale) && (scale <= 4), "scale is out of range");
}
void set_imm(int imm_encoding, int bits, int low_bit) {
int imm_mask = right_n_bits(bits) << low_bit;
assert((imm_encoding & ~imm_mask) == 0, "invalid imm encoding");
set_encoding((encoding() & ~imm_mask) | imm_encoding);
}
protected:
// Returns signed immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
int get_signed_imm(int bits, int scale, int low_bit) const {
check_bits_range(bits, scale, low_bit);
int high_bits_to_clean = (instruction_size_in_bits - (low_bit + bits));
return encoding() << high_bits_to_clean >> (high_bits_to_clean + low_bit) << scale;
}
// Puts given signed immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
void set_signed_imm(int value, int bits, int scale, int low_bit) {
set_imm(Assembler::encode_imm(value, bits, scale, low_bit), bits, low_bit);
}
// Returns unsigned immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
int get_unsigned_imm(int bits, int scale, int low_bit) const {
check_bits_range(bits, scale, low_bit);
return ((encoding() >> low_bit) & right_n_bits(bits)) << scale;
}
// Puts given unsigned immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
void set_unsigned_imm(int value, int bits, int scale, int low_bit) {
set_imm(Assembler::encode_unsigned_imm(value, bits, scale, low_bit), bits, low_bit);
}
int get_signed_offset(int bits, int low_bit) const {
return get_signed_imm(bits, 2, low_bit);
}
void set_signed_offset(int offset, int bits, int low_bit) {
set_signed_imm(offset, bits, 2, low_bit);
}
};
inline RawNativeInstruction* rawNativeInstruction_at(address address) {
RawNativeInstruction* instr = RawNativeInstruction::at(address);
#ifdef ASSERT
instr->verify();
#endif // ASSERT
return instr;
}
// -------------------------------------------------------------------
// Load/store register (unsigned scaled immediate)
class NativeMovRegMem: public RawNativeInstruction {
private:
int get_offset_scale() const {
return get_unsigned_imm(2, 0, 30);
}
public:
int offset() const {
return get_unsigned_imm(12, get_offset_scale(), 10);
}
void set_offset(int x);
void add_offset_in_bytes(int add_offset) {
set_offset(offset() + add_offset);
}
};
inline NativeMovRegMem* nativeMovRegMem_at(address address) {
const RawNativeInstruction* instr = rawNativeInstruction_at(address);
#ifdef COMPILER1
// NOP required for C1 patching
if (instr->is_nop()) {
instr = instr->next_raw();
}
#endif
instr->skip_encode_heap_oop(&instr);
assert(instr->is_ldr_str_reg_unsigned_imm(), "must be");
return (NativeMovRegMem*)instr;
}
// -------------------------------------------------------------------
class NativeInstruction : public RawNativeInstruction {
public:
static NativeInstruction* at(address address) {
return (NativeInstruction*)address;
}
public:
// No need to consider indirections while parsing NativeInstruction
address next_instruction_address() const {
return next_raw_instruction_address();
}
// next() is no longer defined to avoid confusion.
//
// The front end and most classes except for those defined in nativeInst_arm
// or relocInfo_arm should only use next_instruction_address(), skipping
// over composed instruction and ignoring back-end extensions.
//
// The back-end can use next_raw() when it knows the instruction sequence
// and only wants to skip a single native instruction.
};
inline NativeInstruction* nativeInstruction_at(address address) {
NativeInstruction* instr = NativeInstruction::at(address);
#ifdef ASSERT
instr->verify();
#endif // ASSERT
return instr;
}
// -------------------------------------------------------------------
class NativeInstructionLdrLiteral: public NativeInstruction {
public:
address literal_address() {
address la = instruction_address() + get_signed_offset(19, 5);
assert(la != instruction_address(), "literal points to instruction");
return la;
}
address after_literal_address() {
return literal_address() + wordSize;
}
void set_literal_address(address addr, address pc) {
assert(is_ldr_literal(), "must be");
int opc = (encoding() >> 30) & 0x3;
assert (opc != 0b01 || addr == pc || ((uintx)addr & 7) == 0, "ldr target should be aligned");
set_signed_offset(addr - pc, 19, 5);
}
void set_literal_address(address addr) {
set_literal_address(addr, instruction_address());
}
address literal_value() {
return *(address*)literal_address();
}
void set_literal_value(address dest) {
*(address*)literal_address() = dest;
}
};
inline NativeInstructionLdrLiteral* nativeLdrLiteral_at(address address) {
assert(nativeInstruction_at(address)->is_ldr_literal(), "must be");
return (NativeInstructionLdrLiteral*)address;
}
// -------------------------------------------------------------------
// Common class for branch instructions with 26-bit immediate offset: B (unconditional) and BL
class NativeInstructionBranchImm26: public NativeInstruction {
public:
address destination(int adj = 0) const {
return instruction_address() + get_signed_offset(26, 0) + adj;
}
void set_destination(address dest) {
intptr_t offset = (intptr_t)(dest - instruction_address());
assert((offset & 0x3) == 0, "should be aligned");
set_signed_offset(offset, 26, 0);
}
};
inline NativeInstructionBranchImm26* nativeB_at(address address) {
assert(nativeInstruction_at(address)->is_b(), "must be");
return (NativeInstructionBranchImm26*)address;
}
inline NativeInstructionBranchImm26* nativeBL_at(address address) {
assert(nativeInstruction_at(address)->is_bl(), "must be");
return (NativeInstructionBranchImm26*)address;
}
// -------------------------------------------------------------------
class NativeInstructionAdrLR: public NativeInstruction {
public:
// Returns address which is loaded into LR by this instruction.
address target_lr_value() {
return instruction_address() + get_signed_offset(19, 5);
}
};
inline NativeInstructionAdrLR* nativeAdrLR_at(address address) {
assert(nativeInstruction_at(address)->is_adr_aligned_lr(), "must be");
return (NativeInstructionAdrLR*)address;
}
// -------------------------------------------------------------------
class RawNativeCall: public NativeInstruction {
public:
address return_address() const {
if (is_bl()) {
return next_raw_instruction_address();
} else if (is_far_call()) {
#ifdef COMPILER2
if (next_raw()->is_blr()) {
// ldr_literal; blr; ret_addr: b skip_literal;
return addr_at(2 * instruction_size);
}
#endif
assert(next_raw()->is_adr_aligned_lr() && next_raw()->next_raw()->is_br(), "must be");
return nativeLdrLiteral_at(instruction_address())->after_literal_address();
} else if (is_ic_call()) {
return nativeAdrLR_at(instruction_address())->target_lr_value();
} else {
ShouldNotReachHere();
return NULL;
}
}
address destination(int adj = 0) const {
if (is_bl()) {
return nativeBL_at(instruction_address())->destination(adj);
} else if (is_far_call()) {
return nativeLdrLiteral_at(instruction_address())->literal_value();
} else if (is_adr_aligned_lr()) {
RawNativeInstruction *next = next_raw();
if (next->is_b()) {
// ic_near_call
return nativeB_at(next->instruction_address())->destination(adj);
} else if (next->is_far_jump()) {
// ic_far_call
return nativeLdrLiteral_at(next->instruction_address())->literal_value();
}
}
ShouldNotReachHere();
return NULL;
}
void set_destination(address dest) {
if (is_bl()) {
nativeBL_at(instruction_address())->set_destination(dest);
return;
}
if (is_far_call()) {
nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
OrderAccess::storeload(); // overkill if caller holds lock?
return;
}
if (is_adr_aligned_lr()) {
RawNativeInstruction *next = next_raw();
if (next->is_b()) {
// ic_near_call
nativeB_at(next->instruction_address())->set_destination(dest);
return;
}
if (next->is_far_jump()) {
// ic_far_call
nativeLdrLiteral_at(next->instruction_address())->set_literal_value(dest);
OrderAccess::storeload(); // overkill if caller holds lock?
return;
}
}
ShouldNotReachHere();
}
void set_destination_mt_safe(address dest) {
assert(CodeCache::contains(dest), "call target should be from code cache (required by ic_call and patchable_call)");
set_destination(dest);
}
void verify() {
assert(RawNativeInstruction::is_call(), "should be");
}
void verify_alignment() {
// Nothing to do on ARM
}
};
inline RawNativeCall* rawNativeCall_at(address address) {
RawNativeCall * call = (RawNativeCall*)address;
call->verify();
return call;
}
class NativeCall: public RawNativeCall {
public:
// NativeCall::next_instruction_address() is used only to define the
// range where to look for the relocation information. We need not
// walk over composed instructions (as long as the relocation information
// is associated to the first instruction).
address next_instruction_address() const {
return next_raw_instruction_address();
}
static bool is_call_before(address return_address);
};
inline NativeCall* nativeCall_at(address address) {
NativeCall * call = (NativeCall*)address;
call->verify();
return call;
}
NativeCall* nativeCall_before(address return_address);
// -------------------------------------------------------------------
class NativeGeneralJump: public NativeInstruction {
public:
address jump_destination() const {
return nativeB_at(instruction_address())->destination();
}
static void replace_mt_safe(address instr_addr, address code_buffer);
static void insert_unconditional(address code_pos, address entry);
};
inline NativeGeneralJump* nativeGeneralJump_at(address address) {
assert(nativeInstruction_at(address)->is_b(), "must be");
return (NativeGeneralJump*)address;
}
// -------------------------------------------------------------------
class RawNativeJump: public NativeInstruction {
public:
address jump_destination(int adj = 0) const {
if (is_b()) {
address a = nativeB_at(instruction_address())->destination(adj);
// Jump destination -1 is encoded as a jump to self
if (a == instruction_address()) {
return (address)-1;
}
return a;
} else {
assert(is_far_jump(), "should be");
return nativeLdrLiteral_at(instruction_address())->literal_value();
}
}
void set_jump_destination(address dest) {
if (is_b()) {
// Jump destination -1 is encoded as a jump to self
if (dest == (address)-1) {
dest = instruction_address();
}
nativeB_at(instruction_address())->set_destination(dest);
} else {
assert(is_far_jump(), "should be");
nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
}
}
};
inline RawNativeJump* rawNativeJump_at(address address) {
assert(rawNativeInstruction_at(address)->is_jump(), "must be");
return (RawNativeJump*)address;
}
// -------------------------------------------------------------------
class NativeMovConstReg: public NativeInstruction {
NativeMovConstReg *adjust() const {
return (NativeMovConstReg *)adjust(this);
}
public:
static RawNativeInstruction *adjust(const RawNativeInstruction *ni) {
#ifdef COMPILER1
// NOP required for C1 patching
if (ni->is_nop()) {
return ni->next_raw();
}
#endif
return (RawNativeInstruction *)ni;
}
intptr_t _data() const;
void set_data(intptr_t x);
intptr_t data() const {
return adjust()->_data();
}
bool is_pc_relative() {
return adjust()->is_ldr_literal();
}
void _set_pc_relative_offset(address addr, address pc) {
assert(is_ldr_literal(), "must be");
nativeLdrLiteral_at(instruction_address())->set_literal_address(addr, pc);
}
void set_pc_relative_offset(address addr, address pc) {
NativeMovConstReg *ni = adjust();
int dest_adj = ni->instruction_address() - instruction_address();
ni->_set_pc_relative_offset(addr, pc + dest_adj);
}
address _next_instruction_address() const {
#ifdef COMPILER2
if (is_movz()) {
// narrow constant
RawNativeInstruction* ni = next_raw();
assert(ni->is_movk(), "movz;movk expected");
return ni->next_raw_instruction_address();
}
#endif
assert(is_ldr_literal(), "must be");
return NativeInstruction::next_raw_instruction_address();
}
address next_instruction_address() const {
return adjust()->_next_instruction_address();
}
};
inline NativeMovConstReg* nativeMovConstReg_at(address address) {
RawNativeInstruction* ni = rawNativeInstruction_at(address);
ni = NativeMovConstReg::adjust(ni);
assert(ni->is_mov_slow() || ni->is_ldr_literal(), "must be");
return (NativeMovConstReg*)address;
}
// -------------------------------------------------------------------
class NativeJump: public RawNativeJump {
public:
static void check_verified_entry_alignment(address entry, address verified_entry);
static void patch_verified_entry(address entry, address verified_entry, address dest);
};
inline NativeJump* nativeJump_at(address address) {
assert(nativeInstruction_at(address)->is_jump(), "must be");
return (NativeJump*)address;
}
#endif // CPU_ARM_VM_NATIVEINST_ARM_64_HPP

View File

@ -32,12 +32,6 @@ const int ConcreteRegisterImpl::max_fpr = ConcreteRegisterImpl::num_fpr +
const char* RegisterImpl::name() const {
const char* names[number_of_registers] = {
#ifdef AARCH64
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "fp", "lr", "xzr", "sp"
#else
"r0", "r1", "r2", "r3", "r4", "r5", "r6",
#if (FP_REG_NUM == 7)
"fp",
@ -51,19 +45,12 @@ const char* RegisterImpl::name() const {
"r11",
#endif
"r12", "sp", "lr", "pc"
#endif // AARCH64
};
return is_valid() ? names[encoding()] : "noreg";
}
const char* FloatRegisterImpl::name() const {
const char* names[number_of_registers] = {
#ifdef AARCH64
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
#else
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
"s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
@ -74,7 +61,6 @@ const char* FloatRegisterImpl::name() const {
"s48", "s49?","s50", "s51?","s52", "s53?","s54", "s55?",
"s56", "s57?","s58", "s59?","s60", "s61?","s62", "s63?"
#endif
#endif // AARCH64
};
return is_valid() ? names[encoding()] : "fnoreg";
}

View File

@ -66,7 +66,6 @@ typedef VMRegImpl* VMReg;
#define R9_IS_SCRATCHED 0
#endif
#ifndef AARCH64
// FP_REG_NUM
//
// The ARM ABI does not state which register is used for the frame pointer.
@ -77,7 +76,6 @@ typedef VMRegImpl* VMReg;
// Default: FP is R11
#define FP_REG_NUM 11
#endif
#endif // AARCH64
// ALIGN_WIDE_ARGUMENTS
//
@ -113,32 +111,6 @@ typedef VMRegImpl* VMReg;
#define R14 ((Register)14)
#define R15 ((Register)15)
#ifdef AARCH64
#define R16 ((Register)16)
#define R17 ((Register)17)
#define R18 ((Register)18)
#define R19 ((Register)19)
#define R20 ((Register)20)
#define R21 ((Register)21)
#define R22 ((Register)22)
#define R23 ((Register)23)
#define R24 ((Register)24)
#define R25 ((Register)25)
#define R26 ((Register)26)
#define R27 ((Register)27)
#define R28 ((Register)28)
#define R29 ((Register)29)
#define R30 ((Register)30)
#define ZR ((Register)31)
#define SP ((Register)32)
#define FP R29
#define LR R30
#define altFP_7_11 R7
#else // !AARCH64
#define FP ((Register)FP_REG_NUM)
@ -158,7 +130,6 @@ typedef VMRegImpl* VMReg;
#define LR R14
#define PC R15
#endif // !AARCH64
class RegisterImpl;
@ -171,11 +142,7 @@ inline Register as_Register(int encoding) {
class RegisterImpl : public AbstractRegisterImpl {
public:
enum {
#ifdef AARCH64
number_of_gprs = 31,
zr_sp_encoding = 31,
#endif
number_of_registers = AARCH64_ONLY(number_of_gprs + 2) NOT_AARCH64(16)
number_of_registers = 16
};
Register successor() const { return as_Register(encoding() + 1); }
@ -188,19 +155,10 @@ class RegisterImpl : public AbstractRegisterImpl {
int encoding() const { assert(is_valid(), "invalid register"); return value(); }
const char* name() const;
#ifdef AARCH64
int encoding_with_zr() const { assert (is_valid_gpr_or_zr(), "invalid register"); return (this == ZR) ? zr_sp_encoding : value(); }
int encoding_with_sp() const { assert (is_valid_gpr_or_sp(), "invalid register"); return (this == SP) ? zr_sp_encoding : value(); }
#endif
// testers
bool is_valid() const { return 0 <= value() && value() < number_of_registers; }
#ifdef AARCH64
bool is_valid_gpr() const { return (0 <= value() && value() < number_of_gprs); }
bool is_valid_gpr_or_zr() const { return is_valid_gpr() || (this == ZR); }
bool is_valid_gpr_or_sp() const { return is_valid_gpr() || (this == SP); }
#endif
};
CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1));
@ -217,11 +175,7 @@ inline FloatRegister as_FloatRegister(int encoding) {
class FloatRegisterImpl : public AbstractRegisterImpl {
public:
enum {
#ifdef AARCH64
number_of_registers = 32
#else
number_of_registers = NOT_COMPILER2(32) COMPILER2_PRESENT(64)
#endif
};
inline friend FloatRegister as_FloatRegister(int encoding);
@ -234,7 +188,6 @@ class FloatRegisterImpl : public AbstractRegisterImpl {
const char* name() const;
#ifndef AARCH64
int hi_bits() const {
return (encoding() >> 1) & 0xf;
}
@ -246,54 +199,10 @@ class FloatRegisterImpl : public AbstractRegisterImpl {
int hi_bit() const {
return encoding() >> 5;
}
#endif // !AARCH64
};
CONSTANT_REGISTER_DECLARATION(FloatRegister, fnoreg, (-1));
#ifdef AARCH64
CONSTANT_REGISTER_DECLARATION(FloatRegister, V0, ( 0));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V1, ( 1));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V2, ( 2));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V3, ( 3));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V4, ( 4));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V5, ( 5));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V6, ( 6));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V7, ( 7));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V8, ( 8));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V9, ( 9));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V10, (10));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V11, (11));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V12, (12));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V13, (13));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V14, (14));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V15, (15));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V16, (16));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V17, (17));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V18, (18));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V19, (19));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V20, (20));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V21, (21));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V22, (22));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V23, (23));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V24, (24));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V25, (25));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V26, (26));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V27, (27));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V28, (28));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V29, (29));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V30, (30));
CONSTANT_REGISTER_DECLARATION(FloatRegister, V31, (31));
#define S0 V0
#define S1_reg V1
#define Stemp V31
#define D0 V0
#define D1 V1
#else // AARCH64
/*
* S1-S6 are named with "_reg" suffix to avoid conflict with
@ -366,16 +275,15 @@ CONSTANT_REGISTER_DECLARATION(FloatRegister, D29, (58));
CONSTANT_REGISTER_DECLARATION(FloatRegister, D30, (60));
CONSTANT_REGISTER_DECLARATION(FloatRegister, D31, (62));
#endif // AARCH64
class ConcreteRegisterImpl : public AbstractRegisterImpl {
public:
enum {
log_vmregs_per_word = LogBytesPerWord - LogBytesPerInt, // VMRegs are of 4-byte size
#ifdef COMPILER2
log_bytes_per_fpr = AARCH64_ONLY(4) NOT_AARCH64(2), // quad vectors
log_bytes_per_fpr = 2, // quad vectors
#else
log_bytes_per_fpr = AARCH64_ONLY(3) NOT_AARCH64(2), // double vectors
log_bytes_per_fpr = 2, // double vectors
#endif
log_words_per_fpr = log_bytes_per_fpr - LogBytesPerWord,
words_per_fpr = 1 << log_words_per_fpr,
@ -388,17 +296,13 @@ class ConcreteRegisterImpl : public AbstractRegisterImpl {
max_gpr0 = num_gpr,
num_fpr = FloatRegisterImpl::number_of_registers << log_vmregs_per_fpr,
max_fpr0 = max_gpr0 + num_fpr,
number_of_registers = num_gpr + num_fpr +
// TODO-AARCH64 revise
1+1 // APSR and FPSCR so that c2's REG_COUNT <= ConcreteRegisterImpl::number_of_registers
number_of_registers = num_gpr + num_fpr + 1+1 // APSR and FPSCR so that c2's REG_COUNT <= ConcreteRegisterImpl::number_of_registers
};
static const int max_gpr;
static const int max_fpr;
};
// TODO-AARCH64 revise the following definitions
class VFPSystemRegisterImpl;
typedef VFPSystemRegisterImpl* VFPSystemRegister;
class VFPSystemRegisterImpl : public AbstractRegisterImpl {
@ -414,33 +318,21 @@ class VFPSystemRegisterImpl : public AbstractRegisterImpl {
/*
* Register definitions shared across interpreter and compiler
*/
#define Rexception_obj AARCH64_ONLY(R19) NOT_AARCH64(R4)
#define Rexception_pc AARCH64_ONLY(R20) NOT_AARCH64(R5)
#ifdef AARCH64
#define Rheap_base R27
#endif // AARCH64
#define Rexception_obj R4
#define Rexception_pc R5
/*
* Interpreter register definitions common to C++ and template interpreters.
*/
#ifdef AARCH64
#define Rlocals R23
#define Rmethod R26
#define Rthread R28
#define Rtemp R16
#define Rtemp2 R17
#else
#define Rlocals R8
#define Rmethod R9
#define Rthread R10
#define Rtemp R12
#endif // AARCH64
// Interpreter calling conventions
#define Rparams AARCH64_ONLY(R8) NOT_AARCH64(SP)
#define Rsender_sp AARCH64_ONLY(R19) NOT_AARCH64(R4)
#define Rparams SP
#define Rsender_sp R4
// JSR292
// Note: R5_mh is needed only during the call setup, including adapters
@ -479,25 +371,23 @@ class VFPSystemRegisterImpl : public AbstractRegisterImpl {
#define D1_tmp D1
// Temporary registers saved across VM calls (according to C calling conventions)
#define Rtmp_save0 AARCH64_ONLY(R19) NOT_AARCH64(R4)
#define Rtmp_save1 AARCH64_ONLY(R20) NOT_AARCH64(R5)
#define Rtmp_save0 R4
#define Rtmp_save1 R5
// Cached TOS value
#define R0_tos R0
#ifndef AARCH64
#define R0_tos_lo R0
#define R1_tos_hi R1
#endif
#define S0_tos S0
#define D0_tos D0
// Dispatch table
#define RdispatchTable AARCH64_ONLY(R22) NOT_AARCH64(R6)
#define RdispatchTable R6
// Bytecode pointer
#define Rbcp AARCH64_ONLY(R24) NOT_AARCH64(altFP_7_11)
#define Rbcp altFP_7_11
// Pre-loaded next bytecode for the dispatch
#define R3_bytecode R3
@ -507,7 +397,7 @@ class VFPSystemRegisterImpl : public AbstractRegisterImpl {
#define R4_ArrayIndexOutOfBounds_index R4
// Interpreter expression stack top
#define Rstack_top AARCH64_ONLY(R25) NOT_AARCH64(SP)
#define Rstack_top SP
/*
* Linux 32-bit ARM C ABI Register calling conventions
@ -529,28 +419,14 @@ class VFPSystemRegisterImpl : public AbstractRegisterImpl {
* R13 (SP) Stack Pointer callee
* R14 (LR) Link register
* R15 (PC) Program Counter
*
* TODO-AARCH64: document AArch64 ABI
*
*/
#define c_rarg0 R0
#define c_rarg1 R1
#define c_rarg2 R2
#define c_rarg3 R3
#ifdef AARCH64
#define c_rarg4 R4
#define c_rarg5 R5
#define c_rarg6 R6
#define c_rarg7 R7
#endif
#ifdef AARCH64
#define GPR_PARAMS 8
#define FPR_PARAMS 8
#else
#define GPR_PARAMS 4
#endif
// Java ABI
@ -560,11 +436,5 @@ class VFPSystemRegisterImpl : public AbstractRegisterImpl {
#define j_rarg2 c_rarg2
#define j_rarg3 c_rarg3
#ifdef AARCH64
#define j_rarg4 c_rarg4
#define j_rarg5 c_rarg5
#define j_rarg6 c_rarg6
#define j_rarg7 c_rarg7
#endif
#endif // CPU_ARM_VM_REGISTER_ARM_HPP

View File

@ -31,42 +31,6 @@
REGISTER_DEFINITION(Register, noreg);
REGISTER_DEFINITION(FloatRegister, fnoreg);
#ifdef AARCH64
REGISTER_DEFINITION(FloatRegister, V0);
REGISTER_DEFINITION(FloatRegister, V1);
REGISTER_DEFINITION(FloatRegister, V2);
REGISTER_DEFINITION(FloatRegister, V3);
REGISTER_DEFINITION(FloatRegister, V4);
REGISTER_DEFINITION(FloatRegister, V5);
REGISTER_DEFINITION(FloatRegister, V6);
REGISTER_DEFINITION(FloatRegister, V7);
REGISTER_DEFINITION(FloatRegister, V8);
REGISTER_DEFINITION(FloatRegister, V9);
REGISTER_DEFINITION(FloatRegister, V10);
REGISTER_DEFINITION(FloatRegister, V11);
REGISTER_DEFINITION(FloatRegister, V12);
REGISTER_DEFINITION(FloatRegister, V13);
REGISTER_DEFINITION(FloatRegister, V14);
REGISTER_DEFINITION(FloatRegister, V15);
REGISTER_DEFINITION(FloatRegister, V16);
REGISTER_DEFINITION(FloatRegister, V17);
REGISTER_DEFINITION(FloatRegister, V18);
REGISTER_DEFINITION(FloatRegister, V19);
REGISTER_DEFINITION(FloatRegister, V20);
REGISTER_DEFINITION(FloatRegister, V21);
REGISTER_DEFINITION(FloatRegister, V22);
REGISTER_DEFINITION(FloatRegister, V23);
REGISTER_DEFINITION(FloatRegister, V24);
REGISTER_DEFINITION(FloatRegister, V25);
REGISTER_DEFINITION(FloatRegister, V26);
REGISTER_DEFINITION(FloatRegister, V27);
REGISTER_DEFINITION(FloatRegister, V28);
REGISTER_DEFINITION(FloatRegister, V29);
REGISTER_DEFINITION(FloatRegister, V30);
REGISTER_DEFINITION(FloatRegister, V31);
#else // AARCH64
REGISTER_DEFINITION(FloatRegister, S0);
REGISTER_DEFINITION(FloatRegister, S1_reg);
@ -134,4 +98,3 @@ REGISTER_DEFINITION(FloatRegister, D29);
REGISTER_DEFINITION(FloatRegister, D30);
REGISTER_DEFINITION(FloatRegister, D31);
#endif //AARCH64

View File

@ -35,21 +35,6 @@
void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
NativeMovConstReg* ni = nativeMovConstReg_at(addr());
#if defined(AARCH64) && defined(COMPILER2)
if (ni->is_movz()) {
assert(type() == relocInfo::oop_type, "!");
if (verify_only) {
uintptr_t d = ni->data();
guarantee((d >> 32) == 0, "not narrow oop");
narrowOop no = d;
oop o = CompressedOops::decode(no);
guarantee(cast_from_oop<intptr_t>(o) == (intptr_t)x, "instructions must match");
} else {
ni->set_data((intptr_t)x);
}
return;
}
#endif
if (verify_only) {
guarantee(ni->data() == (intptr_t)(x + o), "instructions must match");
} else {
@ -69,21 +54,16 @@ address Relocation::pd_call_destination(address orig_addr) {
RawNativeInstruction* ni = rawNativeInstruction_at(pc);
#if (!defined(AARCH64))
if (NOT_AARCH64(ni->is_add_lr()) AARCH64_ONLY(ni->is_adr_aligned_lr())) {
// On arm32, skip the optional 'add LR, PC, #offset'
if (ni->is_add_lr()) {
// Skip the optional 'add LR, PC, #offset'
// (Allowing the jump support code to handle fat_call)
pc = ni->next_raw_instruction_address();
ni = nativeInstruction_at(pc);
}
#endif
if (AARCH64_ONLY(ni->is_call()) NOT_AARCH64(ni->is_bl())) {
// For arm32, fat_call are handled by is_jump for the new 'ni',
if (ni->is_bl()) {
// Fat_call are handled by is_jump for the new 'ni',
// requiring only to support is_bl.
//
// For AARCH64, skipping a leading adr is not sufficient
// to reduce calls to a simple bl.
return rawNativeCall_at(pc)->destination(adj);
}
@ -98,21 +78,16 @@ void Relocation::pd_set_call_destination(address x) {
address pc = addr();
NativeInstruction* ni = nativeInstruction_at(pc);
#if (!defined(AARCH64))
if (NOT_AARCH64(ni->is_add_lr()) AARCH64_ONLY(ni->is_adr_aligned_lr())) {
// On arm32, skip the optional 'add LR, PC, #offset'
if (ni->is_add_lr()) {
// Skip the optional 'add LR, PC, #offset'
// (Allowing the jump support code to handle fat_call)
pc = ni->next_raw_instruction_address();
ni = nativeInstruction_at(pc);
}
#endif
if (AARCH64_ONLY(ni->is_call()) NOT_AARCH64(ni->is_bl())) {
// For arm32, fat_call are handled by is_jump for the new 'ni',
if (ni->is_bl()) {
// Fat_call are handled by is_jump for the new 'ni',
// requiring only to support is_bl.
//
// For AARCH64, skipping a leading adr is not sufficient
// to reduce calls to a simple bl.
rawNativeCall_at(pc)->set_destination(x);
return;
}
@ -138,15 +113,6 @@ void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffe
void metadata_Relocation::pd_fix_value(address x) {
assert(! addr_in_const(), "Do not use");
#ifdef AARCH64
#ifdef COMPILER2
NativeMovConstReg* ni = nativeMovConstReg_at(addr());
if (ni->is_mov_slow()) {
return;
}
#endif
set_value(x);
#else
if (!VM_Version::supports_movw()) {
set_value(x);
#ifdef ASSERT
@ -165,5 +131,4 @@ void metadata_Relocation::pd_fix_value(address x) {
// assert(ni->data() == (int)x, "metadata relocation mismatch");
#endif
}
#endif // !AARCH64
}

View File

@ -126,15 +126,8 @@ void OptoRuntime::generate_exception_blob() {
// Restore SP from its saved reg (FP) if the exception PC is a MethodHandle call site.
__ ldr(Rtemp, Address(Rthread, JavaThread::is_method_handle_return_offset()));
#ifdef AARCH64
Label skip;
__ cbz(Rtemp, skip);
__ mov(SP, Rmh_SP_save);
__ bind(skip);
#else
__ cmp(Rtemp, 0);
__ mov(SP, Rmh_SP_save, ne);
#endif
// R0 contains handler address
// Since this may be the deopt blob we must set R5 to look like we returned

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -27,13 +27,9 @@
#include "runtime/frame.inline.hpp"
#include "runtime/stubRoutines.hpp"
#ifndef AARCH64
address StubRoutines::Arm::_idiv_irem_entry = NULL;
#endif
address StubRoutines::Arm::_partial_subtype_check = NULL;
#ifndef AARCH64
address StubRoutines::_atomic_load_long_entry = NULL;
address StubRoutines::_atomic_store_long_entry = NULL;
#endif

View File

@ -40,16 +40,12 @@ class Arm {
private:
#ifndef AARCH64
static address _idiv_irem_entry;
#endif
static address _partial_subtype_check;
public:
#ifndef AARCH64
static address idiv_irem_entry() { return _idiv_irem_entry; }
#endif
static address partial_subtype_check() { return _partial_subtype_check; }
};
@ -57,13 +53,11 @@ class Arm {
return return_pc == _call_stub_return_address;
}
#ifndef AARCH64
static address _atomic_load_long_entry;
static address _atomic_store_long_entry;
static address atomic_load_long_entry() { return _atomic_load_long_entry; }
static address atomic_store_long_entry() { return _atomic_store_long_entry; }
#endif
#endif // CPU_ARM_VM_STUBROUTINES_ARM_HPP

View File

@ -65,7 +65,7 @@ address TemplateInterpreterGenerator::generate_slow_signature_handler() {
address entry = __ pc();
// callee-save register for saving LR, shared with generate_native_entry
const Register Rsaved_ret_addr = AARCH64_ONLY(R21) NOT_AARCH64(Rtmp_save0);
const Register Rsaved_ret_addr = Rtmp_save0;
__ mov(Rsaved_ret_addr, LR);
@ -73,24 +73,6 @@ address TemplateInterpreterGenerator::generate_slow_signature_handler() {
__ mov(R2, Rlocals);
__ mov(R3, SP);
#ifdef AARCH64
// expand expr. stack and extended SP to avoid cutting SP in call_VM
__ mov(Rstack_top, SP);
__ str(Rstack_top, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
__ check_stack_top();
__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), R1, R2, R3, false);
__ ldp(ZR, c_rarg1, Address(SP, 2*wordSize, post_indexed));
__ ldp(c_rarg2, c_rarg3, Address(SP, 2*wordSize, post_indexed));
__ ldp(c_rarg4, c_rarg5, Address(SP, 2*wordSize, post_indexed));
__ ldp(c_rarg6, c_rarg7, Address(SP, 2*wordSize, post_indexed));
__ ldp_d(V0, V1, Address(SP, 2*wordSize, post_indexed));
__ ldp_d(V2, V3, Address(SP, 2*wordSize, post_indexed));
__ ldp_d(V4, V5, Address(SP, 2*wordSize, post_indexed));
__ ldp_d(V6, V7, Address(SP, 2*wordSize, post_indexed));
#else
// Safer to save R9 (when scratched) since callers may have been
// written assuming R9 survives. This is suboptimal but
@ -110,7 +92,6 @@ address TemplateInterpreterGenerator::generate_slow_signature_handler() {
// eliminate any gain imposed by avoiding 8 double word loads.
__ fldmiad(SP, FloatRegisterSet(D0, 8), writeback);
#endif // __ABI_HARD__
#endif // AARCH64
__ ret(Rsaved_ret_addr);
@ -129,10 +110,6 @@ address TemplateInterpreterGenerator::generate_slow_signature_handler() {
address TemplateInterpreterGenerator::generate_abstract_entry(void) {
address entry_point = __ pc();
#ifdef AARCH64
__ restore_sp_after_call(Rtemp);
__ restore_stack_top();
#endif
__ empty_expression_stack();
@ -274,16 +251,11 @@ address TemplateInterpreterGenerator::generate_return_entry_for(TosState state,
__ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
#ifdef AARCH64
__ restore_sp_after_call(Rtemp); // Restore SP to extended SP
__ restore_stack_top();
#else
// Restore stack bottom in case i2c adjusted stack
__ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
// and NULL it as marker that SP is now tos until next java call
__ mov(Rtemp, (int)NULL_WORD);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
__ restore_method();
__ restore_bcp();
@ -299,9 +271,7 @@ address TemplateInterpreterGenerator::generate_return_entry_for(TosState state,
__ check_stack_top();
__ add(Rstack_top, Rstack_top, AsmOperand(Rtemp, lsl, Interpreter::logStackElementSize));
#ifndef AARCH64
__ convert_retval_to_tos(state);
#endif // !AARCH64
__ check_and_handle_popframe();
__ check_and_handle_earlyret();
@ -317,15 +287,10 @@ address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, i
__ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
#ifdef AARCH64
__ restore_sp_after_call(Rtemp); // Restore SP to extended SP
__ restore_stack_top();
#else
// The stack is not extended by deopt but we must NULL last_sp as this
// entry is like a "return".
__ mov(Rtemp, 0);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
__ restore_method();
__ restore_bcp();
@ -351,32 +316,6 @@ address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, i
}
address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
#ifdef AARCH64
address entry = __ pc();
switch (type) {
case T_BOOLEAN:
__ tst(R0, 0xff);
__ cset(R0, ne);
break;
case T_CHAR : __ zero_extend(R0, R0, 16); break;
case T_BYTE : __ sign_extend(R0, R0, 8); break;
case T_SHORT : __ sign_extend(R0, R0, 16); break;
case T_INT : // fall through
case T_LONG : // fall through
case T_VOID : // fall through
case T_FLOAT : // fall through
case T_DOUBLE : /* nothing to do */ break;
case T_OBJECT :
// retrieve result from frame
__ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
// and verify it
__ verify_oop(R0);
break;
default : ShouldNotReachHere();
}
__ ret();
return entry;
#else
// Result handlers are not used on 32-bit ARM
// since the returned value is already in appropriate format.
__ should_not_reach_here(); // to avoid empty code block
@ -384,7 +323,6 @@ address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type
// The result handler non-zero indicates an object is returned and this is
// used in the native entry code.
return type == T_OBJECT ? (address)(-1) : NULL;
#endif // AARCH64
}
address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
@ -466,11 +404,7 @@ void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow,
__ add(Ricnt, Ricnt, InvocationCounter::count_increment);
#ifdef AARCH64
__ andr(Rbcnt, Rbcnt, (unsigned int)InvocationCounter::count_mask_value); // mask out the status bits
#else
__ bic(Rbcnt, Rbcnt, ~InvocationCounter::count_mask_value); // mask out the status bits
#endif // AARCH64
__ str_32(Ricnt, invocation_counter); // save invocation count
__ add(Ricnt, Ricnt, Rbcnt); // add both counters
@ -522,13 +456,12 @@ void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
// Registers on entry:
//
// R3 = number of additional locals
// R11 = max expression stack slots (AArch64 only)
// Rthread
// Rmethod
// Registers used: R0, R1, R2, Rtemp.
const Register Radditional_locals = R3;
const Register RmaxStack = AARCH64_ONLY(R11) NOT_AARCH64(R2);
const Register RmaxStack = R2;
// monitor entry size
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
@ -545,10 +478,8 @@ void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
__ ldr(R0, Address(Rthread, Thread::stack_base_offset()));
__ ldr(R1, Address(Rthread, Thread::stack_size_offset()));
#ifndef AARCH64
__ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
__ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset()));
#endif // !AARCH64
__ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words());
// reserve space for additional locals
@ -562,16 +493,8 @@ void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
__ cmp(Rtemp, R0);
#ifdef AARCH64
Label L;
__ b(L, hi);
__ mov(SP, Rsender_sp); // restore SP
__ b(StubRoutines::throw_StackOverflowError_entry());
__ bind(L);
#else
__ mov(SP, Rsender_sp, ls); // restore SP
__ b(StubRoutines::throw_StackOverflowError_entry(), ls);
#endif // AARCH64
}
@ -595,14 +518,9 @@ void TemplateInterpreterGenerator::lock_method() {
// get synchronization object
{ Label done;
__ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
#ifdef AARCH64
__ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0))); // get receiver (assume this is frequent case)
__ tbz(Rtemp, JVM_ACC_STATIC_BIT, done);
#else
__ tst(Rtemp, JVM_ACC_STATIC);
__ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case)
__ b(done, eq);
#endif // AARCH64
__ load_mirror(R0, Rmethod, Rtemp);
__ bind(done);
__ resolve(IS_NOT_NULL, R0);
@ -610,12 +528,6 @@ void TemplateInterpreterGenerator::lock_method() {
// add space for monitor & lock
#ifdef AARCH64
__ check_extended_sp(Rtemp);
__ sub(SP, SP, entry_size); // adjust extended SP
__ mov(Rtemp, SP);
__ str(Rtemp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
#endif // AARCH64
__ sub(Rstack_top, Rstack_top, entry_size);
__ check_stack_top_on_expansion();
@ -628,90 +540,6 @@ void TemplateInterpreterGenerator::lock_method() {
__ lock_object(R1);
}
#ifdef AARCH64
//
// Generate a fixed interpreter frame. This is identical setup for interpreted methods
// and for native methods hence the shared code.
//
// On entry:
// R10 = ConstMethod
// R11 = max expr. stack (in slots), if !native_call
//
// On exit:
// Rbcp, Rstack_top are initialized, SP is extended
//
void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// Incoming registers
const Register RconstMethod = R10;
const Register RmaxStack = R11;
// Temporary registers
const Register RextendedSP = R0;
const Register Rcache = R1;
const Register Rmdp = ProfileInterpreter ? R2 : ZR;
// Generates the following stack layout (stack grows up in this picture):
//
// [ expr. stack bottom ]
// [ saved Rbcp ]
// [ current Rlocals ]
// [ cache ]
// [ mdx ]
// [ mirror ]
// [ Method* ]
// [ extended SP ]
// [ expr. stack top ]
// [ sender_sp ]
// [ saved FP ] <--- FP
// [ saved LR ]
// initialize fixed part of activation frame
__ stp(FP, LR, Address(SP, -2*wordSize, pre_indexed));
__ mov(FP, SP); // establish new FP
// setup Rbcp
if (native_call) {
__ mov(Rbcp, ZR); // bcp = 0 for native calls
} else {
__ add(Rbcp, RconstMethod, in_bytes(ConstMethod::codes_offset())); // get codebase
}
// Rstack_top & RextendedSP
__ sub(Rstack_top, SP, 10*wordSize);
if (native_call) {
__ sub(RextendedSP, Rstack_top, align_up(wordSize, StackAlignmentInBytes)); // reserve 1 slot for exception handling
} else {
__ sub(RextendedSP, Rstack_top, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize));
__ align_reg(RextendedSP, RextendedSP, StackAlignmentInBytes);
}
__ mov(SP, RextendedSP);
__ check_stack_top();
// Load Rmdp
if (ProfileInterpreter) {
__ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
__ tst(Rtemp, Rtemp);
__ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
__ csel(Rmdp, ZR, Rtemp, eq);
}
// Load Rcache
__ ldr(Rtemp, Address(RconstMethod, ConstMethod::constants_offset()));
__ ldr(Rcache, Address(Rtemp, ConstantPool::cache_offset_in_bytes()));
// Get mirror and store it in the frame as GC root for this Method*
__ load_mirror(Rtemp, Rmethod, Rtemp);
// Build fixed frame
__ stp(Rstack_top, Rbcp, Address(FP, -10*wordSize));
__ stp(Rlocals, Rcache, Address(FP, -8*wordSize));
__ stp(Rmdp, Rtemp, Address(FP, -6*wordSize));
__ stp(Rmethod, RextendedSP, Address(FP, -4*wordSize));
__ stp(ZR, Rsender_sp, Address(FP, -2*wordSize));
assert(frame::interpreter_frame_initial_sp_offset == -10, "interpreter frame broken");
assert(frame::interpreter_frame_stack_top_offset == -2, "stack top broken");
}
#else // AARCH64
//
// Generate a fixed interpreter frame. This is identical setup for interpreted methods
@ -773,7 +601,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
__ str(SP, Address(SP, 0)); // set expression stack bottom
}
#endif // AARCH64
// End of helpers
@ -802,7 +629,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
//
// Stack layout immediately at entry
//
// [ optional padding(*)] <--- SP (AArch64)
// [ parameter n ] <--- Rparams (SP on 32-bit ARM)
// ...
// [ parameter 1 ]
@ -816,7 +642,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// local variables follow incoming parameters immediately; i.e.
// the return address is saved at the end of the locals.
//
// [ reserved stack (*) ] <--- SP (AArch64)
// [ expr. stack ] <--- Rstack_top (SP on 32-bit ARM)
// [ monitor entry ]
// ...
@ -832,10 +657,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// 32-bit ARM:
// [ last_sp ]
//
// AArch64:
// [ extended SP (*) ]
// [ stack top (*) ]
//
// [ sender_sp ]
// [ saved FP ] <--- FP
// [ saved LR ]
@ -847,8 +668,6 @@ void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
// ...
// [ parameter 1 ] <--- Rlocals
//
// (*) - AArch64 only
//
address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
// Code: _aload_0, _getfield, _areturn
@ -925,29 +744,18 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
address entry_point = __ pc();
// Register allocation
const Register Rsize_of_params = AARCH64_ONLY(R20) NOT_AARCH64(R6);
const Register Rsig_handler = AARCH64_ONLY(R21) NOT_AARCH64(Rtmp_save0 /* R4 */);
const Register Rnative_code = AARCH64_ONLY(R22) NOT_AARCH64(Rtmp_save1 /* R5 */);
const Register Rresult_handler = AARCH64_ONLY(Rsig_handler) NOT_AARCH64(R6);
const Register Rsize_of_params = R6;
const Register Rsig_handler = Rtmp_save0; // R4
const Register Rnative_code = Rtmp_save1; // R5
const Register Rresult_handler = R6;
#ifdef AARCH64
const Register RconstMethod = R10; // also used in generate_fixed_frame (should match)
const Register Rsaved_result = Rnative_code;
const FloatRegister Dsaved_result = V8;
#else
const Register Rsaved_result_lo = Rtmp_save0; // R4
const Register Rsaved_result_hi = Rtmp_save1; // R5
FloatRegister saved_result_fp;
#endif // AARCH64
#ifdef AARCH64
__ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
__ ldrh(Rsize_of_params, Address(RconstMethod, ConstMethod::size_of_parameters_offset()));
#else
__ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset()));
__ ldrh(Rsize_of_params, Address(Rsize_of_params, ConstMethod::size_of_parameters_offset()));
#endif // AARCH64
// native calls don't need the stack size check since they have no expression stack
// and the arguments are already on the stack and we only add a handful of words
@ -957,19 +765,9 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
__ sub(Rlocals, Rparams, wordSize);
__ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize));
#ifdef AARCH64
int extra_stack_reserve = 2*wordSize; // extra space for oop_temp
if(__ can_post_interpreter_events()) {
// extra space for saved results
extra_stack_reserve += 2*wordSize;
}
// reserve extra stack space and nullify oop_temp slot
__ stp(ZR, ZR, Address(SP, -extra_stack_reserve, pre_indexed));
#else
// reserve stack space for oop_temp
__ mov(R0, 0);
__ push(R0);
#endif // AARCH64
generate_fixed_frame(true); // Note: R9 is now saved in the frame
@ -1065,15 +863,6 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// Allocate stack space for arguments
#ifdef AARCH64
__ sub(Rtemp, SP, Rsize_of_params, ex_uxtw, LogBytesPerWord);
__ align_reg(SP, Rtemp, StackAlignmentInBytes);
// Allocate more stack space to accomodate all arguments passed on GP and FP registers:
// 8 * wordSize for GPRs
// 8 * wordSize for FPRs
int reg_arguments = align_up(8*wordSize + 8*wordSize, StackAlignmentInBytes);
#else
// C functions need aligned stack
__ bic(SP, SP, StackAlignmentInBytes - 1);
@ -1093,12 +882,11 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// It is also used for JNIEnv & class additional parameters.
int reg_arguments = 4 * wordSize;
#endif // __ABI_HARD__
#endif // AARCH64
__ sub(SP, SP, reg_arguments);
// Note: signature handler blows R4 (32-bit ARM) or R21 (AArch64) besides all scratch registers.
// Note: signature handler blows R4 besides all scratch registers.
// See AbstractInterpreterGenerator::generate_slow_signature_handler().
__ call(Rsig_handler);
#if R9_IS_SCRATCHED
@ -1134,18 +922,11 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
}
#endif
#ifdef AARCH64
__ mov(Rtemp, _thread_in_native);
__ add(Rtemp2, Rthread, in_bytes(JavaThread::thread_state_offset()));
// STLR is used to force all preceding writes to be observed prior to thread state change
__ stlr_w(Rtemp, Rtemp2);
#else
// Force all preceding writes to be observed prior to thread state change
__ membar(MacroAssembler::StoreStore, Rtemp);
__ mov(Rtemp, _thread_in_native);
__ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
#endif // AARCH64
__ call(Rnative_code);
#if R9_IS_SCRATCHED
@ -1167,10 +948,6 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
__ ldr_global_s32(Rtemp, SafepointSynchronize::address_of_state());
// Protect the return value in the interleaved code: save it to callee-save registers.
#ifdef AARCH64
__ mov(Rsaved_result, R0);
__ fmov_d(Dsaved_result, D0);
#else
__ mov(Rsaved_result_lo, R0);
__ mov(Rsaved_result_hi, R1);
#ifdef __ABI_HARD__
@ -1180,26 +957,17 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
#else
saved_result_fp = fnoreg;
#endif // __ABI_HARD__
#endif // AARCH64
{
__ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
__ cmp(Rtemp, SafepointSynchronize::_not_synchronized);
__ cond_cmp(R3, 0, eq);
#ifdef AARCH64
Label L;
__ b(L, eq);
__ mov(R0, Rthread);
__ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none);
__ bind(L);
#else
__ mov(R0, Rthread, ne);
__ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none, ne);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
#endif // AARCH64
}
// Perform Native->Java thread transition
@ -1217,15 +985,9 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// Unbox oop result, e.g. JNIHandles::resolve result if it's an oop.
{
Label Lnot_oop;
#ifdef AARCH64
__ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT));
__ cmp(Rresult_handler, Rtemp);
__ b(Lnot_oop, ne);
#else // !AARCH64
// For ARM32, Rresult_handler is -1 for oop result, 0 otherwise.
__ cbz(Rresult_handler, Lnot_oop);
#endif // !AARCH64
Register value = AARCH64_ONLY(Rsaved_result) NOT_AARCH64(Rsaved_result_lo);
Register value = Rsaved_result_lo;
__ resolve_jobject(value, // value
Rtemp, // tmp1
R1_tmp); // tmp2
@ -1234,43 +996,23 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
__ bind(Lnot_oop);
}
#ifdef AARCH64
// Restore SP (drop native parameters area), to keep SP in sync with extended_sp in frame
__ restore_sp_after_call(Rtemp);
__ check_stack_top();
#endif // AARCH64
// reguard stack if StackOverflow exception happened while in native.
{
__ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset()));
__ cmp_32(Rtemp, JavaThread::stack_guard_yellow_reserved_disabled);
#ifdef AARCH64
Label L;
__ b(L, ne);
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none);
__ bind(L);
#else
__ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq);
#if R9_IS_SCRATCHED
__ restore_method();
#endif
#endif // AARCH64
}
// check pending exceptions
{
__ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
#ifdef AARCH64
Label L;
__ cbz(Rtemp, L);
__ mov_pc_to(Rexception_pc);
__ b(StubRoutines::forward_exception_entry());
__ bind(L);
#else
__ cmp(Rtemp, 0);
__ mov(Rexception_pc, PC, ne);
__ b(StubRoutines::forward_exception_entry(), ne);
#endif // AARCH64
}
if (synchronized) {
@ -1284,19 +1026,9 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
// the exception handler code notifies the runtime of method exits
// too. If this happens before, method entry/exit notifications are
// not properly paired (was bug - gri 11/22/99).
#ifdef AARCH64
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result, noreg, Dsaved_result);
#else
__ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp);
#endif // AARCH64
// Restore the result. Oop result is restored from the stack.
#ifdef AARCH64
__ mov(R0, Rsaved_result);
__ fmov_d(D0, Dsaved_result);
__ blr(Rresult_handler);
#else
__ cmp(Rresult_handler, 0);
__ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize), ne);
__ mov(R0, Rsaved_result_lo, eq);
@ -1316,18 +1048,11 @@ address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
__ bind(L);
}
#endif // ASSERT
#endif // AARCH64
// Restore FP/LR, sender_sp and return
#ifdef AARCH64
__ ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
__ ldp(FP, LR, Address(FP));
__ mov(SP, Rtemp);
#else
__ mov(Rtemp, FP);
__ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
__ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
#endif // AARCH64
__ ret();
@ -1354,12 +1079,8 @@ address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
address entry_point = __ pc();
const Register RconstMethod = AARCH64_ONLY(R10) NOT_AARCH64(R3);
const Register RconstMethod = R3;
#ifdef AARCH64
const Register RmaxStack = R11;
const Register RlocalsBase = R12;
#endif // AARCH64
__ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
@ -1372,48 +1093,10 @@ address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
__ sub(R3, R3, R2); // number of additional locals
#ifdef AARCH64
// setup RmaxStack
__ ldrh(RmaxStack, Address(RconstMethod, ConstMethod::max_stack_offset()));
// We have to add extra reserved slots to max_stack. There are 3 users of the extra slots,
// none of which are at the same time, so we just need to make sure there is enough room
// for the biggest user:
// -reserved slot for exception handler
// -reserved slots for JSR292. Method::extra_stack_entries() is the size.
// -3 reserved slots so get_method_counters() can save some registers before call_VM().
__ add(RmaxStack, RmaxStack, MAX2(3, Method::extra_stack_entries()));
#endif // AARCH64
// see if we've got enough room on the stack for locals plus overhead.
generate_stack_overflow_check();
#ifdef AARCH64
// allocate space for locals
{
__ sub(RlocalsBase, Rparams, AsmOperand(R3, lsl, Interpreter::logStackElementSize));
__ align_reg(SP, RlocalsBase, StackAlignmentInBytes);
}
// explicitly initialize locals
{
Label zero_loop, done;
__ cbz(R3, done);
__ tbz(R3, 0, zero_loop);
__ subs(R3, R3, 1);
__ str(ZR, Address(RlocalsBase, wordSize, post_indexed));
__ b(done, eq);
__ bind(zero_loop);
__ subs(R3, R3, 2);
__ stp(ZR, ZR, Address(RlocalsBase, 2*wordSize, post_indexed));
__ b(zero_loop, ne);
__ bind(done);
}
#else
// allocate space for locals
// explicitly initialize locals
@ -1439,7 +1122,6 @@ address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
__ push(R0, ge);
__ b(loop, gt);
#endif // AARCH64
// initialize fixed part of activation frame
generate_fixed_frame(false);
@ -1554,11 +1236,9 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
Interpreter::_rethrow_exception_entry = __ pc();
// Rexception_obj: exception
#ifndef AARCH64
// Clear interpreter_frame_last_sp.
__ mov(Rtemp, 0);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // !AARCH64
#if R9_IS_SCRATCHED
__ restore_method();
@ -1567,9 +1247,6 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
__ restore_dispatch();
__ restore_locals();
#ifdef AARCH64
__ restore_sp_after_call(Rtemp);
#endif // AARCH64
// Entry point for exceptions thrown within interpreter code
Interpreter::_throw_exception_entry = __ pc();
@ -1606,9 +1283,6 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
//
Interpreter::_remove_activation_preserving_args_entry = __ pc();
#ifdef AARCH64
__ restore_sp_after_call(Rtemp); // restore SP to extended SP
#endif // AARCH64
__ empty_expression_stack();
@ -1635,9 +1309,6 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
__ ldr(R0, Address(FP, frame::return_addr_offset * wordSize));
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0);
__ cbnz_32(R0, caller_not_deoptimized);
#ifdef AARCH64
__ NOT_TESTED();
#endif
// Compute size of arguments for saving when returning to deoptimized caller
__ restore_method();
@ -1672,7 +1343,6 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
/* install_monitor_exception */ false,
/* notify_jvmdi */ false);
#ifndef AARCH64
// Finish with popframe handling
// A previous I2C followed by a deoptimization might have moved the
// outgoing arguments further up the stack. PopFrame expects the
@ -1691,17 +1361,11 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
__ mov(R0, Rthread);
__ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2);
__ reset_last_Java_frame(Rtemp);
#endif // !AARCH64
#ifdef AARCH64
__ restore_sp_after_call(Rtemp);
__ restore_stack_top();
#else
// Restore the last_sp and null it out
__ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
__ mov(Rtemp, (int)NULL_WORD);
__ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
#endif // AARCH64
__ restore_bcp();
__ restore_dispatch();
@ -1778,9 +1442,6 @@ void TemplateInterpreterGenerator::generate_throw_exception() {
address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
address entry = __ pc();
#ifdef AARCH64
__ restore_sp_after_call(Rtemp); // restore SP to extended SP
#endif // AARCH64
__ restore_bcp();
__ restore_dispatch();
@ -1801,13 +1462,11 @@ address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state
false, /* install_monitor_exception */
true); /* notify_jvmdi */
#ifndef AARCH64
// According to interpreter calling conventions, result is returned in R0/R1,
// so ftos (S0) and dtos (D0) are moved to R0/R1.
// This conversion should be done after remove_activation, as it uses
// push(state) & pop(state) to preserve return value.
__ convert_tos_to_retval(state);
#endif // !AARCH64
__ ret();
return entry;
@ -1830,7 +1489,7 @@ void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address&
lep = __ pc(); __ push(ltos); __ b(L);
if (AARCH64_ONLY(true) NOT_AARCH64(VerifyOops)) { // can't share atos entry with itos on AArch64 or if VerifyOops
if (VerifyOops) { // can't share atos entry if VerifyOops
aep = __ pc(); __ push(atos); __ b(L);
} else {
aep = __ pc(); // fall through
@ -1858,11 +1517,7 @@ address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
// pass tosca registers as arguments
__ mov(R2, R0_tos);
#ifdef AARCH64
__ mov(R3, ZR);
#else
__ mov(R3, R1_tos_hi);
#endif // AARCH64
__ mov(R1, LR); // save return address
// call tracer

File diff suppressed because it is too large Load Diff

View File

@ -41,23 +41,6 @@ class VM_Version: public Abstract_VM_Version {
static void initialize();
static bool is_initialized() { return _is_initialized; }
#ifdef AARCH64
public:
static bool supports_ldrex() { return true; }
static bool supports_ldrexd() { return true; }
static bool supports_movw() { return true; }
// Override Abstract_VM_Version implementation
static bool use_biased_locking();
static bool has_simd() { return _has_simd; }
static bool has_vfp() { return has_simd(); }
static bool simd_math_is_compliant() { return true; }
static bool prefer_moves_over_load_literal() { return true; }
#else
protected:
enum Feature_Flag {
@ -121,7 +104,6 @@ class VM_Version: public Abstract_VM_Version {
friend class VM_Version_StubGenerator;
#endif // AARCH64
};
#endif // CPU_ARM_VM_VM_VERSION_ARM_HPP

View File

@ -1,261 +0,0 @@
/*
* Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "memory/resourceArea.hpp"
#include "runtime/java.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "vm_version_arm.hpp"
#include <sys/auxv.h>
#include <asm/hwcap.h>
#ifndef HWCAP_AES
#define HWCAP_AES 1 << 3
#endif
bool VM_Version::_is_initialized = false;
bool VM_Version::_has_simd = false;
extern "C" {
typedef bool (*check_simd_t)();
}
#ifdef COMPILER2
#define __ _masm->
class VM_Version_StubGenerator: public StubCodeGenerator {
public:
VM_Version_StubGenerator(CodeBuffer *c) : StubCodeGenerator(c) {}
address generate_check_simd() {
StubCodeMark mark(this, "VM_Version", "check_simd");
address start = __ pc();
__ vcnt(Stemp, Stemp);
__ mov(R0, 1);
__ ret(LR);
return start;
};
};
#undef __
#endif
extern "C" address check_simd_fault_instr;
void VM_Version::initialize() {
ResourceMark rm;
// Making this stub must be FIRST use of assembler
const int stub_size = 128;
BufferBlob* stub_blob = BufferBlob::create("get_cpu_info", stub_size);
if (stub_blob == NULL) {
vm_exit_during_initialization("Unable to allocate get_cpu_info stub");
}
if (UseFMA) {
warning("FMA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseFMA, false);
}
if (UseSHA) {
warning("SHA instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseSHA, false);
}
if (UseSHA1Intrinsics) {
warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
}
if (UseSHA256Intrinsics) {
warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
}
if (UseSHA512Intrinsics) {
warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
}
if (UseCRC32Intrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32Intrinsics))
warning("CRC32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
}
if (UseCRC32CIntrinsics) {
if (!FLAG_IS_DEFAULT(UseCRC32CIntrinsics))
warning("CRC32C intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
}
if (UseAdler32Intrinsics) {
warning("Adler32 intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAdler32Intrinsics, false);
}
if (UseVectorizedMismatchIntrinsic) {
warning("vectorizedMismatch intrinsic is not available on this CPU.");
FLAG_SET_DEFAULT(UseVectorizedMismatchIntrinsic, false);
}
CodeBuffer c(stub_blob);
#ifdef COMPILER2
VM_Version_StubGenerator g(&c);
address check_simd_pc = g.generate_check_simd();
if (check_simd_pc != NULL) {
check_simd_t check_simd = CAST_TO_FN_PTR(check_simd_t, check_simd_pc);
check_simd_fault_instr = (address)check_simd;
_has_simd = check_simd();
} else {
assert(! _has_simd, "default _has_simd value must be 'false'");
}
#endif
unsigned long auxv = getauxval(AT_HWCAP);
char buf[512];
jio_snprintf(buf, sizeof(buf), "AArch64%s",
((auxv & HWCAP_AES) ? ", aes" : ""));
_features_string = os::strdup(buf);
#ifdef COMPILER2
if (auxv & HWCAP_AES) {
if (FLAG_IS_DEFAULT(UseAES)) {
FLAG_SET_DEFAULT(UseAES, true);
}
if (!UseAES) {
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics require UseAES flag to be enabled. Intrinsics will be disabled.");
}
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
} else {
if (FLAG_IS_DEFAULT(UseAESIntrinsics)) {
FLAG_SET_DEFAULT(UseAESIntrinsics, true);
}
}
} else
#endif
if (UseAES || UseAESIntrinsics) {
if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
warning("AES instructions are not available on this CPU");
FLAG_SET_DEFAULT(UseAES, false);
}
if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
warning("AES intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESIntrinsics, false);
}
}
if (UseAESCTRIntrinsics) {
warning("AES/CTR intrinsics are not available on this CPU");
FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
}
_supports_cx8 = true;
_supports_atomic_getset4 = true;
_supports_atomic_getadd4 = true;
_supports_atomic_getset8 = true;
_supports_atomic_getadd8 = true;
// TODO-AARCH64 revise C2 flags
if (has_simd()) {
if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
FLAG_SET_DEFAULT(UsePopCountInstruction, true);
}
}
if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
FLAG_SET_DEFAULT(AllocatePrefetchDistance, 128);
}
#ifdef COMPILER2
FLAG_SET_DEFAULT(UseFPUForSpilling, true);
if (FLAG_IS_DEFAULT(MaxVectorSize)) {
// FLAG_SET_DEFAULT(MaxVectorSize, has_simd() ? 16 : 8);
// SIMD/NEON can use 16, but default is 8 because currently
// larger than 8 will disable instruction scheduling
FLAG_SET_DEFAULT(MaxVectorSize, 8);
}
if (MaxVectorSize > 16) {
FLAG_SET_DEFAULT(MaxVectorSize, 8);
}
#endif
if (FLAG_IS_DEFAULT(Tier4CompileThreshold)) {
Tier4CompileThreshold = 10000;
}
if (FLAG_IS_DEFAULT(Tier3InvocationThreshold)) {
Tier3InvocationThreshold = 1000;
}
if (FLAG_IS_DEFAULT(Tier3CompileThreshold)) {
Tier3CompileThreshold = 5000;
}
if (FLAG_IS_DEFAULT(Tier3MinInvocationThreshold)) {
Tier3MinInvocationThreshold = 500;
}
FLAG_SET_DEFAULT(TypeProfileLevel, 0); // unsupported
// This machine does not allow unaligned memory accesses
if (UseUnalignedAccesses) {
if (!FLAG_IS_DEFAULT(UseUnalignedAccesses))
warning("Unaligned memory access is not available on this CPU");
FLAG_SET_DEFAULT(UseUnalignedAccesses, false);
}
_is_initialized = true;
}
bool VM_Version::use_biased_locking() {
// TODO-AARCH64 measure performance and revise
// The cost of CAS on uniprocessor ARM v6 and later is low compared to the
// overhead related to slightly longer Biased Locking execution path.
// Testing shows no improvement when running with Biased Locking enabled
// on an ARMv6 and higher uniprocessor systems. The situation is different on
// ARMv5 and MP systems.
//
// Therefore the Biased Locking is enabled on ARMv5 and ARM MP only.
//
return os::is_MP();
}

View File

@ -49,11 +49,7 @@ void VM_Version_Ext::initialize_cpu_information(void) {
_no_of_cores = os::processor_count();
_no_of_threads = _no_of_cores;
_no_of_sockets = _no_of_cores;
#ifdef AARCH64
snprintf(_cpu_name, CPU_TYPE_DESC_BUF_SIZE - 1, "AArch64");
#else
snprintf(_cpu_name, CPU_TYPE_DESC_BUF_SIZE - 1, "ARM%d", _arm_arch);
#endif
snprintf(_cpu_desc, CPU_DETAILED_DESC_BUF_SIZE, "%s", _features_string);
_initialized = true;
}

View File

@ -92,7 +92,7 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
int method_offset = vtableEntry::method_offset_in_bytes() + entry_offset;
assert ((method_offset & (wordSize - 1)) == 0, "offset should be aligned");
int offset_mask = AARCH64_ONLY(0xfff << LogBytesPerWord) NOT_AARCH64(0xfff);
int offset_mask = 0xfff;
if (method_offset & ~offset_mask) {
__ add(tmp, tmp, method_offset & ~offset_mask);
}
@ -109,12 +109,7 @@ VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
#endif
address ame_addr = __ pc();
#ifdef AARCH64
__ ldr(tmp, Address(Rmethod, Method::from_compiled_offset()));
__ br(tmp);
#else
__ ldr(PC, Address(Rmethod, Method::from_compiled_offset()));
#endif // AARCH64
masm->flush();
bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, 0);
@ -150,9 +145,9 @@ VtableStub* VtableStubs::create_itable_stub(int itable_index) {
assert(VtableStub::receiver_location() == R0->as_VMReg(), "receiver expected in R0");
// R0-R3 / R0-R7 registers hold the arguments and cannot be spoiled
const Register Rclass = AARCH64_ONLY(R9) NOT_AARCH64(R4);
const Register Rintf = AARCH64_ONLY(R10) NOT_AARCH64(R5);
const Register Rscan = AARCH64_ONLY(R11) NOT_AARCH64(R6);
const Register Rclass = R4;
const Register Rintf = R5;
const Register Rscan = R6;
Label L_no_such_interface;
@ -200,12 +195,7 @@ VtableStub* VtableStubs::create_itable_stub(int itable_index) {
address ame_addr = __ pc();
#ifdef AARCH64
__ ldr(Rtemp, Address(Rmethod, Method::from_compiled_offset()));
__ br(Rtemp);
#else
__ ldr(PC, Address(Rmethod, Method::from_compiled_offset()));
#endif // AARCH64
__ bind(L_no_such_interface);
// Handle IncompatibleClassChangeError in itable stubs.

View File

@ -535,6 +535,9 @@ class Assembler : public AbstractAssembler {
XVMULSP_OPCODE = (60u << OPCODE_SHIFT | 80u << 3),
XVMULDP_OPCODE = (60u << OPCODE_SHIFT | 112u << 3),
// Deliver A Random Number (introduced with POWER9)
DARN_OPCODE = (31u << OPCODE_SHIFT | 755u << 1),
// Vector Permute and Formatting
VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
@ -1072,6 +1075,7 @@ class Assembler : public AbstractAssembler {
static int frt( int x) { return opp_u_field(x, 10, 6); }
static int fxm( int x) { return opp_u_field(x, 19, 12); }
static int l10( int x) { return opp_u_field(x, 10, 10); }
static int l14( int x) { return opp_u_field(x, 15, 14); }
static int l15( int x) { return opp_u_field(x, 15, 15); }
static int l910( int x) { return opp_u_field(x, 10, 9); }
static int e1215( int x) { return opp_u_field(x, 15, 12); }
@ -2220,6 +2224,9 @@ class Assembler : public AbstractAssembler {
inline void mtfprwa( FloatRegister d, Register a);
inline void mffprd( Register a, FloatRegister d);
// Deliver A Random Number (introduced with POWER9)
inline void darn( Register d, int l = 1 /*L=CRN*/);
// AES (introduced with Power 8)
inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 SAP SE. All rights reserved.
* Copyright (c) 2002, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -979,6 +979,9 @@ inline void Assembler::tsuspend_() { emit_int32( TS
inline void Assembler::tresume_() { emit_int32( TSR_OPCODE | /*L=1*/ 1u << (31-10) | rc(1)); }
inline void Assembler::tcheck(int f) { emit_int32( TCHECK_OPCODE | bf(f)); }
// Deliver A Random Number (introduced with POWER9)
inline void Assembler::darn(Register d, int l /* =1 */) { emit_int32( DARN_OPCODE | rt(d) | l14(l)); }
// ra0 version
inline void Assembler::lwzx( Register d, Register s2) { emit_int32( LWZX_OPCODE | rt(d) | rb(s2));}
inline void Assembler::lwz( Register d, int si16 ) { emit_int32( LWZ_OPCODE | rt(d) | d1(si16));}

View File

@ -63,7 +63,9 @@ void VM_Version::initialize() {
// If PowerArchitecturePPC64 hasn't been specified explicitly determine from features.
if (FLAG_IS_DEFAULT(PowerArchitecturePPC64)) {
if (VM_Version::has_lqarx()) {
if (VM_Version::has_darn()) {
FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 9);
} else if (VM_Version::has_lqarx()) {
FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 8);
} else if (VM_Version::has_popcntw()) {
FLAG_SET_ERGO(uintx, PowerArchitecturePPC64, 7);
@ -78,6 +80,7 @@ void VM_Version::initialize() {
bool PowerArchitecturePPC64_ok = false;
switch (PowerArchitecturePPC64) {
case 9: if (!VM_Version::has_darn() ) break;
case 8: if (!VM_Version::has_lqarx() ) break;
case 7: if (!VM_Version::has_popcntw()) break;
case 6: if (!VM_Version::has_cmpb() ) break;
@ -131,12 +134,11 @@ void VM_Version::initialize() {
// Create and print feature-string.
char buf[(num_features+1) * 16]; // Max 16 chars per feature.
jio_snprintf(buf, sizeof(buf),
"ppc64%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
"ppc64%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
(has_fsqrt() ? " fsqrt" : ""),
(has_isel() ? " isel" : ""),
(has_lxarxeh() ? " lxarxeh" : ""),
(has_cmpb() ? " cmpb" : ""),
//(has_mftgpr()? " mftgpr" : ""),
(has_popcntb() ? " popcntb" : ""),
(has_popcntw() ? " popcntw" : ""),
(has_fcfids() ? " fcfids" : ""),
@ -149,7 +151,8 @@ void VM_Version::initialize() {
(has_ldbrx() ? " ldbrx" : ""),
(has_stdbrx() ? " stdbrx" : ""),
(has_vshasig() ? " sha" : ""),
(has_tm() ? " rtm" : "")
(has_tm() ? " rtm" : ""),
(has_darn() ? " darn" : "")
// Make sure number of %s matches num_features!
);
_features_string = os::strdup(buf);
@ -663,6 +666,8 @@ void VM_Version::determine_features() {
a->ldbrx(R7, R3_ARG1, R4_ARG2); // code[14] -> ldbrx
a->stdbrx(R7, R3_ARG1, R4_ARG2); // code[15] -> stdbrx
a->vshasigmaw(VR0, VR1, 1, 0xF); // code[16] -> vshasig
// rtm is determined by OS
a->darn(R7); // code[17] -> darn
a->blr();
// Emit function to set one cache line to zero. Emit function descriptor and get pointer to it.
@ -714,6 +719,8 @@ void VM_Version::determine_features() {
if (code[feature_cntr++]) features |= ldbrx_m;
if (code[feature_cntr++]) features |= stdbrx_m;
if (code[feature_cntr++]) features |= vshasig_m;
// feature rtm_m is determined by OS
if (code[feature_cntr++]) features |= darn_m;
// Print the detection code.
if (PrintAssembly) {

View File

@ -1,6 +1,6 @@
/*
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2017 SAP SE. All rights reserved.
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -50,6 +50,7 @@ protected:
stdbrx,
vshasig,
rtm,
darn,
num_features // last entry to count features
};
enum Feature_Flag_Set {
@ -72,6 +73,7 @@ protected:
stdbrx_m = (1 << stdbrx ),
vshasig_m = (1 << vshasig),
rtm_m = (1 << rtm ),
darn_m = (1 << darn ),
all_features_m = (unsigned long)-1
};
@ -108,9 +110,10 @@ public:
static bool has_ldbrx() { return (_features & ldbrx_m) != 0; }
static bool has_stdbrx() { return (_features & stdbrx_m) != 0; }
static bool has_vshasig() { return (_features & vshasig_m) != 0; }
static bool has_mtfprd() { return has_vpmsumb(); } // alias for P8
// OS feature support
static bool has_tm() { return (_features & rtm_m) != 0; }
static bool has_darn() { return (_features & darn_m) != 0; }
static bool has_mtfprd() { return has_vpmsumb(); } // alias for P8
// Assembler testing
static void allow_all();

View File

@ -776,12 +776,7 @@ bool os::Aix::get_meminfo(meminfo_t* pmi) {
// Thread start routine for all newly created threads
static void *thread_native_entry(Thread *thread) {
// find out my own stack dimensions
{
// actually, this should do exactly the same as thread->record_stack_base_and_size...
thread->set_stack_base(os::current_stack_base());
thread->set_stack_size(os::current_stack_size());
}
thread->record_stack_base_and_size();
const pthread_t pthread_id = ::pthread_self();
const tid_t kernel_thread_id = ::thread_self();
@ -834,20 +829,15 @@ static void *thread_native_entry(Thread *thread) {
assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
// Call one more level start routine.
thread->run();
thread->call_run();
// Note: at this point the thread object may already have deleted itself.
// Prevent dereferencing it from here on out.
thread = NULL;
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
os::current_thread_id(), (uintx) kernel_thread_id);
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
return 0;
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -46,12 +46,6 @@
/* overridden in Arguments::parse_each_vm_init_arg. */ \
product(bool, UseBsdPosixThreadCPUClocks, true, \
"enable fast Bsd Posix clocks where available") \
\
product(bool, UseHugeTLBFS, false, \
"Use MAP_HUGETLB for large pages") \
\
product(bool, UseSHM, false, \
"Use SYSV shared memory for large pages")
//
// Defines Bsd-specific default values. The flags are available on all

View File

@ -70,50 +70,38 @@
#include "utilities/vmError.hpp"
// put OS-includes here
# include <sys/types.h>
# include <sys/mman.h>
# include <sys/stat.h>
# include <sys/select.h>
# include <pthread.h>
# include <signal.h>
# include <errno.h>
# include <dlfcn.h>
# include <stdio.h>
# include <unistd.h>
# include <sys/resource.h>
# include <errno.h>
# include <fcntl.h>
# include <inttypes.h>
# include <poll.h>
# include <pthread.h>
# include <pwd.h>
# include <signal.h>
# include <stdint.h>
# include <stdio.h>
# include <string.h>
# include <sys/ioctl.h>
# include <sys/mman.h>
# include <sys/param.h>
# include <sys/resource.h>
# include <sys/socket.h>
# include <sys/stat.h>
# include <sys/syscall.h>
# include <sys/sysctl.h>
# include <sys/time.h>
# include <sys/times.h>
# include <sys/utsname.h>
# include <sys/socket.h>
# include <sys/types.h>
# include <sys/wait.h>
# include <time.h>
# include <pwd.h>
# include <poll.h>
# include <fcntl.h>
# include <string.h>
# include <sys/param.h>
# include <sys/sysctl.h>
# include <sys/ipc.h>
# include <sys/shm.h>
#ifndef __APPLE__
# include <link.h>
#endif
# include <stdint.h>
# include <inttypes.h>
# include <sys/ioctl.h>
# include <sys/syscall.h>
# include <unistd.h>
#if defined(__FreeBSD__) || defined(__NetBSD__)
#include <elf.h>
#endif
#ifdef __APPLE__
#include <mach/mach.h> // semaphore_* API
#include <mach-o/dyld.h>
#include <sys/proc_info.h>
#include <objc/objc-auto.h>
#endif
#ifndef MAP_ANONYMOUS
@ -125,8 +113,6 @@
// for timer info max values which include all bits
#define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
#define LARGEPAGES_BIT (1 << 6)
////////////////////////////////////////////////////////////////////////////////
// global variables
julong os::Bsd::_physical_memory = 0;
@ -644,6 +630,9 @@ static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
// Thread start routine for all newly created threads
static void *thread_native_entry(Thread *thread) {
thread->record_stack_base_and_size();
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
@ -696,20 +685,15 @@ static void *thread_native_entry(Thread *thread) {
}
// call one more level start routine
thread->run();
thread->call_run();
// Note: at this point the thread object may already have deleted itself.
// Prevent dereferencing it from here on out.
thread = NULL;
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
os::current_thread_id(), (uintx) pthread_self());
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
return 0;
}
@ -2118,95 +2102,27 @@ void os::large_page_init() {
char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
fatal("This code is not used or maintained.");
// "exec" is passed in but not used. Creating the shared image for
// the code cache doesn't have an SHM_X executable permission to check.
assert(UseLargePages && UseSHM, "only for SHM large pages");
key_t key = IPC_PRIVATE;
char *addr;
bool warn_on_failure = UseLargePages &&
(!FLAG_IS_DEFAULT(UseLargePages) ||
!FLAG_IS_DEFAULT(LargePageSizeInBytes));
// Create a large shared memory region to attach to based on size.
// Currently, size is the total size of the heap
int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
if (shmid == -1) {
// Possible reasons for shmget failure:
// 1. shmmax is too small for Java heap.
// > check shmmax value: cat /proc/sys/kernel/shmmax
// > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
// 2. not enough large page memory.
// > check available large pages: cat /proc/meminfo
// > increase amount of large pages:
// echo new_value > /proc/sys/vm/nr_hugepages
// Note 1: different Bsd may use different name for this property,
// e.g. on Redhat AS-3 it is "hugetlb_pool".
// Note 2: it's possible there's enough physical memory available but
// they are so fragmented after a long run that they can't
// coalesce into large pages. Try to reserve large pages when
// the system is still "fresh".
if (warn_on_failure) {
warning("Failed to reserve shared memory (errno = %d).", errno);
}
return NULL;
}
// attach to the region
addr = (char*)shmat(shmid, req_addr, 0);
int err = errno;
// Remove shmid. If shmat() is successful, the actual shared memory segment
// will be deleted when it's detached by shmdt() or when the process
// terminates. If shmat() is not successful this will remove the shared
// segment immediately.
shmctl(shmid, IPC_RMID, NULL);
if ((intptr_t)addr == -1) {
if (warn_on_failure) {
warning("Failed to attach shared memory (errno = %d).", err);
}
return NULL;
}
// The memory is committed
MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
return addr;
fatal("os::reserve_memory_special should not be called on BSD.");
return NULL;
}
bool os::release_memory_special(char* base, size_t bytes) {
if (MemTracker::tracking_level() > NMT_minimal) {
Tracker tkr(Tracker::release);
// detaching the SHM segment will also delete it, see reserve_memory_special()
int rslt = shmdt(base);
if (rslt == 0) {
tkr.record((address)base, bytes);
return true;
} else {
return false;
}
} else {
return shmdt(base) == 0;
}
fatal("os::release_memory_special should not be called on BSD.");
return false;
}
size_t os::large_page_size() {
return _large_page_size;
}
// HugeTLBFS allows application to commit large page memory on demand;
// with SysV SHM the entire memory region must be allocated as shared
// memory.
bool os::can_commit_large_page_memory() {
return UseHugeTLBFS;
// Does not matter, we do not support huge pages.
return false;
}
bool os::can_execute_large_page_memory() {
return UseHugeTLBFS;
// Does not matter, we do not support huge pages.
return false;
}
char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {

View File

@ -649,6 +649,9 @@ bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
// Thread start routine for all newly created threads
static void *thread_native_entry(Thread *thread) {
thread->record_stack_base_and_size();
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
@ -695,20 +698,15 @@ static void *thread_native_entry(Thread *thread) {
}
// call one more level start routine
thread->run();
thread->call_run();
// Note: at this point the thread object may already have deleted itself.
// Prevent dereferencing it from here on out.
thread = NULL;
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
os::current_thread_id(), (uintx) pthread_self());
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
return 0;
}

View File

@ -199,6 +199,10 @@ static inline stack_t get_stack_info() {
return st;
}
static void _handle_uncaught_cxx_exception() {
VMError::report_and_die("An uncaught C++ exception");
}
bool os::is_primordial_thread(void) {
int r = thr_main();
guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
@ -724,6 +728,11 @@ static thread_t main_thread;
// Thread start routine for all newly created threads
extern "C" void* thread_native_entry(void* thread_addr) {
Thread* thread = (Thread*)thread_addr;
thread->record_stack_base_and_size();
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
@ -734,7 +743,6 @@ extern "C" void* thread_native_entry(void* thread_addr) {
alloca(((pid ^ counter++) & 7) * 128);
int prio;
Thread* thread = (Thread*)thread_addr;
thread->initialize_thread_current();
@ -775,7 +783,13 @@ extern "C" void* thread_native_entry(void* thread_addr) {
// initialize signal mask for this thread
os::Solaris::hotspot_sigmask(thread);
thread->run();
os::Solaris::init_thread_fpu_state();
std::set_terminate(_handle_uncaught_cxx_exception);
thread->call_run();
// Note: at this point the thread object may already have deleted itself.
// Do not dereference it from here on out.
// One less thread is executing
// When the VMThread gets here, the main thread may have already exited
@ -786,15 +800,6 @@ extern "C" void* thread_native_entry(void* thread_addr) {
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
if (UseDetachedThreads) {
thr_exit(NULL);
ShouldNotReachHere();
@ -1090,67 +1095,58 @@ sigset_t* os::Solaris::vm_signals() {
return &vm_sigs;
}
void _handle_uncaught_cxx_exception() {
VMError::report_and_die("An uncaught C++ exception");
}
// CR 7190089: on Solaris, primordial thread's stack needs adjusting.
// Without the adjustment, stack size is incorrect if stack is set to unlimited (ulimit -s unlimited).
void os::Solaris::correct_stack_boundaries_for_primordial_thread(Thread* thr) {
assert(is_primordial_thread(), "Call only for primordial thread");
JavaThread* jt = (JavaThread *)thr;
assert(jt != NULL, "Sanity check");
size_t stack_size;
address base = jt->stack_base();
if (Arguments::created_by_java_launcher()) {
// Use 2MB to allow for Solaris 7 64 bit mode.
stack_size = JavaThread::stack_size_at_create() == 0
? 2048*K : JavaThread::stack_size_at_create();
// First crack at OS-specific initialization, from inside the new thread.
void os::initialize_thread(Thread* thr) {
if (is_primordial_thread()) {
JavaThread* jt = (JavaThread *)thr;
assert(jt != NULL, "Sanity check");
size_t stack_size;
address base = jt->stack_base();
if (Arguments::created_by_java_launcher()) {
// Use 2MB to allow for Solaris 7 64 bit mode.
stack_size = JavaThread::stack_size_at_create() == 0
? 2048*K : JavaThread::stack_size_at_create();
// There are rare cases when we may have already used more than
// the basic stack size allotment before this method is invoked.
// Attempt to allow for a normally sized java_stack.
size_t current_stack_offset = (size_t)(base - (address)&stack_size);
stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
} else {
// 6269555: If we were not created by a Java launcher, i.e. if we are
// running embedded in a native application, treat the primordial thread
// as much like a native attached thread as possible. This means using
// the current stack size from thr_stksegment(), unless it is too large
// to reliably setup guard pages. A reasonable max size is 8MB.
size_t current_size = current_stack_size();
// This should never happen, but just in case....
if (current_size == 0) current_size = 2 * K * K;
stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
}
address bottom = align_up(base - stack_size, os::vm_page_size());;
stack_size = (size_t)(base - bottom);
assert(stack_size > 0, "Stack size calculation problem");
if (stack_size > jt->stack_size()) {
#ifndef PRODUCT
struct rlimit limits;
getrlimit(RLIMIT_STACK, &limits);
size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
assert(size >= jt->stack_size(), "Stack size problem in main thread");
#endif
tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
"(Stack sizes are rounded up to a multiple of the system page size.)\n"
"See limit(1) to increase the stack size limit.",
stack_size / K, jt->stack_size() / K);
vm_exit(1);
}
assert(jt->stack_size() >= stack_size,
"Attempt to map more stack than was allocated");
jt->set_stack_size(stack_size);
// There are rare cases when we may have already used more than
// the basic stack size allotment before this method is invoked.
// Attempt to allow for a normally sized java_stack.
size_t current_stack_offset = (size_t)(base - (address)&stack_size);
stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
} else {
// 6269555: If we were not created by a Java launcher, i.e. if we are
// running embedded in a native application, treat the primordial thread
// as much like a native attached thread as possible. This means using
// the current stack size from thr_stksegment(), unless it is too large
// to reliably setup guard pages. A reasonable max size is 8MB.
size_t current_size = os::current_stack_size();
// This should never happen, but just in case....
if (current_size == 0) current_size = 2 * K * K;
stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
}
address bottom = align_up(base - stack_size, os::vm_page_size());;
stack_size = (size_t)(base - bottom);
// With the T2 libthread (T1 is no longer supported) threads are always bound
// and we use stackbanging in all cases.
assert(stack_size > 0, "Stack size calculation problem");
if (stack_size > jt->stack_size()) {
#ifndef PRODUCT
struct rlimit limits;
getrlimit(RLIMIT_STACK, &limits);
size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
assert(size >= jt->stack_size(), "Stack size problem in main thread");
#endif
tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
"(Stack sizes are rounded up to a multiple of the system page size.)\n"
"See limit(1) to increase the stack size limit.",
stack_size / K, jt->stack_size() / K);
vm_exit(1);
}
assert(jt->stack_size() >= stack_size,
"Attempt to map more stack than was allocated");
jt->set_stack_size(stack_size);
os::Solaris::init_thread_fpu_state();
std::set_terminate(_handle_uncaught_cxx_exception);
}

View File

@ -102,8 +102,6 @@ class Solaris {
static size_t page_size_for_alignment(size_t alignment);
static bool setup_large_pages(caddr_t start, size_t bytes, size_t align);
static void init_thread_fpu_state(void);
static void try_enable_extended_io();
static struct sigaction *(*get_signal_action)(int);
@ -148,6 +146,9 @@ class Solaris {
// SR_handler
static void SR_handler(Thread* thread, ucontext_t* uc);
static void init_thread_fpu_state(void);
protected:
// Solaris-specific interface goes here
static julong available_memory();
@ -268,6 +269,7 @@ class Solaris {
static jint _os_thread_limit;
static volatile jint _os_thread_count;
static void correct_stack_boundaries_for_primordial_thread(Thread* thr);
// Stack overflow handling

View File

@ -420,6 +420,9 @@ LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
// Thread start routine for all newly created threads
static unsigned __stdcall thread_native_entry(Thread* thread) {
thread->record_stack_base_and_size();
// Try to randomize the cache line index of hot stack frames.
// This helps when threads of the same stack traces evict each other's
// cache lines. The threads can be either from the same JVM instance, or
@ -453,12 +456,15 @@ static unsigned __stdcall thread_native_entry(Thread* thread) {
// by VM, so VM can generate error dump when an exception occurred in non-
// Java thread (e.g. VM thread).
__try {
thread->run();
thread->call_run();
} __except(topLevelExceptionFilter(
(_EXCEPTION_POINTERS*)_exception_info())) {
// Nothing to do.
}
// Note: at this point the thread object may already have deleted itself.
// Do not dereference it from here on out.
log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
// One less thread is executing
@ -468,15 +474,6 @@ static unsigned __stdcall thread_native_entry(Thread* thread) {
Atomic::dec(&os::win32::_os_thread_count);
}
// If a thread has not deleted itself ("delete this") as part of its
// termination sequence, we have to ensure thread-local-storage is
// cleared before we actually terminate. No threads should ever be
// deleted asynchronously with respect to their termination.
if (Thread::current_or_null_safe() != NULL) {
assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
thread->clear_thread_current();
}
// Thread must not return from exit_process_or_thread(), but if it does,
// let it proceed to exit normally
return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);

View File

@ -85,11 +85,6 @@ char* os::non_memory_address_word() {
return (char*) -1;
}
// OS specific thread initialization
//
// Calculate and store the limits of the memory stack.
void os::initialize_thread(Thread *thread) { }
// Frame information (pc, sp, fp) retrieved via ucontext
// always looks like a C-frame according to the frame
// conventions in frame_ppc.hpp.

View File

@ -300,10 +300,6 @@ char* os::non_memory_address_word() {
return (char*) -1;
}
void os::initialize_thread(Thread* thr) {
// Nothing to do.
}
address os::Bsd::ucontext_get_pc(const ucontext_t * uc) {
return (address)uc->context_pc;
}

View File

@ -100,10 +100,6 @@ char* os::non_memory_address_word() {
#endif // SPARC
}
void os::initialize_thread(Thread* thr) {
// Nothing to do.
}
address os::Bsd::ucontext_get_pc(const ucontext_t* uc) {
ShouldNotCallThis();
return NULL;

View File

@ -106,9 +106,6 @@ char* os::non_memory_address_word() {
return (char*) 0xffffffffffff;
}
void os::initialize_thread(Thread *thr) {
}
address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
#ifdef BUILTIN_SIM
return (address)uc->uc_mcontext.gregs[REG_PC];

View File

@ -44,7 +44,6 @@
* kernel source or kernel_user_helpers.txt in Linux Doc.
*/
#ifndef AARCH64
template<>
template<typename T>
inline T Atomic::PlatformLoad<8>::operator()(T const volatile* src) const {
@ -61,18 +60,9 @@ inline void Atomic::PlatformStore<8>::operator()(T store_value,
(*os::atomic_store_long_func)(
PrimitiveConversions::cast<int64_t>(store_value), reinterpret_cast<volatile int64_t*>(dest));
}
#endif
// As per atomic.hpp all read-modify-write operations have to provide two-way
// barriers semantics. For AARCH64 we are using load-acquire-with-reservation and
// store-release-with-reservation. While load-acquire combined with store-release
// do not generally form two-way barriers, their use with reservations does - the
// ARMv8 architecture manual Section F "Barrier Litmus Tests" indicates they
// provide sequentially consistent semantics. All we need to add is an explicit
// barrier in the failure path of the cmpxchg operations (as these don't execute
// the store) - arguably this may be overly cautious as there is a very low
// likelihood that the hardware would pull loads/stores into the region guarded
// by the reservation.
// barriers semantics.
//
// For ARMv7 we add explicit barriers in the stubs.
@ -90,45 +80,9 @@ inline D Atomic::PlatformAdd<4>::add_and_fetch(I add_value, D volatile* dest,
atomic_memory_order order) const {
STATIC_ASSERT(4 == sizeof(I));
STATIC_ASSERT(4 == sizeof(D));
#ifdef AARCH64
D val;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %w[val], [%[dest]]\n\t"
" add %w[val], %w[val], %w[add_val]\n\t"
" stlxr %w[tmp], %w[val], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
: [val] "=&r" (val), [tmp] "=&r" (tmp)
: [add_val] "r" (add_value), [dest] "r" (dest)
: "memory");
return val;
#else
return add_using_helper<int32_t>(os::atomic_add_func, add_value, dest);
#endif
}
#ifdef AARCH64
template<>
template<typename I, typename D>
inline D Atomic::PlatformAdd<8>::add_and_fetch(I add_value, D volatile* dest,
atomic_memory_order order) const {
STATIC_ASSERT(8 == sizeof(I));
STATIC_ASSERT(8 == sizeof(D));
D val;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %[val], [%[dest]]\n\t"
" add %[val], %[val], %[add_val]\n\t"
" stlxr %w[tmp], %[val], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
: [val] "=&r" (val), [tmp] "=&r" (tmp)
: [add_val] "r" (add_value), [dest] "r" (dest)
: "memory");
return val;
}
#endif
template<>
template<typename T>
@ -136,43 +90,9 @@ inline T Atomic::PlatformXchg<4>::operator()(T exchange_value,
T volatile* dest,
atomic_memory_order order) const {
STATIC_ASSERT(4 == sizeof(T));
#ifdef AARCH64
T old_val;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %w[old_val], [%[dest]]\n\t"
" stlxr %w[tmp], %w[new_val], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
: [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
: [new_val] "r" (exchange_value), [dest] "r" (dest)
: "memory");
return old_val;
#else
return xchg_using_helper<int32_t>(os::atomic_xchg_func, exchange_value, dest);
#endif
}
#ifdef AARCH64
template<>
template<typename T>
inline T Atomic::PlatformXchg<8>::operator()(T exchange_value,
T volatile* dest,
atomic_memory_order order) const {
STATIC_ASSERT(8 == sizeof(T));
T old_val;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %[old_val], [%[dest]]\n\t"
" stlxr %w[tmp], %[new_val], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
: [old_val] "=&r" (old_val), [tmp] "=&r" (tmp)
: [new_val] "r" (exchange_value), [dest] "r" (dest)
: "memory");
return old_val;
}
#endif // AARCH64
// The memory_order parameter is ignored - we always provide the strongest/most-conservative ordering
@ -180,7 +100,6 @@ inline T Atomic::PlatformXchg<8>::operator()(T exchange_value,
template<>
struct Atomic::PlatformCmpxchg<1> : Atomic::CmpxchgByteUsingInt {};
#ifndef AARCH64
inline int32_t reorder_cmpxchg_func(int32_t exchange_value,
int32_t volatile* dest,
@ -197,7 +116,6 @@ inline int64_t reorder_cmpxchg_long_func(int64_t exchange_value,
return (*os::atomic_cmpxchg_long_func)(compare_value, exchange_value, dest);
}
#endif // !AARCH64
template<>
template<typename T>
@ -206,27 +124,7 @@ inline T Atomic::PlatformCmpxchg<4>::operator()(T exchange_value,
T compare_value,
atomic_memory_order order) const {
STATIC_ASSERT(4 == sizeof(T));
#ifdef AARCH64
T rv;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %w[rv], [%[dest]]\n\t"
" cmp %w[rv], %w[cv]\n\t"
" b.ne 2f\n\t"
" stlxr %w[tmp], %w[ev], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
" b 3f\n\t"
"2:\n\t"
" dmb sy\n\t"
"3:\n\t"
: [rv] "=&r" (rv), [tmp] "=&r" (tmp)
: [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
: "memory");
return rv;
#else
return cmpxchg_using_helper<int32_t>(reorder_cmpxchg_func, exchange_value, dest, compare_value);
#endif
}
template<>
@ -236,27 +134,7 @@ inline T Atomic::PlatformCmpxchg<8>::operator()(T exchange_value,
T compare_value,
atomic_memory_order order) const {
STATIC_ASSERT(8 == sizeof(T));
#ifdef AARCH64
T rv;
int tmp;
__asm__ volatile(
"1:\n\t"
" ldaxr %[rv], [%[dest]]\n\t"
" cmp %[rv], %[cv]\n\t"
" b.ne 2f\n\t"
" stlxr %w[tmp], %[ev], [%[dest]]\n\t"
" cbnz %w[tmp], 1b\n\t"
" b 3f\n\t"
"2:\n\t"
" dmb sy\n\t"
"3:\n\t"
: [rv] "=&r" (rv), [tmp] "=&r" (tmp)
: [ev] "r" (exchange_value), [dest] "r" (dest), [cv] "r" (compare_value)
: "memory");
return rv;
#else
return cmpxchg_using_helper<int64_t>(reorder_cmpxchg_long_func, exchange_value, dest, compare_value);
#endif
}
#endif // OS_CPU_LINUX_ARM_VM_ATOMIC_LINUX_ARM_HPP

View File

@ -58,37 +58,18 @@ static void pd_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t co
}
static void pd_conjoint_jints_atomic(const jint* from, jint* to, size_t count) {
#ifdef AARCH64
_Copy_conjoint_jints_atomic(from, to, count * BytesPerInt);
#else
assert(HeapWordSize == BytesPerInt, "heapwords and jints must be the same size");
// pd_conjoint_words is word-atomic in this implementation.
pd_conjoint_words((const HeapWord*)from, (HeapWord*)to, count);
#endif
}
static void pd_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) {
#ifdef AARCH64
assert(HeapWordSize == BytesPerLong, "64-bit architecture");
pd_conjoint_words((const HeapWord*)from, (HeapWord*)to, count);
#else
_Copy_conjoint_jlongs_atomic(from, to, count * BytesPerLong);
#endif
}
static void pd_conjoint_oops_atomic(const oop* from, oop* to, size_t count) {
#ifdef AARCH64
if (UseCompressedOops) {
assert(BytesPerHeapOop == BytesPerInt, "compressed oops");
pd_conjoint_jints_atomic((const jint*)from, (jint*)to, count);
} else {
assert(BytesPerHeapOop == BytesPerLong, "64-bit architecture");
pd_conjoint_jlongs_atomic((const jlong*)from, (jlong*)to, count);
}
#else
assert(BytesPerHeapOop == BytesPerInt, "32-bit architecture");
pd_conjoint_jints_atomic((const jint*)from, (jint*)to, count);
#endif
}
static void pd_arrayof_conjoint_bytes(const HeapWord* from, HeapWord* to, size_t count) {

View File

@ -30,16 +30,10 @@
// (see globals.hpp)
//
define_pd_global(bool, DontYieldALot, false);
#ifdef AARCH64
define_pd_global(intx, CompilerThreadStackSize, 1024);
define_pd_global(intx, ThreadStackSize, 1024);
define_pd_global(intx, VMThreadStackSize, 1024);
#else
define_pd_global(intx, CompilerThreadStackSize, 512);
// System default ThreadStackSize appears to be 512 which is too big.
define_pd_global(intx, ThreadStackSize, 320);
define_pd_global(intx, VMThreadStackSize, 512);
#endif // AARCH64
define_pd_global(size_t, JVMInvokeMethodSlack, 8192);

View File

@ -1,542 +0,0 @@
#
# Copyright (c) 2008, 2013, Oracle and/or its affiliates. All rights reserved.
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
#
# This code is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License version 2 only, as
# published by the Free Software Foundation.
#
# This code is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# version 2 for more details (a copy is included in the LICENSE file that
# accompanied this code).
#
# You should have received a copy of the GNU General Public License version
# 2 along with this work; if not, write to the Free Software Foundation,
# Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
# or visit www.oracle.com if you need additional information or have any
# questions.
#
# TODO-AARCH64
# NOTE WELL! The _Copy functions are called directly
# from server-compiler-generated code via CallLeafNoFP,
# which means that they *must* either not use floating
# point or use it in the same manner as does the server
# compiler.
.globl _Copy_conjoint_bytes
.type _Copy_conjoint_bytes, %function
.globl _Copy_arrayof_conjoint_bytes
.type _Copy_arrayof_conjoint_bytes, %function
.globl _Copy_disjoint_words
.type _Copy_disjoint_words, %function
.globl _Copy_conjoint_words
.type _Copy_conjoint_words, %function
.globl _Copy_conjoint_jshorts_atomic
.type _Copy_conjoint_jshorts_atomic, %function
.globl _Copy_arrayof_conjoint_jshorts
.type _Copy_arrayof_conjoint_jshorts, %function
.globl _Copy_conjoint_jints_atomic
.type _Copy_conjoint_jints_atomic, %function
.globl _Copy_arrayof_conjoint_jints
.type _Copy_arrayof_conjoint_jints, %function
.globl _Copy_conjoint_jlongs_atomic
.type _Copy_conjoint_jlongs_atomic, %function
.globl _Copy_arrayof_conjoint_jlongs
.type _Copy_arrayof_conjoint_jlongs, %function
.text
.globl SpinPause
.type SpinPause, %function
SpinPause:
yield
ret
# Support for void Copy::conjoint_bytes(void* from,
# void* to,
# size_t count)
_Copy_conjoint_bytes:
hlt 1002
# Support for void Copy::arrayof_conjoint_bytes(void* from,
# void* to,
# size_t count)
_Copy_arrayof_conjoint_bytes:
hlt 1003
# Support for void Copy::disjoint_words(void* from,
# void* to,
# size_t count)
_Copy_disjoint_words:
# These and further memory prefetches may hit out of array ranges.
# Experiments showed that prefetching of inaccessible memory doesn't result in exceptions.
prfm pldl1keep, [x0, #0]
prfm pstl1keep, [x1, #0]
prfm pldl1keep, [x0, #64]
prfm pstl1keep, [x1, #64]
subs x18, x2, #128
b.ge dw_large
dw_lt_128:
# Copy [x0, x0 + x2) to [x1, x1 + x2)
adr x15, dw_tail_table_base
and x16, x2, #~8
# Calculate address to jump and store it to x15:
# Each pair of instructions before dw_tail_table_base copies 16 bytes.
# x16 is count of bytes to copy aligned down by 16.
# So x16/16 pairs of instructions should be executed.
# Each pair takes 8 bytes, so x15 = dw_tail_table_base - (x16/16)*8 = x15 - x16/2
sub x15, x15, x16, lsr #1
prfm plil1keep, [x15]
add x17, x0, x2
add x18, x1, x2
# If x2 = x16 + 8, then copy 8 bytes and x16 bytes after that.
# Otherwise x2 = x16, so proceed to copy x16 bytes.
tbz x2, #3, dw_lt_128_even
ldr x3, [x0]
str x3, [x1]
dw_lt_128_even:
# Copy [x17 - x16, x17) to [x18 - x16, x18)
# x16 is aligned by 16 and less than 128
# Execute (x16/16) ldp-stp pairs; each pair copies 16 bytes
br x15
ldp x3, x4, [x17, #-112]
stp x3, x4, [x18, #-112]
ldp x5, x6, [x17, #-96]
stp x5, x6, [x18, #-96]
ldp x7, x8, [x17, #-80]
stp x7, x8, [x18, #-80]
ldp x9, x10, [x17, #-64]
stp x9, x10, [x18, #-64]
ldp x11, x12, [x17, #-48]
stp x11, x12, [x18, #-48]
ldp x13, x14, [x17, #-32]
stp x13, x14, [x18, #-32]
ldp x15, x16, [x17, #-16]
stp x15, x16, [x18, #-16]
dw_tail_table_base:
ret
.p2align 6
.rept 12
nop
.endr
dw_large:
# x18 >= 0;
# Copy [x0, x0 + x18 + 128) to [x1, x1 + x18 + 128)
ldp x3, x4, [x0], #64
ldp x5, x6, [x0, #-48]
ldp x7, x8, [x0, #-32]
ldp x9, x10, [x0, #-16]
# Before and after each iteration of loop registers x3-x10 contain [x0 - 64, x0),
# and x1 is a place to copy this data;
# x18 contains number of bytes to be stored minus 128
# Exactly 16 instructions from p2align, so dw_loop starts from cache line boundary
# Checking it explictly by aligning with "hlt 1000" instructions
.p2alignl 6, 0xd4407d00
dw_loop:
prfm pldl1keep, [x0, #64]
# Next line actually hurted memory copy performance (for interpreter) - JDK-8078120
# prfm pstl1keep, [x1, #64]
subs x18, x18, #64
stp x3, x4, [x1, #0]
ldp x3, x4, [x0, #0]
stp x5, x6, [x1, #16]
ldp x5, x6, [x0, #16]
stp x7, x8, [x1, #32]
ldp x7, x8, [x0, #32]
stp x9, x10, [x1, #48]
ldp x9, x10, [x0, #48]
add x1, x1, #64
add x0, x0, #64
b.ge dw_loop
# 13 instructions from dw_loop, so the loop body hits into one cache line
dw_loop_end:
adds x2, x18, #64
stp x3, x4, [x1], #64
stp x5, x6, [x1, #-48]
stp x7, x8, [x1, #-32]
stp x9, x10, [x1, #-16]
# Increased x18 by 64, but stored 64 bytes, so x2 contains exact number of bytes to be stored
# If this number is not zero, also copy remaining bytes
b.ne dw_lt_128
ret
# Support for void Copy::conjoint_words(void* from,
# void* to,
# size_t count)
_Copy_conjoint_words:
subs x3, x1, x0
# hi condition is met <=> from < to
ccmp x2, x3, #0, hi
# hi condition is met <=> (from < to) and (to - from < count)
# otherwise _Copy_disjoint_words may be used, because it performs forward copying,
# so it also works when ranges overlap but to <= from
b.ls _Copy_disjoint_words
# Overlapping case should be the rare one, it does not worth optimizing
ands x3, x2, #~8
# x3 is count aligned down by 2*wordSize
add x0, x0, x2
add x1, x1, x2
sub x3, x3, #16
# Skip loop if 0 or 1 words
b.eq cw_backward_loop_end
# x3 >= 0
# Copy [x0 - x3 - 16, x0) to [x1 - x3 - 16, x1) backward
cw_backward_loop:
subs x3, x3, #16
ldp x4, x5, [x0, #-16]!
stp x4, x5, [x1, #-16]!
b.ge cw_backward_loop
cw_backward_loop_end:
# Copy remaining 0 or 1 words
tbz x2, #3, cw_finish
ldr x3, [x0, #-8]
str x3, [x1, #-8]
cw_finish:
ret
# Support for void Copy::conjoint_jshorts_atomic(void* from,
# void* to,
# size_t count)
_Copy_conjoint_jshorts_atomic:
add x17, x0, x2
add x18, x1, x2
subs x3, x1, x0
# hi is met <=> (from < to) and (to - from < count)
ccmp x2, x3, #0, hi
b.hi cs_backward
subs x3, x2, #14
b.ge cs_forward_loop
# Copy x2 < 14 bytes from x0 to x1
cs_forward_lt14:
ands x7, x2, #7
tbz x2, #3, cs_forward_lt8
ldrh w3, [x0, #0]
ldrh w4, [x0, #2]
ldrh w5, [x0, #4]
ldrh w6, [x0, #6]
strh w3, [x1, #0]
strh w4, [x1, #2]
strh w5, [x1, #4]
strh w6, [x1, #6]
# Copy x7 < 8 bytes from x17 - x7 to x18 - x7
cs_forward_lt8:
b.eq cs_forward_0
cmp x7, #4
b.lt cs_forward_2
b.eq cs_forward_4
cs_forward_6:
ldrh w3, [x17, #-6]
strh w3, [x18, #-6]
cs_forward_4:
ldrh w4, [x17, #-4]
strh w4, [x18, #-4]
cs_forward_2:
ldrh w5, [x17, #-2]
strh w5, [x18, #-2]
cs_forward_0:
ret
# Copy [x0, x0 + x3 + 14) to [x1, x1 + x3 + 14)
# x3 >= 0
.p2align 6
cs_forward_loop:
subs x3, x3, #14
ldrh w4, [x0], #14
ldrh w5, [x0, #-12]
ldrh w6, [x0, #-10]
ldrh w7, [x0, #-8]
ldrh w8, [x0, #-6]
ldrh w9, [x0, #-4]
ldrh w10, [x0, #-2]
strh w4, [x1], #14
strh w5, [x1, #-12]
strh w6, [x1, #-10]
strh w7, [x1, #-8]
strh w8, [x1, #-6]
strh w9, [x1, #-4]
strh w10, [x1, #-2]
b.ge cs_forward_loop
# Exactly 16 instruction from cs_forward_loop, so loop fits into one cache line
adds x2, x3, #14
# x2 bytes should be copied from x0 to x1
b.ne cs_forward_lt14
ret
# Very similar to forward copying
cs_backward:
subs x3, x2, #14
b.ge cs_backward_loop
cs_backward_lt14:
ands x7, x2, #7
tbz x2, #3, cs_backward_lt8
ldrh w3, [x17, #-8]
ldrh w4, [x17, #-6]
ldrh w5, [x17, #-4]
ldrh w6, [x17, #-2]
strh w3, [x18, #-8]
strh w4, [x18, #-6]
strh w5, [x18, #-4]
strh w6, [x18, #-2]
cs_backward_lt8:
b.eq cs_backward_0
cmp x7, #4
b.lt cs_backward_2
b.eq cs_backward_4
cs_backward_6:
ldrh w3, [x0, #4]
strh w3, [x1, #4]
cs_backward_4:
ldrh w4, [x0, #2]
strh w4, [x1, #2]
cs_backward_2:
ldrh w5, [x0, #0]
strh w5, [x1, #0]
cs_backward_0:
ret
.p2align 6
cs_backward_loop:
subs x3, x3, #14
ldrh w4, [x17, #-14]!
ldrh w5, [x17, #2]
ldrh w6, [x17, #4]
ldrh w7, [x17, #6]
ldrh w8, [x17, #8]
ldrh w9, [x17, #10]
ldrh w10, [x17, #12]
strh w4, [x18, #-14]!
strh w5, [x18, #2]
strh w6, [x18, #4]
strh w7, [x18, #6]
strh w8, [x18, #8]
strh w9, [x18, #10]
strh w10, [x18, #12]
b.ge cs_backward_loop
adds x2, x3, #14
b.ne cs_backward_lt14
ret
# Support for void Copy::arrayof_conjoint_jshorts(void* from,
# void* to,
# size_t count)
_Copy_arrayof_conjoint_jshorts:
hlt 1007
# Support for void Copy::conjoint_jlongs_atomic(jlong* from,
# jlong* to,
# size_t count)
_Copy_conjoint_jlongs_atomic:
_Copy_arrayof_conjoint_jlongs:
hlt 1009
# Support for void Copy::conjoint_jints_atomic(void* from,
# void* to,
# size_t count)
_Copy_conjoint_jints_atomic:
_Copy_arrayof_conjoint_jints:
# These and further memory prefetches may hit out of array ranges.
# Experiments showed that prefetching of inaccessible memory doesn't result in exceptions.
prfm pldl1keep, [x0, #0]
prfm pstl1keep, [x1, #0]
prfm pldl1keep, [x0, #32]
prfm pstl1keep, [x1, #32]
subs x3, x1, x0
# hi condition is met <=> from < to
ccmp x2, x3, #0, hi
# hi condition is met <=> (from < to) and (to - from < count)
b.hi ci_backward
subs x18, x2, #64
b.ge ci_forward_large
ci_forward_lt_64:
# Copy [x0, x0 + x2) to [x1, x1 + x2)
adr x15, ci_forward_tail_table_base
and x16, x2, #~4
# Calculate address to jump and store it to x15:
# Each pair of instructions before ci_forward_tail_table_base copies 8 bytes.
# x16 is count of bytes to copy aligned down by 8.
# So x16/8 pairs of instructions should be executed.
# Each pair takes 8 bytes, so x15 = ci_forward_tail_table_base - (x16/8)*8 = x15 - x16
sub x15, x15, x16
prfm plil1keep, [x15]
add x17, x0, x2
add x18, x1, x2
# If x2 = x16 + 4, then copy 4 bytes and x16 bytes after that.
# Otherwise x2 = x16, so proceed to copy x16 bytes.
tbz x2, #2, ci_forward_lt_64_even
ldr w3, [x0]
str w3, [x1]
ci_forward_lt_64_even:
# Copy [x17 - x16, x17) to [x18 - x16, x18)
# x16 is aligned by 8 and less than 64
# Execute (x16/8) ldp-stp pairs; each pair copies 8 bytes
br x15
ldp w3, w4, [x17, #-56]
stp w3, w4, [x18, #-56]
ldp w5, w6, [x17, #-48]
stp w5, w6, [x18, #-48]
ldp w7, w8, [x17, #-40]
stp w7, w8, [x18, #-40]
ldp w9, w10, [x17, #-32]
stp w9, w10, [x18, #-32]
ldp w11, w12, [x17, #-24]
stp w11, w12, [x18, #-24]
ldp w13, w14, [x17, #-16]
stp w13, w14, [x18, #-16]
ldp w15, w16, [x17, #-8]
stp w15, w16, [x18, #-8]
ci_forward_tail_table_base:
ret
.p2align 6
.rept 12
nop
.endr
ci_forward_large:
# x18 >= 0;
# Copy [x0, x0 + x18 + 64) to [x1, x1 + x18 + 64)
ldp w3, w4, [x0], #32
ldp w5, w6, [x0, #-24]
ldp w7, w8, [x0, #-16]
ldp w9, w10, [x0, #-8]
# Before and after each iteration of loop registers w3-w10 contain [x0 - 32, x0),
# and x1 is a place to copy this data;
# x18 contains number of bytes to be stored minus 64
# Exactly 16 instructions from p2align, so ci_forward_loop starts from cache line boundary
# Checking it explictly by aligning with "hlt 1000" instructions
.p2alignl 6, 0xd4407d00
ci_forward_loop:
prfm pldl1keep, [x0, #32]
prfm pstl1keep, [x1, #32]
subs x18, x18, #32
stp w3, w4, [x1, #0]
ldp w3, w4, [x0, #0]
stp w5, w6, [x1, #8]
ldp w5, w6, [x0, #8]
stp w7, w8, [x1, #16]
ldp w7, w8, [x0, #16]
stp w9, w10, [x1, #24]
ldp w9, w10, [x0, #24]
add x1, x1, #32
add x0, x0, #32
b.ge ci_forward_loop
# 14 instructions from ci_forward_loop, so the loop body hits into one cache line
ci_forward_loop_end:
adds x2, x18, #32
stp w3, w4, [x1], #32
stp w5, w6, [x1, #-24]
stp w7, w8, [x1, #-16]
stp w9, w10, [x1, #-8]
# Increased x18 by 32, but stored 32 bytes, so x2 contains exact number of bytes to be stored
# If this number is not zero, also copy remaining bytes
b.ne ci_forward_lt_64
ret
ci_backward:
# Overlapping case should be the rare one, it does not worth optimizing
ands x3, x2, #~4
# x3 is count aligned down by 2*jintSize
add x0, x0, x2
add x1, x1, x2
sub x3, x3, #8
# Skip loop if 0 or 1 jints
b.eq ci_backward_loop_end
# x3 >= 0
# Copy [x0 - x3 - 8, x0) to [x1 - x3 - 8, x1) backward
ci_backward_loop:
subs x3, x3, #8
ldp w4, w5, [x0, #-8]!
stp w4, w5, [x1, #-8]!
b.ge ci_backward_loop
ci_backward_loop_end:
# Copy remaining 0 or 1 jints
tbz x2, #2, ci_backward_finish
ldr w3, [x0, #-4]
str w3, [x1, #-4]
ci_backward_finish:
ret

View File

@ -32,8 +32,7 @@
// Implementation of class OrderAccess.
// - we define the high level barriers below and use the general
// implementation in orderAccess.hpp, with customizations
// on AARCH64 via the specialized_* template functions
// implementation in orderAccess.hpp.
// Memory Ordering on ARM is weak.
//
@ -56,9 +55,6 @@
// }
inline static void dmb_sy() {
#ifdef AARCH64
__asm__ __volatile__ ("dmb sy" : : : "memory");
#else
if (VM_Version::arm_arch() >= 7) {
#ifdef __thumb__
__asm__ volatile (
@ -73,13 +69,9 @@ inline static void dmb_sy() {
"mcr p15, 0, %0, c7, c10, 5"
: : "r" (zero) : "memory");
}
#endif
}
inline static void dmb_st() {
#ifdef AARCH64
__asm__ __volatile__ ("dmb st" : : : "memory");
#else
if (VM_Version::arm_arch() >= 7) {
#ifdef __thumb__
__asm__ volatile (
@ -94,16 +86,11 @@ inline static void dmb_st() {
"mcr p15, 0, %0, c7, c10, 5"
: : "r" (zero) : "memory");
}
#endif
}
// Load-Load/Store barrier
inline static void dmb_ld() {
#ifdef AARCH64
__asm__ __volatile__ ("dmb ld" : : : "memory");
#else
dmb_sy();
#endif
}
@ -115,123 +102,4 @@ inline void OrderAccess::storeload() { dmb_sy(); }
inline void OrderAccess::release() { dmb_sy(); }
inline void OrderAccess::fence() { dmb_sy(); }
// specializations for Aarch64
// TODO-AARCH64: evaluate effectiveness of ldar*/stlr* implementations compared to 32-bit ARM approach
#ifdef AARCH64
template<>
struct OrderAccess::PlatformOrderedLoad<1, X_ACQUIRE>
{
template <typename T>
T operator()(const volatile T* p) const {
volatile T result;
__asm__ volatile(
"ldarb %w[res], [%[ptr]]"
: [res] "=&r" (result)
: [ptr] "r" (p)
: "memory");
return result;
}
};
template<>
struct OrderAccess::PlatformOrderedLoad<2, X_ACQUIRE>
{
template <typename T>
T operator()(const volatile T* p) const {
volatile T result;
__asm__ volatile(
"ldarh %w[res], [%[ptr]]"
: [res] "=&r" (result)
: [ptr] "r" (p)
: "memory");
return result;
}
};
template<>
struct OrderAccess::PlatformOrderedLoad<4, X_ACQUIRE>
{
template <typename T>
T operator()(const volatile T* p) const {
volatile T result;
__asm__ volatile(
"ldar %w[res], [%[ptr]]"
: [res] "=&r" (result)
: [ptr] "r" (p)
: "memory");
return result;
}
};
template<>
struct OrderAccess::PlatformOrderedLoad<8, X_ACQUIRE>
{
template <typename T>
T operator()(const volatile T* p) const {
volatile T result;
__asm__ volatile(
"ldar %[res], [%[ptr]]"
: [res] "=&r" (result)
: [ptr] "r" (p)
: "memory");
return result;
}
};
template<>
struct OrderAccess::PlatformOrderedStore<1, RELEASE_X_FENCE>
{
template <typename T>
void operator()(T v, volatile T* p) const {
__asm__ volatile(
"stlrb %w[val], [%[ptr]]"
:
: [ptr] "r" (p), [val] "r" (v)
: "memory");
}
};
template<>
struct OrderAccess::PlatformOrderedStore<2, RELEASE_X_FENCE>
{
template <typename T>
void operator()(T v, volatile T* p) const {
__asm__ volatile(
"stlrh %w[val], [%[ptr]]"
:
: [ptr] "r" (p), [val] "r" (v)
: "memory");
}
};
template<>
struct OrderAccess::PlatformOrderedStore<4, RELEASE_X_FENCE>
{
template <typename T>
void operator()(T v, volatile T* p) const {
__asm__ volatile(
"stlr %w[val], [%[ptr]]"
:
: [ptr] "r" (p), [val] "r" (v)
: "memory");
}
};
template<>
struct OrderAccess::PlatformOrderedStore<8, RELEASE_X_FENCE>
{
template <typename T>
void operator()(T v, volatile T* p) const {
__asm__ volatile(
"stlr %[val], [%[ptr]]"
:
: [ptr] "r" (p), [val] "r" (v)
: "memory");
}
};
#endif // AARCH64
#endif // OS_CPU_LINUX_ARM_VM_ORDERACCESS_LINUX_ARM_HPP

View File

@ -78,7 +78,7 @@
// Don't #define SPELL_REG_FP for thumb because it is not safe to use, so this makes sure we never fetch it.
#ifndef __thumb__
#define SPELL_REG_FP AARCH64_ONLY("x29") NOT_AARCH64("fp")
#define SPELL_REG_FP "fp"
#endif
address os::current_stack_pointer() {
@ -91,19 +91,6 @@ char* os::non_memory_address_word() {
return (char*) -1;
}
void os::initialize_thread(Thread* thr) {
// Nothing to do
}
#ifdef AARCH64
#define arm_pc pc
#define arm_sp sp
#define arm_fp regs[29]
#define arm_r0 regs[0]
#define ARM_REGS_IN_CONTEXT 31
#else
#if NGREG == 16
// These definitions are based on the observation that until
@ -119,7 +106,6 @@ void os::initialize_thread(Thread* thr) {
#define ARM_REGS_IN_CONTEXT 16
#endif // AARCH64
address os::Linux::ucontext_get_pc(const ucontext_t* uc) {
return (address)uc->uc_mcontext.arm_pc;
@ -260,13 +246,11 @@ frame os::current_frame() {
#endif
}
#ifndef AARCH64
extern "C" address check_vfp_fault_instr;
extern "C" address check_vfp3_32_fault_instr;
address check_vfp_fault_instr = NULL;
address check_vfp3_32_fault_instr = NULL;
#endif // !AARCH64
extern "C" address check_simd_fault_instr;
address check_simd_fault_instr = NULL;
@ -286,8 +270,8 @@ extern "C" int JVM_handle_linux_signal(int sig, siginfo_t* info,
if (sig == SIGILL &&
((info->si_addr == (caddr_t)check_simd_fault_instr)
NOT_AARCH64(|| info->si_addr == (caddr_t)check_vfp_fault_instr)
NOT_AARCH64(|| info->si_addr == (caddr_t)check_vfp3_32_fault_instr))) {
|| info->si_addr == (caddr_t)check_vfp_fault_instr
|| info->si_addr == (caddr_t)check_vfp3_32_fault_instr)) {
// skip faulty instruction + instruction that sets return value to
// success and set return value to failure.
os::Linux::ucontext_set_pc(uc, (address)info->si_addr + 8);
@ -512,9 +496,6 @@ void os::Linux::set_fpu_control_word(int fpu_control) {
}
void os::setup_fpu() {
#ifdef AARCH64
__asm__ volatile ("msr fpcr, xzr");
#else
#if !defined(__SOFTFP__) && defined(__VFP_FP__)
// Turn on IEEE-754 compliant VFP mode
__asm__ volatile (
@ -523,7 +504,6 @@ void os::setup_fpu() {
: /* no output */ : /* no input */ : "r0"
);
#endif
#endif // AARCH64
}
bool os::is_allocatable(size_t bytes) {
@ -559,14 +539,8 @@ void os::print_context(outputStream *st, const void *context) {
st->print_cr(" %-3s = " INTPTR_FORMAT, as_Register(r)->name(), reg_area[r]);
}
#define U64_FORMAT "0x%016llx"
#ifdef AARCH64
st->print_cr(" %-3s = " U64_FORMAT, "sp", uc->uc_mcontext.sp);
st->print_cr(" %-3s = " U64_FORMAT, "pc", uc->uc_mcontext.pc);
st->print_cr(" %-3s = " U64_FORMAT, "pstate", uc->uc_mcontext.pstate);
#else
// now print flag register
st->print_cr(" %-4s = 0x%08lx", "cpsr",uc->uc_mcontext.arm_cpsr);
#endif
st->cr();
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
@ -595,16 +569,10 @@ void os::print_register_info(outputStream *st, const void *context) {
print_location(st, reg_area[r]);
st->cr();
}
#ifdef AARCH64
st->print_cr(" %-3s = " U64_FORMAT, "pc", uc->uc_mcontext.pc);
print_location(st, uc->uc_mcontext.pc);
st->cr();
#endif
st->cr();
}
#ifndef AARCH64
typedef int64_t cmpxchg_long_func_t(int64_t, int64_t, volatile int64_t*);
@ -714,7 +682,6 @@ int32_t os::atomic_cmpxchg_bootstrap(int32_t compare_value, int32_t exchange_val
return old_value;
}
#endif // !AARCH64
#ifndef PRODUCT
void os::verify_stack_alignment() {

View File

@ -28,11 +28,7 @@
#ifndef __thumb__
enum {
// Offset to add to frame::_fp when dealing with non-thumb C frames
#ifdef AARCH64
C_frame_offset = 0,
#else
C_frame_offset = -1,
#endif
};
#endif
@ -44,7 +40,6 @@
// Note: Currently only used in 64 bit Windows implementations
static bool register_code_area(char *low, char *high) { return true; }
#ifndef AARCH64
static int64_t (*atomic_cmpxchg_long_func)(int64_t compare_value,
int64_t exchange_value,
volatile int64_t *dest);
@ -74,6 +69,5 @@
static int32_t atomic_cmpxchg_bootstrap(int32_t compare_value,
int32_t exchange_value,
volatile int32_t *dest);
#endif // !AARCH64
#endif // OS_CPU_LINUX_ARM_VM_OS_LINUX_ARM_HPP

Some files were not shown because too many files have changed in this diff Show More