8225603: Enhancement for big integers
Reviewed-by: darcy, ahgross, rhalade
This commit is contained in:
parent
14c0c19539
commit
833a3897dc
@ -2178,8 +2178,8 @@ class MutableBigInteger {
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the multiplicative inverse of this mod mod, where mod is odd.
|
||||
* This and mod are not changed by the calculation.
|
||||
* Calculate the multiplicative inverse of this modulo mod, where the mod
|
||||
* argument is odd. This and mod are not changed by the calculation.
|
||||
*
|
||||
* This method implements an algorithm due to Richard Schroeppel, that uses
|
||||
* the same intermediate representation as Montgomery Reduction
|
||||
@ -2233,8 +2233,18 @@ class MutableBigInteger {
|
||||
k += trailingZeros;
|
||||
}
|
||||
|
||||
while (c.sign < 0)
|
||||
c.signedAdd(p);
|
||||
if (c.compare(p) >= 0) { // c has a larger magnitude than p
|
||||
MutableBigInteger remainder = c.divide(p,
|
||||
new MutableBigInteger());
|
||||
// The previous line ignores the sign so we copy the data back
|
||||
// into c which will restore the sign as needed (and converts
|
||||
// it back to a SignedMutableBigInteger)
|
||||
c.copyValue(remainder);
|
||||
}
|
||||
|
||||
if (c.sign < 0) {
|
||||
c.signedAdd(p);
|
||||
}
|
||||
|
||||
return fixup(c, p, k);
|
||||
}
|
||||
@ -2272,8 +2282,8 @@ class MutableBigInteger {
|
||||
}
|
||||
|
||||
// In theory, c may be greater than p at this point (Very rare!)
|
||||
while (c.compare(p) >= 0)
|
||||
c.subtract(p);
|
||||
if (c.compare(p) >= 0)
|
||||
c = c.divide(p, new MutableBigInteger());
|
||||
|
||||
return c;
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2007, 2016, Oracle and/or its affiliates. All rights reserved.
|
||||
* Copyright (c) 2007, 2020, Oracle and/or its affiliates. All rights reserved.
|
||||
* Use is subject to license terms.
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
@ -34,7 +34,7 @@
|
||||
* Netscape Communications Corporation
|
||||
* Douglas Stebila <douglas@stebila.ca> of Sun Laboratories.
|
||||
*
|
||||
* Last Modified Date from the Original Code: Nov 2016
|
||||
* Last Modified Date from the Original Code: Nov 2019
|
||||
*********************************************************************** */
|
||||
|
||||
/* Arbitrary precision integer arithmetic library */
|
||||
@ -2136,7 +2136,10 @@ mp_err s_mp_almost_inverse(const mp_int *a, const mp_int *p, mp_int *c)
|
||||
}
|
||||
}
|
||||
if (res >= 0) {
|
||||
while (MP_SIGN(c) != MP_ZPOS) {
|
||||
if (s_mp_cmp(c, p) >= 0) {
|
||||
MP_CHECKOK( mp_div(c, p, NULL, c));
|
||||
}
|
||||
if (MP_SIGN(c) != MP_ZPOS) {
|
||||
MP_CHECKOK( mp_add(c, p, c) );
|
||||
}
|
||||
res = k;
|
||||
|
57
test/jdk/java/math/BigInteger/ModInvTime.java
Normal file
57
test/jdk/java/math/BigInteger/ModInvTime.java
Normal file
@ -0,0 +1,57 @@
|
||||
/*
|
||||
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
|
||||
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
||||
*
|
||||
* This code is free software; you can redistribute it and/or modify it
|
||||
* under the terms of the GNU General Public License version 2 only, as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This code is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
* version 2 for more details (a copy is included in the LICENSE file that
|
||||
* accompanied this code).
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License version
|
||||
* 2 along with this work; if not, write to the Free Software Foundation,
|
||||
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
||||
*
|
||||
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
||||
* or visit www.oracle.com if you need additional information or have any
|
||||
* questions.
|
||||
*/
|
||||
|
||||
/*
|
||||
* @test
|
||||
* @bug 8225603
|
||||
* @summary Tests whether modInverse() completes in a reasonable time
|
||||
* @run main/othervm ModInvTime
|
||||
*/
|
||||
import java.math.BigInteger;
|
||||
|
||||
public class ModInvTime {
|
||||
public static void main(String[] args) throws InterruptedException {
|
||||
BigInteger prime = new BigInteger("39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643");
|
||||
BigInteger s = new BigInteger("9552729729729327851382626410162104591956625415831952158766936536163093322096473638446154604799898109762512409920799");
|
||||
System.out.format("int length: %d, modulus length: %d%n",
|
||||
s.bitLength(), prime.bitLength());
|
||||
|
||||
System.out.println("Computing modular inverse ...");
|
||||
BigInteger mi = s.modInverse(prime);
|
||||
System.out.format("Modular inverse: %s%n", mi);
|
||||
check(s, prime, mi);
|
||||
|
||||
BigInteger ns = s.negate();
|
||||
BigInteger nmi = ns.modInverse(prime);
|
||||
System.out.format("Modular inverse of negation: %s%n", nmi);
|
||||
check(ns, prime, nmi);
|
||||
}
|
||||
|
||||
public static void check(BigInteger val, BigInteger mod, BigInteger inv) {
|
||||
BigInteger r = inv.multiply(val).remainder(mod);
|
||||
if (r.signum() == -1)
|
||||
r = r.add(mod);
|
||||
if (!r.equals(BigInteger.ONE))
|
||||
throw new RuntimeException("Numerically incorrect modular inverse");
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user