8059844: Implement optimistic splitter

Reviewed-by: hannesw, lagergren
This commit is contained in:
Attila Szegedi 2014-10-20 12:06:36 +02:00
parent aeed202b0b
commit 7bb8d39499
31 changed files with 1434 additions and 693 deletions

View File

@ -27,6 +27,7 @@ package jdk.nashorn.internal.codegen;
import static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS_VAR;
import static jdk.nashorn.internal.codegen.CompilerConstants.EXPLODED_ARGUMENT_PREFIX;
import java.lang.invoke.MethodType;
import java.util.ArrayDeque;
import java.util.ArrayList;
@ -38,6 +39,7 @@ import jdk.nashorn.internal.ir.AccessNode;
import jdk.nashorn.internal.ir.CallNode;
import jdk.nashorn.internal.ir.Expression;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.Node;
@ -321,7 +323,7 @@ public final class ApplySpecialization extends NodeVisitor<LexicalContext> imple
explodedArguments.pop();
return newFunctionNode;
return newFunctionNode.setState(lc, CompilationState.BUILTINS_TRANSFORMED);
}
private static boolean isApply(final CallNode callNode) {

View File

@ -76,7 +76,6 @@ import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.RuntimeNode;
import jdk.nashorn.internal.ir.RuntimeNode.Request;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.Statement;
import jdk.nashorn.internal.ir.SwitchNode;
import jdk.nashorn.internal.ir.Symbol;
@ -135,9 +134,6 @@ final class AssignSymbols extends NodeVisitor<LexicalContext> implements Loggabl
if (!(functionNode.hasScopeBlock() || functionNode.needsParentScope())) {
functionNode.compilerConstant(SCOPE).setNeedsSlot(false);
}
if (!functionNode.usesReturnSymbol()) {
functionNode.compilerConstant(RETURN).setNeedsSlot(false);
}
// Named function expressions that end up not referencing themselves won't need a local slot for the self symbol.
if(!functionNode.isDeclared() && !functionNode.usesSelfSymbol() && !functionNode.isAnonymous()) {
final Symbol selfSymbol = functionNode.getBody().getExistingSymbol(functionNode.getIdent().getName());
@ -1014,7 +1010,7 @@ final class AssignSymbols extends NodeVisitor<LexicalContext> implements Loggabl
boolean previousWasBlock = false;
for (final Iterator<LexicalContextNode> it = lc.getAllNodes(); it.hasNext();) {
final LexicalContextNode node = it.next();
if (node instanceof FunctionNode || node instanceof SplitNode || isSplitArray(node)) {
if (node instanceof FunctionNode || isSplitArray(node)) {
// We reached the function boundary or a splitting boundary without seeing a definition for the symbol.
// It needs to be in scope.
return true;

View File

@ -0,0 +1,71 @@
/*
* Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.Collections;
import java.util.zip.Deflater;
import java.util.zip.DeflaterOutputStream;
import jdk.nashorn.internal.ir.Block;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.Statement;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
import jdk.nashorn.internal.runtime.options.Options;
/**
* This static utility class performs serialization of FunctionNode ASTs to a byte array.
* The format is a standard Java serialization stream, deflated.
*/
final class AstSerializer {
// Experimentally, we concluded that compression level 4 gives a good tradeoff between serialization speed
// and size.
private static final int COMPRESSION_LEVEL = Options.getIntProperty("nashorn.serialize.compression", 4);
static byte[] serialize(final FunctionNode fn) {
final ByteArrayOutputStream out = new ByteArrayOutputStream();
try (final ObjectOutputStream oout = new ObjectOutputStream(new DeflaterOutputStream(out,
new Deflater(COMPRESSION_LEVEL)))) {
oout.writeObject(removeInnerFunctionBodies(fn));
} catch (final IOException e) {
throw new AssertionError("Unexpected exception serializing function", e);
}
return out.toByteArray();
}
private static FunctionNode removeInnerFunctionBodies(final FunctionNode fn) {
return (FunctionNode)fn.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
@Override
public Node leaveBlock(final Block block) {
if (lc.isFunctionBody() && lc.getFunction(block) != lc.getOutermostFunction()) {
return block.setStatements(lc, Collections.<Statement>emptyList());
}
return super.leaveBlock(block);
}
});
}
}

View File

@ -51,6 +51,7 @@ import static jdk.nashorn.internal.codegen.CompilerConstants.className;
import static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
import static jdk.nashorn.internal.codegen.CompilerConstants.typeDescriptor;
import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;
import java.io.ByteArrayOutputStream;
import java.io.PrintWriter;
import java.security.AccessController;
@ -64,7 +65,6 @@ import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.internal.org.objectweb.asm.util.TraceClassVisitor;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.debug.NashornClassReader;
import jdk.nashorn.internal.ir.debug.NashornTextifier;
import jdk.nashorn.internal.runtime.Context;
@ -476,12 +476,6 @@ public class ClassEmitter implements Emitter {
methodsStarted.remove(method);
}
SplitMethodEmitter method(final SplitNode splitNode, final String methodName, final Class<?> rtype, final Class<?>... ptypes) {
methodCount++;
methodNames.add(methodName);
return new SplitMethodEmitter(this, methodVisitor(EnumSet.of(Flag.PUBLIC, Flag.STATIC), methodName, rtype, ptypes), splitNode);
}
/**
* Add a new method to the class - defaults to public method
*

View File

@ -34,9 +34,7 @@ import static jdk.nashorn.internal.codegen.CompilerConstants.GET_MAP;
import static jdk.nashorn.internal.codegen.CompilerConstants.GET_STRING;
import static jdk.nashorn.internal.codegen.CompilerConstants.QUICK_PREFIX;
import static jdk.nashorn.internal.codegen.CompilerConstants.REGEX_PREFIX;
import static jdk.nashorn.internal.codegen.CompilerConstants.RETURN;
import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
import static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_ARRAY_ARG;
import static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_PREFIX;
import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
@ -99,10 +97,10 @@ import jdk.nashorn.internal.ir.ExpressionStatement;
import jdk.nashorn.internal.ir.ForNode;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
import jdk.nashorn.internal.ir.GetSplitState;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.IfNode;
import jdk.nashorn.internal.ir.IndexNode;
import jdk.nashorn.internal.ir.JoinPredecessor;
import jdk.nashorn.internal.ir.JoinPredecessorExpression;
import jdk.nashorn.internal.ir.JumpStatement;
import jdk.nashorn.internal.ir.LabelNode;
@ -121,7 +119,8 @@ import jdk.nashorn.internal.ir.PropertyNode;
import jdk.nashorn.internal.ir.ReturnNode;
import jdk.nashorn.internal.ir.RuntimeNode;
import jdk.nashorn.internal.ir.RuntimeNode.Request;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.SetSplitState;
import jdk.nashorn.internal.ir.SplitReturn;
import jdk.nashorn.internal.ir.Statement;
import jdk.nashorn.internal.ir.SwitchNode;
import jdk.nashorn.internal.ir.Symbol;
@ -493,8 +492,7 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
//walk up the chain from starting block and when we bump into the current function boundary, add the external
//information.
final FunctionNode fn = lc.getCurrentFunction();
final int fnId = fn.getId();
final int externalDepth = compiler.getScriptFunctionData(fnId).getExternalSymbolDepth(symbol.getName());
final int externalDepth = compiler.getScriptFunctionData(fn.getId()).getExternalSymbolDepth(symbol.getName());
//count the number of scopes from this place to the start of the function
@ -1047,6 +1045,13 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
return false;
}
@Override
public boolean enterGetSplitState(final GetSplitState getSplitState) {
method.loadScope();
method.invoke(Scope.GET_SPLIT_STATE);
return false;
}
@Override
public boolean enterDefault(final Node otherNode) {
// Must have handled all expressions that can legally be encountered.
@ -1219,7 +1224,7 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
popScopesUntil(target);
final Label targetLabel = jump.getTargetLabel(target);
targetLabel.markAsBreakTarget();
method.splitAwareGoto(lc, targetLabel, target);
method._goto(targetLabel);
return false;
}
@ -2029,10 +2034,10 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
}
private void lineNumber(final int lineNumber) {
if (lineNumber != lastLineNumber) {
if (lineNumber != lastLineNumber && lineNumber != Node.NO_LINE_NUMBER) {
method.lineNumber(lineNumber);
lastLineNumber = lineNumber;
}
lastLineNumber = lineNumber;
}
int getLastLineNumber() {
@ -2079,13 +2084,14 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
method.begin();
defineCommonSplitMethodParameters();
defineSplitMethodParameter(3, arrayType);
defineSplitMethodParameter(CompilerConstants.SPLIT_ARRAY_ARG.slot(), arrayType);
fixScopeSlot(currentFunction);
// NOTE: when this is no longer needed, SplitIntoFunctions will no longer have to add IS_SPLIT
// to synthetic functions, and FunctionNode.needsCallee() will no longer need to test for isSplit().
final int arraySlot = fixScopeSlot(currentFunction, 3);
lc.enterSplitNode();
final int arraySlot = SPLIT_ARRAY_ARG.slot();
for (int i = arrayUnit.getLo(); i < arrayUnit.getHi(); i++) {
method.load(arrayType, arraySlot);
storeElement(nodes, elementType, postsets[i]);
@ -2700,73 +2706,6 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
method.convert(newRuntimeNode.getType());
}
@Override
public boolean enterSplitNode(final SplitNode splitNode) {
if(!method.isReachable()) {
return false;
}
final CompileUnit splitCompileUnit = splitNode.getCompileUnit();
final FunctionNode fn = lc.getCurrentFunction();
final String className = splitCompileUnit.getUnitClassName();
final String name = splitNode.getName();
final Type returnType = fn.getReturnType();
final Class<?> rtype = fn.getReturnType().getTypeClass();
final boolean needsArguments = fn.needsArguments();
final Class<?>[] ptypes = needsArguments ?
new Class<?>[] {ScriptFunction.class, Object.class, ScriptObject.class, ScriptObject.class} :
new Class<?>[] {ScriptFunction.class, Object.class, ScriptObject.class};
final MethodEmitter caller = method;
unit = lc.pushCompileUnit(splitCompileUnit);
final Call splitCall = staticCallNoLookup(
className,
name,
methodDescriptor(rtype, ptypes));
final MethodEmitter splitEmitter =
splitCompileUnit.getClassEmitter().method(
splitNode,
name,
rtype,
ptypes);
pushMethodEmitter(splitEmitter);
method.setFunctionNode(fn);
assert fn.needsCallee() : "split function should require callee";
caller.loadCompilerConstant(CALLEE);
caller.loadCompilerConstant(THIS);
caller.loadCompilerConstant(SCOPE);
if (needsArguments) {
caller.loadCompilerConstant(ARGUMENTS);
}
caller.invoke(splitCall);
caller.storeCompilerConstant(RETURN, returnType);
method.begin();
defineCommonSplitMethodParameters();
if(needsArguments) {
defineSplitMethodParameter(3, ARGUMENTS);
}
// Copy scope to its target slot as first thing because the original slot could be used by return symbol.
fixScopeSlot(fn);
final int returnSlot = fn.compilerConstant(RETURN).getSlot(returnType);
method.defineBlockLocalVariable(returnSlot, returnSlot + returnType.getSlots());
method.loadUndefined(returnType);
method.storeCompilerConstant(RETURN, returnType);
lc.enterSplitNode();
return true;
}
private void defineCommonSplitMethodParameters() {
defineSplitMethodParameter(0, CALLEE);
defineSplitMethodParameter(1, THIS);
@ -2782,114 +2721,40 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
method.onLocalStore(type, slot);
}
private void fixScopeSlot(final FunctionNode functionNode) {
private int fixScopeSlot(final FunctionNode functionNode, final int extraSlot) {
// TODO hack to move the scope to the expected slot (needed because split methods reuse the same slots as the root method)
final int actualScopeSlot = functionNode.compilerConstant(SCOPE).getSlot(SCOPE_TYPE);
final int defaultScopeSlot = SCOPE.slot();
int newExtraSlot = extraSlot;
if (actualScopeSlot != defaultScopeSlot) {
method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
if (actualScopeSlot == extraSlot) {
newExtraSlot = extraSlot + 1;
method.defineBlockLocalVariable(newExtraSlot, newExtraSlot + 1);
method.load(Type.OBJECT, extraSlot);
method.storeHidden(Type.OBJECT, newExtraSlot);
} else {
method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
}
method.load(SCOPE_TYPE, defaultScopeSlot);
method.storeCompilerConstant(SCOPE);
}
return newExtraSlot;
}
@Override
public Node leaveSplitNode(final SplitNode splitNode) {
assert method instanceof SplitMethodEmitter;
lc.exitSplitNode();
final boolean hasReturn = method.hasReturn();
final SplitMethodEmitter splitMethod = ((SplitMethodEmitter)method);
final List<Label> targets = splitMethod.getExternalTargets();
final boolean hasControlFlow = hasReturn || !targets.isEmpty();
final List<BreakableNode> targetNodes = splitMethod.getExternalTargetNodes();
final Type returnType = lc.getCurrentFunction().getReturnType();
try {
// Wrap up this method.
if(method.isReachable()) {
if (hasControlFlow) {
method.setSplitState(-1);
}
method.loadCompilerConstant(RETURN, returnType);
method._return(returnType);
}
method.end();
lc.releaseSlots();
unit = lc.popCompileUnit(splitNode.getCompileUnit());
popMethodEmitter();
} catch (final Throwable t) {
Context.printStackTrace(t);
final VerifyError e = new VerifyError("Code generation bug in \"" + splitNode.getName() + "\": likely stack misaligned: " + t + " " + getCurrentSource().getName());
e.initCause(t);
throw e;
public boolean enterSplitReturn(final SplitReturn splitReturn) {
if (method.isReachable()) {
method.loadUndefined(lc.getCurrentFunction().getReturnType())._return();
}
return false;
}
//no external jump targets or return in switch node
if (!hasControlFlow) {
return splitNode;
@Override
public boolean enterSetSplitState(final SetSplitState setSplitState) {
if (method.isReachable()) {
method.setSplitState(setSplitState.getState());
}
// Handle return from split method if there was one.
final MethodEmitter caller = method;
final int targetCount = targets.size();
caller.loadScope();
caller.invoke(Scope.GET_SPLIT_STATE);
final Label breakLabel = new Label("no_split_state");
// Split state is -1 for no split state, 0 for return, 1..n+1 for break/continue
//the common case is that we don't need a switch
if (targetCount == 0) {
assert hasReturn;
caller.ifne(breakLabel);
//has to be zero
caller.label(new Label("split_return"));
caller.loadCompilerConstant(RETURN, returnType);
caller._return(returnType);
caller.label(breakLabel);
} else {
assert !targets.isEmpty();
final int low = hasReturn ? 0 : 1;
final int labelCount = targetCount + 1 - low;
final Label[] labels = new Label[labelCount];
for (int i = 0; i < labelCount; i++) {
labels[i] = new Label(i == 0 ? "split_return" : "split_" + targets.get(i - 1));
}
caller.tableswitch(low, targetCount, breakLabel, labels);
for (int i = low; i <= targetCount; i++) {
caller.label(labels[i - low]);
if (i == 0) {
caller.loadCompilerConstant(RETURN, returnType);
caller._return(returnType);
} else {
final BreakableNode targetNode = targetNodes.get(i - 1);
final Label label = targets.get(i - 1);
if (!lc.isExternalTarget(splitNode, targetNode)) {
final JoinPredecessor jumpOrigin = splitNode.getJumpOrigin(label);
if(jumpOrigin != null) {
method.beforeJoinPoint(jumpOrigin);
}
popScopesUntil(targetNode);
}
caller.splitAwareGoto(lc, label, targetNode);
}
}
caller.label(breakLabel);
}
// If split has a return and caller is itself a split method it needs to propagate the return.
if (hasReturn) {
caller.setHasReturn();
}
return splitNode;
return false;
}
@Override
@ -4379,11 +4244,7 @@ final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContex
private void newFunctionObject(final FunctionNode functionNode, final boolean addInitializer) {
assert lc.peek() == functionNode;
final int fnId = functionNode.getId();
final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(fnId);
assert data != null : functionNode.getName() + " has no data";
final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(functionNode.getId());
if (functionNode.isProgram() && !compiler.isOnDemandCompilation()) {
final CompileUnit fnUnit = functionNode.getCompileUnit();

View File

@ -38,12 +38,11 @@ import static jdk.nashorn.internal.ir.FunctionNode.CompilationState.SCOPE_DEPTHS
import static jdk.nashorn.internal.ir.FunctionNode.CompilationState.SPLIT;
import static jdk.nashorn.internal.ir.FunctionNode.CompilationState.SYMBOLS_ASSIGNED;
import static jdk.nashorn.internal.runtime.logging.DebugLogger.quote;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.EnumSet;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
@ -53,10 +52,7 @@ import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.debug.ASTWriter;
import jdk.nashorn.internal.ir.debug.PrintVisitor;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
@ -81,7 +77,7 @@ enum CompilationPhase {
PARSED)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return (FunctionNode)fn.accept(new FoldConstants(compiler));
return transformFunction(fn, new FoldConstants(compiler));
}
@Override
@ -104,7 +100,7 @@ enum CompilationPhase {
CONSTANT_FOLDED)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return (FunctionNode)fn.accept(new Lower(compiler));
return transformFunction(fn, new Lower(compiler));
}
@Override
@ -118,23 +114,6 @@ enum CompilationPhase {
* optimistic ops a program point so that an UnwarrantedException knows from where
* a guess went wrong when creating the continuation to roll back this execution
*/
PROGRAM_POINT_PHASE(
EnumSet.of(
INITIALIZED,
PARSED,
CONSTANT_FOLDED,
LOWERED)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return (FunctionNode)fn.accept(new ProgramPoints());
}
@Override
public String toString() {
return "'Program Point Calculation'";
}
},
TRANSFORM_BUILTINS_PHASE(
EnumSet.of(
INITIALIZED,
@ -144,13 +123,7 @@ enum CompilationPhase {
//we only do this if we have a param type map, otherwise this is not a specialized recompile
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final FunctionNode newFunctionNode = (FunctionNode)fn.accept(new ApplySpecialization(compiler));
return (FunctionNode)newFunctionNode.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
@Override
public Node leaveFunctionNode(final FunctionNode node) {
return node.setState(lc, BUILTINS_TRANSFORMED);
}
});
return setStates(transformFunction(fn, new ApplySpecialization(compiler)), BUILTINS_TRANSFORMED);
}
@Override
@ -177,7 +150,7 @@ enum CompilationPhase {
FunctionNode newFunctionNode;
//ensure elementTypes, postsets and presets exist for splitter and arraynodes
newFunctionNode = (FunctionNode)fn.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
newFunctionNode = transformFunction(fn, new NodeVisitor<LexicalContext>(new LexicalContext()) {
@Override
public LiteralNode<?> leaveLiteralNode(final LiteralNode<?> literalNode) {
return literalNode.initialize(lc);
@ -185,7 +158,7 @@ enum CompilationPhase {
});
newFunctionNode = new Splitter(compiler, newFunctionNode, outermostCompileUnit).split(newFunctionNode, true);
newFunctionNode = transformFunction(newFunctionNode, new SplitIntoFunctions(compiler));
assert newFunctionNode.getCompileUnit() == outermostCompileUnit : "fn=" + fn.getName() + ", fn.compileUnit (" + newFunctionNode.getCompileUnit() + ") != " + outermostCompileUnit;
assert newFunctionNode.isStrict() == compiler.isStrict() : "functionNode.isStrict() != compiler.isStrict() for " + quote(newFunctionNode.getName());
@ -198,6 +171,52 @@ enum CompilationPhase {
}
},
PROGRAM_POINT_PHASE(
EnumSet.of(
INITIALIZED,
PARSED,
CONSTANT_FOLDED,
LOWERED,
BUILTINS_TRANSFORMED,
SPLIT)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new ProgramPoints());
}
@Override
public String toString() {
return "'Program Point Calculation'";
}
},
SERIALIZE_SPLIT_PHASE(
EnumSet.of(
INITIALIZED,
PARSED,
CONSTANT_FOLDED,
LOWERED,
BUILTINS_TRANSFORMED,
SPLIT)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return transformFunction(fn, new NodeVisitor<LexicalContext>(new LexicalContext()) {
@Override
public boolean enterFunctionNode(final FunctionNode functionNode) {
if (functionNode.isSplit()) {
compiler.serializeAst(functionNode);
}
return true;
}
});
}
@Override
public String toString() {
return "'Serialize Split Functions'";
}
},
SYMBOL_ASSIGNMENT_PHASE(
EnumSet.of(
INITIALIZED,
@ -208,7 +227,7 @@ enum CompilationPhase {
SPLIT)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return (FunctionNode)fn.accept(new AssignSymbols(compiler));
return transformFunction(fn, new AssignSymbols(compiler));
}
@Override
@ -228,7 +247,7 @@ enum CompilationPhase {
SYMBOLS_ASSIGNED)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
return (FunctionNode)fn.accept(new FindScopeDepths(compiler));
return transformFunction(fn, new FindScopeDepths(compiler));
}
@Override
@ -250,7 +269,7 @@ enum CompilationPhase {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
if (compiler.useOptimisticTypes()) {
return (FunctionNode)fn.accept(new OptimisticTypesCalculator(compiler));
return transformFunction(fn, new OptimisticTypesCalculator(compiler));
}
return setStates(fn, OPTIMISTIC_TYPES_ASSIGNED);
}
@ -274,8 +293,7 @@ enum CompilationPhase {
OPTIMISTIC_TYPES_ASSIGNED)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final FunctionNode newFunctionNode = (FunctionNode)fn.accept(new LocalVariableTypesCalculator(compiler));
final FunctionNode newFunctionNode = transformFunction(fn, new LocalVariableTypesCalculator(compiler));
final ScriptEnvironment senv = compiler.getScriptEnvironment();
final PrintWriter err = senv.getErr();
@ -330,13 +348,7 @@ enum CompilationPhase {
for (final CompileUnit oldUnit : compiler.getCompileUnits()) {
assert map.get(oldUnit) == null;
final StringBuilder sb = new StringBuilder(compiler.nextCompileUnitName());
if (phases.isRestOfCompilation()) {
sb.append("$restOf");
}
//it's ok to not copy the initCount, methodCount and clinitCount here, as codegen is what
//fills those out anyway. Thus no need for a copy constructor
final CompileUnit newUnit = compiler.createCompileUnit(sb.toString(), oldUnit.getWeight());
final CompileUnit newUnit = createNewCompileUnit(compiler, phases);
log.fine("Creating new compile unit ", oldUnit, " => ", newUnit);
map.put(oldUnit, newUnit);
assert newUnit != null;
@ -350,47 +362,10 @@ enum CompilationPhase {
//replace old compile units in function nodes, if any are assigned,
//for example by running the splitter on this function node in a previous
//partial code generation
final FunctionNode newFunctionNode = (FunctionNode)fn.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
final FunctionNode newFunctionNode = transformFunction(fn, new ReplaceCompileUnits() {
@Override
public Node leaveFunctionNode(final FunctionNode node) {
final CompileUnit oldUnit = node.getCompileUnit();
assert oldUnit != null : "no compile unit in function node";
final CompileUnit newUnit = map.get(oldUnit);
assert newUnit != null : "old unit has no mapping to new unit " + oldUnit;
log.fine("Replacing compile unit: ", oldUnit, " => ", newUnit, " in ", quote(node.getName()));
return node.setCompileUnit(lc, newUnit).setState(lc, CompilationState.COMPILE_UNITS_REUSED);
}
@Override
public Node leaveSplitNode(final SplitNode node) {
final CompileUnit oldUnit = node.getCompileUnit();
assert oldUnit != null : "no compile unit in function node";
final CompileUnit newUnit = map.get(oldUnit);
assert newUnit != null : "old unit has no mapping to new unit " + oldUnit;
log.fine("Replacing compile unit: ", oldUnit, " => ", newUnit, " in ", quote(node.getName()));
return node.setCompileUnit(lc, newUnit);
}
@Override
public Node leaveLiteralNode(final LiteralNode<?> node) {
if (node instanceof ArrayLiteralNode) {
final ArrayLiteralNode aln = (ArrayLiteralNode)node;
if (aln.getUnits() == null) {
return node;
}
final List<ArrayUnit> newArrayUnits = new ArrayList<>();
for (final ArrayUnit au : aln.getUnits()) {
final CompileUnit newUnit = map.get(au.getCompileUnit());
assert newUnit != null;
newArrayUnits.add(new ArrayUnit(newUnit, au.getLo(), au.getHi()));
}
return aln.setUnits(lc, newArrayUnits);
}
return node;
CompileUnit getReplacement(CompileUnit original) {
return map.get(original);
}
@Override
@ -408,7 +383,59 @@ enum CompilationPhase {
}
},
/**
REINITIALIZE_SERIALIZED(
EnumSet.of(
INITIALIZED,
PARSED,
CONSTANT_FOLDED,
LOWERED,
BUILTINS_TRANSFORMED,
SPLIT)) {
@Override
FunctionNode transform(final Compiler compiler, final CompilationPhases phases, final FunctionNode fn) {
final Set<CompileUnit> unitSet = CompileUnit.createCompileUnitSet();
final Map<CompileUnit, CompileUnit> unitMap = new HashMap<>();
// Ensure that the FunctionNode's compile unit is the first in the list of new units. Install phase
// will use that as the root class.
createCompileUnit(fn.getCompileUnit(), unitSet, unitMap, compiler, phases);
final FunctionNode newFn = transformFunction(fn, new ReplaceCompileUnits() {
@Override
CompileUnit getReplacement(final CompileUnit oldUnit) {
final CompileUnit existing = unitMap.get(oldUnit);
if (existing != null) {
return existing;
}
return createCompileUnit(oldUnit, unitSet, unitMap, compiler, phases);
}
@Override
public Node leaveFunctionNode(final FunctionNode fn2) {
return super.leaveFunctionNode(
// restore flags for deserialized nested function nodes
compiler.getScriptFunctionData(fn2.getId()).restoreFlags(lc, fn2));
};
});
compiler.replaceCompileUnits(unitSet);
return newFn;
}
private CompileUnit createCompileUnit(final CompileUnit oldUnit, final Set<CompileUnit> unitSet,
final Map<CompileUnit, CompileUnit> unitMap, final Compiler compiler, final CompilationPhases phases) {
final CompileUnit newUnit = createNewCompileUnit(compiler, phases);
unitMap.put(oldUnit, newUnit);
unitSet.add(newUnit);
return newUnit;
}
@Override
public String toString() {
return "'Deserialize'";
}
},
/**
* Bytecode generation:
*
* Generate the byte code class(es) resulting from the compiled FunctionNode
@ -443,7 +470,7 @@ enum CompilationPhase {
try {
// Explicitly set BYTECODE_GENERATED here; it can not be set in case of skipping codegen for :program
// in the lazy + optimistic world. See CodeGenerator.skipFunction().
newFunctionNode = ((FunctionNode)newFunctionNode.accept(codegen)).setState(null, BYTECODE_GENERATED);
newFunctionNode = transformFunction(newFunctionNode, codegen).setState(null, BYTECODE_GENERATED);
codegen.generateScopeCalls();
} catch (final VerifyError e) {
if (senv._verify_code || senv._print_code) {
@ -615,7 +642,7 @@ enum CompilationPhase {
if (!AssertsEnabled.assertsEnabled()) {
return functionNode;
}
return (FunctionNode)functionNode.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
return transformFunction(functionNode, new NodeVisitor<LexicalContext>(new LexicalContext()) {
@Override
public Node leaveFunctionNode(final FunctionNode fn) {
return fn.setState(lc, state);
@ -701,4 +728,17 @@ enum CompilationPhase {
return end(compiler, transform(compiler, phases, begin(compiler, functionNode)));
}
private static FunctionNode transformFunction(final FunctionNode fn, final NodeVisitor<?> visitor) {
return (FunctionNode) fn.accept(visitor);
}
private static CompileUnit createNewCompileUnit(final Compiler compiler, final CompilationPhases phases) {
final StringBuilder sb = new StringBuilder(compiler.nextCompileUnitName());
if (phases.isRestOfCompilation()) {
sb.append("$restOf");
}
//it's ok to not copy the initCount, methodCount and clinitCount here, as codegen is what
//fills those out anyway. Thus no need for a copy constructor
return compiler.createCompileUnit(sb.toString(), 0);
}
}

View File

@ -28,11 +28,13 @@ package jdk.nashorn.internal.codegen;
import java.io.Serializable;
import java.util.Set;
import java.util.TreeSet;
import jdk.nashorn.internal.ir.CompileUnitHolder;
/**
* Used to track split class compilation. Note that instances of the class are serializable, but all fields are
* transient, making the serialized version of the class only useful for tracking the referential topology of other
* AST nodes referencing the same or different compile units.
* AST nodes referencing the same or different compile units. We do want to preserve this topology though as
* {@link CompileUnitHolder}s in a deserialized AST will undergo reinitialization.
*/
public final class CompileUnit implements Comparable<CompileUnit>, Serializable {
private static final long serialVersionUID = 1L;
@ -126,14 +128,6 @@ public final class CompileUnit implements Comparable<CompileUnit>, Serializable
this.weight += w;
}
/**
* Get the current weight of the compile unit.
* @return the unit's weight
*/
long getWeight() {
return weight;
}
/**
* Check if this compile unit can hold {@code weight} more units of weight
* @param w weight to check if can be added
@ -160,7 +154,7 @@ public final class CompileUnit implements Comparable<CompileUnit>, Serializable
}
private static String shortName(final String name) {
return name.lastIndexOf('/') == -1 ? name : name.substring(name.lastIndexOf('/') + 1);
return name == null ? null : name.lastIndexOf('/') == -1 ? name : name.substring(name.lastIndexOf('/') + 1);
}
@Override

View File

@ -32,15 +32,16 @@ import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
import static jdk.nashorn.internal.runtime.logging.DebugLogger.quote;
import java.io.File;
import java.lang.invoke.MethodType;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Set;
@ -159,75 +160,142 @@ public final class Compiler implements Loggable {
*/
private static final int COMPILE_UNIT_NAME_BUFFER_SIZE = 32;
private final Map<Integer, byte[]> serializedAsts = new HashMap<>();
/**
* Compilation phases that a compilation goes through
*/
public static class CompilationPhases implements Iterable<CompilationPhase> {
/** Singleton that describes a standard eager compilation - this includes code installation */
public final static CompilationPhases COMPILE_ALL = new CompilationPhases(
"Compile all",
new CompilationPhase[] {
CompilationPhase.CONSTANT_FOLDING_PHASE,
CompilationPhase.LOWERING_PHASE,
CompilationPhase.PROGRAM_POINT_PHASE,
CompilationPhase.TRANSFORM_BUILTINS_PHASE,
CompilationPhase.SPLITTING_PHASE,
CompilationPhase.SYMBOL_ASSIGNMENT_PHASE,
CompilationPhase.SCOPE_DEPTH_COMPUTATION_PHASE,
CompilationPhase.OPTIMISTIC_TYPE_ASSIGNMENT_PHASE,
CompilationPhase.LOCAL_VARIABLE_TYPE_CALCULATION_PHASE,
CompilationPhase.BYTECODE_GENERATION_PHASE,
CompilationPhase.INSTALL_PHASE
});
/**
* Singleton that describes compilation up to the phase where a function can be serialized.
*/
private final static CompilationPhases COMPILE_UPTO_SERIALIZABLE = new CompilationPhases(
"Common initial phases",
CompilationPhase.CONSTANT_FOLDING_PHASE,
CompilationPhase.LOWERING_PHASE,
CompilationPhase.TRANSFORM_BUILTINS_PHASE,
CompilationPhase.SPLITTING_PHASE,
CompilationPhase.PROGRAM_POINT_PHASE,
CompilationPhase.SERIALIZE_SPLIT_PHASE
);
/** Compile all for a rest of method */
public final static CompilationPhases COMPILE_ALL_RESTOF =
COMPILE_ALL.setDescription("Compile all, rest of").addAfter(CompilationPhase.LOCAL_VARIABLE_TYPE_CALCULATION_PHASE, CompilationPhase.REUSE_COMPILE_UNITS_PHASE);
private final static CompilationPhases COMPILE_SERIALIZABLE_UPTO_BYTECODE = new CompilationPhases(
"After common phases, before bytecode generator",
CompilationPhase.SYMBOL_ASSIGNMENT_PHASE,
CompilationPhase.SCOPE_DEPTH_COMPUTATION_PHASE,
CompilationPhase.OPTIMISTIC_TYPE_ASSIGNMENT_PHASE,
CompilationPhase.LOCAL_VARIABLE_TYPE_CALCULATION_PHASE
);
/** Singleton that describes a standard eager compilation, but no installation, for example used by --compile-only */
public final static CompilationPhases COMPILE_ALL_NO_INSTALL =
COMPILE_ALL.
removeLast().
setDescription("Compile without install");
/** Singleton that describes compilation up to the CodeGenerator, but not actually generating code */
public final static CompilationPhases COMPILE_UPTO_BYTECODE =
COMPILE_ALL.
removeLast().
removeLast().
setDescription("Compile upto bytecode");
/**
* Singleton that describes additional steps to be taken after deserializing, all the way up to (but not
* including) generating and installing code.
*/
public final static CompilationPhases RECOMPILE_SERIALIZED_UPTO_BYTECODE = new CompilationPhases(
"Recompile serialized function up to bytecode",
CompilationPhase.REINITIALIZE_SERIALIZED,
COMPILE_SERIALIZABLE_UPTO_BYTECODE
);
/**
* Singleton that describes back end of method generation, given that we have generated the normal
* method up to CodeGenerator as in {@link CompilationPhases#COMPILE_UPTO_BYTECODE}
*/
public final static CompilationPhases COMPILE_FROM_BYTECODE = new CompilationPhases(
public final static CompilationPhases GENERATE_BYTECODE_AND_INSTALL = new CompilationPhases(
"Generate bytecode and install",
new CompilationPhase[] {
CompilationPhase.BYTECODE_GENERATION_PHASE,
CompilationPhase.INSTALL_PHASE
});
CompilationPhase.BYTECODE_GENERATION_PHASE,
CompilationPhase.INSTALL_PHASE
);
/** Singleton that describes compilation up to the CodeGenerator, but not actually generating code */
public final static CompilationPhases COMPILE_UPTO_BYTECODE = new CompilationPhases(
"Compile upto bytecode",
COMPILE_UPTO_SERIALIZABLE,
COMPILE_SERIALIZABLE_UPTO_BYTECODE);
/** Singleton that describes a standard eager compilation, but no installation, for example used by --compile-only */
public final static CompilationPhases COMPILE_ALL_NO_INSTALL = new CompilationPhases(
"Compile without install",
COMPILE_UPTO_BYTECODE,
CompilationPhase.BYTECODE_GENERATION_PHASE);
/** Singleton that describes a standard eager compilation - this includes code installation */
public final static CompilationPhases COMPILE_ALL = new CompilationPhases(
"Full eager compilation",
COMPILE_UPTO_BYTECODE,
GENERATE_BYTECODE_AND_INSTALL);
/** Singleton that describes a full compilation - this includes code installation - from serialized state*/
public final static CompilationPhases COMPILE_ALL_SERIALIZED = new CompilationPhases(
"Eager compilation from serializaed state",
RECOMPILE_SERIALIZED_UPTO_BYTECODE,
GENERATE_BYTECODE_AND_INSTALL);
/**
* Singleton that describes restOf method generation, given that we have generated the normal
* method up to CodeGenerator as in {@link CompilationPhases#COMPILE_UPTO_BYTECODE}
*/
public final static CompilationPhases COMPILE_FROM_BYTECODE_RESTOF =
COMPILE_FROM_BYTECODE.
addFirst(CompilationPhase.REUSE_COMPILE_UNITS_PHASE).
setDescription("Generate bytecode and install - RestOf method");
public final static CompilationPhases GENERATE_BYTECODE_AND_INSTALL_RESTOF = new CompilationPhases(
"Generate bytecode and install - RestOf method",
CompilationPhase.REUSE_COMPILE_UNITS_PHASE,
GENERATE_BYTECODE_AND_INSTALL);
/** Compile all for a rest of method */
public final static CompilationPhases COMPILE_ALL_RESTOF = new CompilationPhases(
"Compile all, rest of",
COMPILE_UPTO_BYTECODE,
GENERATE_BYTECODE_AND_INSTALL_RESTOF);
/** Compile from serialized for a rest of method */
public final static CompilationPhases COMPILE_SERIALIZED_RESTOF = new CompilationPhases(
"Compile serialized, rest of",
RECOMPILE_SERIALIZED_UPTO_BYTECODE,
GENERATE_BYTECODE_AND_INSTALL_RESTOF);
private final List<CompilationPhase> phases;
private final String desc;
private CompilationPhases(final String desc, final CompilationPhase... phases) {
this.desc = desc;
this(desc, Arrays.asList(phases));
}
final List<CompilationPhase> newPhases = new LinkedList<>();
newPhases.addAll(Arrays.asList(phases));
this.phases = Collections.unmodifiableList(newPhases);
private CompilationPhases(final String desc, final CompilationPhases base, final CompilationPhase... phases) {
this(desc, concat(base.phases, Arrays.asList(phases)));
}
private CompilationPhases(final String desc, final CompilationPhase first, final CompilationPhases rest) {
this(desc, concat(Collections.singletonList(first), rest.phases));
}
private CompilationPhases(final String desc, final CompilationPhases base) {
this(desc, base.phases);
}
private CompilationPhases(final String desc, final CompilationPhases... bases) {
this(desc, concatPhases(bases));
}
private CompilationPhases(final String desc, final List<CompilationPhase> phases) {
this.desc = desc;
this.phases = phases;
}
private static List<CompilationPhase> concatPhases(final CompilationPhases[] bases) {
final ArrayList<CompilationPhase> l = new ArrayList<>();
for(final CompilationPhases base: bases) {
l.addAll(base.phases);
}
l.trimToSize();
return l;
}
private static <T> List<T> concat(final List<T> l1, final List<T> l2) {
final ArrayList<T> l = new ArrayList<>(l1);
l.addAll(l2);
l.trimToSize();
return l;
}
@Override
@ -235,45 +303,6 @@ public final class Compiler implements Loggable {
return "'" + desc + "' " + phases.toString();
}
private CompilationPhases setDescription(final String desc) {
return new CompilationPhases(desc, phases.toArray(new CompilationPhase[phases.size()]));
}
private CompilationPhases removeLast() {
final LinkedList<CompilationPhase> list = new LinkedList<>(phases);
list.removeLast();
return new CompilationPhases(desc, list.toArray(new CompilationPhase[list.size()]));
}
private CompilationPhases addFirst(final CompilationPhase phase) {
if (phases.contains(phase)) {
return this;
}
final LinkedList<CompilationPhase> list = new LinkedList<>(phases);
list.addFirst(phase);
return new CompilationPhases(desc, list.toArray(new CompilationPhase[list.size()]));
}
@SuppressWarnings("unused") //TODO I'll use this soon
private CompilationPhases replace(final CompilationPhase phase, final CompilationPhase newPhase) {
final LinkedList<CompilationPhase> list = new LinkedList<>();
for (final CompilationPhase p : phases) {
list.add(p == phase ? newPhase : p);
}
return new CompilationPhases(desc, list.toArray(new CompilationPhase[list.size()]));
}
private CompilationPhases addAfter(final CompilationPhase phase, final CompilationPhase newPhase) {
final LinkedList<CompilationPhase> list = new LinkedList<>();
for (final CompilationPhase p : phases) {
list.add(p);
if (p == phase) {
list.add(newPhase);
}
}
return new CompilationPhases(desc, list.toArray(new CompilationPhase[list.size()]));
}
boolean contains(final CompilationPhase phase) {
return phases.contains(phase);
}
@ -284,7 +313,7 @@ public final class Compiler implements Loggable {
}
boolean isRestOfCompilation() {
return this == COMPILE_ALL_RESTOF || this == COMPILE_FROM_BYTECODE_RESTOF;
return this == COMPILE_ALL_RESTOF || this == GENERATE_BYTECODE_AND_INSTALL_RESTOF || this == COMPILE_SERIALIZED_RESTOF;
}
String getDesc() {
@ -749,6 +778,14 @@ public final class Compiler implements Loggable {
compileUnits.addAll(newUnits);
}
void serializeAst(final FunctionNode fn) {
serializedAsts.put(fn.getId(), AstSerializer.serialize(fn));
}
byte[] removeSerializedAst(final int fnId) {
return serializedAsts.remove(fnId);
}
CompileUnit findUnit(final long weight) {
for (final CompileUnit unit : compileUnits) {
if (unit.canHold(weight)) {
@ -771,7 +808,10 @@ public final class Compiler implements Loggable {
}
RecompilableScriptFunctionData getScriptFunctionData(final int functionId) {
return compiledFunction == null ? null : compiledFunction.getScriptFunctionData(functionId);
assert compiledFunction != null;
final RecompilableScriptFunctionData fn = compiledFunction.getScriptFunctionData(functionId);
assert fn != null : functionId;
return fn;
}
boolean isGlobalSymbol(final FunctionNode fn, final String name) {

View File

@ -187,7 +187,6 @@ final class FindScopeDepths extends NodeVisitor<LexicalContext> implements Logga
if (compiler.isOnDemandCompilation()) {
final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(newFunctionNode.getId());
assert data != null : newFunctionNode.getName() + " lacks data";
if (data.inDynamicContext()) {
log.fine("Reviving scriptfunction ", quote(name), " as defined in previous (now lost) dynamic scope.");
newFunctionNode = newFunctionNode.setInDynamicContext(lc);
@ -202,7 +201,7 @@ final class FindScopeDepths extends NodeVisitor<LexicalContext> implements Logga
//create recompilable scriptfunctiondata
final int fnId = newFunctionNode.getId();
final Map<Integer, RecompilableScriptFunctionData> nestedFunctions = fnIdToNestedFunctions.get(fnId);
final Map<Integer, RecompilableScriptFunctionData> nestedFunctions = fnIdToNestedFunctions.remove(fnId);
assert nestedFunctions != null;
// Generate the object class and property map in case this function is ever used as constructor
@ -212,8 +211,8 @@ final class FindScopeDepths extends NodeVisitor<LexicalContext> implements Logga
new AllocatorDescriptor(newFunctionNode.getThisProperties()),
nestedFunctions,
externalSymbolDepths.get(fnId),
internalSymbols.get(fnId)
);
internalSymbols.get(fnId),
compiler.removeSerializedAst(fnId));
if (lc.getOutermostFunction() != newFunctionNode) {
final FunctionNode parentFn = lc.getParentFunction(newFunctionNode);

View File

@ -72,7 +72,7 @@ import jdk.nashorn.internal.ir.PropertyNode;
import jdk.nashorn.internal.ir.ReturnNode;
import jdk.nashorn.internal.ir.RuntimeNode;
import jdk.nashorn.internal.ir.RuntimeNode.Request;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.SplitReturn;
import jdk.nashorn.internal.ir.Statement;
import jdk.nashorn.internal.ir.SwitchNode;
import jdk.nashorn.internal.ir.Symbol;
@ -361,10 +361,6 @@ final class LocalVariableTypesCalculator extends NodeVisitor<LexicalContext>{
// Synthetic return node that we must insert at the end of the function if it's end is reachable.
private ReturnNode syntheticReturn;
// Topmost current split node (if any)
private SplitNode topSplit;
private boolean split;
private boolean alreadyEnteredTopLevelFunction;
// LvarType and conversion information gathered during the top-down pass; applied to nodes in the bottom-up pass.
@ -477,22 +473,7 @@ final class LocalVariableTypesCalculator extends NodeVisitor<LexicalContext>{
return false;
}
final BreakableNode target = jump.getTarget(lc);
return splitAwareJumpToLabel(jump, target, jump.getTargetLabel(target));
}
private boolean splitAwareJumpToLabel(final JumpStatement jumpStatement, final BreakableNode target, final Label targetLabel) {
final JoinPredecessor jumpOrigin;
if(topSplit != null && lc.isExternalTarget(topSplit, target)) {
// If the jump target is outside the topmost split node, then we'll create a synthetic jump origin in the
// split node.
jumpOrigin = new JoinPredecessorExpression();
topSplit.addJump(jumpOrigin, targetLabel);
} else {
// Otherwise, the original jump statement is the jump origin
jumpOrigin = jumpStatement;
}
jumpToLabel(jumpOrigin, targetLabel, getBreakTargetTypes(target));
jumpToLabel(jump, jump.getTargetLabel(target), getBreakTargetTypes(target));
doesNotContinueSequentially();
return false;
}
@ -703,18 +684,9 @@ final class LocalVariableTypesCalculator extends NodeVisitor<LexicalContext>{
}
@Override
public boolean enterSplitNode(final SplitNode splitNode) {
if(!reachable) {
return false;
}
// Need to visit inside of split nodes. While it's true that they don't have local variables, we need to visit
// breaks, continues, and returns in them.
if(topSplit == null) {
topSplit = splitNode;
}
split = true;
setType(getCompilerConstantSymbol(lc.getCurrentFunction(), CompilerConstants.RETURN), LvarType.UNDEFINED);
return true;
public boolean enterSplitReturn(final SplitReturn splitReturn) {
doesNotContinueSequentially();
return false;
}
@Override
@ -1116,15 +1088,6 @@ final class LocalVariableTypesCalculator extends NodeVisitor<LexicalContext>{
if(returnType.isUnknown()) {
returnType = Type.OBJECT;
}
if(split) {
// If the function is split, the ":return" symbol is used and needs a slot. Note we can't mark the return
// symbol as used in enterSplitNode, as we don't know the final return type of the function earlier than
// here.
final Symbol retSymbol = getCompilerConstantSymbol(lc.getCurrentFunction(), CompilerConstants.RETURN);
retSymbol.setHasSlotFor(returnType);
retSymbol.setNeedsSlot(true);
}
}
private void createSyntheticReturn(final Block body) {

View File

@ -352,8 +352,6 @@ final class Lower extends NodeOperatorVisitor<BlockLexicalContext> implements Lo
private Node spliceFinally(final TryNode tryNode, final List<ThrowNode> rethrows, final Block finallyBody) {
assert tryNode.getFinallyBody() == null;
final LexicalContext lowerLc = lc;
final TryNode newTryNode = (TryNode)tryNode.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
final List<Node> insideTry = new ArrayList<>();
@ -406,7 +404,6 @@ final class Lower extends NodeOperatorVisitor<BlockLexicalContext> implements Lo
//still in the try block, store it in a result value and return it afterwards
resultNode = new IdentNode(Lower.this.compilerConstant(RETURN));
newStatements.add(new ExpressionStatement(returnNode.getLineNumber(), returnNode.getToken(), returnNode.getFinish(), new BinaryNode(Token.recast(returnNode.getToken(), TokenType.ASSIGN), resultNode, expr)));
lowerLc.setFlag(lowerLc.getCurrentFunction(), FunctionNode.USES_RETURN_SYMBOL);
} else {
resultNode = null;
}

View File

@ -71,6 +71,7 @@ import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup
import static jdk.nashorn.internal.codegen.ObjectClassGenerator.PRIMITIVE_FIELD_TYPE;
import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_OPTIMISTIC;
import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_PROGRAM_POINT_SHIFT;
import java.io.PrintStream;
import java.lang.reflect.Array;
import java.util.Collection;
@ -88,11 +89,9 @@ import jdk.nashorn.internal.codegen.types.ArrayType;
import jdk.nashorn.internal.codegen.types.BitwiseType;
import jdk.nashorn.internal.codegen.types.NumericType;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.BreakableNode;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.JoinPredecessor;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.LocalVariableConversion;
import jdk.nashorn.internal.ir.RuntimeNode;
@ -1662,19 +1661,6 @@ public class MethodEmitter implements Emitter {
doesNotContinueSequentially();
}
/**
* Goto, possibly when splitting is taking place. If
* a splitNode exists, we need to handle the case that the
* jump target is another method
*
* @param label destination label
* @param targetNode the node to which the destination label belongs (the label is normally a break or continue
* label)
*/
void splitAwareGoto(final LexicalContext lc, final Label label, final BreakableNode targetNode) {
_goto(label);
}
/**
* Perform a comparison of two number types that are popped from the stack
*

View File

@ -30,7 +30,6 @@ import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
import java.util.ArrayDeque;
import java.util.BitSet;
import java.util.Deque;
import jdk.nashorn.internal.IntDeque;
import jdk.nashorn.internal.ir.AccessNode;
import jdk.nashorn.internal.ir.BinaryNode;
import jdk.nashorn.internal.ir.CallNode;
@ -49,7 +48,6 @@ import jdk.nashorn.internal.ir.LoopNode;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.Optimistic;
import jdk.nashorn.internal.ir.PropertyNode;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.Symbol;
import jdk.nashorn.internal.ir.TernaryNode;
import jdk.nashorn.internal.ir.UnaryNode;
@ -70,8 +68,6 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
// Per-function bit set of program points that must never be optimistic.
final Deque<BitSet> neverOptimistic = new ArrayDeque<>();
// Per-function depth of split nodes
final IntDeque splitDepth = new IntDeque();
OptimisticTypesCalculator(final Compiler compiler) {
super(new LexicalContext());
@ -155,7 +151,6 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
return false;
}
neverOptimistic.push(new BitSet());
splitDepth.push(0);
return true;
}
@ -189,19 +184,6 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
return true;
}
@Override
public boolean enterSplitNode(final SplitNode splitNode) {
splitDepth.getAndIncrement();
return true;
}
@Override
public Node leaveSplitNode(final SplitNode splitNode) {
final int depth = splitDepth.decrementAndGet();
assert depth >= 0;
return splitNode;
}
@Override
public boolean enterVarNode(final VarNode varNode) {
tagNeverOptimistic(varNode.getName());
@ -226,16 +208,11 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
@Override
public Node leaveFunctionNode(final FunctionNode functionNode) {
neverOptimistic.pop();
final int lastSplitDepth = splitDepth.pop();
assert lastSplitDepth == 0;
return functionNode.setState(lc, CompilationState.OPTIMISTIC_TYPES_ASSIGNED);
}
@Override
public Node leaveIdentNode(final IdentNode identNode) {
if(inSplitNode()) {
return identNode;
}
final Symbol symbol = identNode.getSymbol();
if(symbol == null) {
assert identNode.isPropertyName();
@ -256,7 +233,7 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
private Expression leaveOptimistic(final Optimistic opt) {
final int pp = opt.getProgramPoint();
if(isValid(pp) && !inSplitNode() && !neverOptimistic.peek().get(pp)) {
if(isValid(pp) && !neverOptimistic.peek().get(pp)) {
return (Expression)opt.setType(compiler.getOptimisticType(opt));
}
return (Expression)opt;
@ -277,8 +254,4 @@ final class OptimisticTypesCalculator extends NodeVisitor<LexicalContext> {
tagNeverOptimistic(test.getExpression());
}
}
private boolean inSplitNode() {
return splitDepth.peek() > 0;
}
}

View File

@ -85,7 +85,7 @@ class ProgramPoints extends NodeVisitor<LexicalContext> {
@Override
public boolean enterVarNode(final VarNode varNode) {
noProgramPoint.add(varNode.getAssignmentDest());
noProgramPoint.add(varNode.getName());
return true;
}

View File

@ -0,0 +1,85 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen;
import java.util.ArrayList;
import java.util.List;
import jdk.nashorn.internal.ir.CompileUnitHolder;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
/**
* Base class for a node visitor that replaces {@link CompileUnit}s in {@link CompileUnitHolder}s.
*/
abstract class ReplaceCompileUnits extends NodeVisitor<LexicalContext> {
ReplaceCompileUnits() {
super(new LexicalContext());
}
/**
* Override to provide a replacement for an old compile unit.
* @param oldUnit the old compile unit to replace
* @return the compile unit's replacement.
*/
abstract CompileUnit getReplacement(final CompileUnit oldUnit);
CompileUnit getExistingReplacement(final CompileUnitHolder node) {
final CompileUnit oldUnit = node.getCompileUnit();
assert oldUnit != null;
final CompileUnit newUnit = getReplacement(oldUnit);
assert newUnit != null;
return newUnit;
}
@Override
public Node leaveFunctionNode(final FunctionNode node) {
return node.setCompileUnit(lc, getExistingReplacement(node)).setState(lc, CompilationState.COMPILE_UNITS_REUSED);
}
@Override
public Node leaveLiteralNode(final LiteralNode<?> node) {
if (node instanceof ArrayLiteralNode) {
final ArrayLiteralNode aln = (ArrayLiteralNode)node;
if (aln.getUnits() == null) {
return node;
}
final List<ArrayUnit> newArrayUnits = new ArrayList<>();
for (final ArrayUnit au : aln.getUnits()) {
newArrayUnits.add(new ArrayUnit(getExistingReplacement(au), au.getLo(), au.getHi()));
}
return aln.setUnits(lc, newArrayUnits);
}
return node;
}
}

View File

@ -0,0 +1,450 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen;
import static jdk.nashorn.internal.ir.Node.NO_FINISH;
import static jdk.nashorn.internal.ir.Node.NO_LINE_NUMBER;
import static jdk.nashorn.internal.ir.Node.NO_TOKEN;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.List;
import java.util.Objects;
import jdk.nashorn.internal.ir.AccessNode;
import jdk.nashorn.internal.ir.BinaryNode;
import jdk.nashorn.internal.ir.Block;
import jdk.nashorn.internal.ir.BlockLexicalContext;
import jdk.nashorn.internal.ir.BreakNode;
import jdk.nashorn.internal.ir.CallNode;
import jdk.nashorn.internal.ir.CaseNode;
import jdk.nashorn.internal.ir.ContinueNode;
import jdk.nashorn.internal.ir.Expression;
import jdk.nashorn.internal.ir.ExpressionStatement;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
import jdk.nashorn.internal.ir.GetSplitState;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.IfNode;
import jdk.nashorn.internal.ir.JumpStatement;
import jdk.nashorn.internal.ir.LiteralNode;
import jdk.nashorn.internal.ir.Node;
import jdk.nashorn.internal.ir.ReturnNode;
import jdk.nashorn.internal.ir.SetSplitState;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.SplitReturn;
import jdk.nashorn.internal.ir.Statement;
import jdk.nashorn.internal.ir.SwitchNode;
import jdk.nashorn.internal.ir.VarNode;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
import jdk.nashorn.internal.parser.Token;
import jdk.nashorn.internal.parser.TokenType;
/**
* A node visitor that replaces {@link SplitNode}s with anonymous function invocations and some additional constructs
* to support control flow across splits. By using this transformation, split functions are translated into ordinary
* JavaScript functions with nested anonymous functions. The transformations however introduce several AST nodes that
* have no JavaScript source representations ({@link GetSplitState}, {@link SetSplitState}, and {@link SplitReturn}),
* and therefore such function is no longer reparseable from its source. For that reason, split functions and their
* fragments are serialized in-memory and deserialized when they need to be recompiled either for deoptimization or
* for type specialization.
* NOTE: all {@code leave*()} methods for statements are returning their input nodes. That way, they will not mutate
* the original statement list in the block containing the statement, which is fine, as it'll be replaced by the
* lexical context when the block is left. If we returned something else (e.g. null), we'd cause a mutation in the
* enclosing block's statement list that is otherwise overwritten later anyway.
*/
final class SplitIntoFunctions extends NodeVisitor<BlockLexicalContext> {
private static final int FALLTHROUGH_STATE = -1;
private static final int RETURN_STATE = 0;
private static final int BREAK_STATE = 1;
private static final int FIRST_JUMP_STATE = 2;
private static final String THIS_NAME = CompilerConstants.THIS.symbolName();
private static final String RETURN_NAME = CompilerConstants.RETURN.symbolName();
// Used as the name of the formal parameter for passing the current value of :return symbol into a split fragment.
private static final String RETURN_PARAM_NAME = RETURN_NAME + "-in";
private final Deque<FunctionState> functionStates = new ArrayDeque<>();
private final Deque<SplitState> splitStates = new ArrayDeque<>();
private final Namespace namespace;
private boolean artificialBlock = false;
// -1 is program; we need to use negative ones
private int nextFunctionId = -2;
public SplitIntoFunctions(final Compiler compiler) {
super(new BlockLexicalContext() {
@Override
protected Block afterSetStatements(Block block) {
for(Statement stmt: block.getStatements()) {
assert !(stmt instanceof SplitNode);
}
return block;
}
});
namespace = new Namespace(compiler.getScriptEnvironment().getNamespace());
}
@Override
public boolean enterFunctionNode(final FunctionNode functionNode) {
functionStates.push(new FunctionState(functionNode));
return true;
}
@Override
public Node leaveFunctionNode(final FunctionNode functionNode) {
functionStates.pop();
return functionNode;
}
@Override
protected Node leaveDefault(final Node node) {
if (node instanceof Statement) {
appendStatement((Statement)node);
}
return node;
}
@Override
public boolean enterSplitNode(final SplitNode splitNode) {
getCurrentFunctionState().splitDepth++;
splitStates.push(new SplitState(splitNode));
return true;
}
@Override
public Node leaveSplitNode(final SplitNode splitNode) {
// Replace the split node with an anonymous function expression call.
final FunctionState fnState = getCurrentFunctionState();
final String name = splitNode.getName();
Block body = splitNode.getBody();
final int firstLineNumber = body.getFirstStatementLineNumber();
final long token = body.getToken();
final int finish = body.getFinish();
final FunctionNode originalFn = fnState.fn;
assert originalFn == lc.getCurrentFunction();
final boolean isProgram = originalFn.isProgram();
// Change SplitNode({...}) into "function () { ... }", or "function (:return-in) () { ... }" (for program)
final long newFnToken = Token.toDesc(TokenType.FUNCTION, nextFunctionId--, 0);
final FunctionNode fn = new FunctionNode(
originalFn.getSource(),
body.getFirstStatementLineNumber(),
newFnToken,
finish,
newFnToken,
NO_TOKEN,
namespace,
createIdent(name),
originalFn.getName() + "$" + name,
isProgram ? Collections.singletonList(createReturnParamIdent()) : Collections.<IdentNode>emptyList(),
FunctionNode.Kind.NORMAL,
// We only need IS_SPLIT conservatively, in case it contains any array units so that we force
// the :callee's existence, to force :scope to never be in a slot lower than 2. This is actually
// quite a horrible hack to do with CodeGenerator.fixScopeSlot not trampling other parameters
// and should go away once we no longer have array unit handling in codegen. Note however that
// we still use IS_SPLIT as the criteria in CompilationPhase.SERIALIZE_SPLIT_PHASE.
FunctionNode.IS_ANONYMOUS | FunctionNode.USES_ANCESTOR_SCOPE | FunctionNode.IS_SPLIT,
body,
CompilationState.INITIALIZED,
null
)
.setCompileUnit(lc, splitNode.getCompileUnit())
.copyCompilationState(lc, originalFn);
// Call the function:
// either "(function () { ... }).call(this)"
// or "(function (:return-in) { ... }).call(this, :return)"
// NOTE: Function.call() has optimized linking that basically does a pass-through to the function being invoked.
// NOTE: CompilationPhase.PROGRAM_POINT_PHASE happens after this, so these calls are subject to optimistic
// assumptions on their return value (when they return a value), as they should be.
final IdentNode thisIdent = createIdent(THIS_NAME);
final CallNode callNode = new CallNode(firstLineNumber, token, finish, new AccessNode(NO_TOKEN, NO_FINISH, fn, "call"),
isProgram ? Arrays.<Expression>asList(thisIdent, createReturnIdent())
: Collections.<Expression>singletonList(thisIdent),
false);
final SplitState splitState = splitStates.pop();
fnState.splitDepth--;
final Expression callWithReturn;
final boolean hasReturn = splitState.hasReturn;
if (hasReturn && fnState.splitDepth > 0) {
final SplitState parentSplit = splitStates.peek();
if (parentSplit != null) {
// Propagate hasReturn to parent split
parentSplit.hasReturn = true;
}
}
if (hasReturn || isProgram) {
// capture return value: ":return = (function () { ... })();"
callWithReturn = new BinaryNode(Token.recast(token, TokenType.ASSIGN), createReturnIdent(), callNode);
} else {
// no return value, just call : "(function () { ... })();"
callWithReturn = callNode;
}
appendStatement(new ExpressionStatement(firstLineNumber, token, finish, callWithReturn));
Statement splitStateHandler;
final List<JumpStatement> jumpStatements = splitState.jumpStatements;
final int jumpCount = jumpStatements.size();
// There are jumps (breaks or continues) that need to be propagated outside the split node. We need to
// set up a switch statement for them:
// switch(:scope.getScopeState()) { ... }
if (jumpCount > 0) {
final List<CaseNode> cases = new ArrayList<>(jumpCount + (hasReturn ? 1 : 0));
if (hasReturn) {
// If the split node also contained a return, we'll slip it as a case in the switch statement
addCase(cases, RETURN_STATE, createReturnFromSplit());
}
int i = FIRST_JUMP_STATE;
for (final JumpStatement jump: jumpStatements) {
addCase(cases, i++, enblockAndVisit(jump));
}
splitStateHandler = new SwitchNode(NO_LINE_NUMBER, token, finish, GetSplitState.INSTANCE, cases, null);
} else {
splitStateHandler = null;
}
// As the switch statement itself is breakable, an unlabelled break can't be in the switch statement,
// so we need to test for it separately.
if (splitState.hasBreak) {
// if(:scope.getScopeState() == Scope.BREAK) { break; }
splitStateHandler = makeIfStateEquals(firstLineNumber, token, finish, BREAK_STATE,
enblockAndVisit(new BreakNode(NO_LINE_NUMBER, token, finish, null)), splitStateHandler);
}
// Finally, if the split node had a return statement, but there were no external jumps, we didn't have
// the switch statement to handle the return, so we need a separate if for it.
if (hasReturn && jumpCount == 0) {
// if (:scope.getScopeState() == Scope.RETURN) { return :return; }
splitStateHandler = makeIfStateEquals(NO_LINE_NUMBER, token, finish, RETURN_STATE,
createReturnFromSplit(), splitStateHandler);
}
if (splitStateHandler != null) {
appendStatement(splitStateHandler);
}
return splitNode;
}
private static void addCase(final List<CaseNode> cases, final int i, final Block body) {
cases.add(new CaseNode(NO_TOKEN, NO_FINISH, intLiteral(i), body));
}
private static LiteralNode<Number> intLiteral(final int i) {
return LiteralNode.newInstance(NO_TOKEN, NO_FINISH, i);
}
private static Block createReturnFromSplit() {
return new Block(NO_TOKEN, NO_FINISH, createReturnReturn());
}
private static ReturnNode createReturnReturn() {
return new ReturnNode(NO_LINE_NUMBER, NO_TOKEN, NO_FINISH, createReturnIdent());
}
private static IdentNode createReturnIdent() {
return createIdent(RETURN_NAME);
}
private static IdentNode createReturnParamIdent() {
return createIdent(RETURN_PARAM_NAME);
}
private static IdentNode createIdent(final String name) {
return new IdentNode(NO_TOKEN, NO_FINISH, name);
}
private Block enblockAndVisit(final JumpStatement jump) {
artificialBlock = true;
final Block block = (Block)new Block(NO_TOKEN, NO_FINISH, jump).accept(this);
artificialBlock = false;
return block;
}
private static IfNode makeIfStateEquals(final int lineNumber, final long token, final int finish,
final int value, final Block pass, final Statement fail) {
return new IfNode(lineNumber, token, finish,
new BinaryNode(Token.recast(token, TokenType.EQ_STRICT),
GetSplitState.INSTANCE, intLiteral(value)),
pass,
fail == null ? null : new Block(NO_TOKEN, NO_FINISH, fail));
}
@Override
public boolean enterVarNode(VarNode varNode) {
if (!inSplitNode()) {
return super.enterVarNode(varNode);
}
assert !varNode.isBlockScoped(); //TODO: we must handle these too, but we currently don't
final Expression init = varNode.getInit();
if (varNode.isAnonymousFunctionDeclaration()) {
// We ain't moving anonymous function declarations.
return super.enterVarNode(varNode);
}
// Move a declaration-only var statement to the top of the outermost function.
getCurrentFunctionState().varStatements.add(varNode.setInit(null));
// If it had an initializer, replace it with an assignment expression statement. Note that "var" is a
// statement, so it doesn't contribute to :return of the programs, therefore we are _not_ adding a
// ":return = ..." assignment around the original assignment.
if (init != null) {
final long token = Token.recast(varNode.getToken(), TokenType.ASSIGN);
new ExpressionStatement(varNode.getLineNumber(), token, varNode.getFinish(),
new BinaryNode(token, varNode.getName(), varNode.getInit())).accept(this);
}
return false;
}
@Override
public Node leaveBlock(final Block block) {
if (!artificialBlock) {
if (lc.isFunctionBody()) {
// Prepend declaration-only var statements to the top of the statement list.
lc.prependStatements(getCurrentFunctionState().varStatements);
} else if (lc.isSplitBody()) {
appendSplitReturn(FALLTHROUGH_STATE, NO_LINE_NUMBER);
if (getCurrentFunctionState().fn.isProgram()) {
// If we're splitting the program, make sure every shard ends with "return :return" and
// begins with ":return = :return-in;".
lc.prependStatement(new ExpressionStatement(NO_LINE_NUMBER, NO_TOKEN, NO_FINISH,
new BinaryNode(Token.toDesc(TokenType.ASSIGN, 0, 0), createReturnIdent(), createReturnParamIdent())));
}
}
}
return block;
}
@Override
public Node leaveBreakNode(final BreakNode breakNode) {
return leaveJumpNode(breakNode);
}
@Override
public Node leaveContinueNode(final ContinueNode continueNode) {
return leaveJumpNode(continueNode);
}
private JumpStatement leaveJumpNode(final JumpStatement jump) {
if (inSplitNode()) {
final SplitState splitState = getCurrentSplitState();
final SplitNode splitNode = splitState.splitNode;
if (lc.isExternalTarget(splitNode, jump.getTarget(lc))) {
appendSplitReturn(splitState.getSplitStateIndex(jump), jump.getLineNumber());
return jump;
}
}
appendStatement(jump);
return jump;
}
private void appendSplitReturn(final int splitState, final int lineNumber) {
appendStatement(new SetSplitState(splitState, lineNumber));
if (getCurrentFunctionState().fn.isProgram()) {
// If we're splitting the program, make sure every fragment passes back :return
appendStatement(createReturnReturn());
} else {
appendStatement(SplitReturn.INSTANCE);
}
}
@Override
public Node leaveReturnNode(final ReturnNode returnNode) {
if(inSplitNode()) {
appendStatement(new SetSplitState(RETURN_STATE, returnNode.getLineNumber()));
getCurrentSplitState().hasReturn = true;
}
appendStatement(returnNode);
return returnNode;
}
private void appendStatement(final Statement statement) {
lc.appendStatement(statement);
}
private boolean inSplitNode() {
return getCurrentFunctionState().splitDepth > 0;
}
private FunctionState getCurrentFunctionState() {
return functionStates.peek();
}
private SplitState getCurrentSplitState() {
return splitStates.peek();
}
private static class FunctionState {
final FunctionNode fn;
final List<Statement> varStatements = new ArrayList<>();
int splitDepth;
FunctionState(final FunctionNode fn) {
this.fn = fn;
}
}
private static class SplitState {
final SplitNode splitNode;
boolean hasReturn;
boolean hasBreak;
final List<JumpStatement> jumpStatements = new ArrayList<>();
int getSplitStateIndex(final JumpStatement jump) {
if (jump instanceof BreakNode && jump.getLabelName() == null) {
// Unlabelled break is a special case
hasBreak = true;
return BREAK_STATE;
}
int i = 0;
for(final JumpStatement exJump: jumpStatements) {
if (jump.getClass() == exJump.getClass() && Objects.equals(jump.getLabelName(), exJump.getLabelName())) {
return i + FIRST_JUMP_STATE;
}
++i;
}
jumpStatements.add(jump);
return i + FIRST_JUMP_STATE;
}
SplitState(final SplitNode splitNode) {
this.splitNode = splitNode;
}
}
}

View File

@ -1,102 +0,0 @@
/*
* Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.codegen;
import java.util.ArrayList;
import java.util.List;
import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.BreakableNode;
import jdk.nashorn.internal.ir.LexicalContext;
import jdk.nashorn.internal.ir.SplitNode;
/**
* Emitter used for splitting methods. Needs to keep track of if there are jump targets
* outside the current split node. All external jump targets encountered at method
* emission are logged, and {@code CodeGenerator#leaveSplitNode(SplitNode)} creates
* an appropriate jump table when the SplitNode has been iterated through
*/
public class SplitMethodEmitter extends MethodEmitter {
private final SplitNode splitNode;
private final List<Label> externalTargets = new ArrayList<>();
/**
* In addition to external target labels, we need to track the target breakables too as the code generator needs to
* be able to correctly pop the scopes to the target, see {@link CodeGenerator#leaveSplitNode(SplitNode)}. Note that
* this is only used within CodeGenerator, which doesn't mutate the AST, so keeping pointers to other nodes is not
* incorrect.
*/
private final List<BreakableNode> externalTargetNodes = new ArrayList<>();
SplitMethodEmitter(final ClassEmitter classEmitter, final MethodVisitor mv, final SplitNode splitNode) {
super(classEmitter, mv);
this.splitNode = splitNode;
}
@Override
void splitAwareGoto(final LexicalContext lc, final Label label, final BreakableNode targetNode) {
assert splitNode != null;
final int index = findExternalTarget(lc, label, targetNode);
if (index >= 0) {
setSplitState(index + 1); // 0 is ordinary return
final Type retType = functionNode.getReturnType();
loadUndefined(retType);
_return(retType);
} else {
super.splitAwareGoto(lc, label, targetNode);
}
}
private int findExternalTarget(final LexicalContext lc, final Label label, final BreakableNode targetNode) {
final int index = externalTargets.indexOf(label);
if (index >= 0) {
return index;
}
if (lc.isExternalTarget(splitNode, targetNode)) {
externalTargets.add(label);
externalTargetNodes.add(targetNode);
return externalTargets.size() - 1;
}
return -1;
}
@Override
MethodEmitter registerReturn() {
setHasReturn();
return setSplitState(0);
}
final List<Label> getExternalTargets() {
return externalTargets;
}
final List<BreakableNode> getExternalTargetNodes() {
return externalTargetNodes;
}
}

View File

@ -108,6 +108,16 @@ public class BlockLexicalContext extends LexicalContext {
return statement;
}
/**
* Prepend a list of statement to the block being generated
* @param statements a list of statements to prepend
*/
public void prependStatements(final List<Statement> statements) {
assert statements != null;
sstack.peek().addAll(0, statements);
}
/**
* Get the last statement that was emitted into a block
* @return the last statement emitted

View File

@ -31,6 +31,7 @@ import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALL
import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_TRACE_ENTEREXIT;
import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_TRACE_MISSES;
import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_TRACE_VALUES;
import java.util.Collections;
import java.util.EnumSet;
import java.util.Iterator;
@ -109,7 +110,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
}
/** Source of entity. */
private final Source source;
private transient final Source source;
/**
* Opaque object representing parser state at the end of the function. Used when reparsing outer functions
@ -143,7 +144,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
private final long lastToken;
/** Method's namespace. */
private final Namespace namespace;
private transient final Namespace namespace;
/** Current compilation state */
@Ignore
@ -209,31 +210,23 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
/** Are we vararg, but do we just pass the arguments along to apply or call */
public static final int HAS_APPLY_TO_CALL_SPECIALIZATION = 1 << 12;
/** Does this function explicitly use the {@link CompilerConstants#RETURN} symbol? Some functions are known to
* always use the return symbol, namely a function that is a program (as it must track its last executed expression
* statement's value) as well as functions that are split (to communicate return values from inner to outer
* partitions). Other functions normally don't use the return symbol (so we optimize away its slot), except in some
* very special cases, e.g. when containing a return statement in a finally block. These special cases set this
* flag. */
public static final int USES_RETURN_SYMBOL = 1 << 13;
/**
* Is this function the top-level program?
*/
public static final int IS_PROGRAM = 1 << 14;
public static final int IS_PROGRAM = 1 << 13;
/**
* Flag indicating whether this function uses the local variable symbol for itself. Only named function expressions
* can have this flag set if they reference themselves (e.g. "(function f() { return f })". Declared functions will
* use the symbol in their parent scope instead when they reference themselves by name.
*/
public static final int USES_SELF_SYMBOL = 1 << 15;
public static final int USES_SELF_SYMBOL = 1 << 14;
/** Does this function use the "this" keyword? */
public static final int USES_THIS = 1 << 16;
public static final int USES_THIS = 1 << 15;
/** Is this declared in a dynamic context */
public static final int IN_DYNAMIC_CONTEXT = 1 << 17;
public static final int IN_DYNAMIC_CONTEXT = 1 << 16;
/**
* The following flags are derived from directive comments within this function.
@ -241,28 +234,28 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
*/
/** parser, print parse tree */
public static final int IS_PRINT_PARSE = 1 << 18;
public static final int IS_PRINT_PARSE = 1 << 17;
/** parser, print lower parse tree */
public static final int IS_PRINT_LOWER_PARSE = 1 << 19;
public static final int IS_PRINT_LOWER_PARSE = 1 << 18;
/** parser, print AST */
public static final int IS_PRINT_AST = 1 << 20;
public static final int IS_PRINT_AST = 1 << 19;
/** parser, print lower AST */
public static final int IS_PRINT_LOWER_AST = 1 << 21;
public static final int IS_PRINT_LOWER_AST = 1 << 20;
/** parser, print symbols */
public static final int IS_PRINT_SYMBOLS = 1 << 22;
public static final int IS_PRINT_SYMBOLS = 1 << 21;
// callsite tracing, profiling within this function
/** profile callsites in this function? */
public static final int IS_PROFILE = 1 << 23;
public static final int IS_PROFILE = 1 << 22;
/** trace callsite enterexit in this function? */
public static final int IS_TRACE_ENTEREXIT = 1 << 24;
public static final int IS_TRACE_ENTEREXIT = 1 << 23;
/** trace callsite misses in this function? */
public static final int IS_TRACE_MISSES = 1 << 25;
public static final int IS_TRACE_MISSES = 1 << 24;
/** trace callsite values in this function? */
public static final int IS_TRACE_VALUES = 1 << 26;
public static final int IS_TRACE_VALUES = 1 << 25;
/**
* Whether this function needs the callee {@link ScriptFunction} instance passed to its code as a
@ -270,7 +263,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
* Rather, it is always calculated (see {@link #needsCallee()}). {@link RecompilableScriptFunctionData}
* will, however, cache the value of this flag.
*/
public static final int NEEDS_CALLEE = 1 << 27;
public static final int NEEDS_CALLEE = 1 << 26;
/** extension callsite flags mask */
public static final int EXTENSION_CALLSITE_FLAGS = IS_PRINT_PARSE |
@ -287,8 +280,8 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
/** Does this function potentially need "arguments"? Note that this is not a full test, as further negative check of REDEFINES_ARGS is needed. */
private static final int MAYBE_NEEDS_ARGUMENTS = USES_ARGUMENTS | HAS_EVAL;
/** Does this function need the parent scope? It needs it if either it or its descendants use variables from it, or have a deep eval. */
private static final int NEEDS_PARENT_SCOPE = USES_ANCESTOR_SCOPE | HAS_DEEP_EVAL;
/** Does this function need the parent scope? It needs it if either it or its descendants use variables from it, or have a deep eval, or it's the program. */
public static final int NEEDS_PARENT_SCOPE = USES_ANCESTOR_SCOPE | HAS_DEEP_EVAL | IS_PROGRAM;
/** What is the return type of this function? */
private Type returnType = Type.UNKNOWN;
@ -360,7 +353,8 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
final Block body,
final List<IdentNode> parameters,
final int thisProperties,
final Class<?> rootClass) {
final Class<?> rootClass,
final Source source, Namespace namespace) {
super(functionNode);
this.endParserState = endParserState;
@ -375,11 +369,11 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
this.parameters = parameters;
this.thisProperties = thisProperties;
this.rootClass = rootClass;
this.source = source;
this.namespace = namespace;
// the fields below never change - they are final and assigned in constructor
this.source = functionNode.source;
this.ident = functionNode.ident;
this.namespace = functionNode.namespace;
this.kind = functionNode.kind;
this.firstToken = functionNode.firstToken;
}
@ -444,6 +438,39 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
return source;
}
/**
* Sets the source and namespace for this function. It can only set a non-null source and namespace for a function
* that currently has both a null source and a null namespace. This is used to re-set the source and namespace for
* a deserialized function node.
* @param source the source for the function.
* @param namespace the namespace for the function
* @return a new function node with the set source and namespace
* @throws IllegalArgumentException if the specified source or namespace is null
* @throws IllegalStateException if the function already has either a source or namespace set.
*/
public FunctionNode initializeDeserialized(final Source source, final Namespace namespace) {
if (source == null || namespace == null) {
throw new IllegalArgumentException();
} else if (this.source == source && this.namespace == namespace) {
return this;
} else if (this.source != null || this.namespace != null) {
throw new IllegalStateException();
}
return new FunctionNode(
this,
lastToken,
endParserState,
flags,
name,
returnType,
compileUnit,
compilationState,
body,
parameters,
thisProperties,
rootClass, source, namespace);
}
/**
* Get the unique ID for this function within the script file.
* @return the id
@ -545,6 +572,28 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
}
final EnumSet<CompilationState> newState = EnumSet.copyOf(this.compilationState);
newState.add(state);
return setCompilationState(lc, newState);
}
/**
* Copy a compilation state from an original function to this function. Used when creating synthetic
* function nodes by the splitter.
*
* @param lc lexical context
* @param original the original function node to copy compilation state from
* @return function node or a new one if state was changed
*/
public FunctionNode copyCompilationState(final LexicalContext lc, final FunctionNode original) {
final EnumSet<CompilationState> origState = original.compilationState;
if (!AssertsEnabled.assertsEnabled() || this.compilationState.containsAll(origState)) {
return this;
}
final EnumSet<CompilationState> newState = EnumSet.copyOf(this.compilationState);
newState.addAll(origState);
return setCompilationState(lc, newState);
}
private FunctionNode setCompilationState(final LexicalContext lc, final EnumSet<CompilationState> compilationState) {
return Node.replaceInLexicalContext(
lc,
this,
@ -556,13 +605,14 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
name,
returnType,
compileUnit,
newState,
compilationState,
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
* Create a unique name in the namespace of this FunctionNode
* @param base prefix for name
@ -632,7 +682,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
@Override
@ -707,17 +757,10 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
* @return true if the function's generated Java method needs a {@code callee} parameter.
*/
public boolean needsCallee() {
// NOTE: we only need isSplit() here to ensure that :scope can never drop below slot 2 for splitting array units.
return needsParentScope() || usesSelfSymbol() || isSplit() || (needsArguments() && !isStrict()) || hasOptimisticApplyToCall();
}
/**
* Check if this function uses the return symbol
* @return true if uses the return symbol
*/
public boolean usesReturnSymbol() {
return isProgram() || isSplit() || getFlag(USES_RETURN_SYMBOL);
}
/**
* Return {@code true} if this function makes use of the {@code this} object.
*
@ -780,7 +823,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
@ -848,7 +891,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
* @return true if the function needs parent scope.
*/
public boolean needsParentScope() {
return getFlag(NEEDS_PARENT_SCOPE) || isProgram();
return getFlag(NEEDS_PARENT_SCOPE);
}
/**
@ -876,7 +919,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
@ -953,7 +996,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
@ -967,9 +1010,9 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
}
/**
* Checks if this function is a sub-function generated by splitting a larger one
* Checks if this function is split into several smaller fragments.
*
* @return true if this function is split from a larger one
* @return true if this function is split into several smaller fragments.
*/
public boolean isSplit() {
return getFlag(IS_SPLIT);
@ -1019,7 +1062,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
@ -1098,7 +1141,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass
rootClass, source, namespace
));
}
@ -1146,7 +1189,7 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
/**
@ -1202,6 +1245,6 @@ public final class FunctionNode extends LexicalContextExpression implements Flag
body,
parameters,
thisProperties,
rootClass));
rootClass, source, namespace));
}
}

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.ir;
import java.util.function.Function;
import jdk.nashorn.internal.codegen.CompilerConstants;
import jdk.nashorn.internal.codegen.types.Type;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
import jdk.nashorn.internal.runtime.Scope;
/**
* Synthetic AST node that represents loading of the scope object and invocation of the {@link Scope#getSplitState()}
* method on it. It has no JavaScript source representation and only occurs in synthetic functions created by
* the split-into-functions transformation.
*/
public final class GetSplitState extends Expression {
private static final long serialVersionUID = 1L;
/** The sole instance of this AST node. */
public final static GetSplitState INSTANCE = new GetSplitState();
private GetSplitState() {
super(NO_TOKEN, NO_FINISH);
}
@Override
public Type getType(final Function<Symbol, Type> localVariableTypes) {
return Type.INT;
}
@Override
public Node accept(final NodeVisitor<? extends LexicalContext> visitor) {
return visitor.enterGetSplitState(this) ? visitor.leaveGetSplitState(this) : this;
}
@Override
public void toString(final StringBuilder sb, final boolean printType) {
if (printType) {
sb.append("{I}");
}
sb.append(CompilerConstants.SCOPE.symbolName()).append('.').append(Scope.GET_SPLIT_STATE.name()).append("()");
}
private Object readResolve() {
return INSTANCE;
}
}

View File

@ -439,6 +439,14 @@ public class LexicalContext {
return getParentBlock() == null;
}
/**
* Is the topmost lexical context element body of a SplitNode?
* @return true if it's the body of a split node.
*/
public boolean isSplitBody() {
return sp >= 2 && stack[sp - 1] instanceof Block && stack[sp - 2] instanceof SplitNode;
}
/**
* Get the parent function for a function in the lexical context
* @param functionNode function for which to get parent
@ -472,9 +480,6 @@ public class LexicalContext {
final LexicalContextNode node = iter.next();
if (node == until) {
break;
} else if (node instanceof SplitNode) {
// Don't bother popping scopes if we're going to do a return from a split method anyway.
return 0;
}
assert !(node instanceof FunctionNode); // Can't go outside current function
if (node instanceof WithNode || node instanceof Block && ((Block)node).needsScope()) {

View File

@ -672,13 +672,13 @@ public abstract class LiteralNode<T> extends Expression implements PropertyKey {
private static final class ArrayLiteralInitializer {
static ArrayLiteralNode initialize(final ArrayLiteralNode node) {
final Type elementType = computeElementType(node.value, node.elementType);
final Type elementType = computeElementType(node.value);
final int[] postsets = computePostsets(node.value);
final Object presets = computePresets(node.value, elementType, postsets);
return new ArrayLiteralNode(node, node.value, elementType, postsets, presets, node.units);
}
private static Type computeElementType(final Expression[] value, final Type elementType) {
private static Type computeElementType(final Expression[] value) {
Type widestElementType = Type.INT;
for (final Expression elem : value) {

View File

@ -38,6 +38,15 @@ import jdk.nashorn.internal.parser.TokenType;
public abstract class Node implements Cloneable, Serializable {
private static final long serialVersionUID = 1L;
/** Constant used for synthetic AST nodes that have no line number. */
public static final int NO_LINE_NUMBER = -1;
/** Constant used for synthetic AST nodes that have no token. */
public static final long NO_TOKEN = 0L;
/** Constant used for synthetic AST nodes that have no finish. */
public static final int NO_FINISH = 0;
/** Start of source range. */
protected final int start;

View File

@ -0,0 +1,70 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.ir;
import jdk.nashorn.internal.codegen.CompilerConstants;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
import jdk.nashorn.internal.runtime.Scope;
/**
* Synthetic AST node that represents loading of the scope object and invocation of the {@link Scope#setSplitState(int)}
* method on it. It has no JavaScript source representation and only occurs in synthetic functions created by
* the split-into-functions transformation.
*/
public final class SetSplitState extends Statement {
private static final long serialVersionUID = 1L;
private final int state;
/**
* Creates a new split state setter
* @param state the state to set
* @param lineNumber the line number where it is inserted
*/
public SetSplitState(final int state, final int lineNumber) {
super(lineNumber, NO_TOKEN, NO_FINISH);
this.state = state;
}
/**
* Returns the state this setter sets.
* @return the state this setter sets.
*/
public int getState() {
return state;
}
@Override
public Node accept(final NodeVisitor<? extends LexicalContext> visitor) {
return visitor.enterSetSplitState(this) ? visitor.leaveSetSplitState(this) : this;
}
@Override
public void toString(final StringBuilder sb, final boolean printType) {
sb.append(CompilerConstants.SCOPE.symbolName()).append('.').append(Scope.SET_SPLIT_STATE.name())
.append('(').append(state).append(");");
}
}

View File

@ -25,13 +25,10 @@
package jdk.nashorn.internal.ir;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.io.IOException;
import java.io.NotSerializableException;
import java.io.ObjectOutputStream;
import jdk.nashorn.internal.codegen.CompileUnit;
import jdk.nashorn.internal.codegen.Label;
import jdk.nashorn.internal.ir.annotations.Immutable;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
@ -39,7 +36,7 @@ import jdk.nashorn.internal.ir.visitor.NodeVisitor;
* Node indicating code is split across classes.
*/
@Immutable
public class SplitNode extends LexicalContextStatement implements Labels, CompileUnitHolder {
public class SplitNode extends LexicalContextStatement implements CompileUnitHolder {
private static final long serialVersionUID = 1L;
/** Split node method name. */
@ -51,8 +48,6 @@ public class SplitNode extends LexicalContextStatement implements Labels, Compil
/** Body of split code. */
private final Block body;
private Map<Label, JoinPredecessor> jumps;
/**
* Constructor
*
@ -67,19 +62,18 @@ public class SplitNode extends LexicalContextStatement implements Labels, Compil
this.compileUnit = compileUnit;
}
private SplitNode(final SplitNode splitNode, final Block body, final CompileUnit compileUnit, final Map<Label, JoinPredecessor> jumps) {
private SplitNode(final SplitNode splitNode, final Block body, final CompileUnit compileUnit) {
super(splitNode);
this.name = splitNode.name;
this.body = body;
this.compileUnit = compileUnit;
this.jumps = jumps;
}
/**
* Get the body for this split node - i.e. the actual code it encloses
* @return body for split node
*/
public Node getBody() {
public Block getBody() {
return body;
}
@ -87,7 +81,7 @@ public class SplitNode extends LexicalContextStatement implements Labels, Compil
if (this.body == body) {
return this;
}
return Node.replaceInLexicalContext(lc, this, new SplitNode(this, body, compileUnit, jumps));
return Node.replaceInLexicalContext(lc, this, new SplitNode(this, body, compileUnit));
}
@Override
@ -133,33 +127,12 @@ public class SplitNode extends LexicalContextStatement implements Labels, Compil
if (this.compileUnit == compileUnit) {
return this;
}
return Node.replaceInLexicalContext(lc, this, new SplitNode(this, body, compileUnit, jumps));
return Node.replaceInLexicalContext(lc, this, new SplitNode(this, body, compileUnit));
}
/**
* Adds a jump that crosses this split node's boundary (it originates within the split node, and goes to a target
* outside of it).
* @param jumpOrigin the join predecessor that's the origin of the jump
* @param targetLabel the label that's the target of the jump.
*/
public void addJump(final JoinPredecessor jumpOrigin, final Label targetLabel) {
if (jumps == null) {
jumps = new HashMap<>();
}
jumps.put(targetLabel, jumpOrigin);
}
/**
* Returns the jump origin within this split node for a target.
* @param targetLabel the target for which a jump origin is sought.
* @return the jump origin, or null.
*/
public JoinPredecessor getJumpOrigin(final Label targetLabel) {
return jumps == null ? null : jumps.get(targetLabel);
}
@Override
public List<Label> getLabels() {
return Collections.unmodifiableList(new ArrayList<>(jumps.keySet()));
private void writeObject(final ObjectOutputStream out) throws IOException {
// We are only serializing the AST after we run SplitIntoFunctions; no SplitNodes can remain for the
// serialization.
throw new NotSerializableException(getClass().getName());
}
}

View File

@ -0,0 +1,64 @@
/*
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.ir;
import jdk.nashorn.internal.ir.visitor.NodeVisitor;
/**
* Synthetic AST node that represents return from a split fragment of a split function for control flow reasons (break
* or continue into a target outside the current fragment). It has no JavaScript source representation and only occurs
* in synthetic functions created by the split-into-functions transformation. It is different from a return node in
* that the return value is irrelevant, and doesn't affect the function's return type calculation.
*/
public final class SplitReturn extends Statement {
private static final long serialVersionUID = 1L;
/** The sole instance of this AST node. */
public static final SplitReturn INSTANCE = new SplitReturn();
private SplitReturn() {
super(NO_LINE_NUMBER, NO_TOKEN, NO_FINISH);
}
@Override
public boolean isTerminal() {
return true;
}
@Override
public Node accept(final NodeVisitor<? extends LexicalContext> visitor) {
return visitor.enterSplitReturn(this) ? visitor.leaveSplitReturn(this) : this;
}
@Override
public void toString(StringBuilder sb, boolean printType) {
sb.append(":splitreturn;");
}
private Object readResolve() {
return INSTANCE;
}
}

View File

@ -97,7 +97,7 @@ public final class Symbol implements Comparable<Symbol> {
private int firstSlot = -1;
/** Field number in scope or property; array index in varargs when not using arguments object. */
private int fieldIndex;
private int fieldIndex = -1;
/** Number of times this symbol is used in code */
private int useCount;
@ -135,28 +135,15 @@ public final class Symbol implements Comparable<Symbol> {
*
* @param name name of symbol
* @param flags symbol flags
* @param slot bytecode slot for this symbol
*/
protected Symbol(final String name, final int flags, final int slot) {
public Symbol(final String name, final int flags) {
this.name = name;
this.flags = flags;
this.firstSlot = slot;
this.fieldIndex = -1;
if(shouldTrace()) {
trace("CREATE SYMBOL " + name);
}
}
/**
* Constructor
*
* @param name name of symbol
* @param flags symbol flags
*/
public Symbol(final String name, final int flags) {
this(name, flags, -1);
}
private static String align(final String string, final int max) {
final StringBuilder sb = new StringBuilder();
sb.append(string.substring(0, Math.min(string.length(), max)));

View File

@ -38,6 +38,7 @@ import jdk.nashorn.internal.ir.EmptyNode;
import jdk.nashorn.internal.ir.ExpressionStatement;
import jdk.nashorn.internal.ir.ForNode;
import jdk.nashorn.internal.ir.FunctionNode;
import jdk.nashorn.internal.ir.GetSplitState;
import jdk.nashorn.internal.ir.IdentNode;
import jdk.nashorn.internal.ir.IfNode;
import jdk.nashorn.internal.ir.IndexNode;
@ -50,7 +51,9 @@ import jdk.nashorn.internal.ir.ObjectNode;
import jdk.nashorn.internal.ir.PropertyNode;
import jdk.nashorn.internal.ir.ReturnNode;
import jdk.nashorn.internal.ir.RuntimeNode;
import jdk.nashorn.internal.ir.SetSplitState;
import jdk.nashorn.internal.ir.SplitNode;
import jdk.nashorn.internal.ir.SplitReturn;
import jdk.nashorn.internal.ir.SwitchNode;
import jdk.nashorn.internal.ir.TernaryNode;
import jdk.nashorn.internal.ir.ThrowNode;
@ -389,6 +392,26 @@ public abstract class NodeVisitor<T extends LexicalContext> {
return leaveDefault(functionNode);
}
/**
* Callback for entering a {@link GetSplitState}.
*
* @param getSplitState the get split state expression
* @return true if traversal should continue and node children be traversed, false otherwise
*/
public boolean enterGetSplitState(final GetSplitState getSplitState) {
return enterDefault(getSplitState);
}
/**
* Callback for leaving a {@link GetSplitState}.
*
* @param getSplitState the get split state expression
* @return processed node, which will replace the original one, or the original node
*/
public Node leaveGetSplitState(final GetSplitState getSplitState) {
return leaveDefault(getSplitState);
}
/**
* Callback for entering an IdentNode
*
@ -569,6 +592,26 @@ public abstract class NodeVisitor<T extends LexicalContext> {
return leaveDefault(runtimeNode);
}
/**
* Callback for entering a {@link SetSplitState}.
*
* @param setSplitState the set split state statement
* @return true if traversal should continue and node children be traversed, false otherwise
*/
public boolean enterSetSplitState(final SetSplitState setSplitState) {
return enterDefault(setSplitState);
}
/**
* Callback for leaving a {@link SetSplitState}.
*
* @param setSplitState the set split state expression
* @return processed node, which will replace the original one, or the original node
*/
public Node leaveSetSplitState(final SetSplitState setSplitState) {
return leaveDefault(setSplitState);
}
/**
* Callback for entering a SplitNode
*
@ -589,6 +632,26 @@ public abstract class NodeVisitor<T extends LexicalContext> {
return leaveDefault(splitNode);
}
/**
* Callback for entering a SplitReturn
*
* @param splitReturn the node
* @return true if traversal should continue and node children be traversed, false otherwise
*/
public boolean enterSplitReturn(final SplitReturn splitReturn) {
return enterDefault(splitReturn);
}
/**
* Callback for leaving a SplitReturn
*
* @param splitReturn the node
* @return processed node, which will replace the original one, or the original node
*/
public Node leaveSplitReturn(final SplitReturn splitReturn) {
return leaveDefault(splitReturn);
}
/**
* Callback for entering a SwitchNode
*

View File

@ -0,0 +1,47 @@
/*
* Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package jdk.nashorn.internal.runtime;
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.util.zip.InflaterInputStream;
import jdk.nashorn.internal.ir.FunctionNode;
/**
* This static utility class performs deserialization of FunctionNode ASTs from a byte array.
* The format is a standard Java serialization stream, deflated.
*/
final class AstDeserializer {
static FunctionNode deserialize(final byte[] serializedAst) {
try {
return (FunctionNode)new ObjectInputStream(new InflaterInputStream(new ByteArrayInputStream(
serializedAst))).readObject();
} catch (final ClassNotFoundException | IOException e) {
// This is internal, can't happen
throw new AssertionError("Unexpected exception deserializing function", e);
}
}
}

View File

@ -27,6 +27,7 @@ package jdk.nashorn.internal.runtime;
import static jdk.nashorn.internal.lookup.Lookup.MH;
import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
import java.lang.invoke.CallSite;
import java.lang.invoke.MethodHandle;
import java.lang.invoke.MethodHandles;
@ -786,6 +787,7 @@ final class CompiledFunction {
// isn't available, we'll use the old one bound into the call site.
final OptimismInfo effectiveOptInfo = currentOptInfo != null ? currentOptInfo : oldOptInfo;
FunctionNode fn = effectiveOptInfo.reparse();
final boolean serialized = effectiveOptInfo.isSerialized();
final Compiler compiler = effectiveOptInfo.getCompiler(fn, callSiteType, re); //set to non rest-of
if (!shouldRecompile) {
@ -793,17 +795,17 @@ final class CompiledFunction {
// recompiled a deoptimized version for an inner invocation.
// We still need to do the rest of from the beginning
logRecompile("Rest-of compilation [STANDALONE] ", fn, callSiteType, effectiveOptInfo.invalidatedProgramPoints);
return restOfHandle(effectiveOptInfo, compiler.compile(fn, CompilationPhases.COMPILE_ALL_RESTOF), currentOptInfo != null);
return restOfHandle(effectiveOptInfo, compiler.compile(fn, serialized ? CompilationPhases.COMPILE_SERIALIZED_RESTOF : CompilationPhases.COMPILE_ALL_RESTOF), currentOptInfo != null);
}
logRecompile("Deoptimizing recompilation (up to bytecode) ", fn, callSiteType, effectiveOptInfo.invalidatedProgramPoints);
fn = compiler.compile(fn, CompilationPhases.COMPILE_UPTO_BYTECODE);
fn = compiler.compile(fn, serialized ? CompilationPhases.RECOMPILE_SERIALIZED_UPTO_BYTECODE : CompilationPhases.COMPILE_UPTO_BYTECODE);
log.info("Reusable IR generated");
// compile the rest of the function, and install it
log.info("Generating and installing bytecode from reusable IR...");
logRecompile("Rest-of compilation [CODE PIPELINE REUSE] ", fn, callSiteType, effectiveOptInfo.invalidatedProgramPoints);
final FunctionNode normalFn = compiler.compile(fn, CompilationPhases.COMPILE_FROM_BYTECODE);
final FunctionNode normalFn = compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL);
if (effectiveOptInfo.data.usePersistentCodeCache()) {
final RecompilableScriptFunctionData data = effectiveOptInfo.data;
@ -829,7 +831,7 @@ final class CompiledFunction {
constructor = null; // Will be regenerated when needed
log.info("Done: ", invoker);
final MethodHandle restOf = restOfHandle(effectiveOptInfo, compiler.compile(fn, CompilationPhases.COMPILE_FROM_BYTECODE_RESTOF), canBeDeoptimized);
final MethodHandle restOf = restOfHandle(effectiveOptInfo, compiler.compile(fn, CompilationPhases.GENERATE_BYTECODE_AND_INSTALL_RESTOF), canBeDeoptimized);
// Note that we only adjust the switch point after we set the invoker/constructor. This is important.
if (canBeDeoptimized) {
@ -921,6 +923,10 @@ final class CompiledFunction {
FunctionNode reparse() {
return data.reparse();
}
boolean isSerialized() {
return data.isSerialized();
}
}
@SuppressWarnings("unused")

View File

@ -43,6 +43,7 @@ import jdk.nashorn.internal.codegen.Compiler;
import jdk.nashorn.internal.codegen.Compiler.CompilationPhases;
import jdk.nashorn.internal.codegen.CompilerConstants;
import jdk.nashorn.internal.codegen.FunctionSignature;
import jdk.nashorn.internal.codegen.Namespace;
import jdk.nashorn.internal.codegen.ObjectClassGenerator.AllocatorDescriptor;
import jdk.nashorn.internal.codegen.OptimisticTypesPersistence;
import jdk.nashorn.internal.codegen.TypeMap;
@ -79,6 +80,9 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
/** Source from which FunctionNode was parsed. */
private transient Source source;
/** Serialized, compressed form of the AST. Used by split functions as they can't be reparsed from source. */
private final byte[] serializedAst;
/** Token of this function within the source. */
private final long token;
@ -127,6 +131,7 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
* @param nestedFunctions nested function map
* @param externalScopeDepths external scope depths
* @param internalSymbols internal symbols to method, defined in its scope
* @param serializedAst a serialized AST representation. Normally only used for split functions.
*/
public RecompilableScriptFunctionData(
final FunctionNode functionNode,
@ -134,7 +139,8 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
final AllocatorDescriptor allocationDescriptor,
final Map<Integer, RecompilableScriptFunctionData> nestedFunctions,
final Map<String, Integer> externalScopeDepths,
final Set<String> internalSymbols) {
final Set<String> internalSymbols,
final byte[] serializedAst) {
super(functionName(functionNode),
Math.min(functionNode.getParameters().size(), MAX_ARITY),
@ -158,6 +164,7 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
nfn.setParent(this);
}
this.serializedAst = serializedAst;
createLogger();
}
@ -212,10 +219,7 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
*/
public int getExternalSymbolDepth(final String symbolName) {
final Integer depth = externalScopeDepths.get(symbolName);
if (depth == null) {
return -1;
}
return depth;
return depth == null ? -1 : depth;
}
/**
@ -354,8 +358,15 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
return allocationStrategy.allocate(map);
}
boolean isSerialized() {
return serializedAst != null;
}
FunctionNode reparse() {
// NOTE: If we aren't recompiling the top-level program, we decrease functionNodeId 'cause we'll have a synthetic program node
if (isSerialized()) {
return deserialize();
}
final int descPosition = Token.descPosition(token);
final Context context = Context.getContextTrusted();
final Parser parser = new Parser(
@ -363,8 +374,10 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
source,
new Context.ThrowErrorManager(),
isStrict(),
// source starts at line 0, so even though lineNumber is the correct declaration line, back off
// one to make it exclusive
lineNumber - 1,
context.getLogger(Parser.class)); // source starts at line 0, so even though lineNumber is the correct declaration line, back off one to make it exclusive
context.getLogger(Parser.class));
if (getFunctionFlag(FunctionNode.IS_ANONYMOUS)) {
parser.setFunctionName(functionName);
@ -378,6 +391,17 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
return (isProgram() ? program : extractFunctionFromScript(program)).setName(null, functionName);
}
private FunctionNode deserialize() {
final ScriptEnvironment env = installer.getOwner();
final Timing timing = env._timing;
final long t1 = System.nanoTime();
try {
return AstDeserializer.deserialize(serializedAst).initializeDeserialized(source, new Namespace(env.getNamespace()));
} finally {
timing.accumulateTime("'Deserialize'", System.nanoTime() - t1);
}
}
private boolean getFunctionFlag(final int flag) {
return (functionFlags & flag) != 0;
}
@ -486,7 +510,8 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
final FunctionNode fn = reparse();
final Compiler compiler = getCompiler(fn, actualCallSiteType, runtimeScope);
final FunctionNode compiledFn = compiler.compile(fn, CompilationPhases.COMPILE_ALL);
final FunctionNode compiledFn = compiler.compile(fn,
isSerialized() ? CompilationPhases.COMPILE_ALL_SERIALIZED : CompilationPhases.COMPILE_ALL);
if (persist && !compiledFn.getFlag(FunctionNode.HAS_APPLY_TO_CALL_SPECIALIZATION)) {
compiler.persistClassInfo(cacheKey, compiledFn);
@ -606,7 +631,7 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
MethodHandle lookupCodeMethod(final Class<?> codeClass, final MethodType targetType) {
if (log.isEnabled()) {
log.info("Looking up ", DebugLogger.quote(name), " type=", targetType);
log.info("Looking up ", DebugLogger.quote(functionName), " type=", targetType);
}
return MH.findStatic(LOOKUP, codeClass, functionName, targetType);
}
@ -817,6 +842,26 @@ public final class RecompilableScriptFunctionData extends ScriptFunctionData imp
return true;
}
/**
* Restores the {@link #getFunctionFlags()} flags to a function node. During on-demand compilation, we might need
* to restore flags to a function node that was otherwise not subjected to a full compile pipeline (e.g. its parse
* was skipped, or it's a nested function of a deserialized function.
* @param lc current lexical context
* @param fn the function node to restore flags onto
* @return the transformed function node
*/
public FunctionNode restoreFlags(final LexicalContext lc, final FunctionNode fn) {
assert fn.getId() == functionNodeId;
FunctionNode newFn = fn.setFlags(lc, functionFlags);
// This compensates for missing markEval() in case the function contains an inner function
// that contains eval(), that now we didn't discover since we skipped the inner function.
if (newFn.hasNestedEval()) {
assert newFn.hasScopeBlock();
newFn = newFn.setBody(lc, newFn.getBody().setNeedsScope(null));
}
return newFn;
}
private void readObject(final java.io.ObjectInputStream in) throws IOException, ClassNotFoundException {
in.defaultReadObject();
createLogger();