8168467: Use TaskEntry as task mark queue elements

Change the mark stack to use TaskEntry queue elements to improve type safety instead of casting around raw pointers.

Reviewed-by: kbarrett, sangheki
This commit is contained in:
Thomas Schatzl 2017-03-15 11:44:46 +01:00
parent 35e8433c1c
commit 7bca463789
5 changed files with 181 additions and 140 deletions

View File

@ -145,15 +145,15 @@ bool G1CMMarkStack::resize(size_t new_capacity) {
assert(new_capacity <= _max_chunk_capacity,
"Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
OopChunk* new_base = MmapArrayAllocator<OopChunk, mtGC>::allocate_or_null(new_capacity);
TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::allocate_or_null(new_capacity);
if (new_base == NULL) {
log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(OopChunk));
log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
return false;
}
// Release old mapping.
if (_base != NULL) {
MmapArrayAllocator<OopChunk, mtGC>::free(_base, _chunk_capacity);
MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
}
_base = new_base;
@ -165,16 +165,16 @@ bool G1CMMarkStack::resize(size_t new_capacity) {
}
size_t G1CMMarkStack::capacity_alignment() {
return (size_t)lcm(os::vm_allocation_granularity(), sizeof(OopChunk)) / sizeof(void*);
return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
}
bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
size_t const OopChunkSizeInVoidStar = sizeof(OopChunk) / sizeof(void*);
size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
_max_chunk_capacity = (size_t)align_size_up(max_capacity, capacity_alignment()) / OopChunkSizeInVoidStar;
size_t initial_chunk_capacity = (size_t)align_size_up(initial_capacity, capacity_alignment()) / OopChunkSizeInVoidStar;
_max_chunk_capacity = (size_t)align_size_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
size_t initial_chunk_capacity = (size_t)align_size_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
guarantee(initial_chunk_capacity <= _max_chunk_capacity,
"Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
@ -210,49 +210,49 @@ void G1CMMarkStack::expand() {
G1CMMarkStack::~G1CMMarkStack() {
if (_base != NULL) {
MmapArrayAllocator<OopChunk, mtGC>::free(_base, _chunk_capacity);
MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
}
}
void G1CMMarkStack::add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem) {
void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
elem->next = *list;
*list = elem;
}
void G1CMMarkStack::add_chunk_to_chunk_list(OopChunk* elem) {
void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
add_chunk_to_list(&_chunk_list, elem);
_chunks_in_chunk_list++;
}
void G1CMMarkStack::add_chunk_to_free_list(OopChunk* elem) {
void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
add_chunk_to_list(&_free_list, elem);
}
G1CMMarkStack::OopChunk* G1CMMarkStack::remove_chunk_from_list(OopChunk* volatile* list) {
OopChunk* result = *list;
G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
TaskQueueEntryChunk* result = *list;
if (result != NULL) {
*list = (*list)->next;
}
return result;
}
G1CMMarkStack::OopChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
OopChunk* result = remove_chunk_from_list(&_chunk_list);
TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
if (result != NULL) {
_chunks_in_chunk_list--;
}
return result;
}
G1CMMarkStack::OopChunk* G1CMMarkStack::remove_chunk_from_free_list() {
G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
return remove_chunk_from_list(&_free_list);
}
G1CMMarkStack::OopChunk* G1CMMarkStack::allocate_new_chunk() {
G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
// This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
// Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
// wraparound of _hwm.
@ -265,14 +265,14 @@ G1CMMarkStack::OopChunk* G1CMMarkStack::allocate_new_chunk() {
return NULL;
}
OopChunk* result = ::new (&_base[cur_idx]) OopChunk;
TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
result->next = NULL;
return result;
}
bool G1CMMarkStack::par_push_chunk(oop* ptr_arr) {
bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
// Get a new chunk.
OopChunk* new_chunk = remove_chunk_from_free_list();
TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
if (new_chunk == NULL) {
// Did not get a chunk from the free list. Allocate from backing memory.
@ -283,21 +283,21 @@ bool G1CMMarkStack::par_push_chunk(oop* ptr_arr) {
}
}
Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, OopsPerChunk * sizeof(oop));
Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
add_chunk_to_chunk_list(new_chunk);
return true;
}
bool G1CMMarkStack::par_pop_chunk(oop* ptr_arr) {
OopChunk* cur = remove_chunk_from_chunk_list();
bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
if (cur == NULL) {
return false;
}
Copy::conjoint_memory_atomic(cur->data, ptr_arr, OopsPerChunk * sizeof(oop));
Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
add_chunk_to_free_list(cur);
return true;
@ -1995,13 +1995,17 @@ public:
_info(info)
{ }
void operator()(oop obj) const {
guarantee(G1CMObjArrayProcessor::is_array_slice(obj) || obj->is_oop(),
void operator()(G1TaskQueueEntry task_entry) const {
if (task_entry.is_array_slice()) {
guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
return;
}
guarantee(task_entry.obj()->is_oop(),
"Non-oop " PTR_FORMAT ", phase: %s, info: %d",
p2i(obj), _phase, _info);
guarantee(G1CMObjArrayProcessor::is_array_slice(obj) || !_g1h->is_in_cset(obj),
p2i(task_entry.obj()), _phase, _info);
guarantee(!_g1h->is_in_cset(task_entry.obj()),
"obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
p2i(obj), _phase, _info);
p2i(task_entry.obj()), _phase, _info);
}
};
@ -2195,7 +2199,7 @@ public:
// We move that task's local finger along.
_task->move_finger_to(addr);
_task->scan_object(oop(addr));
_task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
// we only partially drain the local queue and global stack
_task->drain_local_queue(true);
_task->drain_global_stack(true);
@ -2386,16 +2390,16 @@ void G1CMTask::decrease_limits() {
void G1CMTask::move_entries_to_global_stack() {
// Local array where we'll store the entries that will be popped
// from the local queue.
oop buffer[G1CMMarkStack::OopsPerChunk];
G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
size_t n = 0;
oop obj;
while (n < G1CMMarkStack::OopsPerChunk && _task_queue->pop_local(obj)) {
buffer[n] = obj;
G1TaskQueueEntry task_entry;
while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
buffer[n] = task_entry;
++n;
}
if (n < G1CMMarkStack::OopsPerChunk) {
buffer[n] = NULL;
if (n < G1CMMarkStack::EntriesPerChunk) {
buffer[n] = G1TaskQueueEntry();
}
if (n > 0) {
@ -2411,20 +2415,20 @@ void G1CMTask::move_entries_to_global_stack() {
bool G1CMTask::get_entries_from_global_stack() {
// Local array where we'll store the entries that will be popped
// from the global stack.
oop buffer[G1CMMarkStack::OopsPerChunk];
G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
if (!_cm->mark_stack_pop(buffer)) {
return false;
}
// We did actually pop at least one entry.
for (size_t i = 0; i < G1CMMarkStack::OopsPerChunk; ++i) {
oop elem = buffer[i];
if (elem == NULL) {
for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
G1TaskQueueEntry task_entry = buffer[i];
if (task_entry.is_null()) {
break;
}
assert(G1CMObjArrayProcessor::is_array_slice(elem) || elem->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(elem));
bool success = _task_queue->push(elem);
assert(task_entry.is_array_slice() || task_entry.obj()->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
bool success = _task_queue->push(task_entry);
// We only call this when the local queue is empty or under a
// given target limit. So, we do not expect this push to fail.
assert(success, "invariant");
@ -2451,14 +2455,14 @@ void G1CMTask::drain_local_queue(bool partially) {
}
if (_task_queue->size() > target_size) {
oop obj;
bool ret = _task_queue->pop_local(obj);
G1TaskQueueEntry entry;
bool ret = _task_queue->pop_local(entry);
while (ret) {
scan_object(obj);
scan_task_entry(entry);
if (_task_queue->size() <= target_size || has_aborted()) {
ret = false;
} else {
ret = _task_queue->pop_local(obj);
ret = _task_queue->pop_local(entry);
}
}
}
@ -2539,8 +2543,8 @@ void G1CMTask::print_stats() {
_step_times_ms.maximum(), _step_times_ms.sum());
}
bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
return _task_queues->steal(worker_id, hash_seed, obj);
bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
return _task_queues->steal(worker_id, hash_seed, task_entry);
}
/*****************************************************************************
@ -2863,9 +2867,9 @@ void G1CMTask::do_marking_step(double time_target_ms,
assert(_cm->out_of_regions() && _task_queue->size() == 0,
"only way to reach here");
while (!has_aborted()) {
oop obj;
if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
scan_object(obj);
G1TaskQueueEntry entry;
if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
scan_task_entry(entry);
// And since we're towards the end, let's totally drain the
// local queue and global stack.

View File

@ -38,7 +38,62 @@ class G1ConcurrentMark;
class ConcurrentGCTimer;
class G1OldTracer;
class G1SurvivorRegions;
typedef GenericTaskQueue<oop, mtGC> G1CMTaskQueue;
#ifdef _MSC_VER
#pragma warning(push)
// warning C4522: multiple assignment operators specified
#pragma warning(disable:4522)
#endif
// This is a container class for either an oop or a continuation address for
// mark stack entries. Both are pushed onto the mark stack.
class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
private:
void* _holder;
static const uintptr_t ArraySliceBit = 1;
G1TaskQueueEntry(oop obj) : _holder(obj) {
assert(_holder != NULL, "Not allowed to set NULL task queue element");
}
G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
public:
G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
G1TaskQueueEntry() : _holder(NULL) { }
static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
_holder = t._holder;
return *this;
}
volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
_holder = t._holder;
return *this;
}
oop obj() const {
assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
return (oop)_holder;
}
HeapWord* slice() const {
assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
}
bool is_oop() const { return !is_array_slice(); }
bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
bool is_null() const { return _holder == NULL; }
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
// Closure used by CM during concurrent reference discovery
@ -165,44 +220,44 @@ class G1CMBitMap : public G1CMBitMapRO {
// list connecting all empty chunks.
class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
public:
// Number of oops that can fit in a single chunk.
static const size_t OopsPerChunk = 1024 - 1 /* One reference for the next pointer */;
// Number of TaskQueueEntries that can fit in a single chunk.
static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
private:
struct OopChunk {
OopChunk* next;
oop data[OopsPerChunk];
struct TaskQueueEntryChunk {
TaskQueueEntryChunk* next;
G1TaskQueueEntry data[EntriesPerChunk];
};
size_t _max_chunk_capacity; // Maximum number of OopChunk elements on the stack.
size_t _max_chunk_capacity; // Maximum number of TaskQueueEntryChunk elements on the stack.
OopChunk* _base; // Bottom address of allocated memory area.
size_t _chunk_capacity; // Current maximum number of OopChunk elements.
TaskQueueEntryChunk* _base; // Bottom address of allocated memory area.
size_t _chunk_capacity; // Current maximum number of TaskQueueEntryChunk elements.
char _pad0[DEFAULT_CACHE_LINE_SIZE];
OopChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users.
char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)];
OopChunk* volatile _chunk_list; // List of chunks currently containing data.
TaskQueueEntryChunk* volatile _free_list; // Linked list of free chunks that can be allocated by users.
char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
volatile size_t _chunks_in_chunk_list;
char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*) - sizeof(size_t)];
char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
volatile size_t _hwm; // High water mark within the reserved space.
char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
// Allocate a new chunk from the reserved memory, using the high water mark. Returns
// NULL if out of memory.
OopChunk* allocate_new_chunk();
TaskQueueEntryChunk* allocate_new_chunk();
// Atomically add the given chunk to the list.
void add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem);
void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
// Atomically remove and return a chunk from the given list. Returns NULL if the
// list is empty.
OopChunk* remove_chunk_from_list(OopChunk* volatile* list);
TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
void add_chunk_to_chunk_list(OopChunk* elem);
void add_chunk_to_free_list(OopChunk* elem);
void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
OopChunk* remove_chunk_from_chunk_list();
OopChunk* remove_chunk_from_free_list();
TaskQueueEntryChunk* remove_chunk_from_chunk_list();
TaskQueueEntryChunk* remove_chunk_from_free_list();
bool _should_expand;
@ -220,17 +275,17 @@ private:
// Allocate and initialize the mark stack with the given number of oops.
bool initialize(size_t initial_capacity, size_t max_capacity);
// Pushes the given buffer containing at most OopsPerChunk elements on the mark
// stack. If less than OopsPerChunk elements are to be pushed, the array must
// Pushes the given buffer containing at most EntriesPerChunk elements on the mark
// stack. If less than EntriesPerChunk elements are to be pushed, the array must
// be terminated with a NULL.
// Returns whether the buffer contents were successfully pushed to the global mark
// stack.
bool par_push_chunk(oop* buffer);
bool par_push_chunk(G1TaskQueueEntry* buffer);
// Pops a chunk from this mark stack, copying them into the given buffer. This
// chunk may contain up to OopsPerChunk elements. If there are less, the last
// chunk may contain up to EntriesPerChunk elements. If there are less, the last
// element in the array is a NULL pointer.
bool par_pop_chunk(oop* buffer);
bool par_pop_chunk(G1TaskQueueEntry* buffer);
// Return whether the chunk list is empty. Racy due to unsynchronized access to
// _chunk_list.
@ -246,7 +301,7 @@ private:
// Return the approximate number of oops on this mark stack. Racy due to
// unsynchronized access to _chunks_in_chunk_list.
size_t size() const { return _chunks_in_chunk_list * OopsPerChunk; }
size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
void set_empty();
@ -526,14 +581,14 @@ public:
// Manipulation of the global mark stack.
// The push and pop operations are used by tasks for transfers
// between task-local queues and the global mark stack.
bool mark_stack_push(oop* arr) {
bool mark_stack_push(G1TaskQueueEntry* arr) {
if (!_global_mark_stack.par_push_chunk(arr)) {
set_has_overflown();
return false;
}
return true;
}
bool mark_stack_pop(oop* arr) {
bool mark_stack_pop(G1TaskQueueEntry* arr) {
return _global_mark_stack.par_pop_chunk(arr);
}
size_t mark_stack_size() { return _global_mark_stack.size(); }
@ -567,7 +622,7 @@ public:
}
// Attempts to steal an object from the task queues of other tasks
bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
G1ConcurrentMark(G1CollectedHeap* g1h,
G1RegionToSpaceMapper* prev_bitmap_storage,
@ -822,7 +877,7 @@ private:
// mark bitmap scan, and so needs to be pushed onto the mark stack.
bool is_below_finger(oop obj, HeapWord* global_finger) const;
template<bool scan> void process_grey_object(oop obj);
template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
public:
// Apply the closure on the given area of the objArray. Return the number of words
// scanned.
@ -887,10 +942,10 @@ public:
inline void deal_with_reference(oop obj);
// It scans an object and visits its children.
inline void scan_object(oop obj);
inline void scan_task_entry(G1TaskQueueEntry task_entry);
// It pushes an object on the local queue.
inline void push(oop obj);
inline void push(G1TaskQueueEntry task_entry);
// Move entries to the global stack.
void move_entries_to_global_stack();

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -97,12 +97,12 @@ inline void G1CMMarkStack::iterate(Fn fn) const {
size_t num_chunks = 0;
OopChunk* cur = _chunk_list;
TaskQueueEntryChunk* cur = _chunk_list;
while (cur != NULL) {
guarantee(num_chunks <= _chunks_in_chunk_list, "Found " SIZE_FORMAT " oop chunks which is more than there should be", num_chunks);
for (size_t i = 0; i < OopsPerChunk; ++i) {
if (cur->data[i] == NULL) {
for (size_t i = 0; i < EntriesPerChunk; ++i) {
if (cur->data[i].is_null()) {
break;
}
fn(cur->data[i]);
@ -114,17 +114,16 @@ inline void G1CMMarkStack::iterate(Fn fn) const {
#endif
// It scans an object and visits its children.
inline void G1CMTask::scan_object(oop obj) { process_grey_object<true>(obj); }
inline void G1CMTask::scan_task_entry(G1TaskQueueEntry task_entry) { process_grey_task_entry<true>(task_entry); }
inline void G1CMTask::push(oop obj) {
HeapWord* objAddr = (HeapWord*) obj;
assert(G1CMObjArrayProcessor::is_array_slice(obj) || _g1h->is_in_g1_reserved(objAddr), "invariant");
assert(G1CMObjArrayProcessor::is_array_slice(obj) || !_g1h->is_on_master_free_list(
_g1h->heap_region_containing((HeapWord*) objAddr)), "invariant");
assert(G1CMObjArrayProcessor::is_array_slice(obj) || !_g1h->is_obj_ill(obj), "invariant");
assert(G1CMObjArrayProcessor::is_array_slice(obj) || _nextMarkBitMap->isMarked(objAddr), "invariant");
inline void G1CMTask::push(G1TaskQueueEntry task_entry) {
assert(task_entry.is_array_slice() || _g1h->is_in_g1_reserved(task_entry.obj()), "invariant");
assert(task_entry.is_array_slice() || !_g1h->is_on_master_free_list(
_g1h->heap_region_containing(task_entry.obj())), "invariant");
assert(task_entry.is_array_slice() || !_g1h->is_obj_ill(task_entry.obj()), "invariant"); // FIXME!!!
assert(task_entry.is_array_slice() || _nextMarkBitMap->isMarked((HeapWord*)task_entry.obj()), "invariant");
if (!_task_queue->push(obj)) {
if (!_task_queue->push(task_entry)) {
// The local task queue looks full. We need to push some entries
// to the global stack.
move_entries_to_global_stack();
@ -132,7 +131,7 @@ inline void G1CMTask::push(oop obj) {
// this should succeed since, even if we overflow the global
// stack, we should have definitely removed some entries from the
// local queue. So, there must be space on it.
bool success = _task_queue->push(obj);
bool success = _task_queue->push(task_entry);
assert(success, "invariant");
}
}
@ -168,18 +167,21 @@ inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
}
template<bool scan>
inline void G1CMTask::process_grey_object(oop obj) {
assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
assert(G1CMObjArrayProcessor::is_array_slice(obj) || _nextMarkBitMap->isMarked((HeapWord*) obj),
inline void G1CMTask::process_grey_task_entry(G1TaskQueueEntry task_entry) {
assert(scan || (task_entry.is_oop() && task_entry.obj()->is_typeArray()), "Skipping scan of grey non-typeArray");
assert(task_entry.is_array_slice() || _nextMarkBitMap->isMarked((HeapWord*)task_entry.obj()),
"Any stolen object should be a slice or marked");
if (scan) {
if (G1CMObjArrayProcessor::is_array_slice(obj)) {
_words_scanned += _objArray_processor.process_slice(obj);
} else if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
_words_scanned += _objArray_processor.process_obj(obj);
if (task_entry.is_array_slice()) {
_words_scanned += _objArray_processor.process_slice(task_entry.slice());
} else {
_words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
oop obj = task_entry.obj();
if (G1CMObjArrayProcessor::should_be_sliced(obj)) {
_words_scanned += _objArray_processor.process_obj(obj);
} else {
_words_scanned += obj->oop_iterate_size(_cm_oop_closure);;
}
}
}
check_limits();
@ -210,6 +212,7 @@ inline void G1CMTask::make_reference_grey(oop obj) {
// be pushed on the stack. So, some duplicate work, but no
// correctness problems.
if (is_below_finger(obj, global_finger)) {
G1TaskQueueEntry entry = G1TaskQueueEntry::from_oop(obj);
if (obj->is_typeArray()) {
// Immediately process arrays of primitive types, rather
// than pushing on the mark stack. This keeps us from
@ -221,9 +224,9 @@ inline void G1CMTask::make_reference_grey(oop obj) {
// by only doing a bookkeeping update and avoiding the
// actual scan of the object - a typeArray contains no
// references, and the metadata is built-in.
process_grey_object<false>(obj);
process_grey_task_entry<false>(entry);
} else {
push(obj);
push(entry);
}
}
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -26,18 +26,8 @@
#include "gc/g1/g1ConcurrentMark.inline.hpp"
#include "gc/g1/g1ConcurrentMarkObjArrayProcessor.inline.hpp"
oop G1CMObjArrayProcessor::encode_array_slice(HeapWord* addr) {
return oop((void*)((uintptr_t)addr | ArraySliceBit));
}
HeapWord* G1CMObjArrayProcessor::decode_array_slice(oop value) {
assert(is_array_slice(value), "Given value " PTR_FORMAT " is not an array slice", p2i(value));
return (HeapWord*)((uintptr_t)(void*)value & ~ArraySliceBit);
}
void G1CMObjArrayProcessor::push_array_slice(HeapWord* what) {
oop obj = encode_array_slice(what);
_task->push(obj);
_task->push(G1TaskQueueEntry::from_slice(what));
}
size_t G1CMObjArrayProcessor::process_array_slice(objArrayOop obj, HeapWord* start_from, size_t remaining) {
@ -58,30 +48,29 @@ size_t G1CMObjArrayProcessor::process_obj(oop obj) {
return process_array_slice(objArrayOop(obj), (HeapWord*)obj, (size_t)objArrayOop(obj)->size());
}
size_t G1CMObjArrayProcessor::process_slice(oop obj) {
HeapWord* const decoded_address = decode_array_slice(obj);
size_t G1CMObjArrayProcessor::process_slice(HeapWord* slice) {
// Find the start address of the objArrayOop.
// Shortcut the BOT access if the given address is from a humongous object. The BOT
// slide is fast enough for "smaller" objects in non-humongous regions, but is slower
// than directly using heap region table.
G1CollectedHeap* g1h = G1CollectedHeap::heap();
HeapRegion* r = g1h->heap_region_containing(decoded_address);
HeapRegion* r = g1h->heap_region_containing(slice);
HeapWord* const start_address = r->is_humongous() ?
r->humongous_start_region()->bottom() :
g1h->block_start(decoded_address);
g1h->block_start(slice);
assert(oop(start_address)->is_objArray(), "Address " PTR_FORMAT " does not refer to an object array ", p2i(start_address));
assert(start_address < decoded_address,
assert(start_address < slice,
"Object start address " PTR_FORMAT " must be smaller than decoded address " PTR_FORMAT,
p2i(start_address),
p2i(decoded_address));
p2i(slice));
objArrayOop objArray = objArrayOop(start_address);
size_t already_scanned = decoded_address - start_address;
size_t already_scanned = slice - start_address;
size_t remaining = objArray->size() - already_scanned;
return process_array_slice(objArray, decoded_address, remaining);
return process_array_slice(objArray, slice, remaining);
}

View File

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
@ -36,32 +36,22 @@ class G1CMTask;
// This allows incremental processing of large objects.
class G1CMObjArrayProcessor VALUE_OBJ_CLASS_SPEC {
private:
// The bit mask for the continuation indicator of elements on the mark stack.
static const size_t ArraySliceBit = 1;
// Reference to the task for doing the actual work.
G1CMTask* _task;
// Encodes the given address as a continuation "oop".
oop encode_array_slice(HeapWord* addr);
// Remove the continuation marker from the given oop from the mark stack.
HeapWord* decode_array_slice(oop value);
// Push the continuation at the given address onto the mark stack.
void push_array_slice(HeapWord* addr);
// Process (apply the closure) on the given continuation of the given objArray.
size_t process_array_slice(objArrayOop const obj, HeapWord* start_from, size_t remaining);
public:
static bool is_array_slice(void* obj) { return ((uintptr_t)obj & ArraySliceBit) != 0; }
static bool should_be_sliced(oop obj);
G1CMObjArrayProcessor(G1CMTask* task) : _task(task) {
}
// Process the given continuation "oop". Returns the number of words scanned.
size_t process_slice(oop obj);
// Process the given continuation. Returns the number of words scanned.
size_t process_slice(HeapWord* slice);
// Start processing the given objArrayOop by scanning the header and pushing its
// continuation.
size_t process_obj(oop obj);